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Abstract

We present a novel bi-directional Transformer architecture (BiXT) which scales
linearly with input size in terms of computational cost and memory consump-
tion, but does not suffer the drop in performance or limitation to only one input
modality seen with other efficient Transformer-based approaches. BiXT is inspired
by the Perceiver architectures but replaces iterative attention with an efficient bi-
directional cross-attention module in which input tokens and latent variables attend
to each other simultaneously, leveraging a naturally emerging attention-symmetry
between the two. This approach unlocks a key bottleneck experienced by Perceiver-
like architectures and enables the processing and interpretation of both semantics
(‘what’) and location (‘where’) to develop alongside each other over multiple
layers – allowing its direct application to dense and instance-based tasks alike. By
combining efficiency with the generality and performance of a full Transformer
architecture, BiXT can process longer sequences like point clouds, text or images
at higher feature resolutions and achieves competitive performance across a range
of tasks like point cloud part segmentation, semantic image segmentation, image
classification, hierarchical sequence modeling and document retrieval. Our experi-
ments demonstrate that BiXT models outperform larger competitors by leveraging
longer sequences more efficiently on vision tasks like classification and segmenta-
tion, and perform on par with full Transformer variants on sequence modeling and
document retrieval – but require 28% fewer FLOPs and are up to 8.4× faster. 1

1 Introduction

Much of the data we obtain when perceiving our environment can be interpreted via a division into
‘what’ and ‘where’. If we consider for example the image pictured in Figure 1 on the left, we can
easily describe its content by ‘what’ we see – the building, sky and a flag. If we were to draw
conclusions on a more fine-grained level though, we would likely include more specific descriptions
like “lower left corner” referring to their positions within the image – the ‘where’. In other words,
‘where’ denotes the actual geometric location of the individual elements (e.g. pixels) and ‘what’ the
semantic entities (e.g. objects) that collectively describe the data as a whole. Note that this similarly
applies to many other modalities, like point clouds or even language where we form words via letters
that together have a certain meaning.

Thanks to the few structural constraints placed on the input data paired with high performance,
Transformers [44] have shown great capabilities in extracting both ’what’ and ’where’ for a range of
input modalities, giving rise to significant advances across various fields such as Natural Language
Processing [9] and Computer Vision [10, 41, 42]. However, their success comes at the high cost of
scaling quadratically in memory and time with the input length, practically prohibiting their use on

1Code and models are publicly available at https://github.com/mrkshllr/BiXT.
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(a) (b) Seq: lat → tok (c) Seq: lat ← tok (d) Ours: lat←→ tok

Figure 1: Emerging patterns when attending both ways. (a) Input image. (b) depicts the areas of
the image that 4 different latents attend to, while (c) inversely shows which image regions attend to
these latents (transformed into the same coordinate system for ease of interpretation). (d) displays
which areas & latents are symmetrically attended to using our proposed bi-directional cross-attention.

larger input data like point clouds, long documents, or high-resolution images when computational
resources are limited.

Several approaches have since been proposed to increase their efficiency, either by changing how the
computationally expensive self-attention operation is realized [37, 45] or by exploiting the domain-
specific structure of their data input [17, 29, 34, 43]. However, all these either face a reduction in the
Transformer’s performance or limit its application to only one specific type of input [11].

In an attempt to preserve the generality by not imposing additional constraints on the input data,
Jaegle et al. [18] employ a small set of latent vectors as a bottleneck to extract the ‘what’ via one-sided
(iterative) cross-attention – and require an additional decoder to draw conclusions about ‘where’ [19].
While achieving linear complexity w.r.t. the input length, these ‘Perceiver’ architectures require
between 360 - 707 GFLOPs to achieve around 78% accuracy on ImageNet1K – results that recent
Transformer variants like ViT [41, 42] are able to obtain at a fraction of the compute. One possible
explanation for this discrepancy is that the effective working memory of Perceiver architectures is
strictly limited to the latents which therefore need to compensate via increased computation, whereas
conventional Transformers like ViTs leverage the (larger) number of tokens across several layers.
This raises an important question: Are the appealing individual properties of these two methods
mutually exclusive, or can we in fact have the best of both worlds?

In this paper, we set out to affirm the latter. We demonstrate that a small set of latent vectors
appropriately combined with layerwise simultaneous refinement of both input tokens and latents
makes it possible to pair the high performance and architectural simplicity of Transformers with the
linear scaling of Perceivers – outperforming both in settings where compute is limited. We start off
by investigating a naïve approach: sequentially applying cross-attention to refine ‘what’ and ‘where’,
one after the other. We discover that approximately symmetric attention patterns naturally emerge
between latents and tokens even when both are provided with complete flexibility. In other words,
for most latents (‘what’) that pay attention to particular tokens (‘where’), these tokens in turn pay
attention to exactly these latents (see Figure 1 and Section 3.1). Not only does this intuitively make
sense – objects need to know ‘where’ they are located in the image, and image locations need to
know ‘what’ objects are located there – it more importantly offers us a unique opportunity to save
FLOPs, memory and parameters.

As we will demonstrate in Section 2, this approximate symmetry means we only need to compute
the attention matrix once, reducing the involved parameters by ∼ 1/3 to facilitate an efficient bi-
directional information exchange via our proposed bi-directional cross-attention. Integrated into
our bi-directional cross-attention Transformer architecture (BiXT), this forms a flexible and high-
performing yet efficient way to process different input modalities like images, point clouds or text on
a variety of instance-based (e.g. classification) or dense tasks (e.g. segmentation) – all while scaling
linearly w.r.t. the input length.

In summary, our main contributions include the following:

1. We introduce a novel bi-directional cross-attention Transformer architecture (BiXT) that
scales linearly with the input size in terms of computational cost and memory consumption,
allowing us to process longer sequences like point clouds, text or images at higher resolution.
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2. We propose bi-directional cross-attention as an efficient way to establish information
exchange that requires computation of the attention matrix only once and reduces the
involved parameters by ∼1/3, motivated by a naturally emerging symmetry in cross-attention
and showing significant improvements over uni-directional iterative methods like Perceiver.

3. We analyze BiXT’s advantage of processing longer sequences across a number of tasks
using different input modalities and output structures in settings with limited computa-
tional resources – with our tiny 15M parameter model achieving accuracies up to 83.1%
for classification on ImageNet1K without any modality-specific internal components, per-
forming competitively for semantic image and point cloud part segmentation even among
modality-specific approaches, and being up to 28% more efficient and 8.4× faster on LRA.

4. We further provide insights into BiXT’s extendibility: Thanks to its simple and flexible
design, modality-specific components can easily be incorporated in a plug-and-play fashion
should the need arise – further improving results while trading off generality.

2 Perceiving via Bi-Directional Cross-Attention

We start this section by briefly revisiting the concept of attention before moving on to presenting our
proposed bi-directional cross-attention methodology, followed by its use within our BiXT architecture
(Figure 2). Please note that we define the concepts using single-head attention for brevity instead of
the actually employed multi-head attention (MHA), and all methods directly generalize to MHA.

2.1 Background: The Attention Mechanism

While self-attention has recently gained great popularity through its use in the Transformer ar-
chitecture [44], we will start from a slightly more general point of view: Given a source se-
quence S ∈ RN×DS and a target sequence T ∈ RM×DT, attention aims to refine T by exhaustively
discovering pairwise correlations between all elements of both sequences and integrating information
from the source components of interest into the target.

Formally, S is linearly projected into two D-dimensional representations using learnable matrices –
yielding a key KS ∈RN×D and value V S ∈RN×D – while T is projected into one D-dimensional
representation to obtain the query QT ∈ RM×D. These representations are then used to compute the
attention-based target refinement as

∆attn
T =attn (QT ,KS ,V S)=softmax

(
QT K

T
S√

D

)
· V S , (1)

with the scaled dot product ĀT,S = 1/
√
D (QT K

T
S) ∈ RM×N representing the scaled pairwise

similarity between target and source elements. This concept is commonly referred to as cross-
attention (CA) between target T and source S. If a representation itself is to be refined given the
context within, i.e. source and target are identical (S=T ), Equation (1) reduces to the well-known
self-attention where the triplet key, query and value are all generated as a function of the same
sequence elements.

Note that computing the similarity matrix ĀT,S has computational complexity O(NM). For self-
attention used in Transformers where T =S and hence M =N , this yields quadratic complexity
O(N2) w.r.t. the input sequence length N , prohibiting its use on longer sequences when computational
resources are limited. On the other hand, if cross-attention is employed with a fixed sequence length
M=const ≪ N , the complexity becomes linear O(N).

2.2 Bi-Directional Cross-Attention

Reducing the complexity of attention from quadratic to linear without impairing performance or
adding constraints w.r.t. input modalities is one of the main aspects of this work. We build our
approach on the previously introduced notion that most data can be interpreted as ‘what’ and ‘where’
– and both need to pay attention to the other for optimal information exchange. We represent the
‘what’ via a small set of M learnable latent vectors and the ‘where’ via an input-dependent sequence
of N tokens, respectively denoted via the subscripts lat and tok in the following and with M ≪ N .
Naïvely, one could simply apply two individual cross-attention operations sequentially – first querying
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Figure 2: BiXT architecture. (left) Input data passing through one layer of our Bi-Directional Cross-
Attention Transformer. (right) Internal structure of proposed efficient bi-directional cross-attention.

information from one side and then the other by creating two query-key-value triplets. However,
our analyses in Section 3.1 show that symmetric tendencies in the attention patterns between latents
and tokens naturally emerge during training, offering a chance to further reduce the computational
requirements and to increase efficiency via our bi-directional cross-attention as follows.

We start by creating reference-value pairs Rlat ∈RM×D,V lat ∈RM×D and Rtok ∈RN×D,V tok ∈
RN×D via learnable linear projection from the latent vectors and tokens, respectively. Leveraging
symmetry to create bi-directional information exchange, pairwise similarities between latents and
tokens are then computed via a scaled dot product as

Ālat,tok =

(
RlatR

T
tok√

D

)
= ĀT

tok,lat, (2)

which is in turn used to obtain the attention-based refinement for both, the latents and tokens, via

∆attn
lat = softmax

(
Ālat,tok

)
· V tok and ∆attn

tok = softmax
(
Ātok,lat

)
· V lat. (3)

Note that in addition to providing linear scaling w.r.t. to the input length N , Equation (2) requires
evaluating the most computationally-expensive operation, namely the similarity matrix (O(MN)),
only once and allows simultaneous refinement of latents and tokens as defined in Equation (3). The
implicit reuse of the references as both query and key further reduces the parameter count of the linear
projection matrices by 1/3 compared to naïve sequential cross-attention.

2.3 BiXT – Bi-Directional Cross-Attention Transformers

Figure 2 (left) illustrates the individual components that make up our BiXT architecture. BiXT is
designed in a simple symmetric, ladder-like structure allowing ‘what’ (latent vectors) and ‘where’
(tokens) to simultaneously attend to and develop alongside each other – making it equally-well suited
for instance-based tasks like classification and dense tasks like semantic segmentation on a variety of
input modalities. We start this section with a brief overview, followed by more detailed descriptions
of the individual components.
General overview. The raw input data is first passed through a tokenization module which projects
the data into an embedding sequence of length N and optionally adds positional encodings, depending
on the input modality and data structure. These tokens together with a fixed set of M learnable latent
vectors are then passed to the first layer’s bi-directional cross-attention module for efficient refinement
(details depicted in Figure 2 (right) and explained below). The latents are then further refined via
latent self-attention, while the tokens are either directly passed on to the next layer (default) or
optionally refined by a token refinement module which could include modality-specific components.
The simultaneous ladder-like refinement of ‘what’ and ‘where’ is repeated for L layers, before the
result is passed to task-specific output head(s). For instance-based tasks like classification, we simply
average the set of latent vectors and attach a classification head to the output, while for tasks like
segmentation that require outputs resembling the input data structure, the refined tokens are used.
Efficient bi-directional information exchange. We use bi-directional cross-attention introduced
in Section 2.2 to enable M latents and N tokens to simultaneously attend to each other in a time and
memory efficient way, provided M ≪ N . The detailed internal structure of our module is depicted in
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Figure 2 (right) and defined via Equations (2) and (3). Apart from the efficient bi-directional attention
computation, it follows the common Transformer-style multi-head attention in terms of normalization,
activations and processing via feed-forward networks (FFN) introduced by Vaswani et al. [44] and
can thus be easily implemented in modern deep learning frameworks.

Three aspects are particularly worth noting here: 1) While our bi-directional attention imposes a
‘hard’ structural constraint of symmetry on the pair-wise similarity matrix between tokens and latents
as defined in Equation (2), the actual information exchange is less strict: applying the row-wise
and column-wise softmax operations to obtain the actual attention maps offers a certain degree of
flexibility, since adding a constant to each element in a row keeps the resulting (latent) attention
map unchanged while modulating the column-wise (token) one, and vice versa. More specifically,
bi-directional CA between M latents and N tokens has in total MN−1 degrees of freedom (dof ),
only (M−1)·(N−1) of which are shared – leaving M+N−2 dof that can be used by the network
for the modulation of the (non-strictly-symmetric) information exchange (see Appendix A.3 for
detailed discussion). 2) Even if the latents and tokens symmetrically attend to each other, the actual
information that is transferred is created via individual value projection matrices and thus offers
flexibility in terms of content. 3) While tokens cannot directly communicate with each other as is
possible when using computationally expensive self-attention, this communication can still take place
over two layers in our structure by using a latent vector as temporary storage in a token-latent-token
sequence. Since the total number of latents is usually larger than the semantic concepts required to
describe one data sample, we can expect this to be possible without impairing performance.
Latent vector refinement. After gathering information from the tokens, we use one multi-head
self-attention operation [44] to further refine the information stored in the latents and provide direct
information exchange with a global receptive field across latents. Note that since the number of
latents M is fixed and significantly smaller than the input sequence, this operation is input-length
independent and not particularly resource intensive. This step is similar to Perceiver [18, 19], but we
only use one instead of several self-attention operations at each layer.
Optional token refinement. In the majority of experiments presented in this paper, we simply pass
the tokens returned by the bi-directional cross-attention to the next layer. However, our architectural
structure also allows to easily include additional (e.g. data-specific) modules for further refinement in
a plug-n-play manner. We demonstrate examples of this in Section 3, where we add a local refinement
component exploiting grid-shaped data for semantic segmentation and a data-specific hierarchical
grouping module for point cloud shape classification.
Positional encodings. We use additive sinusoidal positional encodings [44] to represent the structure
of input data, which is more efficient than learnt encodings for variable input size. For simplicity, we
follow previous works [11] and create the encodings in 32 dimensions per input axis followed by a
linear projection into the model’s token dimension D. This method is applicable independent of the
raw data’s dimensions and thus easily handles data ranging from 2D images to 3D or 6D point clouds.
Input tokenization. Tokenization can be performed in various ways and is the only input modality-
specific component in our architecture, akin to Perceiver-IO’s input adapters [19]. For image-based
experiments, we follow common practice and use simple linear projection as our default tokenizer
to embed image patches. For point cloud data, we simply encode the 3D or 6D points directly into
embedding space using our sinusoidal positional encoder. We adhere to the guidelines of Tay et al.
[40] for text-based hierarchical sequence modelling and document retrieval experiments on LRA.

3 Experimental Evaluation

The purpose of our investigations presented in the following is twofold: 1) To provide qualitative
and quantitative insights into our proposed bi-directional cross-attention and the underlying intuition
of symmetry, and 2) to demonstrate how BiXT’s ability to efficiently and effectively process longer
sequences positively affects various tasks. We focus the majority of our experiments around efficient
architectures in the low FLOP, memory and parameter regime, and unless otherwise stated, we use
BiXT-Ti with 64 latent vectors, embedding dimension 192 and 6 heads for all attention modules.

3.1 Symmetric Tendencies Emerge when Attending Both Ways
We start by investigating the intuition underlying our work: When describing data like an image by
asking ‘what’ is in it and ‘where’ things are, it intuitively makes sense that these two components are
tightly interconnected, and that they will inform aka pay attention to each other. To this end, we set
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Table 1: Bi-directional vs. iterative attention. (a) Classification accuracy on ImageNet1K. All
architectures use 64 latent vectors and have been trained for 120 epochs with hyperparameters
individually optimized. Architectural configurations noted in brackets. †indicates sharing of all, ‡of
all but the 1st layer’s cross-attention parameters. Results reported as mean and (unbiased) std-dev
over 3 randomly seeded training runs (see appendix for complete results). (b) Point cloud shape
classification on ModelNet40. BiXT without (naïve) and with modality-specific components.

(a) ImageNet1K @ 120epochs.

Attention Top-1 Acc. FLOPs Mem. #Param

Pe
rc

ei
ve

r-
lik

e Iterative‡ (sa5-d8) 58.26 ± 2.34 1.58G 7.17M 19.05M
Iterative‡ (sa6-d7) 54.94 ± 5.96 1.59G 7.23M 19.94M
Iterative† (sa6-d8) 60.61 ± 1.11 1.82G 8.25M 22.16M
Iterative† (sa4-d12) 56.03 ± 1.02 1.99G 9.10M 22.16M
Iterative† (sa1-d24) 55.92 ± 0.67 1.79G 8.39M 11.93M

C
ro

ss
-A

ttn
. Sequential (2-way, d11) 73.10 ± 0.53 1.66G 8.44M 14.60M

Bi-Directional (d12) 73.86 ± 0.39 1.68G 7.86M 15.12M
Sequential (2-way, d12) 73.79 ± 0.32 1.81G 9.24M 15.94M
Bi-Directional (d13) 74.10 ± 0.14 1.82G 8.54M 16.38M

(b) ModelNet40.

Method OA mAcc

Naïve, point-based
PointNet Qi et al. [32] 89.2 86.0
Perceiver Jaegle et al. [18] 85.7 –
BiXT (naïve) 89.6 86.4

Hierarchical, point grouping, etc.
PointNet++ Qi et al. [33] 90.7 –
PointMLP Ma et al. [25] 94.1 91.3
BiXT (+ grouping) 92.5 89.7
BiXT (+ grouping & hierarchy) 93.1 90.6

up a naïve architecture where latent vectors first query the tokens via cross-attention (CA), followed
by the tokens querying the latents (i.e. using independent query-key-value triplets), before a further
refinement step of the latent information via one self-attention operation – repeated over multiple
layers and trained on ImageNet1K [36]. When looking at the resulting attention patterns depicted in
Figure 1, we discover that most latents pay attention to parts of the image representing one specific
‘entity’ like a building ((b), top-left), a flag ((b), top-right) or parts of the sky ((b), lower-right) –
supporting the notion that latent vectors represent ‘things’. More interestingly however, we discover
in (c) that most of these image regions (tokens) are in turn also paying attention to exactly these
latent vectors – showing a roughly symmetric information exchange and providing a qualitative
indication that our idea of leveraging symmetry via our bi-directional architecture might be well
justified. We additionally visualize the attention patterns after replacing the naïve sequential CA
through our efficient bi-directional one in (d), and the results look surprisingly similar – clearly
indicating that our symmetrically constrained approach can achieve similar information exchange
while being significantly more efficient.

3.2 Attention – Iterative, Sequential or Bi-directional?

We aim to provide conclusive insights about the two major advantages of our proposed bi-directional
attention compared to Perceiver’s iterative attention: 1) Higher performance for comparable numbers
of FLOPs, and 2) Ability to optionally extend the architecture via modality-specific components. We
therefore choose two tasks that have also been investigated in the Perceiver paper: Image classification
on ImageNet1K [36] and point cloud shape classification on ModelNet40 [49].

ImageNet classification. To provide a fair basis for comparison, we create a range of architectural
configurations with iterative attention based on the insights reported by Jaegle et al. [18]. Targeting
a similar FLOP count as our BiXT tiny, we experiment with different numbers of layers, varying
numbers of self-attention operations per block and with sharing all CA parameters as well as all but
the first layer’s (for details, see Perceiver paper and our appendix) – yielding a total of 10 architectures
based on Perceiver’s iterative attention. Having optimized the hyperparameters (learning rate and
schedule) for each individually, we run 3 randomly seeded training runs for the best 5 configurations
and report their results after training for 120 epochs in Table 1 (a) together with BiXT and the naïve
sequential CA variant. It is apparent that removing the bottleneck of iterative attention significantly
boosts the performance, with both BiXT and sequential CA outperforming all iterative variants by
a significant margin at comparable FLOP counts. Interestingly, we find the configuration with 8
blocks and 6 self-attention layers per block (sa6-d8) to achieve best performance among the iterative
variants, which aligns with the ‘best’ configuration reported by Jaegle et al. [18].
Contrasting the two CA-based approaches with identical numbers of layers (‘d12’) demonstrates the
clear advantage of our proposed bi-directional CA, requiring ∼7% fewer FLOPs, ∼15% less memory
and 5% fewer parameters to achieve similar results as the sequential variant. This allows BiXT to use
one additional layer at matching FLOP count, consistently outperforming the naïve approach across
all our experiments while being still 7–8% more memory efficient.
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Point cloud shape classification. To gain further quantitative insights how bi-directional attention
affects processing of other modalities, we evaluate our approach on the ModelNet40 dataset [49].
BiXT again clearly outperforms Perceiver in terms of overall accuracy (OA) and is even competitive
to other point-based methods like the seminal PointNet [32] (Figure 2 (b)). In contrast to Perceiver’s
iterative attention that gathers information exclusively in the latents, BiXT’s simultaneous refinement
of latents and tokens allows us to easily integrate data-specific modules for token refinement. To gauge
the effect, we add the ‘affine grouping’ module from PointMLP [25] without and with hierarchical
structure (i.e. point reduction). While BiXT is still outperformed by point cloud specific PointMLP,
these optional modules help to boost the accuracy by up to 3.9% while trading off generality.

3.3 Image Classification Table 2: Classification on ImageNet1K using
‘few-FLOP’ Transformers. Note that we focus
here on efficient models in the low FLOP and/or
parameter regime. Perceiver architectures are
included as contrast to our bi-directional atten-
tion. All methods have been trained on input
resolutions of 2242, and ↑384 further fine-tuned
on 3842. Note that different models may have re-
ceived a different optimization effort. ∗result
reproduced as not reported in original work.
‘(conv)’ indicates the use of a convolutional tok-
enizer (see appendix for details).

Architecture FLOPs #Param Acc.

‘Generalists’ – no tokenizer, no vision-specific internals
Perceiver Jaegle et al. [18] 707G 45M 78.0
Perceiver v2 Jaegle et al. [19] 404G 42M 78.6
Perceiver-IO Jaegle et al. [19] 407G 48M 79.0

‘Vanillas’ – tokenizer, but no vision-specific internals
Perceiver v2 (conv) Jaegle et al. [19] 367G 42M 77.4
Perceiver-IO (conv) Jaegle et al. [19] 369G 49M 82.1
DeiT-Ti/16 Touvron et al. [41] 1.3G 6M 72.2
DeiT3-Ti/16∗ Touvron et al. [42] 1.3G 6M 75.4

BiXT-Ti/16 1.7G 15M 80.1
BiXT-Ti/16 (conv) 1.7G 15M 81.0

Vision-specific derivatives, incl. multi-scale / pyramidal
PiT-Ti Heo et al. [16] 0.7G 5M 73.0
PiT-XS Heo et al. [16] 1.4G 11M 78.1
ViL-Ti-APE Zhang et al. [55] 1.3G 7M 76.3
ViL-Ti-RPB Zhang et al. [55] 1.3G 7M 76.7
PVTv1-Ti Wang et al. [46] 1.9G 13M 75.1
PVTv2-B1 Wang et al. [47] 2.1G 13M 78.7
XCiT-T12 El-Nouby et al. [11] 1.2G 7M 77.1
XCiT-T24 El-Nouby et al. [11] 2.3G 12M 79.4
BiFormer Zhu et al. [57] 2.2G 13M 81.4

Going finer w/ BiXT – smaller patches, larger images
BiXT-Ti/8 [seq-len: 784] 4.7G 15M 81.9
BiXT-Ti/4 [seq-len: 3,136] 16.8G 15M 82.7

BiXT-Ti/16 ↑384 [seq-len: 576] 3.6G 15M 81.8
BiXT-Ti/8 ↑384 [seq-len: 2,304] 12.5G 15M 82.8
BiXT-Ti/4 ↑384 [seq-len: 9,216] 48.1G 15M 83.1

Comparison to SOTA. Note that we focus
here on efficient Transformer models in the low
FLOP and/or parameter regime, with results re-
ported in Table 2. BiXT performs favourably
with default and convolutional tokenizer against
the other ‘vanilla’ Transformers, outperforming
both versions of DeiT by a significant margin
(6.2 – 11.8%) while being ∼200× more efficient
than Perceiver (IO). These results are highly com-
petitive even when compared to specialized vision-
only architectures that leverage complex pyrami-
dal multi-scale techniques, with BiXT outperform-
ing all but one very recent method (which however
requires 29% more FLOPs than our BiXT).
Increasing feature resolution and input size.
We keep the patch size fixed to 162 while reducing
the stride of our linear patch projector to increase
feature resolution (see appendix for ablation on
patch sizes vs. stride). Note that our BiXT/4 model
can easily process 3,136 tokens per 2242 image
thanks to linear scaling, boosting the top-1 accu-
racy to 82.7%. Linear scaling also lets us process
larger input images more efficiently – which we
investigate by fine-tuning on 3842 for 30 epochs
to reduce the required computational resources.
Increasing the input size further notably improves
the accuracy across architectures by up to 2.1%,
however at the expense of higher FLOP counts.
Nevertheless, BiXT shows that it is possible to
achieve 83.1% on ImageNet with only 15M pa-
rameters and no vision-specific internals.
Longer sequence beats model size. Most im-
portantly, BiXT is able to efficiently leverage
longer sequences to outperform larger competi-
tors at fewer FLOPs: The most-recent DeiT3-S
achieves 81.4% (4.6G FLOPs, 22M param), while
BiXT obtains 81.8% at only 3.6G FLOPs & 15M
parameters – see Appendix B.1 for further details.

3.4 Dense Tasks – Semantic Image Segmentation & Point Cloud Part Segmentation

Semantic Segmentation. We investigate the transferability of our methods onto semantic image
segmentation on ADE20K [56]. We follow common practice and first integrate BiXT pretrained
on ImageNet1K together with SemFPN [21] as decoder. Our vanilla BiXT performs competitively
against other methods with similar FLOP counts, while the more vision-specific variant BiXT+LPI
with local token refinement is on par with even the improved pyramidal PvTv2 and outperforms the
other models of comparable complexity (Table 3). Please refer to Appendix C for more details.
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Table 3: Semantic Segmentation on ADE20K.
We again focus here on efficient models in the
low FLOP and/or parameter regime. All methods
trained on 5122 images, and FLOPs are computed
on 5122 images as well.

Backbone FLOPs #Param mIoU.

Using the Semantic FPN decoder [21]
PVTv2-B0 Wang et al. [47] 25.0G 8M 37.2
ResNet18 He et al. [15] 32.2G 16M 32.9
PVTv1-Ti Wang et al. [46] 33.2G 17M 35.7
PVTv2-B1 Wang et al. [47] 34.2G 18M 42.5
XCiT-T12 El-Nouby et al. [11] − 8M 38.1

BiXT-Ti/16 31.8G 19M 39.2
BiXT-Ti/16 (conv) 31.8G 19M 41.4
BiXT-Ti/16 (+LPI from XCiT) 32.4G 19M 42.4

Simple linear predictor
BiXT-Ti/16 6.4G 15M 40.6
BiXT-Ti/16 (conv) 6.4G 15M 42.3
BiXT-Ti/8 23.2G 15M 42.1
BiXT-Ti/8 (conv) 23.2G 15M 43.2

However, decoders like SemFPN were originally
introduced for multi-scale CNN-like architec-
tures and take feature maps at multiple resolu-
tions as input. Non-hierarchical Transformers
like BiXT therefore need to down- and upsam-
ple their feature maps at various stages – raising
the question how this affects performance and
to what extent results are caused by backbone,
decoder, and their compatibility. To provide in-
sights unaffected by these potential influences,
we take inspiration from DINOv2 [27] and sim-
ply use a linear layer to directly predict a seg-
mentation map at feature resolution from the last
layer’s tokens, which is then upsampled using
bilinear interpolation. Interestingly, our naïve
approach is on par with the SemFPN variants but
requires 80% fewer FLOPs, and outperforms by
∼1.6% at higher resolution while still being 32%
more efficient (Table 3) – indicating that more re-
search into the suitability of such decoders with
non-hierarchical architectures might be needed.

Point Cloud Part Segmentation. Since BiXT provides a similar generality as Perceiver regarding
its input data structure but additionally allows the use of the dense, local token information, we
determine its suitability for the segmentation of parts of a point cloud on ShapeNetPart [52]. The
naïve application of BiXT with a linear classifier directly applied to the last layer’s tokens achieves a
competitive class mIoU of 83.5% and outperforms other ‘simple’ methods like seminal PointNet [32]
(class mIoU of 80.4%), but lags slightly behind recent more complex encoder-decoder methods like
PointMLP [25] (class mIoU of 84.6%). Including a modality-specific token-refinement module and
decoder however closes the gap and lets BiXT obtain a highly competitive class mIoU of 84.7% – as
always trading off performance and generality. Please refer to Appendix D for more detailed results.

3.5 Beyond Visual Perception: Hierarchical Sequence Modeling and Document Retrieval

Table 4: Hierarchical Sequence Modeling and Document
Retrieval using the LRA benchmark [40]. Samples per sec-
ond indicate empirical throughput at inference time for vary-
ing specified batch sizes ‘bs’ (using one NVIDIA A100).

Arch. Accuracy FLOPs samples / s samples / s
(%) ↑ (×106) ↓ (bs=32) ↑ (bs=256) ↑

Hierarchical Sequence Modeling - Long ListOps (2k)
Transf. 39.10±0.57 137 5175 5357
BiXT 39.42±0.24 103 (-25%) 16891 (3.3×) 23804 (4.4×)

Byte-level Document Retrieval - AAN (4k-8k)
Transf. 82.34±0.31 535 751 751
BiXT 82.46±0.41 384 (-28%) 5703 (7.6×) 6325 (8.4×)

Up to this point, we have demon-
strated BiXT’s advantages on percep-
tion tasks centered around visual and
3D-structural reasoning. We now
go one step further and investigate
whether our claim of ‘BiXT perform-
ing at the same level as a full Trans-
former while being more efficient’
holds on tasks that are proven to
require modeling of and reasoning
over very long and often complex se-
quences. We evaluate the two tasks
from the LRA benchmark with the
’longest required attention span’ [40]:
hierarchical sequence modeling us-

ing Long-ListOps [26], and byte-level document retrieval using AAN [35]. Long-ListOps tests
the ability to reason hierarchically over complex sequences composed of numbers, mathematical
operators and brackets – requiring models to access all tokens and model the logical structure of
inputs. ‘Retrieval’ evaluates the ability to encode and compress sequences of 4k length for matching
and retrieval, requiring reasoning over 8k tokens in total. To allow fair comparison, we follow the
setup in [50], and train both a full Transformer model and our BiXT variant for 5 random seeds each.
While both models are on par in terms of accuracy, BiXT requires up to 28% fewer FLOPs and is up
to 8.4× faster – clearly supporting our claim of significantly improving the efficiency for processing
long sequences (Table 4). For additional details, please refer to the discussion in Appendix E.
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Figure 3: Scaling trends. Ablating the influence of embedding dimension, varying numbers of latents
and sequence lengths for ImageNet1K classification. All models trained with shorter schedule (only
300 epochs) to save computational resources, and comparisons should therefore be performed relative
to each other. Red star-markers correspond to BiXT-Ti/16 (Acc. 80.1) from Table 2. Validation
accuracy represented through solid lines, while dashed lines indicate the computational resources.

3.6 Scaling Trends – Number of Latents & Dimensions

The majority of this paper is concerned with tiny efficient models; however, it is interesting to see
whether our models follow previous Transformers in terms of scaling behavior. BiXT offers an
additional degree of freedom in the number of latents. We therefore provide some insights into BiXT’s
ImageNet1K performance changes for 32, 64 and 128 latents as well as various embedding dimensions
(Figure 3). As expected, accuracy increases with both larger embedding dimension and number of
latents – and it is worth noting that increasing the number of latents scales quadratically in FLOPs
due to the self-attention-based latent refinement while increasing the sequence length scales linearly.
Note that we use shorter training schedules for this ablation, and results are intended to be interpreted
relative to each other. While we chose not to run excessive hyperparameter optimization and refrain
from translating to very large architectures due to the large computational requirements involved, we
did not observe any signs why BiXT should not behave like other Transformer architectures in terms
of scaling and performance. We therefore anticipate to see similar tendencies as reported for related
attention-based architectures, but leave this to future work.

3.7 Limitations & Discussion

Our results obtained from the investigation of iterative vs. bi-directional attention as well as our
experiments across multiple tasks and modalities clearly show that bi-directional attention offers
advantages in a number of settings, both in terms of performance and efficiency. However, it is worth
noting that by simultaneously refining the tokens alongside the latents, BiXT does not decouple the
model’s depth from the input, unlike Perceiver models [18]. Therefore, very deep BiXT variants might
potentially face difficulties in settings of extremely long sequences paired with limited compute and
memory. However, we suspect most such scenarios to benefit from some form of preprocessing via a
modality-specific input tokenizer, similar to the input-adapter-based concept used in Perceiver-IO [19]
– shifting most applications again into regions where BiXT performs effectively and efficiently.

Given the current popularity of natural language processing tasks, we would further like to note that
BiXT in its current form is an encoder-based architecture (similar to BERT-like models), and we
expect it to perform well on tasks that require understanding and modeling of entire sequences –
which is what our results obtained in Section 3.5 / Table 4 on the LRA tasks indicate. However, as
BiXT circumvents the expensive token self-attention of Transformers via our proposed bi-directional
cross-attention, causal masking as commonly used in decoder-only methods for generative language
tasks is not directly applicable to BiXT’s current attention mechanism, as information from later
tokens would be able to ‘leak’ to earlier ones via the latent refinement. One possibility to establish
causality in this setup could be to assign groups of tokens to specific latents by masking the bi-
directional cross-attention and latent refinement accordingly (while trading off some processing
resolution at training time), but we expect there to be numerous potential ways and leave this as an
interesting area for future follow-up research.
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4 Related work

The introduction of Transformers [44] has helped self-attention to significantly gain in popularity,
despite its caveat of scaling quadratically in computational time and memory with input length.
Their flexibility regarding input modality and success in Natural Language Processing (NLP) [9] and
Computer Vision (CV) [10, 41, 42] prompted a series of works targeting more efficient versions.

Approximating the attention matrix via low-rank factorization has been employed across NLP
[20, 45, 39], CV [6, 58, 23] and others [7], essentially avoiding the explicit computation through
associativity, estimating a set of bases or using sampling – usually at the expense of performance.
Others proposed to use tensor formulations [24, 3] or exploit the input data structure [29, 17, 34, 11]
under the umbrella of sparsity, however limiting their use to only one specific input modality.

The line of work closest related to ours are ‘memory-based approaches’ which employ some form of
global memory to allow indirect interaction between local tokens. [4] propose to compose various
local windowed patterns (sliding, dilated) with global attention on few ‘pre-selected’ and task-specific
input locations for NLP tasks, while its vision derivative [55] provides global memory as tokens within
a vision-pyramid architecture and employs four different pairwise attention operations combined with
several sets of global tokens that are discarded at certain stages, introducing rather high architectural
complexity. [1] additionally investigate the encoding of structured NLP inputs, whereas [54] propose
a hand-crafted mix of random, window and global attention to sparsify and thus reduce attention
complexity. [57] route information between selected tokens in a directed graph to achieve sparsity
and skip computation in regions deemed irrelevant, whereas [5] split the input sequence and introduce
dedicated latents for each chunk. [51] in turn use cross-attention-based dual-blocks for efficiency but
combine these with merging-blocks that cast attention over the entire concatenated token sequence,
introducing a shared representation space and preventing linear scaling. While these ideas of indirect
local token communication via a shared global memory align with ours, BiXT realizes this goal in
a much simpler and modality-independent manner when compared to the mix of highly modality-
specific components, attention patterns and strategies involved in these works. Preserving generality
w.r.t. the input, [22] use a set of learnable ‘inducing points’ via cross-attention to query input data,
while the recent Perceiver architectures [18, 19] similarly use a fixed set of latents to query input data
– yet none offers the efficient simultaneous refinement of latents and tokens realized in our BiXT.
Please see Appendix A.5 for some further in-detail discussion and a wider scope of related work.

5 Conclusion

In this paper, we presented a novel bi-directional cross-attention Transformer architecture (BiXT)
for which computational cost and memory consumption scale linearly with input size, motivated
by a naturally emerging symmetry in two-way cross-attention that aligns with common intuition
and has been empirically demonstrated in this work. By allowing the ‘what’ (latent variables) and
‘where’ (input tokens) to attend to each other simultaneously and develop alongside throughout the
architectural stages, BiXT combines Perceiver’s linear scaling with full Transformer architectures’
high performance in a best-of-both-worlds approach. The ability to efficiently process longer
sequences paired with the ease to integrate further domain-specific token refinement modules helps
BiXT to outperform larger models on ImageNet1K, be up to 80% more efficient in semantic image
segmentation, competitive across two point-cloud tasks, and on par with full Transformers in sequence
modeling and document retrieval while requiring up to 28% less compute and being up to 8.4× faster.
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Impact Statement

This paper presents work whose goal is to advance the field of machine learning and in particular to
increase the efficiency of Transformer models to allow higher accuracy without increasing FLOPs.
There are many potential societal and ethical consequences of large-scale machine learning and its
applications, but these are applicable to the entire field and not specific to our proposed architecture.
Our approach aims to reduce the computational cost of Transformer models, which makes these
models more accessible to users with lower-end computing systems; this democratization of AI can
have positive or negative social consequences. Reducing the computational costs of Transformer
models reduces their energy consumption and therefore their impact on the environment; however,
these benefits may be offset if users take advantage of the increased efficiency of our approach to
implement more or larger models.

A BiXT – General Aspects and Insights

A.1 Code and Reproducibility

We implemented our models in PyTorch [30] using the timm library, and will release all code
and pretrained models. We further made use of the mmsegmentation library [8] for the semantic
segmentation experiments. Point cloud experiments were built on the publicly released code base
from Ma et al. [25].

A.2 Complexity Analysis

The complexity of BiXT is dominated by the bi-directional cross-attention, in particular by a) the
matrix multiplication to compute the similarity matrix and b) the two matrix multiplications to
compute the refined outputs. Using the previously specified embedding dimension D, N tokens and
M latent vectors, multiplication a) involves matrices of shape M×D,D×N with result M×N ,
and the two multiplications b) involve matrices of shape M×N,N×D with result M×D and
N×M,M×D with result N×D. The overall complexity per layer is thus O(MND) = O(N) and
linear in the size of the input N .

A.3 Bi-Directional Attention and Degrees of Freedom

In this section, we discuss the degrees of freedom (dof ) inherent to our bi-directional cross-attention
and provide some further insights into why the information exchange between latents and tokens
is less restricted than might at first be expected. It is worth noting that there might be cases where
the approximate symmetry that motivates our approach does not clearly emerge when using a naïve
sequential method. Even in these cases, we however found our method to still consistently provide
a net benefit across all experiments. We conjecture that multiple aspects contribute to this effect,
one of which is that even though a ‘hard’ structural symmetry constraint is imposed on the pair-
wise similarity matrix, the actual attention matrices obtained after row- and column-wise softmax
have additional non-shared degrees of freedom which can be used to modulate the information
exchange. We discuss this in the following in more detail. (Another helpful aspect could be that
having an additional layer due to BiXT’s higher efficiency can compensate for additionally required
non-symmetric processing, and information exchange can also be realized across multiple layers via
e.g. a token-latent-token sequence.)

TLDR: Bi-directional cross-attention between M latents and N tokens has in total MN−1 dof, only
(M−1)·(N−1) of which are shared – leaving M+N−2 dof that can be used by the network for the
modulation of the (non-strictly-symmetric) information exchange.

Gentle introduction. For ease of understanding, we start from a vector v̄ ∈ RN and apply the
softmax operation to obtain v = softmax(v̄). Given that all entries vi of this vector have to sum
to 1 due to the applied softmax operation, v has N−1 dof. This can also be interpreted as “adding a
constant to all elements of v̄ doesn’t change v”.

Uni-directional cross-attention. Let us now consider the pair-wise similarity matrix ĀT,S between
target T and source S as introduced in Section 2.1. Casting uni-directional attention between
M latents and N tokens to refine the latents, we obtain Alat,tok = softmax(Ālat,tok) ∈ RM×N with
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Figure A1: Degrees of Freedom. (a) Row-wise softmax for uni-directional cross-attention, based on
matrix ∈ RM×N with M · (N−1) degrees of freedom. (b) Column-wise softmax for uni-directional
cross-attention, based on matrix ∈ RM×N with N· (M−1) degrees of freedom. (c) Row- and column-
wise softmax for our proposed bi-directional cross-attention, using the same matrix ∈ RM×N with
MN−1 degrees of freedom.

the softmax applied row-wise – resulting in M ·(N−1) dof as visualized in Figure A1 a). Likewise,
computing the attention matrix Atok,lat ∈ RN×M between tokens and latents using a different set of
key and query vectors yields N·(M−1) dof, which is visualized in its transposed form in Figure A1 b).
→ Therefore, sequentially applying two uni-directional cross-attention operations on two individual
pair-wise similarity matrices provides a total of 2MN−M−N dof.

Bi-directional cross-attention. Unlike the sequential approach, our proposed bi-directional cross-
attention uses the same pair-wise similarity matrix and obtains the attention matrices via row- and
column-wise softmax. This can be interpreted as overlaying both operations and their respective
degrees of freedom, and is visualized in Figure A1 c). As demonstrated by the shaded area, both
softmax operations ‘share’ a total of (M−1) ·(N−1) dofs. With the row-wise softmax yielding
M ·(N−1) dof and the column-wise softmax N ·(M−1) dof, this results in a total of MN−1 dof –
where the ‘1’ can be interpreted as “adding the same constant to all elements pre-softmax doesn’t
change the result”. Note however that while adding the same constant to all elements of a row
(pre-softmax) does not affect the results after the row-wise softmax, it does change the column-wise
one. Therefore, the non-overlapping areas in Figure A1 c) can be interpreted as the dof that are
unique to the attention maps obtained via row- or column-wise softmax, and can be used to modulate
the resulting information flow to better accommodate potential deviations from symmetry.
→ Bi-directional cross-attention uses the same pairwise similarity matrix to obtain both attention
maps and therefore has a total of MN−1 dof, (M−1)·(N−1) of which are shared and M+N−2
are unique.

A.4 Types of Attention – Additional Results, Visualizations and Further Explanations

An extended list of the results stated in Section 3.2 are presented in Table A1. Note that we performed
an individual sweep over a set of learning rates for each individual architecture – usually starting
at 4e−3 and lowering until stable training occurred. We then used these results to pick the best 5
architectural variants and training schemes, and ran them for an additional 2 random seeds. Note that
all architectural variants, including BiXT and the sequential one have only been run in this setup for
a total of maximum 3 runs, and no cherry-picking of results occurred for any of the architectures.
Note that we have also tried stepped schedulers with the schedule proposed in the original Perceiver
paper [18], but resorted back to using the cosine since it showed equal or superior results.

To contrast the sequential attention to our default BiXT with 12 layers (d12) on a matching FLOP
level, the sequential version uses only 11 layers (d11) due to its higher complexity per layer. This is
due to the fact that our bi-directional cross-attention only requires 4 instead of 6 projection matrices
(2×[R, V ] vs. 2×[Q,K, V ]) and only computes the attention matrix once (instead of twice). The
hereby saved FLOPs (as well as parameters and memory) can then be spent on additional layers,
further improving results. Architectures with one more layer each show the same trend.

In other words, by holding FLOP and/or memory requirements constant, we consistently observe a
net benefit with our bi-directional attention in terms of accuracy throughout our experiments. We
empirically found that it additionally improved robustness/consistency across different parameter
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initializations (seeds), which can be seen by the slightly smaller standard deviations of the bi-
directional variants.

Table A1: Architectural variants using iterative attention & cross-attention parameter sharing.
Classification accuracy on the ImageNet1K dataset for varying types of attention. All architectures use
64 latent vectors and have been trained for 120 epochs with hyperparameters individually optimized.
Cross-attention parameter sharing schemes: †indicates sharing of all, ‡of all but the 1st layer’s cross-
attention parameters. Architectural configurations noted in brackets. Three randomly seeded runs
were performed for the ‘best’ architectures (judged by their performance on seed = 42), and mean
and (unbiased) standard deviation are reported. One randomly seeded run reported for all other
architectures.

Attention type Acc.@1 (%) Acc.@5 (%) FLOPs Mem. #Param

Iterative† (sa5-d8) 57.51 80.61 1.58G 7.17M 18.61M
Iterative† (sa6-d7) 58.86 81.53 1.59G 7.23M 19.50M
Iterative† (sa6-d8) 60.61 ± 1.11 82.75 ± 0.68 1.82G 8.25M 22.16M
Iterative† (sa4-d12) 56.03 ± 1.02 79.38 ± 0.80 1.99G 9.10M 22.16M
Iterative† (sa1-d22) 56.09 79.36 1.64G 7.70M 11.04M
Iterative† (sa1-d24) 55.92 ± 0.67 79.33 ± 0.52 1.79G 8.39M 11.93M

Iterative‡ (sa5-d8) 58.26 ± 2.34 81.02 ± 1.76 1.58G 7.17M 19.05M
Iterative‡ (sa6-d7) 54.94 ± 5.96 78.39 ± 4.69 1.59G 7.23M 19.94M
Iterative‡ (sa6-d8) 58.23 80.95 1.82G 8.25M 22.61M
Iterative‡ (sa4-d12) 56.35 79.64 1.99G 9.10M 22.61M

Sequential (2-way, d11) 73.10 ± 0.53 91.05 ± 0.28 1.66G 8.44M 14.60M
Sequential (2-way, d12) 73.79 ± 0.32 91.48 ± 0.15 1.81G 9.24M 15.94M

Bi-Directional (d12) 73.86 ± 0.39 91.55 ± 0.14 1.68G 7.86M 15.12M
Bi-Directional (d13) 74.10 ± 0.14 91.61 ± 0.12 1.82G 8.54M 16.38M

Visualizing the three types of attention. To further ease understanding and provide a clearer
overview of the differences between the various investigated types of attention, we visualize the
conceptual changes in the architectural layout when transitioning from ‘iterative’ over ‘sequential’ to
our proposed efficient ‘bi-directional’ attention and their respective differences in Figure A2.
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Figure A2: Transitioning from iterative to bi-directional attention. (a) Perceiver-like iterative
attention, creating a bottleneck and small effective working memory; (b) Naïve sequential attention
‘unblocking’ the bottleneck and extending working memory, but still markedly less efficient than:
(c) Bi-directional cross-attention used in BiXT, combining efficient linear scaling with competitive
performance across various tasks. Note that iterative attention attends to the (unrefined) input at
every layer, while sequential and bi-directional attend to variants of the input refined by the previous
layer. The Perceiver-like setup additionally uses multiple self-attention layers to refine between
each iterative cross-attention (×B) in each architectural layer, whereas sequential and bi-directional
variants only use one self-attention operation per architectural layer. Architectures are then built by
stacking L layers.
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Figure A3: Detailed structure of attention blocks. (a) Perceiver-like iterative attention, creating a
bottleneck and small effective working memory; (b) Bi-directional cross-attention used in BiXT.

Figure A3 shows the internal difference between the Perceiver-like iterative attention and our proposed
bi-directional cross-attention in more detail.

A.5 More Detailed Discussion of Most-Recent Related Work

In the following, we provide some additional and more in-depth discussion of methods we see related
to our proposed BiXT architecture. We start by taking a look at three methods mainly targeting the
image space, and follow up with a more general discussion of related methods across modalities that
focus on the long-sequence aspect – including recently proposed Structured State Space Sequence
Models.

Methods mainly targeting the image domain.

» DualViT [51]. DualViT’s dual block used in the early layers of their architecture does to some
extent show similarity to the naïve solution of sequential cross-attention, but is distinctly different
from our bi-directional approach as it does not leverage any symmetry. Importantly, their multi-stage
pyramidal vision-only architecture uses a large number of ‘merging blocks/layers’ (between 9 - 24)
which cast full self-attention over the concatenated sequence of latents and tokens. This prevents
linear scaling and also introduces a shared embedding space of latent vectors and tokens through the
use of the same key-query-value projection matrices – whereas our architecture keeps those separate
(aligned with the presented ’what’ and ’where’ analogy and the level of information they represent)
and scales linearly with respect to the input length.

» BiFormer [57]. BiFormer follows the common trend for vision-only approaches and employs a
pyramidal structure. In contrast to previous work, the authors reduce the computational complexity
through routing information between selected tokens via a directed graph, thus achieving sparsity to
skip computation of certain regions that are deemed ‘irrelevant’. While this is a very neat way of
dynamically reducing complexity, it is distinctly different from our approach and does not achieve
true linear scaling.

» FiT [5]. FiT explicitly divides a token sequence into subgroups of tokens to cast quadratic
local/windowed self-attention within, and assigns a small set of latents to each group. Exchange
between these latents is accomplished via one-way cross-attention within each group, followed
by global information routing via multiple self-attention operations cast across the latents of all
groups. The exact architectural structure in terms of composition varies between architectural variants
(number of local and global layers per block + number of blocks). Our BiXT in contrast achieves its
entire information exchange via our proposed efficient bi-directional cross-attention between latents
and tokens, followed by one self-attention operation among latents. This significantly simplifies the
architecture in terms of complexity, only requires one set of latents that efficiently interacts with the
entire sequence and does not require any manual grouping of the input sequence.

While our approach markedly differs from FiT in various aspects, their experimental setups are quite
interesting and it is great to see that the research community is following similar directions in terms
of decomposing and routing information among global latents and local sequence tokens.
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Beyond Transformers – Recent developments in recurrent methods.

As we were focusing mainly on Transformer-based approaches and perception-based tasks in the
main paper, we kept this as the primary focus of the literature review of the main manuscript. Here,
we provide some additional recent methods relevant in the context of long sequence processing
(especially beyond perception-based data) that warrant closer discussion.

While Transformer-based architectures have steadily gained in popularity over the last years, recurrent
methods have recently enjoyed increased attention and have been both revisited and further improved
across several works – e.g. by ’reinventing RNNs for the Transformer era’ [31] with the goal of
combining Transformer-style efficient training with the fast inference speed of RNNs. An alternative
to the well-known recursive methods like RNNs are the recently introduced structured state-space
sequence (S4) models [13], which are based on a new way of parameterizing SSMs that makes
their application to long sequence modelling tasks computationally feasible and training much more
efficient. Multiple works have since proposed simplifications to the S4 model ([12, 14, 38]) – while
others have used the gained insights to further improve well-known models like RNNs [28].

B ImageNet1K Experiments – Further Details

This section outlines further details and additional insights regarding our image classification experi-
ments conducted on the ImageNet1K dataset [36].

B.1 Longer Sequences Help to Beat Larger Models – Further Discussion and Results

As reported in the main paper in Section 3.3, BiXT’s ability to efficiently leverage longer sequences
helps it to outperform larger models – and often at fewer FLOPs.

In the following, we contrast BiXT to different ‘evolutions’ of the ViT/DeiT family [10, 41, 42] with
approximately matching parameter and/or FLOP counts. We start with our tiny BiXT and contrast
it with the next larger Vision Transformer models – DeiT-S & DeiT3-S – in addition to the results
shown in Table 2. This allows a much closer comparison in terms of FLOPs and parameters. Both
DeiT-3 with 79.8% and the most-recent DeiT3-S with 81.4% use 22M parameters & 4.6GFLOPs.
This is surpassed by both of our closest BiXT variants with fewer or similar FLOP counts (Table A2):

• BiXT-Ti/16 ↑384 achieves 81.8% accuracy with 15M param & 3.6GFLOPs, and
• BiXT-Ti/8 achieves 81.9% accuracy with 15M param & 4.6GFLOPs

Note that the use of longer sequences, either via 384×384 images or through a patch size of 8, cannot
be efficiently leveraged by DeiT variants as it would significantly increase their FLOP count due to
the inherent quadratic scaling of their attention (∼15.5GFLOPs for DeiT-S↑384).

In addition to matching DeiT3-S’s performance via longer sequence length, we have run some
additional experiments for BiXT with increased embedding dimension 256 (given limited available
resources). This approximately matches DeiT-S in terms of parameters (BiXT-d256 27M vs. DeiT-S
22M), with results included in Table A2:

• Our ‘small’ BiXT-d256/16 achieves 81.7% and already outperforms the original ViT-B
(77.91%) and recent DeiT3-S (81.4%), and is on par with DeiT-B (81.8%) at a fraction of
the FLOP count (2.9G vs. 17.5G).

• Our longer-sequence model BiXT-d256/8↑384 is on par even with the newest (most-
optimized) DeiT3-B while showing much higher parameter efficiency (26.7M vs 86.6M,
albeit requiring slightly more FLOPs).

» A Note Regarding Larger Models and Actual Complexity of Training «

While it would indeed be very interesting to analyze larger models, we would like to note that this
requires a substantial number of additional large experiments. Even though such models might
at first appear to require moderate compute, the actually required computational budget not only
encompasses the training runs but also the hyperparameter search. The importance of well-chosen
hyperparameters and augmentation strategies grows significantly with model size, as can be seen
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Table A2: Matching FLOP and parameter counts of Transformer models. Comparing evolutions
of ViTs to variants of BiXT for image classification on ImageNet1K [36]. Note that different models
might have received different levels of optimization effort, especially the ViT/DeiT variants across
their multiple evolutions.

Architecture Accuracy #Param FLOPs

DeiT-S [41] 79.8% 22M 4.6G
DeiT3-S [42] 81.4% 22M 4.6G
BiXT-Ti/16 ↑384 81.8% 15M 3.6G
BiXT-Ti/8 81.9% 15M 4.7G
BiXT-d256/16 81.7% 27M 2.9G

ViT-B [10] 77.9% 87M 17.5G
DeiT-B [41] 81.8% 87M 17.5G
DeiT3-B [42] 83.8% 87M 17.5G
BiXT-Ti/4 82.7% 15M 16.8G
BiXT-Ti/8 ↑384 82.8% 15M 12.5G
BiXT-Ti/4 ↑384 83.1% 15M 48.1G
BiXT-d256/8 83.2% 27M 8.1G
BiXT-d256/8 ↑ 384 83.9% 27M 21.6G

in the literature (e.g. in the transition from ViT [10] → DeiT [41] → DeiT3 [42] or ResNet [15]
→ ResNet strikes back [48]). This makes an appropriate exploration of this vast search space essential
but computationally very expensive, and we (have to) leave this as an opportunity for future work.

B.2 Computational Complexity, Sequence Length and Empirical Throughput aka ‘Latency’

The benefit of modeling input data at a higher resolution (e.g. smaller patches and larger images in
vision) has been demonstrated across most works like ViT/DeiT. For example, increasing the input
image size from 224 to 384 for DeiT3-S yields a boost of 2% in accuracy, but requires 3× as many
FLOPs due to quadratic scaling of the attention with input sequence length. Reducing the patch size
from 16×16 to 4×4 incurs 15.5× as many operations (Table A3).

One of the main advantages of our BiXTin contrast to vanilla Transformers is its linear scaling with
the input sequence length while maintaining competitive performance. Increasing the input size from
224 to 384 only incurs 2.2× as many FLOPs, and patch-size reduction to 4×4 less than 10× – a
decrease by 26% and 35%, respectively.

This allows BiXT to essentially process and model longer sequences much more efficiently than
naïve Transformer models, boost results (see main paper) and extend its processing capabilities to
regions where Transformer-like methods with full self-attention become infeasible. In our image
segmentation experiments for example, BiXT processes sequences of up to 16,384 tokens during
training – and up to 65,536 at inference time for 512× 2048 images.

Note that this aligns well with our obtained insights that BiXT is able to efficiently leverage a longer
sequence to outperform a ‘larger’ DeiT model at fewer FLOPs (Section 3.3), as well as with the
results obtained on the LRA benchmark in Section 3.5.

Table A3 shows common sequence lengths encountered during image processing (classification on
ImageNet [36], semantic segmentation on ADE20K [56]) and demonstrates the scaling differences
for ViT/DeiT variants [10, 41, 42] and BiXT.

While latency is closely linked to the FLOP counts, we additionally provide empirical data on the
throughput (img/s) in this section. Note that these numbers are obtained with a batch size of 256 on a
single A100 GPU with float32 precision (no amp) – and that given its popularity and maturity, DeiT
might have received more optimization effort than our BiXT.

As can be seen in Table A4, while the tiny version of DeiT3 [42] in its default configuration (patch 16)
is faster than BiXT, our method significantly outperforms DeiT3 methods across all higher sequence
lengths (i.e. larger images, smaller patches) – e.g. with BiXT-Ti384/4 (160img/s) being 6.4× faster
than DeiT3-Ti384/4 (25img/s).
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Table A3: Scaling of computational complexity. Relative increase in FLOPs and Activations
(memory) over sequence length (w.r.t. baseline 224 / p16).

Config 224 / p16 384 / p16 224 / p8 512 / p16 384 / p8 224 / p4 512 / p8 384 / p4 512 / p4
Seq. Len. 196 576 784 1,024 2,304 3,136 4,096 9,216 16,384

Increase in compute, measured in FLOPs
BiXT Incr 1x 2.2x 2.8x 3.5x 7.5x 10.0x 12.9x 28.6x 50.6x

DeiT/ViT Incr 1x 3.0x 3.9x 5.2x 11.5x 15.5x 20.4x 45.6x 81.0x

Increase in memory consumption (activations, per sample)
BiXT Incr 1x 2.2x 2.8x 3.6x 7.5x 10.1x 13.1x 29.3x 51.3x

DeiT/ViT Incr 1x 3.0x 4.0x 5.2x 11.7x 15.9x 20.8x 46.8x 83.2x

Table A4: Throughput. Empirical latency for different variants of DeiT3 and BiXT.

Arch. 224 / p16 224 / p8 224 / p4 384 / p16 384 / p8 384 / p4

Empirical throughput, measured in img/s
BiXT-Ti 5775 1971 527 2521 702 160

BiXT-d256 4085 1408 385 1823 510 119

Deit3-Ti 10263 1861 190 2730 325 25
Deit3-S 4784 852 90 1253 153 12
Deit3-B 1833 344 42 505 69 6

B.3 Model Configurations and Training Details

Hyperparameter choice for the default ImageNet experiments: BiXT with 64 latents, 12 layers,
embedding dimension for latents and tokens 192 paired with 6 heads (head dimension 32) – learning
rate 2.5e−3, weight decay 0.05 and lambc optimizer, as well as cosine learning rate scheduler with
linear warmup; stochastic dropout on self-attention and cross-attention 0.1 for all tiny models. Apart
from these, we directly apply the augmentation and training proposed by Touvron et al. [42]. Our
models have been trained between 300 (ablations) and 800 epochs on one or several A100 GPUs.
Note that we did not conduct an extensive hyperparameter search, and we expect results to potentially
improve if done so.

Finetuning on images of size 384×384 was performed for 30 epochs using a batch size of 512 and
an initial learning rate of 2.5e−5 with cosine decline, starting from the model trained on 224×224
images. We found empirically that increasing the stochastic dropout during finetuning to 0.2 can help
to improve the results, and we hence use this as default value for our finetuning experiments.

B.4 Ablating Patch Size for Fixed Sequence Lengths in Image Classification

In this section, we investigate whether lowering the patch size to increase the resolution of the
resulting feature maps is actually the most-suited way – or whether simply reducing the stride and
thus creating tokens that originate from overlapping patches yield better results. Our experiments on
image classification using the ImageNet1k [36] dataset with models using varying patch sizes and
strides to keep the sequence lengths fixed show that the originally introduced and commonly used
patch size of 16× 16 pixels seems to be a good fit when using no overlapping patches (Table A5).
Interestingly, we find that even when we increase the feature resolution and thus choose smaller
strides, a patch size of 16× 16 still yields best results across our experiments. One potential reason
is that patch boundaries are randomly chosen and objects in images do naturally not match these
boundaries, so that information has to be exchanged – whereas slight overlaps might ease this to
some extent. Another potential reason for this behaviour is that significantly decreasing the patch
size reduces the input information per patch, with an 82 RGB patch having a total of 192 channels,
exactly matching the tiny embedding dimension. Smaller patches however would create a significant
null space, which might be an additional reason for better performance when using larger patches.
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Table A5: Varying patch sizes for fixed sequence lengths. ImageNet1k classification results for
varying patch sizes are presented for three fixed sequence lengths (realised via stride). All models
have been trained for 300 epochs using the same (default) hyperparameters and input images of size
224× 224. Best results for each sequence length is highlighted in bold.

Seq. length 196 (14× 14) 784 (28× 28) 3136 (56× 56)
Patch size 32× 32 16× 16 32× 32 16× 16 8× 8 16× 16 8× 8 4× 4

Acc. (%) 77.50 78.13 79.90 79.92 79.36 80.95 80.75 79.56
FLOPs 1.77G 1.68G 5.05G 4.71G 4.62G 16.81G 16.46G 16.38G
Mem 7.27M 7.23M 20.25M 20.25M 20.25M 72.18M 72.18M 72.18M

#Param 15.56M 15.11M 15.56M 15.12M 15.01M 15.12M 15.01M 14.98M

B.5 Convolutional Tokenizer

In addition to our default linearly-projecting tokenizer, we report results using a convolutional
tokenizer as BiXT-Ti/16 (conv) in Table 2. This tokenizer follows El-Nouby et al. [11] and consists of
a stack of four {conv - Batch Norm - GeLU} groups, using 3× 3 convs with stride 1 and sequentially
encoding the input channels into the specified embedding dimension D (via D/8,D/4,D/2, D).

B.6 Token Refinement via Local Patch Interaction (XCiT)

We integrate a slightly modified version of the ‘LPI’ module from El-Nouby et al. [11] together
with their convolutional tokenizer for our vision-specific image segmentation experiments. Our LPI
module consists of two depth-wise convolutional layers (3x3) with Layer Normalization (instead of
the original Batch Normalization) and a GELU non-linearity in between. For further details, please
refer to the original paper.

C Semantic Image Segmentation Experiments – Further Details

We investigate the transferability of our methods onto semantic image segmentation on the ADE20K
dataset [56]. We follow common practice and integrate BiXT pretrained on ImageNet1K together with
SemanticFPN [21] as decoder, train for 80k iterations with learning rate 6e−5 and weight decay 0.01
following El-Nouby et al. [11] and others. We choose a batch size of 32 due to the efficiency of our
model on the 5122 images, and train on a single A100 GPU. Our vanilla BiXT performs competitively
against other methods with similar FLOP counts, while the more vision-specific version BiXT+LPI
with local token refinement is on par with even the improved pyramidal PvTv2 and outperforms the
others (Table A6).

Criticism on decoders & a potential alternative. Decoders like SemFPN were originally introduced
for CNN-like architectures and use feature maps at multiple resolutions. Non-hierarchical Transformer
architectures like BiXT thus need to downsample and up-convolve their feature maps at various
stages – raising the question how this affects performance and to which extent results are caused by
backbone, decoder and the compatibility of the two. To provide insights unaffected by these potential
influences, we take inspiration from the recently published DINOv2 [27] and simply use a linear
layer to directly predict a segmentation map at feature resolution from the last layer’s tokens, which
we then upsample using bilinear interpolation. Interestingly, our naive approach clearly outperforms
our SemFPN variants with 80% fewer FLOPs (6.4G vs 31.8G). Increasing the sequence length via
smaller stride improves results further, with BiXT-Ti/8 (conv) clearly outperforming other methods
while still requiring ∼ 32% fewer FLOPs.

These insights are somewhat surprising and clearly indicate that more research into the suitability of
these decoders with non-hierarchical architectures might be needed.
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Table A6: Semantic Segmentation on ADE20K. We again focus here on efficient models in the low
FLOP and/or parameter regime. All methods trained on 5122 images, and FLOPs are computed on
5122 images as well.

Backbone FLOPs #Param mIoU.

Using the Semantic FPN decoder [21]
PVTv2-B0 Wang et al. [47] 25.0G 8M 37.2
ResNet18 He et al. [15] 32.2G 16M 32.9
PVTv1-Ti Wang et al. [46] 33.2G 17M 35.7
PVTv2-B1 Wang et al. [47] 34.2G 18M 42.5
XCiT-T12 El-Nouby et al. [11] − 8M 38.1

BiXT-Ti/16 31.8G 19M 39.2
BiXT-Ti/16 (conv) 31.8G 19M 41.4
BiXT-Ti/16 (+LPI from XCiT) 32.4G 19M 42.4

Simple linear predictor
BiXT-Ti/16 6.4G 15M 40.6
BiXT-Ti/16 (conv) 6.4G 15M 42.3
BiXT-Ti/8 23.2G 15M 42.1
BiXT-Ti/8 (conv) 23.2G 15M 43.2

D Point Cloud Experiments – Further Details

D.1 Training and Evaluation Details

Note that we do not use any voting strategy or other multi-scale augmentation and simply follow the
training regime of PointMLP [25] for most of our experiments. We use a standard BiXT architecture
for the ‘naïve’ point cloud experiments as well as the ones using simple grouping – and reduce our
architecture to 4 layers when using the decoder for part segmentation and the hierarchical approach
for shape classification – paired with 32 and 24 neighbours, respectively (which are the default values
used in other works like PointMLP). We train our models using a single A100 GPU (80Gb).

D.2 Detailed Results for Point Cloud Part Segmentation

Since BiXT provides a similar generality as Perceiver regarding its input data structure but additionally
allows the use of the dense, local token information, we run experiments to determine its suitability
regarding the segmentation of sub-parts of a point cloud – commonly referred to as point cloud part
segmentation – on the ShapeNetPart dataset [52].

The detailed results of our experiments are reported in the form of class intersection over union
(IoU) and instance IoU in Table A7, together with the individual results for all object classes. The
naïve application of BiXT with a linear classifier directly applied to the last layer’s tokens achieves a
competitive class mIoU of 83.5% (instance mIoU of 85.2%) and outperforms other simple methods
like seminal PointNet [32](class mIoU of 80.4%), but lacks slightly behind recent more complex
encoder-decoder methods like PointMLP [25] (class mIoU of 84.6%). Note, however, that methods
in this space are usually highly specialized encoder-decoder structures. Including a modality-specific
token-refinement (’geometric affine grouping’) and passing the encoded information to PointMLP’s

Table A7: Point cloud part segmentation on ShapeNetPart [52]. Reported are the class IoU and
instance IoU for BiXT and PointMLP [25]. Note that we only compare here to PointMLP due to
investigating the use of their grouping module and decoder within BiXT.

Method Cls. Inst. aero- bag cap car chair ear- guitar knife lamp laptop motor- mug pistol rocket skate- tablemIoU mIoU plane phone bike board

PointNet 80.4 83.7 83.4 78.7 82.5 74.9 89.6 73.0 91.5 85.9 80.8 95.3 65.2 93.0 81.2 57.9 72.8 80.6
PointMLP 84.6 86.1 83.5 83.4 87.5 80.5 90.3 78.2 92.2 88.1 82.6 96.2 77.5 95.8 85.4 64.6 83.3 84.3

BiXT (naïve) 83.5 85.1 83.9 81.4 91.5 79.0 89.5 76.2 91.9 87.3 79.3 95.8 73.1 95.0 84.2 63.7 80.4 83.5
BiXT (EncDec) 84.7 86.0 84.4 82.7 86.3 80.9 90.2 80.1 92.1 87.8 82.3 95.9 78.1 95.9 84.9 67.0 82.4 83.9
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decoder [25] however closes the gap and lets BiXT obtain a highly competitive class mIoU of 84.7%
(instance mIoU 86.0%) – as always trading off performance and generality.

E Hierarchical Sequence Modeling and Document Retrieval – Further Details

As detailed in the main paper’s body in Section 3.5, we investigate BiXT’s capabilities in modeling
long sequences by using the Long Range Arena (LRA) benchmark proposed by Tay et al. [40]. We
provide more details in the following.

E.1 Training and Evaluation Details

For our experiments, we follow the setup proposed by Xiong et al. [50] and use models with 2 layers.
The embedding dimension is set to 64, and we employ a hidden dimension of 128 (i.e. mlp-ratio
of 2), as well as 2 attention heads. This applies to both the Transformer and our BiXT architecture.
BiXT employs 32 latents for both experiments.

For the hierarchical sequence modeling experiments on Long ListOps [26], we use a vocabulary size
of 32, and train for 40 epochs using a batch size of 32, learning rate of 2.5e-4, path-dropout rate of
0.02, the lamb optimizer [53] and a cosine scheduler with 1 epoch linear warm-up.

For the byte-level document retrieval task on AAN [35], we use a vocabulary size of 128, and train
for 20 epochs using a batch size of 32, learning rate of 2.5e-5, the lamb optimizer [53] and a cosine
scheduler with 1 epoch linear warm-up.

Models for both tasks are trained using a single A100 GPU.

E.2 Detailed Results and Additional Discussion

To investigate our claim of ‘BiXT performing at the same level as a full Transformer while being
more efficient’ in the context of tasks that are proven to require modeling of and reasoning over very
long and often complex sequences, we evaluate the two tasks from the Long Range Arena (LRA)
benchmark with the ’longest required attention span’ [40]: hierarchical sequence modeling using
Long-ListOps [26], and byte-level document retrieval using AAN [35].

Note that the LRA benchmark has been specifically designed to evaluate the capabilities of
Transformer-like models in very long-context scenarios in a systematic and unified manner [40].

Long-ListOps tests the ability to reason hierarchically over complex sequences (length 2048) com-
posed of numbers, mathematical operators and delimiters (brackets). To successfully solve this task,
models are required to access all tokens and model the logical structure of the inputs while handling
long contexts in order to make a prediction – a task considered to be “considerably challenging” [40].
For more information, we refer the interested reader to the original ListOps work [26] and the LRA
benchmark [40], both of which provide more detail including a visualization of a shortened example
sequence.

The ‘retrieval’ task on the other hand is designed to evaluate the ability of models to encode and
compress sequences of 4k length into representations that are useful for matching and retrieval. With
each individual document being 4k bytes/characters in length, this requires reasoning over 8k tokens
in total.

To allow fair comparison, we follow the setup in [50] as detailed above in terms of model size and
most hyperparameters. We train a full Transformer model and our BiXT variant for 5 random seeds
each. We pick the best model based on validation accuracy, and report the mean and (unbiased)
standard deviation across these models evaluated on the withheld test set in Table A8.

While both models are on par in terms of accuracy, BiXT requires up to 28% fewer FLOPs and is up
to 8.4× faster – outlining BiXT’s advantage in efficiently modeling long sequences.

E.3 Alternative Setups Found in Related Works on LRA

Note that we follow the ‘classic’ 2-layer setup as related works like [50], and run our architecture in
direct comparison to a full Transformer [44] under the same conditions for fair comparison.
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Table A8: Hierarchical Sequence Modeling and Document Retrieval using the LRA benchmark.
Samples per second indicate empirical throughput at inference time.

Arch. Accuracy FLOPs samples / s samples / s samples / s
(%) ↑ (×106) ↓ (bs=32) ↑ (bs=128) ↑ (bs=256) ↑

Hierarchical Sequence Modeling - Long ListOps

Transf. 39.10±0.57 137 5175 5316 5357
BiXT 39.42±0.24 103 (-25%) 16891 (3.3×) 22522 (4.2×) 23804 (4.4×)

Byte-level Document Retrieval - AAN

Transf. 82.34±0.11 535 751 756 751
BiXT 82.46±0.41 384 (-28%) 5703 (7.6×) 6225 (8.2×) 6325 (8.4×)

Some recent approaches by Gu et al. [12, 13], Gupta et al. [14], and others have moved to target
the alternate ‘free-for-all’ setting of LRA with often extensive task-specific hyperparameter and
model optimization, e.g. see Table 11 (appendix) in the work by Smith et al. [38], where a specific
architecture (layers, blocks, dimensions, initialization) is created for each task, paired with its own
unique optimization configuration – requiring extensive search across possible configurations.

Given that our goal of evaluating BiXT on the LRA benchmark is to support our claim of ‘being
as performant as a full Transformer while being significantly more efficient’, we deem it more
appropriate instead provide the side-by-side evaluations as previously described to reduce compute
requirements and allow faster training.

Note that recent work by Amos et al. [2] sheds new light on the comparability of methods under
this ‘free-for-all’ setting and outlines significant changes in performance depending on a variety of
factors like model initialization – further supporting our side-by-side model comparison using the
same setup (including initialization method).
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F Visualization of Latent-Token Attention

To provide some additional qualitative insights into the bi-directional attention that is cast within
BiXT, we provide three sets of attention maps overlaid onto the input image:

• Figure A4: The attention maps of the four latent vectors presented in Figure 1(d) for all
layers throughout the BiXT tiny architecture (layer 1, top-left to layer 12, bottom-right).

• Figure A5 The attention maps of all latent vectors (64 in this case) for the final layer of our
BiXT tiny architecture.

• Figure A6 The attention maps of all latent vectors (64 in this case) for the second-last layer
of our BiXT tiny architecture.

Figure A4: Attention across layers. Bi-directional attention maps for the four selected tokens
presented in Figure 1(d) across all layers: Starting with first layer on top left, ending with last layer
(layer 12) on the bottom right. Displayed are the mean attention maps averaged across the heads of
BiXT tiny with 64 latents.
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Figure A5: Attention maps of final layer. Bi-directional cross-attention maps of all 64 latent vectors
of the final layer (layer 12) of our BiXT tiny architecture.
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Figure A6: Attention maps of penultimate layer. Bi-directional cross-attention maps of all 64 latent
vectors of the second-last layer (layer 11) of our BiXT tiny architecture.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: All claims are backed up via thorough experiments presented in Section 3, and
further complemented by a range of additional details, results and insights reported in the
appendix.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have added a dedicated section discussing the limitations of our work,
see Section 3.7; We further discuss some additional limitations and difficulties within the
individual experimental subsections, where appropriate.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: We do not introduce new theorems or lemmas that require proofs or explicit
assumptions.
Guidelines:
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We detail all components of our introduced architecture throughout Section 2.3.
We provide additional information on the components as well as the used settings including
hyperparameter choices for all experiments in the Appendices A.1,B.3,B.4,B.5,B.6,C,D, and
E. Our code including pretrained models will be made available upon acceptance.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Our code including pretrained models will soon be made available at
https://github.com/mrkshllr/BiXT. In the meantime, we detail all components of
our introduced architecture throughout Section 2.3. We provide additional information on
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the components as well as the used settings including hyperparameter choices to reproduce
all experiments in the Appendices A.1,B.3,B.4,B.5,B.6,C,D, and E.
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to access the raw data, preprocessed data, intermediate data, and generated data, etc.
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should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
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that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
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Answer: [Yes]
Justification: We provide mean and (unbiased) standard deviation either across 3 or 5
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(assuming normally distributed errors), see e.g. Table 1 (a) and Table 4. For the larger
experiments, we (have to) refrain from doing so due to computational resource limitations.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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of Normality of errors is not verified.
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8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide information on the required computational resources in the re-
spective sections of the appendix (one or several A100 GPUs w/ 80Gb), and further report
empirical throughput for the image classification, hierarchical sequence modeling and
document retrieval experiments.
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our research conforms with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We have added an individual section discussing the potential broader societal
impacts of our work at the beginning of the appendix.
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
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to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
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that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
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11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All used existing datasets and libraries have been appropriately cited, therefore
linking to the appropriate places where individual licences can be found. We do not ‘re-
release’ any existing assets with our current work.
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We have not yet released any new assets with our work – but will add the
respective documentation to the paper upon release of our code and models.
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• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
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Answer: [NA]
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or other labor should be paid at least the minimum wage in the country of the data
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such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
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Answer: [NA]
Justification: Not applicable to our research.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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