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ABSTRACT

Sharpness-Aware Minimization (SAM) is a highly effective regularization technique for
improving the generalization of deep neural networks for various settings. However, the
underlying working of SAM remains elusive because of various intriguing approxima-
tions in the theoretical characterizations. SAM intends to penalize a notion of sharpness of
the model but implements a computationally efficient variant; moreover, a third notion of
sharpness was used for proving generalization guarantees. The subtle differences in these
notions of sharpness can indeed lead to significantly different empirical results. This paper
rigorously nails down the exact sharpness notion that SAM regularizes and clarifies the
underlying mechanism. We also show that the two steps of approximations in the original
motivation of SAM individually lead to inaccurate local conclusions, but their combination
accidentally reveals the correct effect, when full-batch gradients are applied. Furthermore,
we also prove that the stochastic version of SAM in fact regularizes the third notion of
sharpness mentioned above, which is most likely to be the preferred notion for practical
performance. The key mechanism behind this intriguing phenomenon is the alignment
between the gradient and the top eigenvector of Hessian when SAM is applied.

1 INTRODUCTION

Modern deep nets are often overparametrized and have the capacity to fit even randomly labeled data (Zhang
et al., 2016). Thus, a small training loss does not necessarily imply good generalization. Yet, standard
gradient-based training algorithms such as SGD are able to find generalizable models. Recent empirical and
theoretical studies suggest that generalization is well-correlated with the sharpness of the loss landscape at
the learned parameter (Keskar et al., 2016; Dinh et al., 2017; Dziugaite et al., 2017; Neyshabur et al., 2017;
Jiang et al., 2019). Partly motivated by these studies, Foret et al. (2021); Wu et al. (2020); Zheng et al. (2021);
Norton et al. (2021) propose to penalize the sharpness of the landscape to improve the generalization. We
refer this method to Sharpness-Aware Minimization (SAM) and focus on the version of Foret et al. (2021).

Despite its empirical success, the underlying working of SAM remains elusive because of the various in-
triguing approximations made in its derivation and analysis. There are three different notions of sharpness
involved — SAM intends to optimize the first notion, the sharpness along the worst direction, but actually
implements a computationally efficient notion, the sharpness along the direction of the gradient. But in the
analysis of generalization, a third notion of sharpness is actually used to prove generalization guarantees,
which admits the first notion as an upper bound. The subtle difference between the three notions can lead to
very different biases (see Figure 1 for demonstration).

More concretely, let L be the training loss, x be the parameter and ρ be the perturbation radius, a hyperpa-
rameter requiring tuning. The first notion corresponds to the following optimization problem (1), where we
call RMax

ρ (x) = LMax
ρ (x) − L(x) the worst-direction sharpness at x. SAM intends to minimize the original

training loss plus the worst-direction sharpness at x.

min
x
LMax
ρ (x), where LMax

ρ (x) = max∥v∥2≤1 L(x+ ρv) . (1)

However, even evaluating LMax
ρ (x) is computationally expensive, not to mention optimization. Thus Foret

et al. (2021); Zheng et al. (2021) have introduced a second notion of sharpness, which approximates the worst-
case direction in (1) by the direction of gradient, as defined below in (2). We call RAsc

ρ (x) = LAsc
ρ (x)−L(x)

the ascent-direction sharpness at x.
min
x
LAsc
ρ (x), where LAsc

ρ (x) = L (x+ ρ∇L(x)/ ∥∇L(x)∥2) . (2)
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Type of Sharpness-Aware Loss Notation Definition Biases (among minimizers)
Worst-direction LMax

ρ max∥v∥2≤1 L(x+ ρv) minx λ1(∇2L(x)) (Thm G.3)

Ascent-direction LAsc
ρ L

(
x+ ρ ∇L(x)

∥∇L(x)∥2

)
minx λmin(∇2L(x)) (Thm G.4)

Average-direction LAvg
ρ Eg∼N(0,I)L(x+ ρ g

∥g∥2
) minx Tr(∇2L(x)) (Thm G.5)

Table 1: Definitions and biases of different notions of sharpness-aware loss. The corresponding sharpness is defined
as the difference between sharpness-aware loss and the original loss. Here λ1 denotes the largest eigenvalue and λmin
denotes the smallest non-zero eigenvalue.

For further acceleration, Foret et al. (2021); Zheng et al. (2021) omit the gradient through other occurrence
of x and approximate the gradient of ascent-direction sharpness by gradient taken after one-step ascent, i.e.,
∇LAsc

ρ (x) ≈ ∇L (x+ ρ∇L(x)/ ∥∇L(x)∥2) and derive the update rule of SAM, where η is the learning rate.

Sharpness-Aware Minimization (SAM): x(t+ 1) = x(t)− η∇L (x+ ρ∇L(x)/ ∥∇L(x)∥2) . (3)

Intriguingly, the generalization bound of SAM upperbounds the generalization error by the third notion of
sharpness, called average-direction sharpness, RAvg

ρ (x) and defined formally below.

RAvg
ρ (x) = LAvg

ρ (x)− L(x), where LAvg
ρ (x) = Eg∼N(0,I)L (x+ ρg/∥g∥2) . (4)

The worst-case sharpness is an upper bound of the average case sharpness and thus it is a looser bound for
generalization error. In other words, according to the generalization theory in Foret et al. (2021); Wu et al.
(2020) in fact motivates us to directly minimize the average case sharpness (as opposed to the worst-case
sharpness that SAM intends to optimize).

In this paper, we analyze the biases introduced by penalizing these various notions of sharpness as well as the
bias of SAM (Equation 3). Our analysis for SAM is performed for small perturbation radius ρ and learning
rate η under the setting where the minimizers of loss form a manifold following the setup of Fehrman et al.
(2020); Li et al. (2021). In particular, we make the following theoretical contributions.

1. We prove that full-batch SAM indeed minimizes worst-direction sharpness. (Theorem 4.5)
2. Surprisingly, when batch size is 1, SAM minimizes average-direction sharpness. (Theorem 5.4)
3. We provide a characterization (Theorems 4.2 and 5.3) of what a few sharpness regularizers bias towards

among the minimizers (including all the three notions of the sharpness in Table 1), when the perturbation
radius ρ goes to zero. Surprisingly, both heuristic approximations made for SAM lead to inaccurate
conclusions: (1) Minimizing worst-direction sharpness and ascent-direction sharpness induce different
biases among minimizers, and (2) SAM doesn’t minimize ascent-direction sharpness.

The key mechanism behind this bias of SAM is the alignment between gradient and the top eigenspace of
Hessian of the original loss in the latter phase of training—the angle between them decreases gradually to
the level of O(ρ). It turns out that the worst-direction sharpness starts to decrease once such alignment is
established (see Section 4.3). Interestingly, such an alignment is not implied by the minimization problem
(2), but rather, it is an implicit property of the specific update rule of SAM. Interestingly, such an alignment
property holds for SAM with full batch and SAM with batch size one, but does not necessarily hold for the
mini-batch case.

2 RELATED WORKS

Sharpness and Generalization. The study on the connection between sharpness and generalization can be
traced back to Hochreiter et al. (1997). Keskar et al. (2016) observe a positive correlation between the batch
size, the generalization error, and the sharpness of the loss landscape when changing the batch size. Jastrzeb-
ski et al. (2017) extend this by finding a correlation between the sharpness and the ratio between learning
rate to batch size. Dinh et al. (2017) show that one can easily construct networks with good generalization
but with arbitrary large sharpness by reparametrization. Dziugaite et al. (2017); Neyshabur et al. (2017);
Wei et al. (2019a;b) give theoretical guarantees on the generalization error using sharpness-related measures.
Jiang et al. (2019) perform a large-scale empirical study on various generalization measures and show that
sharpness-based measures have the highest correlation with generalization.

Background on Sharpness-Aware Minimization. Foret et al. (2021); Zheng et al. (2021) concurrently pro-
pose to minimize the loss at the perturbed from current parameter towards the worst direction to improve
generalization. Wu et al. (2020) propose an almost identical method for a different purpose, robust gener-
alization of adversarial training. Kwon et al. (2021) propose a different metric for SAM to fix the rescaling
problem pointed out by Dinh et al. (2017). Liu et al. (2022) propose a more computationally efficient version
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Figure 1: Visualization of the different biases of different sharpness notions on a 4D-toy example. Let
F1, F2 : R2 → R+ be two positive functions satisfying that F1 > F2 on [0, 1]2. For x ∈ R4, consider loss
L(x) = F1(x1, x2)x

2
3 + F2(x1, x2)x

2
4. The loss L has a zero loss manifold {x3 = x4 = 0} of codimension

M = 2 and the two non-zero eigenvalues of ∇2L of any point x on the manifold are λ1(∇2L(x)) = F1(x1, x2)
and λ2(∇2L(x)) = F2(x1, x2). We test three optimization algorithms on this 4D-toy model with small learning rates.
They all quickly converge to zero loss, i.e., x3(t), x4(t) ≈ 0, and after that x1(t), x2(t) still change slowly, i.e., moving
along the zero loss manifold. We visualize the loss restricted to (x3, x4) as the 3D shape at various (x1, x2)’s where
x1 = x1(t), x2 = x2(t) follows the trajectories of the three algorithms. In other words, each of the 3D surface visualize
the function g(x3, x4) = L(x1(t), x2(t), x3, x4). As our theory predicts, (1) Full-batch SAM (Equation 3) finds the
minimizer with the smallest top eigenvalue, F1(x1, x2); (2) GD on ascent-direction loss LAsc

ρ (Equation 2) finds the
minimizer with the smallest bottom eigenvalue, F2(x1, x2); (3) 1-SAM (Equation 13) (with L0(x) = F1(x1, x2)x

2
3

and L1(x) = F2(x1, x2)x
2
4) finds the minimizer with the smallest trace of Hessian, F1(x1, x2) + F2(x1, x2). See

more details in Appendix B.

of SAM. Zhuang et al. (2022) proposes a variant of SAM, which improves generalization by simultane-
ously optimizing the surrogate gap and the sharpness-aware loss. Zhao et al. (2022) propose to improve
generalization by penalizing gradient norm. Their proposed algorithm can be viewed as a generalization of
SAM. Andriushchenko et al. (2022) study a variant of SAM where the step size of ascent step is ρ instead
of ρ

∥∇L(x)∥2
. They show that for a simple model this variant of SAM has a stronger regularization effect

when batch size is 1 compared to the full-batch case and argue that this might be the explanation that SAM
generalizes better with small batch sizes. More related works are discussed in Appendix A.

3 NOTATIONS AND ASSUMPTIONS

For any natural number k, we say a function is Ck if it is k-times continuously differentiable and is Ck
if its

kth order derivatives are locally lipschitz. We say a subset of RD is compact if each of its open covers has
a finite subcover. It is well known that a subset of RD is compact if and only if it is closed and bounded.
For any positive definite symmetric matrix A ∈ RD×D, define {λi(A), vi(A)}i∈[D] as all its eigenvalues
and eigenvectors satisfying λ1(A) ≥ λ2(A)... ≥ λD(A) and ∥vi(A)∥2 = 1. For any mapping F , we define
∂F (x) as the Jacobian where [∂F (x)]ij = ∂jFi(x). Thus the directional derivative of F along the vector u at
x can be written as ∂F (x)u. We further define the second order directional derivative of F along the vectors
u and v at x, ∂2F (x)[u, v], ∂(∂F · u)(x)v, that is, the directional derivative of ∂F · u along the vector v at x.

Given a C1 submanifold (Definition C.1) Γ of RD and a point x ∈ Γ, define Px,Γ as the projection operator
onto the manifold of the normal space of Γ at x and P⊥

x,Γ = ID − Px,Γ. We fix our initialization as xinit

and our loss function as L : RD → R. Given the loss function, its gradient flow is denoted by mapping
ϕ : RD × [0,∞) → RD. Here, ϕ(x, τ) denotes the iterate at time τ of a gradient flow starting at x and is
defined as the unique solution of ϕ(x, τ) = x−

∫ τ

0
∇L(ϕ(x, t))dt, ∀x ∈ RD. We further define the limiting

map Φ as Φ(x) = limτ→∞ ϕ(x, τ), that is, Φ(x) denotes the convergent point of the gradient flow starting
from x. When L(x) is small, Φ(x) and x are near. Hence in our analysis, we regularly use Φ(x(t)) as a
surrogate to analyze the dynamics of x(t). Lemma 3.1 is an important property of Φ from Li et al. (2021)
(Lemma C.2), which is repeatedly used in our analysis. The proof is shown in Appendix F.

Lemma 3.1. For any x at which Φ is defined and differentiable, we have that ∂Φ(x)∇L(x) = 0.

Recent empirical studies have shown that there are essentially no barriers in loss landscape between different
minimizers, that is, the set of minimizers are path-connected (Draxler et al., 2018; Garipov et al., 2018).
Motivated by this empirical discovery, we make the assumption below following Fehrman et al. (2020); Li
et al. (2021); Arora et al. (2022), which is theoretically justified by Cooper (2018) under a generic setting.

Assumption 3.2. Assume loss L : RD → R is C4, and there exists a C2 submanifold Γ of RD that is a
(D −M)-dimensional for some integer 1 ≤ M ≤ D, where for all x ∈ Γ, x is a local minimizer of L and
rank(∇2L(x)) =M .
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Though our analysis for the full-batch setting is performed under the general and abstract setting, Assump-
tion 3.2, our analysis for the stochastic setting uses a more concrete one, Setting 5.1, where we can prove that
Assumption 3.2 holds. (see Theorem 5.2)
Definition 3.3 (Attraction Set). Let U be the attraction set of Γ under gradient flow, that is, a neighborhood
of Γ containing all points starting from which gradient flow w.r.t. loss L converges to some point in Γ, or
mathematically, U ≜ {x ∈ RD|Φ(x) exists and Φ(x) ∈ Γ}.

It can be shown that for a minimum loss manifold, the rank of Hessian plus the dimension of the manifold
is at most the environmental dimension D, and thus our assumption about Hessian rank essentially says the
rank is maximal. Assumption 3.2 implies that U is open and Φ is C2

on U (Arora et al., 2022, Lemma B.15).

4 EXPLICIT AND IMPLICIT BIAS IN THE FULL-BATCH SETTING

In this section, we present our main results in the full-batch setting. Section 4.1 provides characterization of
explicit bias of worst-direction, ascent-dircetion, and average-direction sharpness. In particular, we show that
ascent-direction sharpness and worst-direction sharpness have different explicit biases. However, it turns out
the explicit bias of ascent-direction sharpness is not the effective bias of SAM (that approximately optimizes
the ascent-direction sharpness), because the particular implementation of SAM imposes additional, different
biases, which is the main focus of Section 4.2. We provide our main theorem in the full-batch setting, that
SAM implicitly minimizes the worst-direction sharpness, via characterizing its limiting dynamics as learning
rate ρ and η goes to 0 with a Riemmanian gradient flow with respect to the top eigenvalue of the Hessian
of the loss on the manifold of local minimizers. In Section 4.3, we sketch the proof of the implicit bias of
SAM and identify a key property behind the implicit bias, which we call the implicit alignment between the
gradient and the top eigenvector of the Hessian.

4.1 WORST- AND ASCENT-DIRECTION SHARPNESS HAVE DIFFERENT EXPLICIT BIASES

In this subsection, we show that the explicit biases of three notions of sharpness are all different under
Assumption 3.2. We first recap the heuristic derivation of ascent-direction sharpness RAsc

ρ .

The intuition of approximatingRMax
ρ byRAsc

ρ comes from the following Taylor expansions (Foret et al., 2021;
Wu et al., 2020). Consider any compact set, for sufficiently small ρ, the following holds uniformly for all x
in the compact set:

RMax
ρ (x) = sup

∥v∥2≤1

L(x+ ρv)− L(x) = sup
∥v∥2≤1

(
ρv⊤∇L(x) + ρ2

2
v⊤∇2L(x)v +O(ρ3)

)
, (5)

RAsc
ρ (x)=L

(
x+ ρ

∇L(x)
∥∇L(x)∥2

)
−L(x) =ρ ∥∇L(x)∥2+

ρ2

2

∇L(x)⊤∇2L(x)∇L(x)
∥∇L(x)∥22

+O(ρ3) . (6)

Here, the preference among the local or global minima is what we are mainly concerned with. Since
sup∥v∥2≤1 v

⊤∇L(x) = ∥∇L(x)∥2 when ∥∇L(x)∥2 > 0, the leading terms in Equations 5 and 6 are both
the first order term, ρ ∥∇L(x)∥2, and are the same. However, it is erroneous to think that the first order
term decides the explicit bias, as the first order term ∥∇L(x)∥2 vanishes at the local minimizers of the loss
L and thus the second order term becomes the leading term. Any global minimizer x of the original loss
L is an O(ρ2)-approximate minimizer of the sharpness-aware loss because ∇L(x) = 0. Therefore, the
sharpness-aware loss needs to be of order ρ2 so that we can guarantee the second-order terms in Equation 5
and/or Equation 6 to be non-trivially small. Our main result in this subsection (Theorem 4.2) gives an explicit
characterization for this phenomenon. The corresponding explicit biases for each type of sharpness is given
below in Definition 4.1. As we will see later, they can be derived from a general notion of limiting regularizer
(Definition 4.3).
Definition 4.1. For x ∈ RD, we define SMax(x) = λ1(∇2L(x))/2, SAsc(x) = λM (∇2L(x))/2 and
SAvg(x) = Tr(∇2L(x))/(2D).

Theorem 4.2. Under Assumption 3.2, let U ′ be any bounded open set such that its closure U ′ ⊆ U and
U ′ ∩ Γ ⊆ U ′ ∩ Γ. For any type ∈ {Max,Asc,Avg} and any optimality gap ∆ > 0, there is a function
ϵ : R+ → R+ with limρ→0 ϵ(ρ) = 0, such that for all sufficiently small ρ > 0 and all u ∈ U ′ satisfying that

L(u) +Rtype
ρ (u)− inf

x∈U ′

(
L(x) +Rtype

ρ (x)
)
≤ ∆ρ2, 1

it holds L(u)− infx∈U ′ L(x) ≤ (∆+ ϵ(ρ))ρ2 and that Stype(u)− infx∈U ′∩Γ S
type(x) ∈ [−ϵ(ρ),∆+ ϵ(ρ)].

1We note that RAsc
ρ (x) is undefined when ∥∇L(x)∥2 = 0. In such cases, we set RAsc

ρ (x) = ∞.
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Theorem 4.2 suggests a sharp phase transition of the property of the solution of minx L(x) + Rρ(x) when
the optimization error drops from ω(ρ2) to O(ρ2). When the optimization error is larger than ω(ρ2), no
regularization effect happens and any minimizer satisfies the requirement. When the error becomes O(ρ2),
there is a non-trivial restriction on the coefficients in the second-order term.

Next we give a heuristic derivation for the above defined Stype. First, for worst- and average-direction
sharpness, the calculations are fairly straightforward and well-known in literature (Keskar et al., 2016; Kaur
et al., 2022; Zhuang et al., 2022; Orvieto et al., 2022), and we sketch them here. In the limit of perturbation
radius ρ→ 0, we know that the minimizer of the sharpness-aware loss will also converges to Γ, the manifold
of minimizers of the original loss L. Thus to decide to which x ∈ Γ the minimizers will converge to as
ρ → 0, it suffices to take Taylor expansion of LAsc

ρ or LAvg
ρ at each x ∈ Γ and compare the second-order

coefficients, e.g., we have that RAvg
ρ (x) = ρ2

2DTr(∇2L(x))+O(ρ3) and RMax
ρ (x) = ρ2

2 λ1(∇
2L(x))+O(ρ3)

by Equation 5.

However, the analysis for ascent-direction sharpness is more tricky because RAsc
ρ (x) = ∞ for any x ∈ Γ and

thus is not continuous around such x. Thus we have to aggregate information from neighborhood to capture
the explicit bias of Rρ around manifold Γ. This motivates the following definition of limiting regularizer
which allows us to compare the regularization strength of Rρ around each point on manifold Γ as ρ→ 0.

Definition 4.3 (Limiting Regularizer). We define the limiting regularizer of {Rρ} as the function2

S : Γ → R, S(x) = lim
ρ→0

lim
r→0

inf
∥x′−x∥2≤r

Rρ(x
′)/ρ2.

To minimize RAsc
ρ around x, we can pick x′ → x satisfying that ∥∇L(x′)∥2 → 0 yet strictly being non-

zero. By Equation 6, we have RAsc
ρ (x′) ≈ ρ2

2
·∇L(x′)⊤∇2L(x)∇L(x′)

∥∇L(x′)∥2
2

. Here the crucial step of the proof is
that because of Assumption 3.2, ∇L(x)/ ∥∇L(x)∥2 must almost lie in the column span of ∇2L(x), which

implies that infx′ ∇L(x′)⊤∇2L(x)∇L(x′)/∥∇L(x′)∥22
ρ→0→ λM (∇2L(x)), where rank(∇2L(x)) = M

by Assumption 3.2. The above alignment property between the gradient and the column space of Hessian
can be checked directly for any non-negative quadratic function. The maximal Hessian rank assumption in
Assumption 3.2 ensures that this property extends to general losses.

We defer the proof of Theorem 4.2 into Appendix G.1, where we develop a sufficient condition where the
notion of limiting regularizer characterizes the explicit bias of Rρ as ρ→ 0.

4.2 SAM PROVABLY DECREASES WORST-DIRECTION SHARPNESS

Though ascent-direction sharpness has different explicit bias from worst-direction sharpness, in this subsec-
tion we will show that surprisingly, SAM (Equation 3), a heuristic method designed to minimize ascent-
direction sharpness, provably decreases worst-direction sharpness. The main result here is an exact char-
acterization of the trajectory of SAM (Equation 3) via the following ordinary differential equation (ODE)
(Equation 7), when learning rate η and perturbation radius ρ are small and the initialization x(0) = xinit is in
U , the attraction set of manifold Γ.

X(τ) = X(0)− 1

2

∫ τ

s=0

P⊥
X(s),Γ∇λ1(∇

2L(X(s)))ds, X(0) = Φ(xinit). (7)

We assume ODE (Equation 7) has a solution till time T3, that is, Equation 7 holds for all t ≤ T3. We call
the solution of Equation 7 the limiting flow of SAM, which is exactly the Riemannian Gradient Flow on
the manifold Γ with respect to the loss λ1(∇2L(·)). In other words, the ODE (Equation 7) is essentially
a projected gradient descent algorithm with loss λ1(∇2L(·)) on the constraint set Γ and an infinitesimal
learning rate. Note λ1(∇2L(x)) may not be differentiable at x if λ1(∇2L(x)) = λ2(∇2L(x)), thus to ensure
Equation 7 is well-defined, we assume there is a positive eigengap for L on Γ.3

Assumption 4.4. For all x ∈ Γ, there exists a positive eigengap, i.e., λ1(∇2L(x)) > λ2(∇2L(x)).

Theorem 4.5 is the main result of this section, which is a direct combination of Theorems I.1 and I.3. The
proof is deferred to Appendix I.3.

2Here we implicitly assume the zeroth and first order term varnishes, which holds for all three sharpness notions.
3In fact we only need to assume the positive eigengap along the solution of the ODE. If Γ doesn’t satisfy Assump-

tion 4.4, we can simply perform the same analysis on its submanifold {x ∈ Γ | eigengap is positive at x}.
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Theorem 4.5 (Main). Let {x(t)} be the iterates of full-batch SAM (Equation 3) with x(0) = xinit ∈ U .
Under Assumptions 3.2 and 4.4, for all η, ρ such that η ln(1/ρ) and ρ/η are sufficiently small, the dynamics
of SAM can be characterized in the following two phases:

• Phase I: (Theorem I.1) Full-batch SAM (Equation 3) follows Gradient Flow with respect to L until entering
an O(ηρ) neighborhood of the manifold Γ in O(ln(1/ρ)/η) steps;

• Phase II: (Theorem I.3) Under a mild non-degeneracy assumption (Assumption I.2) on the initial point
of phase II, full-batch SAM (Equation 3) tracks the solution X of Equation 7, the Riemannian Gradient
Flow with respect to the loss λ1(∇2L(·)) in an O(ηρ) neighborhood of manifold Γ. Quantitatively, the
approximation error between the iterates x and the corresponding limiting flow X is O(η ln(1/ρ)), that is,

∥x
(
⌈T3/(ηρ2)⌉

)
−X(T3)∥2 = O(η ln(1/ρ)) .

Moreover, the angle between ∇L
(
x(⌈ T3

ηρ2 ⌉
)

and the top eigenspace of ∇2L(x(⌈ T3

ηρ2 ⌉)) is O(ρ).

Theorem 4.5 shows that SAM decreases the largest eigenvalue of Hessian of loss locally around the manifold
of local minimizers. Phase I uses standard approximation analysis as in Hairer et al. (2008). In Phase II,
as T3 is arbitrary, the approximation and alignment properties hold simultaneously for all X(t) along the
trajectory, provided that η ln(1/ρ) and ρ/η are sufficiently small. The subtlety here is that the threshold of
being ”sufficiently small” on η ln(1/ρ) and ρ/η actually depends on T3, which decreases when T3 → 0 or
→ ∞. We defer the proof of Theorem 4.5 to Appendix I.

As a corollary of Theorem 4.5, we can also show that the largest eigenvalue of the limiting flow closely tracks
the worst-direction sharpness.
Corollary 4.6. In the setting of Theorem 4.5, the difference between the worst-direction sharpness of the
iterates and the corresponding scaled largest eigenvalues along the limiting flow is at most O(ηρ2 ln(1/ρ)).
That is, ∣∣RMax

ρ (x(⌈T3/ηρ2⌉))− ρ2λ1(∇2L(X(T3))/2
∣∣ = O(ηρ2 ln(1/ρ)) . (8)

Since η ln(1/ρ) is assumed to be sufficiently small, the error O(η ln(1/ρ) · ρ2) is only o(ρ2), meaning that
penalizing the top eigenvalue on the manifold does lead to non-trivial reduction of worst-direction sharpness,
in the sense of Section 4.1.

Hence we can show that full-batch SAM (Equation 3) provably minimizes worst-direction sharpness around
the manifold if we additionally assume the limiting flow converges to a minimizer of the top eigenvalue of
Hessian in the following Corollary 4.7.
Corollary 4.7. Under Assumptions 3.2 and 4.4, defineU ′ as in Theorem 4.2 and supposeX(∞) = lim

t→∞
X(t)

exists and is a minimizer of λ1(∇2L(x)) in U ′ ∩ Γ. Then for all ϵ > 0, there exists Tϵ > 0, such that for all
ρ, η such that η ln(1/ρ) and ρ/η are sufficiently small, we have that

LMax
ρ (x(⌈Tϵ/(ηρ2)⌉)) ≤ ϵρ2 + inf

x∈U ′
LMax
ρ (x) .

We defer the proof of Corollaries 4.6 and 4.7 to Appendix I.4.

4.3 ANALYSIS OVERVIEW FOR SHARPNESS REDUCTION IN PHASE II OF THEOREM 4.5
Now we give an overview of the analysis for the trajectory of full-batch SAM (Equation 3) in Phase II (in
Theorem 4.5). The framework of the analysis is similar to Arora et al. (2022); Lyu et al. (2022); Damian
et al. (2021), where the high-level idea is to use Φ(x(t)) as a proxy for x(t) and study the dynamics of
Φ(x(t)) via Taylor expansion. Following the analysis in Arora et al. (2022) we can show Equation 9 using
Taylor expansion, starting from which we will discuss the key innovation in this paper regarding implicit
Hessian-gradient alignment. We defer its intuitive derivation into Appendix I.5.

Φ(x(t+ 1))−Φ(x(t))= −ηρ
2

2
∂Φ(x(t))∂2(∇L)(x(t))

[ ∇L(x(t))
∥∇L(x(t))∥2

,
∇L(x(t))

∥∇L(x(t))∥2

]
+O(η2ρ2 + ηρ3) . (9)

Now, to understand how Φ(x(t)) moves over time, we need to understand what the direction of the RHS
of Equation 9 corresponds to—we will prove that it corresponds to the Riemannian gradient of the loss
function ∇λ1(∇2L(x)) at x = Φ(x(t)). To achieve this, the key is to understand the direction ∇L(x(t))

∥∇L(x(t))∥2
.

It turns out that we will prove ∇L(x(t))
∥∇L(x(t))∥2

is close to the top eigenvector of the Hessian up to sign flip, that is
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∥ ∇L(x(t))
∥∇L(x(t))∥2

− s · v1(∇2L(x))∥2 ≤ O(ρ) for some s ∈ {−1, 1}. We call this phenomenon Hessian-gradient
alignment and will discuss it in more detail at the end of this subsection.

Using this property, we can proceed with the derivation (detailed in Appendix I.5):

Φ(x(t+ 1))− Φ(x(t)) = −ηρ
2

2
∂Φ(Φ(x(t)))∇λ1(∇2L(Φ(x(t)))) +O(η2ρ2 + ηρ3), (10)

Implicit Hessian-gradient Alignment. It remains to explain why the gradient implicitly aligns to the top
eigenvector of the Hessian, which is the key component of the analysis in Phase II. The proof strategy here
is to first show alignment for a quadratic loss function, and then generalize its proof to general loss functions
satisfying Assumption 3.2. Below we first give the formal statement of the implicit alignment on quadratic
loss, Theorem 4.8 and defer the result for general case (Lemma I.19) to appendix. Note this alignment
property is an implicit property of the SAM algorithm as it is not explicitly enforced by the objective that
SAM is intended to minimize, LAsc

ρ . Indeed optimizing LAsc
ρ would rather explicitly align gradient to the

smallest non-zero eigenvector (See proofs of Theorem G.5)!
Theorem 4.8. Suppose A is a positive definite symmetric matrix with unique top eigenvalue. Consider
running full-batch SAM (Equation 3) on loss L(x) := 1

2x
TAx as in Equation 11 below.

x(t+ 1) = x(t)− ηA
(
x(t) + ρAx(t)/∥Ax(t)∥2

)
. (11)

Then, for almost every x(0), we have x(t) converges in direction to v1(A) up to a sign flip and
limt→∞ ∥x(t)∥2 = ηρλ1(A)

2−ηλ1(A) with ηλ1(A) < 1.

The proof of Theorem 4.8 relies on a two-phase analysis of the behavior of Equation 11, where we first
show that x(t) enters an invariant set from any initialization and in the second phase, we construct a potential
function to show alignment. The proof is deferred to Appendix H.

Below we briefly discuss why the case with general loss is closely related to the quadratic loss case. We claim
that, in the general loss function case, the analog of Equation 11 is the update rule for the gradient:

∇L(x(t+ 1))=∇L(x(t))−η∇2L(x(t))
(
∇L(x(t)) + ρ∇2L(x(t))

∇L(x(t))
∥∇L(x(t)))∥2

)
+O(ηρ2) . (12)

We first note that indeed in the quadratic case where ∇L(x) = Ax and ∇2L(x) = A, Equation 12 is
equivalent to Equation 11 because they only differ by a multiplicative factor A on both sides. We derive its
intuitive derivation into Appendix I.5.

5 EXPLICIT AND IMPLICIT BIASES IN THE STOCHASTIC SETTING

In practice, people usually use SAM in the stochastic mini-batch setting, and the test accuracy improves
as the batch size decreases (Foret et al., 2021). Towards explaining this phenomenon, Foret et al. (2021)
argue intuitively that stochastic SAM minimizes stochastic worst-direction sharpness. Given our results in
Section 4, it is natural to ask if we can justify the above intuition by showing the Hessian-gradient alignment
in the stochastic setting. Unfortunately, such alignment is not possible in the most general setting. Yet
when the batch size is 1, we can prove rigorously in Section 5.2 that stochastic SAM minimizes stochastic
worst-direction sharpness, which is the expectation of the worst-direction sharpness of loss over each data
(defined in Section 5.1), which is the main result in this section. We stress that the stochastic worst-direction
sharpness has a different explicit bias to the worst-direction sharpness, which full-batch SAM implicitly
penalizes. When perturbation radius ρ → 0, the former corresponds to Tr(∇2L(·)), the same as average-
direction sharpness, and the latter corresponds to λ1(∇2L(·)).
Below we start by introducing our setting for SAM with batch size 1, or 1-SAM. We still need Assumption 3.2
in this section. We first analyze the explicit bias of the stochastic ascent- and worst-direction sharpness in
Section 5.1 via the tools developed in Section 4.1. It turns out they are all proportional to the trace of hessian
as ρ → 0. In Section 5.2, we show that 1-SAM penalizes the trace of Hessian. Below we formally state our
setting for stochastic loss of batch size one (Setting 5.1).
Setting 5.1. Let the total number of data be M . Let fk(x) be the model output on the k-th data where fk
is a C4-smooth function and yk be the k-th label, for k = 1, . . . ,M . We define the loss on the k-th data as
Lk(x) = ℓ(fk(x), yk) and the total loss L =

∑M
k=1 Lk/M , where function ℓ(y′, y) is C4-smooth in y′. We

also assume for any y ∈ R, it holds that argminy′∈R ℓ(y
′, y) = y and that ∂2ℓ(y′,y)

(∂y′)2 |y′=y > 0. Finally, we
denote the set of global minimizers of L with full-rank Jacobian by Γ and assume that it is non-empty, that is,

Γ ≜
{
x ∈ RD | fk(x) = yk,∀k ∈ [M ] and {∇fk(x)}Mk=1 are linearly independent

}
̸= ∅.
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We remark that given training data (i.e., {fk}Mk=1), Γ defined above is just equal to the set of global mini-
mizers,

{
x ∈ RD | fk(x) = yk,∀k ∈ [M ]

}
, except for a zero measure set of labels (yk)Mk=1 when fk are C∞

smooth, by Sard’s Theorem. Thus Cooper (2018) argued that the global minimizers form a differentiable
manifold generically if we allow perturbation on the labels. In this work we do not make such an assumption
for labels. Instead, we consider the subset of the global minimizers with full-rank Jacobian, Γ. A standard
application of implicit function theorem implies that Γ defined in Setting 5.1 is indeed a manifold. (See
Theorem 5.2, whose proof is deferred into Appendix E.1)

Theorem 5.2. Loss L, set Γ and integer M defined in Setting 5.1 satisfy Assumption 3.2.

1-SAM: We use 1-SAM as a shorthand for SAM on a stochastic loss with batch size 1 as below Equation 13,
where kt is sampled i.i.d from uniform distribution on [M ].

1-SAM : x(t+ 1) = x(t)− η∇Lkt

(
x+ ρ∇Lkt(x)/ ∥∇Lkt(x)∥2

)
. (13)

5.1 STOCHASTIC WORST-, ASCENT- AND AVERAGE- DIRECTION SHARPNESS HAVE THE SAME
EXPLICIT BIASES AS AVERAGE DIRECTION SHARPNESS

Similar to the full-batch case, we use LMax
k,ρ , L

Asc
k,ρ, L

Avg
k,ρ to denote the corresponding sharpness-aware loss for

Lk and RMax
k,ρ , R

Asc
k,ρ, R

Avg
k,ρ to denote corresponding sharpness for Lk respectively (defined as Equations 1, 2

and 4 with L replaced by Lk). We further use stochastic worst-, ascent- and average-direction sharpness to
denote Ek[R

Max
k,ρ ],Ek[R

Asc
k,ρ] and Ek[R

Avg
k,ρ ]. Unlike the full-batch setting, these three sharpness notions have the

same explicit biases, or more precisely, they have the same limiting regularizers (up to some scaling factor).

Theorem 5.3. The limiting regularizers of three notions of stochastic sharpness, denoted by S̃Max, S̃Asc, S̃Avg,
satisfy that S̃Max(x) = S̃Asc(x) = D · S̃Avg(x) = Tr(∇2L(x))/2. Furthermore, define U ′ in the same
way as in Theorem 4.2 . For any type ∈ {Max,Asc,Avg}, it holds that if for some u ∈ U ′, L(u) +
Ek[R

type
k,ρ (u)] ≤ inf

x∈U ′

(
L(x) + Ek[R

type
k,ρ (x)]

)
+ ϵρ2,4 then we have that L(u)− infx∈U ′ L(x) ≤ ϵρ2 + o(ρ2)

and that
∣∣S̃type(u)− infx∈U ′∩Γ S̃

type(x)
∣∣ ≤ ϵ+ o(1).

We defer the proof of Theorem 5.3 to Appendix G.4. Unlike in the full-batch setting where the implicit
regularizer of ascent-direction sharpness and worst-direction sharpness have different explicit bias, here they
are the same because there is no difference between the maximum and minimum of its non-zero eigenvalue
for rank-1 Hessian of each individual loss Lk, and that the average of limiting regularizers is equal to the
limiting regularizer of the average regularizer by definition.

5.2 STOCHASTIC SAM MINIMIZES AVERAGE-DIRECTION SHARPNESS

This subsection aims to show that the implicit bias of 1-SAM (Equation 13) is minimizing the average-
direction sharpness for small perturbation radius ρ and learning rate η, which has the same implicit bias as all
three notions of stochastic sharpness do (Theorem 5.3). As an analog of the analysis in Section 4.3, which
shows full-batch SAM minimizes worst-direction sharpness, analysis in this section conceptually shows that
1-SAM minimizes the stochastic worst-direction sharpness.

Mathematically, we prove that the trajectory of 1-SAM tracks the following Riemannian gradient flow (Equa-
tion 14) with respect to their limiting regularize Tr(∇2L(·)) on the manifold for sufficiently small η and ρ
and thus penalizes stochastic worst-direction sharpness (of batch size 1). We assume the ODE (Equation 14)
has a solution till time T3.

X(τ) = X(0)− 1

2

∫ τ

s=0

P⊥
X(s),Γ∇Tr(∇2L(X(s)))ds, X(0) = Φ(xinit). (14)

Theorem 5.4. Let {x(t)} be the iterates of 1-SAM (Equation 13) and x(0) = xinit ∈ U , then under Set-
ting 5.1, for almost every xinit, for all η and ρ such that (η+ρ) ln(1/ηρ) is sufficiently small, with probability
at least 1 − O(ρ) over the randomness of the algorithm, the dynamics of 1-SAM (Equation 13) can be split
into two phases:

• Phase I (Theorem J.1): 1-SAM follows Gradient Flow with respect to L until entering an Õ(ηρ) neighbor-
hood of the manifold Γ in O(ln(1/ρη)/η) steps;

4We note that RAsc
ρ (x) is undefined when ∥∇L(x)∥2 = 0. In such cases, we set RAsc

ρ (x) = ∞.
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• Phase II (Theorem J.2): 1-SAM tracks the solution of Equation 14, X , the Riemannian gradient flow with
respect to Tr(∇2L(·)) in an Õ(ηρ) neighborhood of manifold Γ. Quantitatively, the approximation error
between the iterates x and the corresponding limiting flow X is Õ(η1/2 + ρ), that is,

∥x(⌈T3/(ηρ2)⌉)−X(T3)∥2 = Õ(η1/2 + ρ).

The high-level intuition for the Phase II result of Theorem 5.4 is that Hessian-gradient alignment holds true
for every stochastic loss Lk along the trajectory of 1-SAM and therefore by Taylor expansion (the same argu-
ment in Section 4.3), at each step Φ(x(t)) moves towards the negative (Riemannian) gradient of λ1(∇2Lkt)
where kt is the index of randomly sampled data, or the limiting regularizer of the worst-direction sharp-
ness of Lkt

. Averaging over a long time, the moving direction becomes the negative (Riemmanian) gradient
of Ekt

[λ1(∇2Lkt
)], which is the limiting regularizer of stochastic worst-direction sharpness and equals to

Tr(∇2L) by Theorem 5.3.

The reason that Hessian-gradient alignment holds under Setting 5.1 is that the Hessian of each stochastic loss
Lk at minimizers p ∈ Γ, ∇2Lk(p) =

∂2ℓ(y′,yk)
(∂y′)2 |y′=fk(p)∇fk(p)(∇fk(p))⊤(Lemma J.15), is exactly rank-1,

which enforces the gradient ∇Lk(x) ≈ ∇2Lk(Φ(x))(x− Φ(x)) to (almost) lie in the top (which is also the
unique) eigenspace of ∇2Lk(Φ(x)). Lemma 5.5 formally states this property.
Lemma 5.5. Under Setting 5.1, for any p ∈ Γ and k ∈ [M ], it holds that ∇fk(p) ̸= 0 and that there is an
open set V containing p, satisfying that

∀x ∈ V,∇Lk (x) ̸= 0 =⇒ ∃s ∈ {−1, 1}, ∇Lk (x)

∥∇Lk (x) ∥
= s

∇fk(p)
∥∇fk(p)∥2

+O(∥x− p∥2).

Corollaries 5.6 and 5.7 below are stochastic counterparts of Corollaries 4.6 and 4.7, saying that the trace of
Hessian are close to the stochastic worst-direction sharpness along the limiting flow (14), and therefore when
the limiting flow converges to a local minimizer of trace of Hessian, 1-SAM (Equation 13) minimizes the
average-direction sharpness. We defer the proofs of Corollaries 5.6 and 5.7 to Appendix J.4.
Corollary 5.6. Under the condition of Theorem 5.4, we have that with probability 1 − O(

√
η +

√
ρ), the

difference between the stochastic worst-direction sharpness of the iterates and the corresponding scaled trace
of Hessian along the limiting flow is at most O

(
(η1/4 + ρ1/4)ρ2

)
, that is,∣∣Ek[R

Max
k,ρ (x(⌈T3/(ηρ2)⌉))]− ρ2Tr(∇2L(X(T3)))/2

∣∣ = O
(
(η1/4 + ρ1/4)ρ2

)
.

Corollary 5.7. Define U ′ as in Theorem 4.2, suppose X(∞) = lim
t→∞

X(t) exists and is a minimizer of

Tr(∇2L(x))) in U ′ ∩ Γ. Then for all ϵ > 0, there exists a constant Tϵ > 0, such that for all ρ, η such that
(η + ρ) ln(1/ηρ) are sufficiently small, we have that with probability 1−O(

√
η +

√
ρ),

Ek[L
Max
k,ρ (x(⌈Tϵ/(ηρ2)⌉))] ≤ ϵρ2 + inf

x∈U ′
Ek[L

Max
k,ρ (x)] .

6 CONCLUSION

In this work, we have performed a rigorous mathematical analysis of the explicit bias of various notions of
sharpness when used as regularizers and the implicit bias of the SAM algorithm. In particular, we show
the explicit biases of worst-, ascent- and average-direction sharpness around the manifold of minimizers
are minimizing the largest eigenvalue, the smallest nonzero eigenvalue, and the trace of Hessian of the loss
function. We show that in the full-batch setting, SAM provably decreases the largest eigenvalue of Hessian,
while in the stochastic setting when batch size is 1, SAM provably decreases the trace of Hessian.

The most interesting future work is to generalize the current analysis for stochastic SAM to arbitrary batch
size. This is challenging because, without the alignment property which holds automatically with batch size
1, such an analysis essentially requires understanding the stationary distribution of the gradient direction
along the SAM trajectory. It is also interesting to incorporate other features of modern deep learning like
normalization layers, momentum, and weight decay into the current analysis.

Another interesting open question is to further bridge the difference between generalization bounds and the
implicit bias of the optimizers. Currently, the generalization bounds in Wu et al. (2020); Foret et al. (2020)
only work for the randomly perturbed model. Moreover, the bound depends on the average sharpness with
finite ρ, whereas the analysis of this paper only works for infinitesimal ρ. It’s an interesting open question
whether the generalization error of the model (without perturbation) can be bounded from above by some
function of the training loss, norm of the parameters, and the trace of the Hessian.
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A ADDITIONAL RELATED WORKS

Implicit Bias of Sharpness Minimization. Recent theoretical works (Blanc et al., 2019; Damian et al., 2021;
Li et al., 2021) show that SGD with label noise implicitly biased toward local minimizers with a smaller trace
of Hessian under the assumption that the minimizers locally connect as a manifold. Arora et al. (2022) show
that normalized GD implicitly penalizes the largest eigenvalue of the Hessian. Ma et al. (2022) argues that
such sharpness reduction phenomena can also be caused by a multi-scale loss landscape. Lyu et al. (2022)
show that GD with weight decay on a scale invariant loss function implicitly decreases penalize the spherical
sharpness, i.e., the largest eigenvalue of the Hessian evaluated at the normalized parameter.

Another line of works study the sharpness minimization effect of large learning rate assuming the (stochastic)
gradient descent converges in the end of training, where the analysis is mainly based on linear stability (Wu
et al., 2018; Cohen et al., 2021; Ma et al., 2021; Cohen et al., 2022). Recent theoretical analysis (Damian et al.,
2022; Li et al., 2022) show that the sharpness minimization effect of large learning rate in gradient descent
do not necessarily rely on the convergence assumption and linear stability via a four-phase characterization
of the dynamics at the so-called Edge of Stability regime (Cohen et al., 2021).

Comparison with concurrent work Bartlett et al. (2022). Bartlett et al. (2022) prove that on quadratic
loss, the iterate of SAM (Equation 11) and its gradient converges to the top eigenvector of Hessian, which is
almost the same as our Theorem 4.8. Assuming such alignment for a general loss, the work of Bartlett et al.
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(2022) shows that the largest eigenvalue of Hessian decreases in the next step. This paper also proves such
a Hessian-gradient alignment for general loss functions (Lemma I.19) and an end-to-end theorem showing
that the largest eigenvalue of Hessian and worst-direction sharpness decrease along the trajectory of SAM
(Theorem 4.5), which are not shown in Bartlett et al. (2022). Moreover, this paper also characterize implicit
bias of stochastic SAM with batch size 1, which is minimizing the average-direction sharpness, while Bartlett
et al. (2022) only considers the deterministic case.

Comparison with Arora et al. (2022). Our proof uses a similar framework as Arora et al. (2022). However,
our analysis has its own difficulty for the following reasons. First, Arora et al. (2022) only deal with the
deterministic case, while our analysis extends to stochastic SAM as well (Section 5). Second, our analysis
for the deterministic case is different from that of Arora et al. (2022) in the following two aspects. First, the
alignment analysis is more complicated because we have two hyperparameters,learning rate η and perturba-
tion radius ρ, while Arora et al. (2022) only needs to deal with one hyperparameter, learning rate η. Second,
the mechanism of penalizing worst-direction sharpness is different, which can be seen from the dependency
of the sharpness-reduction rate over learning rate η. In Arora et al. (2022), normalized GD reduces the sharp-
ness via a second-order effect of GD and thus the sharpness is reduced by O(η2) per step. In our analysis, for
fixed small perturbation radius ρ, the sharpness is reduced by O(ρ2η) per step, which is linear in η.

Analyzing Discrete-time Dynamics via Continuous-time Approaches. There is a long line of research
that shows the trajectory of stochastic discrete iterations with decaying step size eventually tracks the solution
of some ODE (see Kushner et al. (2003); Borkar et al. (2009); Duchi et al. (2018) and the reference therein).
However, those results mainly focus on the convergence property of the stochastic iterates (e.g., convergence
to stationary points), while we are interested in characterizing the trajectory especially when the process is
running for a long time even after the iterate reaches the neighborhood of the manifold of stationary points.

Recently there has been an effort of modeling the discrete-time trajectory of (stochastic) gradient methods
by continuous-time approximation (Su et al., 2014; Mandt et al., 2017; Li et al., 2017; 2019). Notably,
Li et al. (2019) presents a general and rigorous mathematical framework to prove such continuous-time
approximation. More specifically, Li et al. (2019) proves for various stochastic gradient-based methods, the
discrete-time weakly converges to the continuous-time one when LR η → 0 in Θ(1/η) steps. The main
difference between our results with these results (e.g., Theorem 9 in Li et al. (2019)) is that we focus on a
much longer training regime, i.e., T = Θ(η−1ρ−2) steps where the previous continuous-time approximation
results no longer holds throughout the entire training. As a result, their continuous approximation is only
equivalent to the Phase I dynamics in our Theorems 4.5 and 5.4 and cannot capture the dynamics of SAM in
Phase II, when the sharpness-reduction implicit bias happens. The latter requires a more fine-grained analysis
to capture the effects of higher-order terms in η and ρ in SAM Equation 3.

B EXPERIMENTAL DETAILS FOR FIGURE 1

In Figure 1, we choose F1(x) = x21+6x22+8 and F2(x) = 4(1−x1)2+(1−x2)2+1. The loss L has a zero
loss manifold {x = 0} and the eigenvalues of its Hessian on the manifold are F1(x) and F2(x) with F1(x) ≥
8 > 6 ≥ F2(x) on [0, 1]2. The loss L has a zero loss manifold {x3 = x4 = 0} of codimension M = 2
and the two non-zero eigenvalues of ∇2L of any point x on the manifold are λ1(∇2L(x)) = F1(x1, x2) and
λ2(∇2L(x)) = F2(x1, x2).

As our theory predicts,

1. Full-batch SAM (Equation 3) finds the minimizer with the smallest top eigenvalue F1(x), which is x1 =
0, x2 = 0, x3 = 0, x4 = 0;

2. GD on ascent-direction loss LAsc
ρ (2) finds the minimizer with the smallest bottom eigenvalue, F2(x),

which is x1 = 1, x2 = 1, x3 = 0, x4 = 0;
3. Stochastic SAM (Equation 13) (with L0(x, y) = F1(x)y

2
0 , L1(x, y) = F2(x)y

2
1) finds the minimizer with

smallest trace of Hessian, which is x1 = 4/5, x2 = 1/7, x3 = 0, x4 = 0.

C ADDITIONAL PRELIMINARY

In this section, we introduce some additional notations and clarification before the proof.

We will first give the detailed definition of differentiable submanifold.
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Definition C.1 (Differentiable Submanifold of RD). We call a subset Γ ⊂ RD a Ck submanifold of RD if
and only if for every x ∈ Γ, there exists a open neighborhood U of x and an invertible Ck map ψ : U → RD,
such that ψ(Γ ∩ U) = (Rn × {0}) ∩ ψ(U).

Necessity of Manifold Assumption. The connectivity of the set of local minimizers implied by the manifold
assumption above allows us to take limits of perturbation radius ρ → 0 while still yield interesting and
insightful implicit bias results in the end-to-end analysis. So far almost all analysis of implicit bias for
general model parameterizations relies on Taylor expansion, e.g. Blanc et al. (2019); Damian et al. (2021); Li
et al. (2021); Arora et al. (2022), so does the derivation of the SAM algorithm Foret et al. (2020); Wu et al.
(2020). Thus it’s crucial to consider small perturbation size ρ. On the contrary, if the set of global minimizers
are a set of discrete points, then with small perturbation radius ρ, implicit bias of optimizers is not sufficient
to drive the iterate from global minimum to the other one.

Implicit versus Explicit Bias. If an algorithm or optimizer has a bias towards certain type of global/local
minima of the loss over other minima of the loss, and this bias is not encoded in the loss function, then we
call such bias an implicit bias. On the other hand, a bias emerges as solely a consequence of successfully
minimizing certain regularized loss regardless of the optimizers (as long as the optimzers minimize the loss),
we say such bias is an explicit bias of the regularized loss (or the regularizer).

As a concrete example, we will prove that full-batch SAM (Equation 3) prefers local minima with certain
sharpness property. The bias stems from the particular update rule of full-batch SAM (Equation 3), and not
all optimizers for the intended target loss function LAsc

ρ (Equation 2) has this bias. Therefore, it’s considered
as an implicit bias. As an example for explicit bias, all optimizers minimizing a loss combined with ℓ2
regularization will prefer model with smaller parameter norm and this is considered as an explicit bias of ℓ2
regularization.

Usage of O(·) Notation: Our analysis assumes small η and ρ while treating all other problem-dependent pa-
rameters as constants, such as the dimension of parameter space and the maximum possible value of deriva-
tives (of different orders) of loss function L and the limit map Φ. In O(·),Ω(·), o(·), ω(·),Θ(·), we hide all
the dependency related to the problem, e.g., the (unique) initialization xinit, the manifold Γ, compact set U ′

in Theorem 4.2, and the continuous time T3 in Theorems 4.5 and 5.4, and only keep the dependency on ρ and
η. For example, O(f(ρ)) is a placeholder for some function g(ρ) such that there exists problem-dependent
constant C > 0, ∀ρ > 0, |g(ρ)| ≤ C|f(ρ)|. In informal equations such as Equation 31 in the proof sketch
section, we are a bit more sloppy and hide dependency on x(t) in O(·) notation as well. But these will be
formally dealt with in the proofs.

Ill-definedness of SAM with Zero Gradient. The update rule of SAM (Equations 3 and 13) is ill-defined
when the gradient is zero. However, our analysis in Appendix D shows that when the stationary point of loss
L, {x | ∇L(x) = 0}, is a zero-measure set, for any perturbation radius ρ, except for countably many learning
rates, full-batch SAM is well-defined for almost all initialization and all steps (Theorem D.1). A similar result
is shown for stochastic SAM if the stationary points of each stochastic loss form a zero-measure set (Theo-
rem D.2). Thus SAM is generically well-defined. For the sake of rigorousness, when SAM encountering zero
gradients, we modify the algorithm via replacing the ill-defined normalized gradient by an arbitrary vector
with unit norm and our analysis for implicit bias of SAM still holds.

D WELL-DEFINEDNESS OF SAM

In this section, we discuss the well-definedness of SAM. When ∇L(x) = 0, SAM (Equation 3) is not well-
defined, because the normalized gradient ∇L(x)

∥∇L(x)∥2
is not well-defined. The main result of this section are

Theorems D.1 and D.2, which say that (stochastic) SAM starting from random initialization only has zero
probability to reach points that SAM is undefined (i.e., points with zero gradient), for all except countably
many learning rates. These results follow from Theorem D.3, which is a more general theorem also applicable
to other discrete update rules as well, like SGD. Note results in this section does not rely on the manifold
assumption, i.e., Assumption 3.2. We end this section with a concrete example where SAM is undefined
with constant probability, suggesting that the exclusion of countably many learning rates are necessary in
Theorems D.1 and D.2.

Theorem D.1. Consider any C2 loss L with zero-measure stationary set {x | ∇L(x) = 0}. For every ρ > 0,
except countably many learning rates, for almost all initialization and all t, the iterate of full-batch SAM
(Equation 3) x(t) has non-zero gradient and is thus well-defined.
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Theorem D.2. Consider any C2 losses {Lk}Mk=1 with zero-measure stationary set {x | ∇Lk(x) = 0} for
each k ∈ [M ]. For every ρ > 0, except countably many learning rates η, for almost all initialization and all
t, with probability one of the randomness of the algorithm, the iterate of stochastic SAM (Equation 13) x(t)
has non-zero gradient and is thus well-defined. 5

Before present our main theorem (Theorem D.3), we need to introduce some notations first. For a map F
mapping from RD \ Z → RD, we define that Fη : RD \ Z → RD as Fη(x) ≜ x− ηF (x) for any η ∈ R+.
Given a sequence of functions {Fn}∞n=1, we define Fn

η (x) ≜ x − ηFn(x), for any x ∈ RD. We further

define that F
n

η (x) ≜ Fn
η (F

n−1

η (x)) for any n ≥ 1 and that F
0

η(x) = x.

Theorem D.3. Let Z be a closed subset of RD with zero Lebesgue measure and µ be any probability measure
on RD that is absolutely continuous to the Lesbegue measure. For any sequence of C1 functions Fn :
RD \ Z → RD, n ∈ N+, the following claim holds for all except countably many η ∈ R+:

µ
(
{x ∈ RD | ∃n ∈ N, Fn

η (x) ∈ Z and ∀0 ≤ i ≤ n− 1, F
i

η(x) /∈ Z}
)
= 0.

In other words, for almost all η (except countably many positive numbers), iteration x(t + 1) = x(t) −
ηF (x(t)) = F

t

η(x(0)) will not enter Z almost surely, provided that x(0) is sampled from µ.

Theorem D.1 and Theorem D.2 follows immediately from Theorem D.3.

Proof of Theorem D.1. Let F (x) = ∇L(x + ρ ∇L(x)
∥∇L(x)∥2

) and Z = {x ∈ RD | ∇L(x) = 0}. We can easily

check F is C1 on RD \ Z and by assumption Z is a zero-measure set. Applying Theorem D.3 with Fn ≡ F
for all n ∈ N+, we get the desired results.

Proof of Theorem D.2. Let Gk(x) = ∇L(x + ρ ∇Lk(x)
∥∇Lk(x)∥2

) and Z = ∪M
k=1{x ∈ RD | ∇Lk(x) = 0}. We

can easily check Fk is C1 on RD \ Z and by assumption Z is a zero-measure set. Applying Theorem D.3
with Fn = Gkn for all n ∈ N+ where kn is the nth data/batch sampled by the algorithm, we get the desired
results.

Now we will turn to the proof of Theorem D.3, which is based on the following two lemmas.
Lemma D.4. Let Z be a closed subset of RD with zero Lebesgue measure and F : RD \ Z → RD be a
continuously differentiable function. Then except countably many η ∈ R+, {x ∈ Rd \Z | det(∂Fη(x)) = 0}
is a zero-measure set under Lebesgue measure.
Lemma D.5. Let Z be a closed subset of RD with zero Lebesgue measure and H : RD \ Z → RD be a
continuously differentiable function. If {x ∈ Rd \ Z | det(∂H(x)) = 0} is a zero-measure set, then for any
zero-measure set Z ′, H−1(Z ′) is a zero-measure set.

Proof of Theorem D.3. It suffices to prove that for every N ∈ N+, at most for countably many η:

µ
(
{x ∈ RD | FN

η (x) ∈ Z and ∀0 ≤ i ≤ N − 1, F
i

η(x) /∈ Z}
)
= 0. (15)

The desired results is immediately implied by the above claim because the countable union of countable set
is still countable, and countable union of zero-measure set is still zero measure.

To prove Equation 15, we first introduce some notations. For any η > 0, 0 ≤ n ≤ N − 1, and x ∈ RD, we
define F

−(n+1)

η (x) ≜ (FN−n
η )−1(F

−n

η (x)), where F
0

η(x) = x. We extend the definition to set in a natural

way, namely F
−n

η (S) ≜ ∪x∈SF
−n

η (x) for any S ⊆ RD. Under this notation, we have that

F−N
η (Z) = µ

(
{x ∈ RD | FN

η (x) ∈ Z and ∀0 ≤ i ≤ N − 1, F
i

η(x) /∈ Z}
)

We will prove by induction. We claim that for each 0 ≤ n ≤ N except for countably many η ∈ R+, F
−n

η (Z)
has zero Lebesgue measure. The base case n = 0 is by trivial as Z is assumed to be zero-measure. Suppose

5Though we call Equation 13 1-SAM, but our result here applies to any batch size where Lk can be regarded as the
loss for k-th possible batch and M is the number of the total number of batches.
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this holds for n. By Lemma D.4, except countably many η ∈ R+, {x ∈ Rd\F−n

η (Z) | det(∂FN−n−1
η (x)) =

0} is a zero-measure set. Next by Lemma D.5 if for some η ∈ R+, {x ∈ Rd\F−n

η (Z) | det(∂FN−n−1
η (x)) =

0} is a zero-measure set, then F
−n−1

η (Z) = (FN−n−1
η )−1(F

−n

η (Z)) is a zero-measure set. Then by induc-

tion, we know that except countably many η ∈ R+, for all integer 0 ≤ n ≤ N , F
−n

η (Z) is zero-measure.
Since µ is absolutely continuous to Lebesgue measure, µ(F−N

η (Z)) = 0.

We end this section with the proofs of Lemmas D.4 and D.5.

Proof of Lemma D.4. We use λi(x) to denote that the real part of the ith eigenvalue of the matrix ∂F (x) in
the descending order. Since ∂F (x) is continuous in x, λi(x) is continuous in x as well, for any i ∈ [D], and
thus {x ∈ RD \Z | λi(x) = 1/η} is a measurable set. Note that for a fixed i ∈ [D], for each positive integer
n, let In be the set of η where µ({x ∈ RD \ Z | λi(x) = 1/η}) > 1/n, then |In| ≤ n, because

|In|
n

≤
∑
η∈In

µ(({x ∈ RD \ Z | λi(x) = 1/η}) ≤ µ(({x ∈ RD \ Z | 1/λi(x) ∈ In}) ≤ 1.

Therefore, there are at most countably many η ∈ R+, such that µ({x ∈ RD \ Z | λi(x) = 1/η}) > 0.
Further note that det(∂Fη(x)) = 0 ⇐⇒ ∃i ∈ [D], λi(x) = 1/η, we know that there are at most countably
many η ∈ R+, such that µ({x ∈ RD \ Z | det(∂Fη(x)) = 0}) = 0. This completes the proof.

Proof of Lemma D.5. Denote {x ∈ RD \ Z | det(∂H(x)) = 0} by Z ′′, since det(∂H(x)) is continuous in
x as F is C1, Z ′′ is relatively closed in RD \ Z. Since Z ′ is a closed set, RD \ (Z ′ ∪ Z ′′) is open. Thus
for all x ∈ RD \ (Z ′ ∪ Z ′′) with det(∂H(x)) ̸= 0, there exists a open neighborhood of x, U , where for all
x′ ∈ U , det(∂H(x′)) ̸= 0, since thus det(∂H(x)) is continuous. This further implies H is invertible on U
and its inverse (H|U )−1 is differentiable on F (U). Therefore, (H|U )−1 maps any zero-measure set to a zero-
measure set. In particular, (H|U )−1(Z ′ ∩ H(U)) is zero measure, so is (H)−1(Z ′) ∩ U ⊂ (H|U )−1(Z ′ ∩
H(U)). Now for every x ∈ RD \ Z we take an open neighborhood Ux ⊆ RD \ (Z ′ ∪ Z ′′). Since RD is a
separable metric space, the open cover of RD, {Ux}x∈RD\(Z′∪Z′′) has a countable subcover, {Ux}x∈I , where
I is a countable set of RD \ (Z ′ ∪ Z ′′). Therefore we have that H−1(Z ′) \ (Z ′ ∪ Z ′′) = H−1(Z ′) ∩ (RD \
(Z ′ ∪ Z ′′)) = ∪x∈IH

−1(Z ′) ∩ Ux is a zero-measure set. Thus H−1(Z ′) is also zero-measure since Z ′, Z ′′

are both zero-measure. This completes the proof.

We end this section with an example where SAM is undefined with constant probability.
Theorem D.6. For any η, ρ > 0, there is a C2 loss function L : R → R satisfying that (1) L has a unique
stationary point and (2) the set of initialization that makes SAM with learning rate η and perturbation radius
ρ to reach the unique stationary point has positive Lebesgue measure.

Proof of Theorem D.6. We first consider the case with ρ = η = 1 with

L(x) =


x2/2 + x+ 1/2, for x ∈ (−∞,−2);

x4/64 + x2/8, for x ∈ [−2, 2];

x2/2− x+ 1/2, for x ∈ (2,∞).

(16)

We first check L is indeed C1: L(2) = L(−2) = 1/2, L′(2) = −L′(−2) = 1 and L′′(2) = L′′(−2) = 1.
Now we claim that for all |x(0)| > 2, x(1) = 0, which is a stationary point. Note that L is even and
monotone increasing on [0,∞), we have ∇L(x)/|∇L(x)| = sign(x). Thus for |x(t)| > 1, it holds that
|x(t) + sign(x(t)| > 2 and therefore

x(t+ 1) =x(t)− ηL′(x(t) + ρ∇L(x)/|∇L(x)|)
=x(t)− L′(x(t) + sign(x(t)))

=x(t)− (x(t) + sign(x(t))− sign(x(t) + sign(x(t))))

=x(t)− x(t) = 0. (17)

Now we turn to the case with arbitrary positive η, ρ. It suffices to consider Lη,ρ(x) ≜
ρ
ηL(

x
ρ ). We can use

the calculation for ρ = η = 1 to verify for any |x| > 2ρ,

L′
η,ρ(x+ ρ sign(L′

η,ρ(x))) = L′
η,ρ(x+ ρ sign(x)) =

1

η
L(x/ρ+ sign(x)) =

x

η
,
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namely x− L′
η,ρ(x+ ρ sign(L′

η,ρ(x))) = 0. This completes the proof.

A common (but wrong) intuition here is that, for a continuously differentiable update rule, as long as the
points where the update rule is ill-defined (here it means the points with zero gradient) has zero measure,
then almost surely for all initialization, gradient-based optimization algorithms like SAM will not reach
exactly at any stationary point. However the above example negate this intuition. The issue here is that
though a differentiable map (like SAM x 7→ x − η∇L(x + ρ ∇L(x)

∥∇L(x)∥ 2
)) always maps the zero-measure

set to zero-measure set, the preimage of zero-measure set is not necessarily zero-measure, as the map x 7→
x−η∇L(x+ρ ∇L(x)

∥∇L(x)∥ 2
) is not necessarily invertible. The update rule of SAM is not invertible at 0 is exactly

the reason of why preimage of 0 has a positive measure.

E PROOF SETUPS

In this section we provide details of our proof setups, including notations and assumptions/settings.

We first introduce some additional notations that will be used in the proofs. For any subset S ∈ RD, we
define dist(x, S) ≜ infy∈S ∥x − y∥2. For any d > 0 and any subset S ∈ RD, we define Sd ≜ {x ∈ RD |
dist(x, S) ≤ d}. Our convention is to use K to denote a compact set and U to denote an open set.

Below we restate our main assumption in the full-batch case and related notations in Section 3. Throughout
the analysis, we fix our initialization as xinit, our loss function as L : RD → R.

Assumption 3.2. Assume loss L : RD → R is C4, and there exists a C2 submanifold Γ of RD that is a
(D −M)-dimensional for some integer 1 ≤ M ≤ D, where for all x ∈ Γ, x is a local minimizer of L and
rank(∇2L(x)) =M .

Notations for Full-Batch Setting: Given any point x ∈ Γ, define Px,Γ as the projection operator onto
the manifold of the normal space of Γ at x and P⊥

x,Γ = ID − Px,Γ. Given the loss function L, its gra-
dient flow is denoted by mapping ϕ : RD × [0,∞) → RD. Here, ϕ(x, τ) denotes the iterate at time τ
of a gradient flow starting at x and is defined as the unique solution of ϕ(x, τ) = x −

∫ τ

0
∇L(ϕ(x, t))dt,

∀x ∈ RD. We further define the limiting map of ϕ(x, ·) as Φ(x) = limτ→∞ ϕ(x, τ), that is, Φ(x) de-
notes the convergent point of the gradient flow starting from x. For convenience, we define λi(x), vi(x) as
λi(∇2L(Φ(x))), vi(∇2L(Φ(x))) whenever the latter is well defined. When x(t) and Γ is clear from context,
we also use λi(t) := λi(x(t)), vi(t) := vi(x(t)), P

⊥
t,Γ := P⊥

Φ(x(t)),Γ, Pt,Γ := PΦ(x(t)),Γ.

Definition 3.3 (Attraction Set). Let U be the attraction set of Γ under gradient flow, that is, a neighborhood
of Γ containing all points starting from which gradient flow w.r.t. loss L converges to some point in Γ, or
mathematically, U ≜ {x ∈ RD|Φ(x) exists and Φ(x) ∈ Γ}.

Below we restate the setting for stochastic loss of batch size one in Section 5.

Setting 5.1. Let the total number of data be M . Let fk(x) be the model output on the k-th data where fk
is a C4-smooth function and yk be the k-th label, for k = 1, . . . ,M . We define the loss on the k-th data as
Lk(x) = ℓ(fk(x), yk) and the total loss L =

∑M
k=1 Lk/M , where function ℓ(y′, y) is C4-smooth in y′. We

also assume for any y ∈ R, it holds that argminy′∈R ℓ(y
′, y) = y and that ∂2ℓ(y′,y)

(∂y′)2 |y′=y > 0. Finally, we
denote the set of global minimizers of L with full-rank Jacobian by Γ and assume that it is non-empty, that is,

Γ ≜
{
x ∈ RD | fk(x) = yk,∀k ∈ [M ] and {∇fk(x)}Mk=1 are linearly independent

}
̸= ∅.

Theorem 5.2. Loss L, set Γ and integer M defined in Setting 5.1 satisfy Assumption 3.2.

In our analysis, we prove our main theorems in the stochastic setting under a more general condition than
Setting 5.1, which is Condition E.1 (on top of Assumption 3.2). The only usage of Setting 5.1 in the proof is
Theorems 5.2 and E.2.

Condition E.1. Total loss L = 1
M

∑M
k=1 Lk. For each k ∈ [M ], Lk is C4, and there exists a (D − 1)-

dimensional C2-submanifold of RD, Γk, where for all x ∈ Γk, x is a global minimizer of Lk, Lk(x) = 0 and
rank(∇2Lk(x)) = 1. Moreover, Γ = ∩M

k=1Γk for Γ defined in Assumption 3.2.

Theorem E.2. Setting 5.1 implies Condition E.1.
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Notations for Stochastic Setting: Since Lk is rank-1 on Γk for each k ∈ [M ], we can write it as Lk(x) =
Λk(x)wk(x)w

⊤
k (x) for any x ∈ Γ, where wk is a continuous function on Γ with pointwise unit norm. Given

the loss function Lk, its gradient flow is denoted by mapping ϕk : RD × [0,∞) → RD. Here, ϕk(x, τ)
denotes the iterate at time τ of a gradient flow starting at x and is defined as the unique solution of ϕk(x, τ) =
x −

∫ τ

0
∇Lk(ϕk(x, t))dt, ∀x ∈ RD. We further define the limiting map Φk as Φk(x) = limτ→∞ ϕk(x, τ),

that is, Φk(x) denotes the convergent point of the gradient flow starting from x. Similar to Definition 3.3,
we define Uk = {x ∈ RD|Φ(x) exists and Φk(x) ∈ Γk} be the attraction set of Γi. We have that each Uk is
open and Φk is C2

on Uk by Lemma B.15 in Arora et al. (2022).
Definition E.3. A function L is µ-PL in a set U iff ∀x ∈ U , ∥∇L(x)∥22 ≥ 2µ(L(x)− infx∈U L(x)).
Definition E.4. The spectral 2-norm of a k-order tensor Xi1,...,ik ∈ Rd1×...×dk is defined as

∥X∥2 = max
xi∈Rdi ,∥xi∥2=1

X[x1, ..., xk].

Lemma E.5 (Arora et al. (2022) Lemma B.2). Given any compact set K ⊆ Γ, there exist
r(K), µ(K),∆(K) ∈ R+ such that

1. Kr(K) ∩ Γ is compact.
2. Kr(K) ⊂ U ∩ (∩k∈[M ]Uk).
3. L is µ(K)-PL on Kr(K).
4. infx∈Kr(K)(λ1(∇2L(x))− λ2(∇2L(x))) ≥ ∆(K) > 0.
5. infx∈Kr(K) λM (∇2L(x)) ≥ µ(K) > 0.
6. infx∈Kr(K) λ1(∇2Lk(x)) ≥ µ(K) > 0.

Given compact set K ⊂ Γ, we further define
ζ(K) = sup

x∈Kr(K)

∥∇2L(x)∥2, ν(K) = sup
x∈Kr(K)

∥∇3L(x)∥2, Υ(K) = sup
x∈Kr(K)

∥∇4L(x)∥2,

ξ(K) = sup
x∈Kr(K)

∥∇2Φ(x)∥2, χ(K) = sup
x,y∈Kr(K)

∥∇2Φ(x)−∇2Φ(y)∥2
∥x− y∥2

.

Similarly, we use notations like ζk(K), νk(K),Υk(K), ξk(K), χk(K) to denote the counterpart of the above
quantities defined for stochastic loss Lk and its limiting map Φk for k ∈ [M ].
Lemma E.6 (Arora et al. (2022), Lemma B.5 and B.7). Given any compact subset K ⊂ Γ, let r(K) be
defined in Lemma E.5, there exist 0 < h(K) < r(K) such that

1. sup
x∈Kh(K)

L(x)− inf
x∈Kh(K)

L(x) ≤ µ(K)ρ2(K)
8 .

2. ∀x ∈ Kh(K),Φ(x) ∈ Kr(K)/2.
3. ∀x ∈ Kh(K), ∥x− Φ(x)∥2 ≤ 8µ(K)2

ζ(K)ν(K) .

4. The whole segment xΦ(x) lies in Kr(K), so does xΦk(x), for any k ∈ [D].

The proof of the lemmas above can be found in Arora et al. (2022). Readers should note that although Arora
et al. (2022) only prove these lemmas when K is a special compact set (the trajectory of an ODE), all the
proof does not use any property ofK other than it is a compact subset of Γ, and thus our Lemmas E.5 and E.6
hold for general compact subsets of Γ.

In the rest part of the appendix, for convenience we will drop the dependency onK in various constants when
there is no ambiguity.

E.1 PROOFS OF THEOREMS 5.2 AND E.2

Proof of Theorem 5.2. Define F : RD → RM as [F (x)]k = fk(x),∀k ∈ [M ]. Let Tx ≜
span({∇fk(x)}Mk=1) and T⊥

x be the orthogonal complement of Tx in RD. Now we apply implicit func-
tion theorem on F at each x ∈ Γ. Without loss of generality (e.g. by rotating the coordinate system), we can
assume that x = 0, Tx = RD−M × {0}, and that T⊥

x = {0} × RM . Implicit function theorem ensures that
there are two open sets 0 ∈ U ⊂ RD−M and 0 ∈ V ⊂ RM and an invertible C4 map g : U → V such that

F−1(Y ) ∩ (U × V ) = {(u, g(u)) | u ∈ U},
where Y ≜ [y1, . . . , yM ] ∈ RM . Moreover, {∇fk(x)}Mk=1 is linearly independent for every x′ ∈ U × V .
Thus by definition of Γ, it holds that Γ ∩ (U × V ) = F−1(y) ∩ (U × V ) = {(u, g(u)) | u ∈ U}. Now for
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x = (u, v) ∈ U × V , we define ψ : U × V → RD by ψ(u, v) ≜ (u, v − g(u)). We can check that ψ is C4

and ψ(Γ ∩ (U × V )) = {(u, v − g(u)) | v = g(u), u ∈ U)} = {(u, 0) | u ∈ U)} = U × {0} = (RD−M ×
{0})∩ψ(U). This proves that Γ is a C4 submanifold of RD of dimension D−M . (c.f. Definition C.1) Since
argminy′∈R ℓ(y

′, y) = y for any y ∈ R, it is clear that ∀x ∈ Γ, x is a global minimizer of L. Finally we

check the rank of Hessian of loss L. Note that for any x ∈ Γ, ∇2Lk(x) =
∂2ℓ(y′,yk)

(∂y′)2 |y′=yk
∇fk(x)(∇fk(x))⊤

and that ∂2ℓ(y′,yk)
(∂y′)2 |y′=yk

> 0, rank(∇2L(x)) = rank(∂F (x)) =M . This completes the proof.

Proof of Theorem E.2.

1. L = 1
M

∑M
k=1 Lk by definition.

2. ∀k ∈ [M ], Lk(x) = ℓ(fk(x), yk) is C4 as ℓ and fk are both C4.
3. For any x ∈ Γ, by Lemma 5.5, we have ∇fk(x) ̸= 0. Then there exists an open neighborhood Vk such

that Γ ⊂ Vk and ∇fk(x) ̸= 0 for any x ∈ Vk, k ∈ [M ]. Then applying implicit function theorem as in the
proof of Theorem 5.2, for any k ∈M there exists a (D− 1)-dimensional C4-manifold Γ′

k ⊂ Vk, such that
for any x′ ∈ V , fk(x′) = yk if and only if x′ ∈ Γ′

k. As for any x ∈ Γ ⊂ Vk, fk(x′) = yk, we can infer
that Γ ⊂ Γ′

k. Then Γ ⊂ ∪M
k=1Γk.

4. For any x ∈ Γk, we have fk(x) = yk, which implies Lk(x) = 0. Also as x ∈ V ,∇fk(x) ̸= 0.
By Lemma J.15, we have rank(∇2L(x)) = 1.

F PROPERTIES OF LIMITING MAP OF GRADIENT FLOW, Φ

In our analysis, the property of Φ will be heavily used. In this section, we will recap some related lemmas
from Arora et al. (2022), and then introduce some new lemmas for the stochastic setting with batch size one.
Lemma F.1 (Arora et al. (2022) Lemma B.6). Given any compact set K ⊂ Γ, for any x ∈ Kh,

∥x− Φ(x)∥2 ≤
∫ ∞

0

∥dϕ(x, t)
dt

∥2 ≤

√
2(L(x)− L(Φ(x)))

µ
≤ ∥∇L(x)∥2

µ
.

Lemma F.2. Given any compact set K ⊂ Γ, for any x ∈ Kh,

∥∇L(x)∥2 ≤ ζ∥x− Φ(x)∥2 ≤ ζ

√
2(L(x)− L(Φ(x)))

µ
.

Proof of Lemma F.2. The first inequality is by Lemma E.5 and Taylor Expansion. The second inequality is
by Lemma F.1.

Lemma F.3 (Arora et al. (2022) Lemmas B.16 and B.22).
∂Φ(x)∇L (x) = 0, x ∈ U ;

∂Φ (x)∇2L (x)∇L (x) = −∂2Φ (x) [∇L (x) ,∇L (x)] , x ∈ U ;

∂Φ (x) ∂2(∇L)(x)[v1, v1] = P⊥
x,Γ∇(λ1(∇2(L(x)))), x ∈ Γ.

Lemma F.4 (Arora et al. (2022) Lemmas B.8 and B.9). Given any compact set K ⊂ Γ, for any x ∈ Kh,

∥P⊥
Φ(x),Γ(x− Φ(x))∥2 ≤ ζν

4µ2
∥x− Φ(x)∥22;

∥∇L (x)−∇2L (Φ(x)) (x− Φ(x))∥2 ≤ ν

2
∥x− Φ(x)∥22;∣∣∣∣ ∥∇L (x) ∥2

∥∇2L (Φ(x)) (x− Φ(x))∥2
− 1

∣∣∣∣ ≤ 2ν

µ
∥x− Φ(x)∥2;

∇L (x)

∥∇L (x) ∥
=

∇2L (Φ(x)) (x− Φ(x))

∥∇2L (Φ(x)) (x− Φ(x))∥2
+O(

ν

µ
∥x− Φ(x)∥2).

Lemma F.5 (Li et al. (2021), Lemma 4.3). For x ∈ Γ, ∂Φ(x) = P⊥
x,Γ, the orthogonal projection matrix onto

the tangent space of Γ at x. Since d ∂Φ(x)∇2L(x) = 0.
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The proof of above lemmas can be found in Arora et al. (2022); Li et al. (2021). In the following, we will
first show the proof of Lemma 3.1

Proof of Lemma 3.1. Since Φ is defined the limit map of gradient flow, it holds that for any t ≥ 0,
Φ(ϕ(x, t)) = Φ(x). Differentiating both sides at t = 0, we have ∂Φ(ϕ(x, 0))∂ϕ(x,t)∂t = 0. The proof is
completed by noting that ∂ϕ(x,t)

∂t = −∇L(ϕ(x, t)) by definition of ϕ.

Lemma F.6. Given any compact set K ⊂ Γ, for any x ∈ Kh,
∥∂Φ(x)∇Lk(x)∥2 ≤ (νk + ζkξ)∥x− Φ(x)∥22

∥∂Φ(x)∇2Lk(x)
∇Lk (x)

∥∇Lk (x) ∥
∥2 ≤ (νk + ζkξ)∥x− Φ(x)∥2

Proof of Lemma F.6. By Lemma E.6 and Taylor Expansion,
∥∂Φ(x)∇Lk(x)∥2 ≤ ∥∂Φ(x)∇2Lk(Φ(x))(x− Φ(x))∥2 + νk∥x− Φ(x)∥22

≤ ∥∂Φ(Φ(x))∇2Lk(Φ(x))(x− Φ(x))∥2 + νk∥x− Φ(x)∥22 + ζkξ∥x− Φ(x)∥22
= ∥P⊥

x,Γ∂Φ(Φ(x))∇2Lk(Φ(x))(x− Φ(x))∥2 + νk∥x− Φ(x)∥22 + ζkξ∥x− Φ(x)∥22
= (νk + ζkξ)∥x− Φ(x)∥22,

this proves the first claim.

Again by Lemma E.5 and Taylor Expansion,

∥∂Φ(x)∇2Lk(x)
∇Lk (x)

∥∇Lk (x) ∥
∥2 ≤ ∥∂Φ(x)∇2Lk(Φ(x))

∇Lk (x)

∥∇Lk (x) ∥
∥2 + νk∥x− Φ(x)∥2

≤ ∥∂Φ(Φ(x))∇2Lk(Φ(x))
∇Lk (x)

∥∇Lk (x) ∥
∥2 + (νk + ζkξ)∥x− Φ(x)∥2

= (νk + ζkξ)∥x− Φ(x)∥2,
this proves the second claim.

Lemma F.7. Suppose x ∈ Kh and y = x− η∇L
(
x+ ρ ∇L(x)

∥∇L(x)∥

)
,

∥y − x∥2 ≤ η∥∇L (x) ∥2 + ηζρ

∥Φ(x)− Φ(y)∥2 ≤ ξηρ∥∇L (x) ∥2 + νηρ2 + ξη2∥∇L (x) ∥22 + ξζ2η2ρ2

≤ ζξηρ∥x− Φ(x)∥2 + ζ2ξη2∥x− Φ(x)∥22 + νηρ2 + ξζ2η2ρ2

Proof of Lemma F.7. For sufficient small ρ, x+ ρ ∇L(x)
∥∇L(x)∥ ∈ Kr. By Taylor Expansion,

∥y − x∥2 = η∥∇L
(
x+ ρ

∇L (x)

∥∇L (x) ∥

)
∥2 ≤ η∥∇L (x) ∥2 + ηζρ

This further implies that for sufficiently small η and ρ, xy ∈ Kr.

Again by Taylor Expansion,

∥∂Φ(x)(y − x)∥2 ≤ η∥∂Φ(x)∇L (x) + ρ∂Φ(x)∇2L(x)
∇L (x)

∥∇L (x) ∥
∥2 + ηρ2ν/2 .

By Lemma F.3, ∂Φ(x)∇L (x) = 0 and ∂Φ (x)∇2L (x)∇L (x) = −∂2Φ (x) [∇L (x) ,∇L (x)]. Hence,

∥∂Φ(x)(y − x)∥2 ≤ ηρ∥∇L (x) ∥2∥∂2Φ(x)
[

∇L (x)

∥∇L (x) ∥
,

∇L (x)

∥∇L (x) ∥

]
∥2 + ηρ2ν/2

≤ ξηρ∥∇L (x) ∥2 + ηρ2ν/2 .

As xy ∈ Kr, by Taylor Expansion,
∥Φ(y)− Φ(x)∥2 ≤ ∥∂Φ(x)(y − x)∥2 + ξ∥y − x∥22/2
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Putting together we have
∥Φ(x)− Φ(y)∥2 ≤ ξηρ∥∇L (x) ∥2 + ηρ2ν + ξη2∥∇L (x) ∥22 + ξζ2η2ρ2 .

Finally, by Lemma F.2, we have
∥Φ(x)− Φ(y)∥2 ≤ ξηρ∥∇L (x) ∥2 + νηρ2 + ξη2∥∇L (x) ∥22 + ξζ2η2ρ2

≤ ζξηρ∥x− Φ(x)∥2 + ζ2ξη2∥x− Φ(x)∥22 + νηρ2 + ξζ2η2ρ2 .

This completes the proof.

Lemma F.8. Suppose x ∈ Kh and y = x− η∇Lk

(
x+ ρ ∇Lk(x)

∥∇Lk(x)∥

)
,

∥y − x∥2 ≤ η∥∇Lk (x) ∥2 + ηζρ ,

∥Φ(x)− Φ(y)∥2 ≤ O(η∥∇L(x)∥22 + ηρ∥∇L(x)∥2 + ηρ2) .

Proof of Lemma F.8. For sufficient small ρ, x+ ρ ∇Lk(x)
∥∇Lk(x)∥ ∈ Kr. By Taylor Expansion,

∥y − x∥2 = η∥∇Lk

(
x+ ρ

∇Lk (x)

∥∇Lk (x) ∥

)
∥2 ≤ η∥∇Lk (x) ∥2 + ηζρ .

This further implies that for sufficiently small η and ρ, xy ∈ Kr.

Again by Taylor Expansion,

∥∂Φ(x)(y − x)∥2 ≤ η∥∂Φ(x)∇Lk (x) + ρ∂Φ(x)∇2Lk(x)
∇Lk (x)

∥∇Lk (x) ∥
∥2 + ηρ2ν/2 .

We further have by Lemma F.1,
∥∂Φ(x)∇Lk (x) ∥

≤∥∂Φ(Φ(x))∇Lk (x) ∥+ ξ∥∇Lk (x) ∥2∥x− Φ(x)∥
≤∥∂Φ(Φ(x))∇2Lk(Φ(x))(x− Φ(x))∥+ ν∥x− Φ(x)∥22 + ζξ∥x− Φ(x)∥22

≤ν
µ
∥∇L(x)∥22 +

ζξ

µ2
∥∇L(x)∥22 .

Similarly,

∥ρ∂Φ(x)∇2Lk(x)
∇Lk (x)

∥∇Lk (x) ∥
∥2

≤∥ρ∂Φ(Φ(x))∇2Lk(x)
∇Lk (x)

∥∇Lk (x) ∥
∥2 + ρζξ∥x− Φ(x)∥2

≤∥ρ∂Φ(Φ(x))∇2Lk(Φ(x))
∇Lk (x)

∥∇Lk (x) ∥
∥2 + ρζξ∥x− Φ(x)∥2 + ρν∥x− Φ(x)∥2

≤ρ ζξ
µ2

∥∇L(x)∥2 + ρ
ν

µ
∥∇L(x)∥2 .

This completes the proof.

G ANALYSIS FOR EXPLICIT BIAS

Throughout this section, we assume that Assumption 3.2 holds.

G.1 A GENERAL THEOREM FOR EXPLICIT BIAS IN THE LIMIT CASE

In this subsection we provide the proof details for section 4.1, which shows that the explicit biases of three
notions of sharpness are all different, using our new mathematical tool, Theorem G.6.

Notation for Regularizers. Let Rρ : RD → R ∪ {∞} be a family of regularizers parameterized by ρ. If
Rρ is not well-defined at some x, then we let Rρ(x) = ∞. This convention will be useful when analyzing

23



Published as a conference paper at ICLR 2023

ascent-direction sharpness RAsc
ρ = LAsc

ρ − L which is not defined when ∇L(x) = 0. This convention will
not change the minimizers of the regularized loss. Intuitively, a regularizer should always be non-negative,
but however, when far away from manifold, there are regularizers Rρ(x) of our interest that can actually
be negative, e.g., RAvg

ρ (x) ≈ ρ2

2DTr(∇2L(x)). Therefore we make the following assumption to allow the
regularizer to be mildly negative.

Condition G.1. Suppose for any bounded closed set B ⊂ U , there exists C > 0, such that for sufficiently
small ρ, ∀x ∈ B,Rρ(x) ≥ −Cρ2.

Definition 4.3 (Limiting Regularizer). We define the limiting regularizer of {Rρ} as the function6

S : Γ → R, S(x) = lim
ρ→0

lim
r→0

inf
∥x′−x∥2≤r

Rρ(x
′)/ρ2.

The high-level intuition is that we want to use the notion of limiting regularizer to capture the explicit bias of
Rρ among the manifold of minimizers Γ as ρ → 0, which is decided by the second order term in the Taylor
expansion, e.g., Equation 5 and Equation 6. In other words, the hope is that whenever the regularized loss
is optimized, the final solution should be in a neighborhood of minimizer x with smallest value of limiting
regularizer S(x). However, such hope cannot be true without further assumptions, which motivates the
following definition of good limiting regularizer.

Definition G.2 (Good Limiting Regularizer). We say the limiting regularizer S of {Rρ} is good around some
x∗ ∈ Γ, if S is non-negative and continuous at x∗ and that there is an open set Vx∗ containing x∗, such that
for any C > 0, infx′:∥x′−x∥2≤CρRρ(x

′)/ρ2 converges uniformly to S(x) in for all x ∈ Γ ∩ Vx∗ as ρ→ 0.

In other words, a good limiting regularizer satisfy that for any C, ϵ > 0, there is some ρx∗ > 0,

∀x ∈ Γ ∩ Vx∗ and ρ ≤ ρx∗ ,
∣∣S(x)− inf

∥x′−x∥2≤C·ρ
Rρ(x

′)/ρ2
∣∣ < ϵ.

We say the limiting regularizer S is good on Γ, if S is good around every point x ∈ Γ. In such case we also
say Rρ admits S as a good limiting regularizer on Γ.

The intuition of the concept of a good limiting regularizer is that, the value of the regularizer should not
drop too fast when moving away from a minimizer x in its O(ρ) neighborhood. If so, the minimizer of the
regularized loss may be Ω(ρ) away from any minimizer to reduce the regularizer at the cost of increasing
the original loss, which makes the limiting regularizer unable to capture the explicit bias of the regularizer.
(See Appendix G.2 for a counter example) We emphasize that the conditions of good limiting regularizer is
natural and covers a large family of regularizers, including worst-, ascent- and average-direction sharpness.
See Theorems G.3 to G.5 below.

Theorem G.3. Worst-direction sharpness RMax
ρ admits λ1(∇2L(·))/2 as a good limiting regularizer on Γ

and satisfies Condition G.1.

Theorem G.4. Ascent-direction sharpness RAsc
ρ admits λM (∇2L(·))/2 as a good limiting regularizer on Γ

and satisfies Condition G.1.

Theorem G.5. Average-direction sharpness RAvg
ρ admits Tr(∇2L(·))/(2D) as a good limiting regularizer

on Γ and satisfies Condition G.1.

Next we present the main mathematical tool to analyze the explicit bias of regularizers admitting good limit-
ing regularizers, Theorem G.6.

Theorem G.6. Let U ′ be any bounded open set such that its closure U ′ ⊆ U and U ′ ∩Γ = U ′ ∩ Γ. Then for
any family of parametrized regularizers {Rρ} admitting a good limiting regularizer S(x) on Γ and satisfying
Condition G.1, for sufficiently small ρ, it holds that∣∣∣ inf

x∈U ′

(
L(x) +Rρ(x)

)
− inf

x∈U ′
L(x)− ρ2 inf

x∈U ′∩Γ
S(x)

∣∣∣ ≤ o(ρ2).

Moreover, for sufficiently small ρ, it holds uniformly for all u ∈ U ′ that

L(u) +Rρ(u) ≤ inf
x∈U ′

(L(x) +Rρ(x)) +O(ρ2) =⇒ Rρ(u)/ρ
2 − inf

x∈U ′∩Γ
S(x) ≥ −o(1).

6Here we implicitly assume the zeroth and first order term varnishes, which holds for all three sharpness notions.
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Theorem G.6 says that minimizing the regularized loss L(u) + Rρ(u) is not very different from minimizing
the original loss L(u) and the regularizer Rρ(u) respectively. To see this, we define the following optimality
gaps

A(u) ≜ L(u) +Rρ(u)− inf
x∈U ′

(L(x) +Rρ(x)) ≥ 0

B(u) ≜ L(u)− inf
x∈U ′

L(x) ≥ 0

C(u) ≜ Rρ(u)/ρ
2 − inf

x∈U ′∩Γ
S(x),

and Theorem G.6 implies that
∣∣A(u)−B(u)− ρ2C(u)

∣∣ = o(ρ2). Moreover, A(u), B(u) are non-negative
by definition, and C(u) ≥ −o(1) are almost non-negative, whenever A(u) is O(ρ2)-approximately opti-
mized.

For the applications we are interested in in this paper, the good limiting regularizer S can be continuously
extended to the entire space RD. In such a case, the third optimality gap has an approximate alternative form
which doesn’t involve Rρ, namely S(u) − infx∈U ′∩Γ S(x). Corollary G.7 shows minimizing regularized
loss L(u) + Rρ(u) is equivalent to minimizing the limiting regularizer, S(u) around the manifold of local
minimizer, Γ.
Corollary G.7. Under the setting of Theorem G.6, let S be an continuous extension of S to Rd. For any
optimality gap ∆ > 0, there is a function ϵ : R+ → R+ with limρ→0 ϵ(ρ) = 0, such that for all sufficiently
small ρ > 0 and all u ∈ U ′ satisfying that

L(u) +Rρ(u)− inf
x∈U ′

(
L(x) +Rρ(x)

)
≤ ∆ρ2,

it holds that L(u)− infx∈U ′ L(x) ≤ (∆ + ϵ(ρ))ρ2 and that
S(u)− inf

x∈U ′∩Γ
S(x) ∈ [−ϵ(ρ),∆+ ϵ(ρ)].

G.2 BAD LIMITING REGULARIZERS MAY NOT CAPTURE EXPLICIT BIAS

In this subsection, we provide an example where a bad limiting regularizer cannot capture the explicit bias
of regularizer when ρ → 0, to justify the necessity of Definition G.2. Here a bad limiting regularizer is a
limiting regularizer which is not good.

Consider choosing Rρ(x) = L(x+ ρe)− L(x) with ∥e∥ = 1 as a fixed unit vector. We will show minimiz-
ing the regularized loss L(x) + Rρ(x) does not imply minimizing the limiting regularizer of Rρ(x) on the
manifold.

By Definition 4.3 and the continuity of Rρ, the limiting regularizer S of Rρ is
∀x ∈ Γ, S(x) = lim

ρ→0
lim
r→0

inf
∥x′−x∥2≤r

Rρ(x
′)/ρ2 = lim

ρ→0
Rρ(x)/ρ

2 = ∇2L(x)[e, e] ≥ 0.

However, for any x ∈ Γ, we can choose x′ = x− ρe, then
L(x′) +Rρ(x

′) = L(x′ + ρe) = L(x) = 0.
Therefore, no matter how small ρ is, minimizing L(x) + Rρ(x) can return a solution which is ρ-close to
any point point of Γ. In other words, the explicit bias of minimizing L(x) + Rρ(x) is trivial and thus is not
equivalent to minimizing the limiting regularizer S on the manifold Γ.

The reason behind the inefficacy of the limiting regularizer S in explaining the explicit bias ofRρ is that S(x)
is not a good limiting regularizer for any x ∈ Γ satisfying S(x) > 0. To be more concrete, choose C = 1
and ϵ = S(x)/2 in Definition G.2. For any x ∈ Γ and sufficiently small ρ > 0, considering x′ = x− ρe1, by
Taylor Expansion,

Rρ(x
′) = L(x′ + ρe)− L(x′)

= ρ⟨∇L(x′), e⟩+ ρ2∇2L(x′)[e, e] + o(ρ2)

= ρ⟨∇2L(x)(x′ − x), e⟩+ ρ2∇2L(x′)[e, e] + o(ρ2)

= −ρ2∇2L(x)[e, e] + ρ2∇2L(x′)[e, e] + o(ρ2)

= ρ2eT (∇2L(x′)−∇2L(x))e+ o(ρ2) = o(ρ2)

This implies inf∥x′−x∥2≤CρRρ(x
′) ≤ Rρ(x1) = o(ρ2). Hence,

S(x)− inf
∥x′−x∥2≤Cρ

Rρ(x
′)/ρ2 ≥ S(x)− o(1) > S(x)/2 = ϵ.
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G.3 PROOF OF THEOREM G.6

This subsection aims to prove Theorem G.6. We start with a few lemmas that will be used later.
Lemma G.8. Γ = U ∩ Γ.

Proof of Lemma G.8. For any point x ∈ U ∩ Γ, there exists {xk}∞k=1 ∈ Γ such that limk→∞ xk = x. Since
x ∈ U and Φ is continuous in U , it holds that Φ is continuous at x, thus limk→∞ Φ(xk) = Φ(x) ∈ Γ.
However Φ(xk) = xk because xk ∈ Γ,∀k. Thus we know x = Φ(x) ∈ Γ. Hence U ∩Γ ⊂ Γ. The other side
is clear because Γ ⊂ U and Γ ⊂ Γ.

Lemma G.9. Let U ′ be any bounded open set such that its closure U ′ ⊆ U . If U ′ ∩ Γ ⊆ U ′ ∩ Γ, then
U ′ ∩ Γ = U ′ ∩ Γ.

Proof of Lemma G.9. By Lemma G.8, it holds that U ′ ∩ Γ = U ′ ∩ U ∩ Γ = U ′ ∩ Γ. Note that U ′ ∩ Γ ⊆
U ′, U ′ ∩ Γ ⊆ Γ, we have that U ′ ∩ Γ ⊆ U ′ ∩ Γ = U ′ ∩ Γ, which completes the proof.

Lemma G.10. Let U ′ be any bounded open set such that its closure U ′ ⊆ U and U ′ ∩Γ ⊆ U ′ ∩ Γ. Then for
all h2 > 0,∃ρ0 > 0 if x ∈ U ′,dist(x,Γ) ≤ ρ0 ⇒ dist(x, U ′ ∩ Γ) ≤ h2.

Proof of Lemma G.10. We will prove by contradiction. Suppose there exists h2 > 0 and {xk}∞k=1 ∈ U ′,
such that limk→∞ dist(xk,Γ) = 0 but ∀k > 0,dist(xk, U ′ ∩ Γ) ≥ h2. Since U ′ is bounded, U ′ is compact
and thus {xk}∞k=1 has at least one accumulate point x∗ in U ′ ⊆ U . Since U is the attraction set of Γ under
gradient flow, we know that Φ(x∗) ∈ Γ. Now we claim x∗ ∈ Γ. This is because limk→∞ dist(xk,Γ) = 0
and thus there exists a sequence of points on Γ, {yk}∞k=1, where limk→∞ ∥xk − yk∥ = 0. Thus we have that
x∗ = limk→∞ yk = limk→∞ Φ(yk) = Φ(x∗), where the last step we used that x∗ ∈ U and Φ is continuous
on U . By the definition of U , x∗ ∈ U ⇐⇒ Φ(x∗) ∈ Γ, thus x∗ ∈ Γ. Then we would have x∗ ∈ U ′ ∩ Γ,
which is contradictory to dist(xk, U ′ ∩ Γ) ≥ dist(xk, U ′ ∩ Γ) ≥ h2,∀k > 0. This completes the proof.

Lemma G.11. Let U ′ be any bounded open set such that its closure U ′ ⊆ U and U ′ ∩Γ ⊆ U ′ ∩ Γ. Then for
all h2 > 0,∃ρ1 > 0 if x ∈ U ′, L(x) ≤ infx∈U ′ L(x) + ρ1 ⇒ dist(x, U ′ ∩ Γ) ≤ h2.

Proof of Lemma G.11. We will prove by contradiction. If there exists a list of ρ1, ..., ρk, ..., such that ρk → 0
and there exists xk ∈ U ′, such that L(xk) ≤ infx∈U ′ L(x) + ρk and dist(xk, U ′ ∩ Γ) ≥ h2. Since U ′ is
bounded, U ′ is compact and thus {xk}∞k=1 has at least one accumulate point x∗ in U ′ ⊆ U . Since L is
continuous in U , L(x∗) = limk→∞ L(xk) = infx∈U ′ L(x). Thus x∗ is a local minimizer of L and thus
has zero gradient, which further implies that x∗ = Φ(x∗). Thus x∗ ∈ U ′ ∩ Γ, which is contradictory to
dist(xk, U ′ ∩ Γ) ≥ dist(xk, U ′ ∩ Γ) ≥ h2,∀k > 0. This completes the proof.

Lemma G.12. Let U ′ be any bounded open set such that its closure U ′ ⊆ U and U ′ ∩ Γ = U ′ ∩ Γ. Suppose
regularizers {Rρ} admits a limiting regularizer S on Γ, then

inf
x∈U ′

(L(x) +Rρ(x)) ≤ ρ2 inf
x∈U ′∩Γ

S(x) + inf
x∈U ′

L(x) + o(ρ2).

Proof of Lemma G.12. First choose sufficiently small ρ, such that ρ < h(U ′ ∩ Γ). Choose an approximate
minimizer of S(x), x0 ∈ U ′ ∩ Γ, such that S(x0) ≤ infx∈U ′∩Γ S(x) + ρ2. Then by the definition of
limiting regularizers (Definition 4.3) and the assumption that U ′ is open, there exists x1 ∈ U ′ satisfying that
∥x1 − x0∥2 ≤ rρ < ρ2 and Rρ(x1)/ρ

2 − S(x0) ≤ ρ2. Thus, Rρ(x1) ≤ ρ2S(x0) + ρ4.

As ∥x1 − x0∥2 ≤ ρ2 < h and x0 ∈ U ′ ∩ Γ. This further leads to x0x1 ∈ U ′ ∩ Γ
h

. By Taylor expansion on
L at x0, we would have L(x1) ≤ L(x0) +O(∥x0 − x1∥22) = infx∈U ′∩Γ L(x) +O(ρ4). Thus it holds that

inf
x∈U ′

(L(x) +Rρ(x)) ≤ L(x1) +Rρ(x1) ≤ ρ2 inf
x∈U ′∩Γ

S(x) + inf
x∈U ′

L(x) +O(ρ4).

This completes the proof.

Lemma G.13. Let U ′ be any bounded open set such that its closure U ′ ⊆ U and U ′ ∩ Γ = U ′ ∩ Γ. Suppose
regularizers {Rρ} admits a good limiting regularizer S on Γ, then for all u ∈ U ′,

∥u− Φ(u)∥2 = O(ρ) =⇒ Rρ(u) ≥ ρ2 inf
x∈U ′∩Γ

S(x)− o(ρ2) .
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Proof of Lemma G.13. Define r = r(K), h = h(K) as the constant in Lemma E.5 with K = U ′ ∩ Γ. Note
K is compact and by Lemma G.9, K = U ′ ∩ Γ ⊂ Γ. By Lemma E.5, we have Kr ∩ Γ is a compact set, so
is Kh ∩ Γ. Since S is a good limiting regularizer for {Rρ}, by Definition G.2, for any x∗ ∈ Kh ∩ Γ, there
exists open neighborhood of x∗, Vx∗ such that for any C, ϵ1 > 0, there is a ρx∗ such that

∀x ∈ Vx∗ and ρ ≤ ρx∗ ,

∣∣∣∣S(x)− inf
∥x′−x∥2≤C·ρ

Rρ(x
′)/ρ2

∣∣∣∣ < ϵ1.

Note that Kh ∩ Γ is compact, there exists a finite subset of Kh ∩ Γ, {xk}k, such that Kh ∩ Γ ⊂ ∪kVxk
.

Hence for any C, ϵ1 > 0, there is some ρK = mink ρxk
> 0, it holds that,

∀x ∈ Kh ∩ Γ and ρ ≤ ρK ,

∣∣∣∣S(x)− inf
∥x′−x∥2≤C·ρ

Rρ(x
′)/ρ2

∣∣∣∣ < ϵ1. (18)

We can rewrite Equation 18 as for any C > 0,

sup
x∈Kh∩Γ

∣∣∣∣S(x)− inf
∥x′−x∥2≤C·ρ

Rρ(x
′)/ρ2

∣∣∣∣ = o(1), as ρ→ 0. (19)

As u ∈ U ′ ⊆ U , we have that Φ(u) ∈ Γ. If ∥u−Φ(u)∥2 = O(ρ), then dist(u,Γ) ≤ O(ρ). By Lemma G.10,
we have that dist(u,K) = o(1). This further implies dist(Φ(u),K) ≤ dist(u,K) + dist(Φ(u), u) = o(1).
Hence we have that Φ(u) ∈ Kh ∩ Γ for sufficiently small ρ. Thus we can pick x = Φ(u) in Equation 19 and
C sufficiently large, which yields that

ρ2S(Φ(u)) ≤ inf
∥u′−Φ(u)∥2≤O(ρ)

Rρ(u
′) + o(ρ2) ≤ Rρ(u) + o(ρ2), (20)

where the last step is because ∥u− Φ(u)∥2 = O(ρ). On the other hand, we have that
S(Φ(u)) ≥ inf

x∈U ′∩Γ
S(x)− o(1) . (21)

as S is continuous on Γ and dist(U ′ ∩ Γ,Φ(u)) = o(1). Combining Equations 20 and 21, we have Rρ(u) ≥
ρ2 infx∈U ′∩Γ S(x)− o(ρ2).

Proof of Theorem G.6. We will first lower bound L(x) + Rρ(x) for x ∈ U ′. Suppose CU ′ is the constant in

Condition G.1. Define C1 =

√
2
CU′+inf

x∈U′∩Γ
S(x)+1

µ . We discuss by cases. For sufficiently small ρ,

1. If x ̸∈ Kh, then by Lemma G.11, L(x) is lower bounded by a positive constant.
2. If x ∈ Kh and ∥x− Φ(x)∥2 ≥ C1ρ, then by Lemma F.1,

L(x) ≥ µ∥x− Φ(x)∥22
2

≥ (CU ′ + inf
x∈U ′∩Γ

S(x) + 1)ρ2 .

This implies L(x) +Rρ(x) ≥ (infx∈U ′∩Γ S(x) + 1)ρ2 + infx∈U ′ L(x).
3. If ∥x− Φ(x)∥2 ≤ C1ρ, by Lemma G.13, Rρ(x) ≥ ρ2 infx∈U ′∩Γ S(x)− o(ρ2), hence

L(x) +Rρ(x) + o(ρ2) ≥ inf
x∈U ′∩Γ

S(x)ρ2 + inf
x∈U ′

L(x) .

Concluding the three cases, we have
inf
x∈U ′

(L(x) +Rρ(x)) ≥ inf
x∈U ′∩Γ

L(x) + inf
x∈U ′∩Γ

S(x)ρ2 − o(ρ2) .

By Lemma G.12, we have that
inf
x∈U ′

(L(x) +Rρ(x)) ≤ ρ2 inf
x∈U ′∩Γ

S(x) + inf
x∈U ′∩Γ

L(x) + o(ρ2) .

Combining the above two inequalities, we prove the main statement of Theorem G.6.

Furthermore, if L(u) + Rρ(u) ≤ infx∈U ′(L(x) +Rρ(x)) + O(ρ2), then by the main statement and Condi-
tion G.1, we have that

L(u)− inf
x∈U ′

L(x) ≤ inf
x∈U ′

(L(x) +Rρ(x))−Rρ(u)− inf
x∈U ′

L(x) +O(ρ2)

≤ρ2 inf
x∈U ′∩Γ

S(x) + Cρ2 +O(ρ2) = O(ρ2) .

Then by Lemma G.11, we have u ∈ (U ′∩Γ)h for sufficiently small ρ. By Lemma F.1, we have ∥u−Φ(u)∥2 =
O(ρ). By Lemma G.13, we have Rρ(u) ≥ ρ2 infx∈U ′∩Γ S(x)− o(ρ2).
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G.4 PROOFS OF COROLLARY G.7

Proof of Corollary G.7. Since L(u)+Rρ(u)− inf
x∈U ′

(
L(x) +Rρ(x)

)
≤ ∆ρ2 = O(ρ2), by Theorem G.6, we

have that
L(u)− inf

x∈U ′
L(x) ≤ (∆ + o(1))ρ2,

and
Rρ(x)− inf

x∈U ′∩Γ
S(x) ∈ [−o(1),∆+ o(1)].

Thus it suffices to show Rρ(x) − S(x) = o(ρ2). Since L(u) − infx∈U ′ L(x) ≤ (∆ + ϵ(ρ))ρ2 = o(1), by
Lemma G.11, we know dist(x, U ′ ∩ Γ) = o(1). Thus by Lemma F.1, ∥x− Φ(x)∥ = o(1), which implies
that ρ2S(Φ(x))−o(ρ2) ≤ Rρ(u). Since S is an continuous extension, S(x)−S(Φ(x)) = S(x)−S(Φ(x)) =
O(∥x− Φ(x)∥2) = o(1). Thus we conclude that S(x) ≤ S(Φ(x)) ≤ infx∈U ′∩Γ S(x) + ∆ + o(1). On the
other hand, S(x) ≥ S(Φ(x)) − o(1) ≥ infx∈U ′∩Γ S(x) − o(1), where the last step we use the fact that
dist(x, U ′ ∩ Γ) = o(1). This completes the proof.

G.5 LIMITING REGULARIZERS FOR DIFFERENT NOTIONS OF SHARPNESS

Proof of Theorem G.3.

1. We will first verify Condition G.1. For fixed compact set B ⊂ U , as ∥∇3L(x)∥2 is continuous, there exists
constant ν, such that ∀x ∈ B1, ∥∇3L(x)∥2 ≤ ν. Then by Taylor Expansion,

RMax
ρ (x) = max

∥v∥2≤1
L(x+ ρv)− L(x)

≥ max
∥v∥2≤1

(
ρ⟨∇L(x), v⟩+ ρ2vT∇2L(x)v/2

)
− νρ3/6

≥ −νρ3/6 .

2. Now we verify SMax(x) = λ1(∇2L(·))/2 is the limiting regularizer of RMax
ρ . Let x be any point in Γ, by

continuity of RMax
ρ ,

lim
ρ→0

lim
r→0

inf
∥x′−x∥2≤r

RMax
ρ (x′)

ρ2
= lim

ρ→0

RMax
ρ (x)

ρ2
= λ1(∇2L(x))/2 .

3. Finally we verify definition of good limiting regularizer, by Assumption 3.2, SMax(x) = λ1(x)/2 is non-
negative and continuous on Γ. For any x∗ ∈ Γ, choose a sufficiently small open convex set V containing
x∗ such that ∀x ∈ V 1, ∥∇3L(x)∥2 ≤ ν. For any x ∈ V ∩Γ, for any x′ satisfying that ∥x′ − x∥2 ≤ Cρ, by
Theorem K.3,

RMax
ρ (x′) = max

∥v∥2≤1
L(x′ + ρv)− L(x′) ≥ max

∥v∥2≤1

(
ρ⟨∇L(x′), v⟩+ ρ2vT∇2L(x′)v/2

)
− νρ3/6

≥ ρ2λ1(∇2L(x′))/2− νρ3/6 ≥ ρ2λ1(∇2L(x))/2−O(ρ3) .

This implies inf
∥x′−x∥2≤Cρ

RMax
ρ (x′) ≥ ρ2λ1(∇2L(x))/2−O(ρ3).

On the other hand, for any x ∈ V ∩ Γ,

RMax
ρ (x) = max

∥v∥2≤1
L(x+ ρv)− L(x) ≤ max

∥v∥2≤1

(
ρ⟨∇L(x), v⟩+ ρ2vT∇2L(x)v/2

)
+ νρ3

= max
∥v∥2≤1

ρ2vT∇2L(x)v/2 + νρ3 = ρ2λ1(∇2L(x′))/2 +O(ρ3) .

This implies inf
∥x′−x∥2≤Cρ

RMax
ρ (x′) ≤ ρ2λ1(∇2L(x))/2 +O(ρ3).

Thus, we conclude that
∣∣∣∣ inf
∥x′−x∥2≤Cρ

RMax
ρ (x′)/ρ2 − λ1(∇2L(x))/2

∣∣∣∣ = O(ρ),∀x ∈ V ∩ Γ, indicating

SMax is a good limiting regularizer of RMax
ρ on Γ.

This completes the proof.

Proof of Theorem G.4.

28



Published as a conference paper at ICLR 2023

1. We will first prove Condition G.1 holds. For any fixed compact set B ⊂ U , as λ1(∇2L) and ∥∇3L∥is
continuous, there exists constant C, such that ∀x ∈ B2, λ1(∇2L) > −ζ and ∥∇3L(x)∥ < ν. Then by
Taylor Expansion,

RAsc
ρ (x) = L(x+ ρ

∇L (x)

∥∇L (x) ∥
)− L(x)

≥
(
ρ∥∇L (x) ∥2 + ρ2(

∇L (x)

∥∇L (x) ∥
)T∇2L(x)

∇L (x)

∥∇L (x) ∥
/2

)
− νρ3/6

≥ −(ζ + ν/6)ρ2.

2. Now we verify SAsc(x) = Tr(∇2L(·))/2 is the limiting regularizer of RAsc
ρ . Let x be any point in Γ. Let

K = {x} and choose h = h(K) as in Lemma E.5. For any x′ ∈ Kh ∩ U ′,

RAsc
ρ (x′) = L(x′ + ρ

∇L (x′)

∥∇L (x′) ∥
)− L(x′)

≥ ρ∥∇L (x′) ∥2 + ρ2(
∇L (x′)

∥∇L (x′) ∥
)T∇2L(x′)

∇L (x′)

∥∇L (x′) ∥
/2− νρ3/6

≥ ρ2(
∇L (x′)

∥∇L (x′) ∥
)T∇2L(Φ(x′))

∇L (x′)

∥∇L (x′) ∥
/2− νρ3/6 .

By Lemma F.4, we have
∇L(x′)
∥∇L(x′)∥ =

∇2L(Φ(x′))(x′−Φ(x′))

∥∇2L(Φ(x′))(x′−Φ(x′))∥2
+O( νµ∥x

′ − Φ(x′)∥2). Hence

RAsc
ρ (x′) ≥ ρ2λM (∇2L(Φ(x′)))/2− ζρ2O(∥x′ − Φ(x′)∥2)− νρ3/6 .

This implies limρ→0 limr→0 inf∥x′−x∥2≤r
RAsc

ρ (x′)

ρ2 ≥ λM (∇2L(Φ(x′)))/2.

We now show the above inequality is in fact equality. If we choose x′′r = x + rvM , then by Taylor
Expansion,

∇L(x′′r ) = ∇L(x) +∇2L(x)(x′′r − x) +O(∥x′′r − x∥2)
= rvM +O(r2)

This implies limr→0
∇L(x′′

r )
∥∇L(x′′

r )∥
= vM . We also have limr→0 ∇2L(x′′r ) = ∇2L(x) and limr→0 ∇L(x′′r ) =

0. Putting together,

lim
r→0

RAsc
ρ (x′′r ) = lim

r→0
L(x′′r + ρ

∇L (x′′r )

∥∇L (x′′r ) ∥
)− L(x′′r )

= lim
r→0

(
ρ∥∇L (x′′r ) ∥2 + ρ2(

∇L (x′′r )

∥∇L (x′′r ) ∥
)T∇2L(x′′r )

∇L (x′′r )

∥∇L (x′′r ) ∥
/2 +O(νρ3)

)
= ρ2λM (∇2L(x))/2 +O(ρ3).

This implies limρ→0 limr→0 inf∥x′−x∥2≤r
RAsc

ρ (x′)

ρ2 ≤ limρ→0 limr→0
RAsc

ρ (x′′
r )

ρ2 = λM (∇2L(x))/2.
Hence the limiting regularizer S is exactly λM (∇2L(·))/2.

3. Finally we verify definition of good limiting regularizer, by Assumption 3.2, SMax(x) = λM (x)/2 is non-
negative and continuous on Γ. For any x∗ ∈ Γ, choose a sufficiently small open convex set V containing
x∗ such that ∀x ∈ V 1, ∥∇3L(x)∥2 ≤ ν. For any x ∈ V ∩ Γ, for any x′ satisfying that ∥x′ − x∥2 ≤ Cρ,

RAsc
ρ (x′) = L(x′ + ρ

∇L (x′)

∥∇L (x′) ∥
)− L(x′)

≥ ρ∥∇L (x′) ∥2 + ρ2(
∇L (x′)

∥∇L (x′) ∥
)T∇2L(x′)

∇L (x′)

∥∇L (x′) ∥
/2− νρ3/6

≥ ρ2(
∇L (x′)

∥∇L (x′) ∥
)T∇2L(Φ(x′))

∇L (x′)

∥∇L (x′) ∥
/2− νρ3/6 .

By Lemma F.4, we have
∇L(x′)
∥∇L(x′)∥ =

∇2L(Φ(x′))(x′−Φ(x′))

∥∇2L(Φ(x′))(x′−Φ(x′))∥2
+ O( νµ∥x

′ − Φ(x′)∥2). This implies
inf

∥x′−x∥2≤Cρ
RAsc

ρ (x′) ≥ ρ2λM (∇2L(x))/2−O(ρ3).
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On the other hand, simillar to the proof in the second part, we have inf
∥x′−x∥2≤Cρ

RAsc
ρ (x′) ≤

ρ2λM (∇2L(x))/2 +O(ρ3).

Thus, we conclude that
∣∣∣∣ inf
∥x′−x∥2≤Cρ

RMax
ρ (x′)/ρ2 − λ1(∇2L(x))/2

∣∣∣∣ = O(ρ),∀x ∈ V ∩ Γ, indicating

SMax is a good limiting regularizer of RMax
ρ on Γ.

This completes the proof.

Proof of Theorem G.5.

1. We will first verify Condition G.1. For fixed compact set B ⊂ U , as ∥∇3L(x)∥2 is continuous, there exists
constant ν, such that ∀x ∈ B1, ∥∇3L(x)∥2 ≤ ν. Then by Taylor Expansion,

RAvg
ρ (x) = Eg∼N(0,I)L(x+ ρ

g

∥g∥
)− L(x)

≥ Eg∼N(0,I)

(
ρ⟨∇L(x), g

∥g∥
⟩+ ρ2(

g

∥g∥
)T∇2L(x)

g

2∥g∥

)
− νρ3/6

≥ −νρ3/6 .
2. Now we verify SMax(x) = Tr(∇2L(·))/2D is the limiting regularizer of RAvg

ρ . Let x be any point in Γ, by
continuity of RAvg

ρ ,

lim
ρ→0

lim
r→0

inf
∥x′−x∥2≤r

RAvg
ρ (x′)

ρ2
= lim

ρ→0

RAvg
ρ (x)

ρ2
= Tr(∇2L(x))/2D .

3. Finally we verify definition of good limiting regularizer, by Assumption 3.2, SAvg(x) = Tr(x)/2D is non-
negative and continuous on Γ. For any x∗ ∈ Γ, choose a sufficiently small open convex set V containing
x∗ such that ∀x ∈ V 1, ∥∇3L(x)∥2 ≤ ν. For any x ∈ V ∩Γ, for any x′ satisfying that ∥x′ − x∥2 ≤ Cρ, by
Theorem K.3,

RAvg
ρ (x′) = Eg∼N(0,I)L(x

′ + ρ
g

∥g∥
)− L(x′)

≥ Eg∼N(0,I)

(
ρ⟨∇L(x′), g

∥g∥
⟩+ ρ2

g

∥g∥
T
∇2L(x′)

g

∥2g∥

)
− νρ3/6

≥ ρ2Tr(∇2L(x′))/2D − νρ3/6 ≥ ρ2Tr(∇2L(x))/2D −O(ρ3) .

This implies inf
∥x′−x∥2≤Cρ

RAvg
ρ (x′) ≥ ρ2Tr(∇2L(x))/2D −O(ρ3).

On the other hand, for any x ∈ V ∩ Γ,

RAvg
ρ (x) = Eg∼N(0,I)L(x+ ρ

g

∥g∥
)− L(x)

≤ Eg∼N(0,I)

(
ρ⟨∇L(x), g

∥g∥
⟩+ ρ2

g

∥g∥
T
∇2L(x)

g

2∥g∥

)
+ νρ3

= Eg∼N(0,I)ρ
2 g

∥g∥
T
∇2L(x)

g

2∥g∥
+ νρ3 = ρ2Tr(∇2L(x′))/2D +O(ρ3) .

This implies inf
∥x′−x∥2≤Cρ

RAvg
ρ (x′) ≤ ρ2Tr(∇2L(x))/2D +O(ρ3).

Thus, we conclude that
∣∣∣∣ inf
∥x′−x∥2≤Cρ

RAvg
ρ (x′)/ρ2 − Tr(∇2L(x))/2D

∣∣∣∣ = O(ρ),∀x ∈ V ∩ Γ, indicating

SAvg is a good limiting regularizer of RAvg
ρ on Γ.

Theorem G.14. Stochastic worst-direction sharpness Ek[R
Max
k,ρ ] admits Tr(∇2L(·))/2 as a good limiting

regularizer on Γ and satisfies Condition G.1.

Proof of Theorem G.14. By Theorem E.2, Condition E.1 holds.

Easily deducted from Theorem G.3 Λk(x) is a good limiting regularizer for Rmax
k,ρ on Γk. Then as Γ ⊂ Γk,

Λk(x) is a good limiting regularizer for Rmax
k,ρ on Γ. Hence S(x) =

∑
k Λk(x)/2M = Tr(∇2L(x))/2 is a

good limiting regularizer of Ek[R
Max
k,ρ ](x) on Γ.
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Theorem G.15. Stochastic ascent-direction sharpness Ek[R
Asc
k,ρ] admits Tr(∇2L(·))/2 as a good limiting

regularizer on Γ and satisfies Condition G.1.

Proof of Theorem G.15. By Theorem E.2, Condition E.1 holds.

Easily deducted from Theorem G.4 Λk(x) is a good limiting regularizer for Rasc
k,ρ on Γk as the codi-

mension of Γk is 1. Then as Γ ⊂ Γk, Λk(x) is a good limiting regularizer for Rmax
k,ρ on Γ.Hence

S(x) =
∑

k Λk(x)/2M = Tr(∇2L(x))/2 is a good limiting regularizer of Ek[R
Asc
k,ρ](x) on Γ.

Theorem G.16. Stochastic average-direction sharpness Ek[R
Avg
k,ρ ] admits Tr(∇2L(·))/(2D) as a good lim-

iting regularizer on Γ and satisfies Condition G.1.

Proof of Theorem G.16. By definition, we know that Ek[R
Avg
k,ρ ] = RAvg

ρ . The rest follows from Theorem G.5.

G.6 PROOF OF THEOREMS 4.2 AND 5.3

To end this section, we prove the two theorems presented in the main text. The readers will find the proof
straight forward after we established the framework of good limiting regularizers.

Proof of Theorem 4.2. Apply Corollary G.7 on Rtype. The mapping from R to good limiting regularizers
Stype are characterized by Theorems G.3 to G.5.

Proof of Theorem 5.3. Apply Corollary G.7 on Rtype. The mapping from R to good limiting regularizers
S̃type are characterized by Theorems G.14 to G.16.

H ANALYSIS FULL-BATCH SAM ON QUADRATIC LOSS (PROOF OF THEOREM 4.8)

The goal of this section is to prove Theorem 4.8. In this section, we use A ≺ B to indicate B −A is positive
semi-definite.
Theorem 4.8. Suppose A is a positive definite symmetric matrix with unique top eigenvalue. Consider
running full-batch SAM (Equation 3) on loss L(x) := 1

2x
TAx as in Equation 11 below.

x(t+ 1) = x(t)− ηA
(
x(t) + ρAx(t)/∥Ax(t)∥2

)
. (11)

Then, for almost every x(0), we have x(t) converges in direction to v1(A) up to a sign flip and
limt→∞ ∥x(t)∥2 = ηρλ1(A)

2−ηλ1(A) with ηλ1(A) < 1.

Proof of Theorem 4.8. We first rewrite the iterate as

x(t+ 1) = x(t)− ηAx(t)− ηρ
A2x(t)

∥Ax(t)∥2
.

Define x̃(t) ≜ ∇L(x(t))
ρ = Ax(t)

ρ , and we have

x̃(t+ 1) = x̃(t)− ηAx̃(t)− η
A2x̃(t)

∥x̃(t)∥2
. (22)

We suppose A ∈ RD×D and use λi, vi to denote λi(A), vi(A).

Further, we define that

P (j:D) ≜
D∑
i=j

vi(A)vi(A)
T ,

Ij ≜ {x̃ | ∥P (j:D)x̃∥2 ≤ ηλ2j} ,
x̃i(t) ≜ ⟨x̃(t), vi⟩ ,

S ≜ {t | ∥x̃(t)∥2 ≤ ηλ21
2− ηλ1

, t > T1} .
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By Lemma H.1, Ij is an invariant set for update rule Equation 22.

Our proof consists of two steps.

(1) Entering Invariant Set. Lemma H.2 implies that there exists constant T1 > 0, such that ∀t >
T1, ∥P (j:D)x̃(t)∥2 ≤ ηλ2j

(2) Alignment to Top Eigenvector. Lemmas H.10 and H.11 show that ∥x̃(t)∥2 and |x̃1(t)| converge to ηλ2
1

2−ηλ1
,

which implies our final results.

H.1 ENTERING INVARIANT SET

In this subsection, we will prove the following three lemmas.

1. Lemma H.1 shows Ij is an invariant set for update rule (Equation 22).
2. Lemma H.2 shows that under the update rule (Equation 22), all iterates not in Ij will shrink exponentially

in ℓ2 norm.
3. Lemma H.3 combines Lemmas H.1 and H.2 to show that for sufficiently large t, x(t) ∈ ∩jIj .
Lemma H.1. For t ≥ 0, if ηλ1(A) < 1 and x̃(t) ∈ Ij , then x̃(t+ 1) ∈ Ij .

Proof of Lemma H.1. By (Equation 22), we have that

P (j:D)x̃(t+ 1) = (I − P (j:D)ηA− η
P (j:D)A2

∥x̃(t)∥2
)P (j:D)x̃(t) .

Hence we have that

∥P (j:D)x̃(t+ 1)∥2 = ∥(I − P (j:D)ηA− η
P (j:D)A2

∥x̃(t)∥2
)P (j:D)x̃(t)∥2

≤ ∥I − P (j:D)ηA− η
P (j:D)A2

∥x̃(t)∥2
∥2∥P (j:D)x̃(t)∥2 .

Because x̃(t) ∈ Ij , ∥x̃(t)∥2 ≤ ηλ2
j

1−ηλj
. This implies,

I(1− ηλj − η
λ2j

∥P (j:D)x̃(t)∥2
) ≺ I(1− ηλj − η

λ2j
∥x̃(t)∥2

) ≺ I − P (j:D)ηA− η
P (j:D)A2

∥x̃(t)∥2
≺ I .

Hence, ∥I − P (j:D)ηA− η P (j:D)A2

∥2x̃(t)∥ ∥2 ≤ max(1, ηλj + η
λ2
j

∥P (j:D)x̃(t)∥2
− 1) . It holds that

∥P (j:D)x̃(t+ 1)∥2 ≤ max(∥P (j:D)x̃(t)∥2, ηλ2j − (1− ηλj)∥P (j:D)x̃(t)∥2) ≤ ηλ2j ,

where the last equality is because 1−ηλj ≥ 0. This above inequality is exactly the definition of x̃(t+1) ∈ Ij
and thus is proof is completed.

Lemma H.2. For t ≥ 0, if ηλ1(A) < 1 and x̃(t) ̸∈ Ij , then

∥P (j:D)x̃(t+ 1)∥2 ≤ max

(
1− ηλD − η

λ2D
∥x̃(t)∥2

, ηλj

)
∥P (j:D)x̃(t)∥2 (23)

≤ max (1− ηλD, ηλj) ∥P (j:D)x̃(t)∥2 .

Proof of Lemma H.2. Note that

∥P (j:D)x̃(t+ 1)∥2 = ∥(I − P (j:D)ηA− η
P (j:D)A2

∥x̃(t)∥2
)P (j:D)x̃(t)∥2

≤ ∥P (j:D) − P (j:D)ηA− η
P (j:D)A2

∥x̃(t)∥2
∥2∥P (j:D)x̃(t)∥2 .

As x̃(t) ̸∈ Ij , We have ∥x̃(t)∥2 ≥ ∥P (j:D)x̃(t)∥2 > ηλ2j , hence η P (j:D)A2

∥x̃(t)∥2
≺ η P (j:D)A2

ηλ2
j

≺ P (j:D).

32



Published as a conference paper at ICLR 2023

This implies that

−ηλjP (j:D) ≺ −P (j:D)ηA ≺ P (j:D) − P (j:D)ηA− η
P (j:D)A2

∥x̃(t)∥2
,

and

P (j:D) − P (j:D)ηA− η
P (j:D)A2

∥x̃(t)∥2
≺ P (j:D)(1− ηλD)− η

λ2D
∥x̃(t)∥2

.

Hence we have that

∥P (j:D)x̃(t+ 1)∥2 ≤ max

(
1− ηλD − η

λ2D
∥x̃(t)∥2

, ηλj

)
∥P (j:D)x̃(t)∥2.

≤ max (1− ηλD, ηλj) ∥P (j:D)x̃(t)∥2
This completes the proof.

Lemma H.3. Choosing T1 = maxj

(
− logmax(1−ηλD,ηλj) max(∥x̃(0)∥2

ηλ2
j
, 1)
)

, then ∀t ≥ T1, D > j ≥
1, x̃(t) ∈ Ij

Proof of Lemma H.3. We will prove by contradiction. Suppose ∃j ∈ [D] and T > T1, such that x̃(T ) ̸∈ Ij .
By Lemma H.1, it holds that ∀t < T, x̃(t) ̸∈ Ij . Then by Lemma H.2,

∥P (j:D)x̃(T )∥2 ≤ max (1− ηλD, ηλj)
T ∥P (j:D)x̃(0)∥2 ≤ ηλ2j ,

which leads to a contradiction.

H.2 ALIGNMENT TO TOP EIGENVECTOR

In this subsection, we prove the following lemmas towards showing that x̃(t) converges in direction to v1(A)
up to a proper sign flip.

1. Corollary H.4 show that for almost every learning rate η and initialization xinit, x̃1(t) ̸= 0, for every t ≥ 0.
This condition is important because if x̃1(t) = 0 at some step t, then for any t′ ≥ t, x̃1(t′) will also be 0
and thus alignment is impossible.

2. Lemma H.5 shows that under update rule (Equation 22), t ̸∈ S ⇒ t+1 ∈ S for sufficiently large t, where
the definition of S is {t|∥x̃(t)∥2 ≤ ηλ2

1

2−ηλ1
, t > T1}.

3. Lemma H.9, a combination of Lemmas H.6 and H.7, shows that following update rule (Equation 22),
x̃1(t) increases for t ∈ S.

4. Lemma H.10 shows that ∥x̃(t)∥ converges to ηλ2
1

2−ηλ1
under Equation 22.

5. Lemma H.11 shows that ∥x̃1(t)∥2 converges to ηλ2
1

2−ηλ1
under Equation 22.

We will first prove that ∀t, x̃1(t) ̸= 0 happens for almost every learning rate η and initialization xinit (Corol-
lary H.4), using a much more general result (Theorem D.3).

Corollary H.4. Except for countably many η ∈ R+, for almost all initialization xinit = x(0), it holds that
for all natural number t, x̃1(t) ̸= 0.

Proof of Corollary H.4. Let Fn(x) ≡ F (x) ≜ A(x + ρ Ax
∥Ax∥2

), ∀n ∈ N+, x ∈ RD and Z = {x ∈ RD |
⟨x, v1⟩ = 0}. We can easily check F is C1 on RD \ Z and Z is a zero-measure set. Applying Theorem D.3,
we have the following corollary.

Lemma H.5. For t ≥ 0, if ∥x̃(t)∥2 > ηλ2
1

2−ηλ1
, x̃(t) ∈ ∩Ij , then

∥x̃(t+ 1)∥2 ≤ max(
ηλ21

2− ηλ1
− η

λ4D
2λ21

, ηλ21 − (1− ηλ1)∥x̃(t)∥2)
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Proof of Lemma H.5. Note that

x̃(t+ 1) = (I − ηA− η
A2

∥x̃(t)∥2
)x̃(t)

=
1

∥x̃(t)∥2

D∑
j=1

(
(1− ηλj)∥x̃(t)∥2 − ηλ2j

)
x̃j(t)vj

Consider the following two cases.

1 If for any i, such that
∣∣(1− ηλ1)∥x̃(t)∥2 − ηλ21

∣∣ ≥ ∣∣(1− ηλi)∥x̃(t)∥2 − ηλ2i
∣∣, then we have

∥x̃(t+ 1)∥2 ≤
∣∣(1− ηλ1)∥x̃(t)∥2 − ηλ21

∣∣ = ηλ21 − (1− ηλ1)∥x̃(t)∥2 .
2 If there exists i, such that

∣∣(1− ηλ1)∥x̃(t)∥2 − ηλ21
∣∣ < ∣∣(1− ηλi)∥x̃(t)∥2 − ηλ2i

∣∣, then suppose WLOG,
i is the smallest among such index.
As

ηλ2i − (1− ηλi)∥x̃(t)∥2 < ηλ21 − (1− ηλ1)∥x̃(t)∥2 =
∣∣(1− ηλ1)∥x̃(t)∥2 − ηλ21

∣∣
We have −ηλ2i + (1− ηλi)∥x̃(t)∥2 > ηλ21 − (1− ηλ1)∥x̃(t)∥2. Equivalently,

∥x̃(t)∥2 >
ηλ21 + ηλ2i

2− ηλ1 − ηλi
(24)

Combining with x̃(t) ∈ I1 ⇒ ∥x̃(t)∥2 ≤ ηλ21, we have η < λ1−λi

λ2
1

.
Now consider the following vertors,

v(1)(t) ≜ (ηλ21 − (1− ηλ1)∥x̃(t)∥2)x̃(t) ,
v(2)(t) ≜ ((2− ηλ1 − ηλi)∥x̃(t)∥2 − ηλ2i − ηλ21)P

(i:D)x̃(t) ,

v(2+j)(t) ≜ ((ηλi+j−1 − ηλi+j)∥x̃(t)∥2 − ηλ2i+j + ηλ2i+j−1)P
(i+j:D)x̃(t), 1 ≤ j ≤ D − i .

Then we have

∥x̃(t+ 1)∥2 =∥ 1

∥x̃(t)∥2

D∑
j=1

(
(1− ηλj)∥x̃(t)∥2 − ηλ2j

)
x̃j(t)vj∥2

≤∥ 1

∥x̃(t)∥2

i−1∑
j=1

(
ηλ21 − (1− ηλ1)∥x̃(t)∥2

)
x̃j(t)vj∥+

∥ 1

∥x̃(t)∥2

D∑
j=i

(
(1− ηλj)∥x̃(t)∥2 − ηλ2j

)
x̃j(t)vj∥2

≤ 1

∥x̃(t)∥2

D+1−i∑
j=1

∥v(j)∥2

By assumption, we have x̃(t) ∈ ∩Ij , hence we have
∥v(1)(t)∥2 = (ηλ21 − (1− ηλ1)∥x̃(t)∥2)∥x̃(t)∥2 ,
∥v(2)(t)∥2 ≤ η((2− ηλ1 − ηλi)∥x̃(t)∥2 − ηλ2i − ηλ21)λ

2
i ,

∥v(2+j)(t)∥2 ≤ η((ηλi+j−1 − ηλi+j)∥x̃(t)∥2 − ηλ2i+j + ηλ2i+j−1)λ
2
i+j , 1 ≤ j ≤ D − i .

Using AM-GM inequality, we have

λi+j−1λ
2
i+j ≤

λ3i+j−1 + 2λ3i+j

3
,

λ2i+j−1λ
2
i+j ≤

λ4i+j−1 + λ4i+j

2
.

Hence
∥v(2+j)(t)∥2 ≤ η((ηλi+j−1 − ηλi+j)∥x̃(t)∥2 − ηλ2i+j + ηλ2i+j−1)λ

2
i+j

≤ η2∥x̃(t)∥2
λ3i+j−1 − λ3i+j

3
+ η2

λ4i+j−1 − λ4i+j

2
, 1 ≤ j ≤ D − i

D−i∑
j=1

∥v(2+j)(t)∥2 ≤ η2∥x̃(t)∥2
λ3i − λ3D

3
+ η2

λ4i − λ4D
2

.

34



Published as a conference paper at ICLR 2023

Putting together,

∥x̃(t+ 1)∥2 ≤ 1

∥x̃(t)∥2

D+1−i∑
j=1

∥v(i)∥2

≤ηλ21 + ηλ2i (2− ηλ1 − ηλi) + η2
λ3i − λ3D

3
− (1− ηλ1)∥x̃(t)∥2

− η2λ2i (λ
2
i + λ21)

1

∥x̃(t)∥2
+ η2

λ4i − λ4D
2

1

∥x̃(t)∥2

≤ηλ21 + ηλ2i (2− ηλ1 −
2

3
ηλi)− (1− ηλ1)∥x̃(t)∥2 − η2λ2i (

1

2
λ2i + λ21)

1

∥x̃(t)∥2
− η2

λ4D
2∥x̃(t)∥2

≤ηλ21 + ηλ2i (2− ηλ1 −
2

3
ηλi)− (1− ηλ1)∥x̃(t)∥2 − η2λ2i (

1

2
λ2i + λ21)

1

∥x̃(t)∥2
− η

λ4D
2λ21

.

We further discuss three cases
1. If ηλi

√
1
2λ

2
i+λ2

1

1−ηλ1
<

ηλ2
1+ηλ2

i

2−ηλ1−ηλi
, we have ∥x̃(t)∥2 > ηλ2

1+ηλ2
i

2−ηλ1−ηλi
> ηλi

√
1
2λ

2
i+λ2

1

1−ηλ1
,then

∥x̃(t+ 1)∥2

≤ηλ21 + ηλ2i (2− ηλ1 −
2

3
ηλi)− (1− ηλ1)∥x̃(t)∥2 − η2λ2i (

1

2
λ2i + λ21)

1

∥x̃(t)∥2
− η

λ4D
2λ21

≤ηλ21 + ηλ2i (2− ηλ1 −
2

3
ηλi)− (1− ηλ1)

ηλ21 + ηλ2i
2− ηλ1 − ηλi

− η2λ2i (
1

2
λ2i + λ21)

2− ηλ1 − ηλi
ηλ21 + ηλ2i

− η
λ4D
2λ21

≤ ηλ21
2− ηλ1

− η
λ4D
2λ21

.

The second line is because (1 − ηλ1)∥x̃(t)∥2 + η2λ2i (
1
2λ

2
i + λ21)

1
∥x̃(t)∥2

monotonously increase w.r.t

∥x̃(t)∥2 when ∥x̃(t)∥2 > ηλi

√
1
2λ

2
i+λ2

1

1−ηλ1
. The last line is due to Lemma K.9.

2. If ηλ21 ≥ ηλi

√
1
2λ

2
i+λ2

1

1−ηλ1
≥ ηλ2

1+ηλ2
i

2−ηλ1−ηλi
, then

∥x̃(t+ 1)∥2

≤ηλ21 + ηλ2i (2− ηλ1 −
2

3
ηλi)− (1− ηλ1)∥x̃(t)∥2 − η2λ2i (

1

2
λ2i + λ21)

1

∥x̃(t)∥2
− η

λ4D
2λ21

≤ηλ21 + ηλ2i (2− ηλ1 −
2

3
ηλi)− 2ηλi

√
(λ21 +

1

2
λ2i )(1− ηλ1)− η

λ4D
2λ21

≤ ηλ21
2− ηλ1

− η
λ4D
2λ21

.

The second line is because of AM-GM inequality. The last line is due to Lemma K.11.

3. If ηλ21 < ηλi

√
1
2λ

2
i+λ2

1

1−ηλ1
, we have ∥x̃(t)∥2 < ηλ21 < ηλi

√
1
2λ

2
i+λ2

1

1−ηλ1
, then

∥x̃(t+ 1)∥2

≤ηλ21 + ηλ2i (2− ηλ1 −
2

3
ηλi)− (1− ηλ1)∥x̃(t)∥2 − η2λ2i (

1

2
λ2i + λ21)

1

∥x̃(t)∥2
− η

λ4D
2λ21

≤ηλ21 + ηλ2i (2− ηλ1 −
2

3
ηλi)− (1− ηλ1)ηλ

2
1 − ηλ2i (

1

2
λ2i + λ21)

1

λ21
− η

λ4D
2λ21

≤ ηλ21
2− ηλ1

− η
λ4D
2λ21

.

The second line is because (1 − ηλ1)∥x̃(t)∥2 + η2λ2i (
1
2λ

2
i + λ21)

1
∥x̃(t)∥2

monotonously decrease w.r.t

∥x̃(t)∥2 when ∥x̃(t)∥2 < ηλi

√
1
2λ

2
i+λ2

1

1−ηλ1
. The last line is due to Lemma K.10.
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Lemma H.6. if ∥x̃(t)∥2 ≤ ηλ2
1

2−ηλ1
, it holds that |x̃1(t+ 1)| ≥ |x̃1(t)| .

Proof of Lemma H.6. Nota that |x̃1(t + 1)| = |1 − ηλ1 − η
λ2
1

∥x̃(t)∥2
||x̃1(t)| and that η λ2

1

∥x̃(t)∥2
> 2 − ηλ21. It

follows that 1− ηλ1 − η
λ2
1

∥x̃(t)∥2
< −1. Hence we have that |x̃1(t+ 1)| > |x̃1(t)|.

Lemma H.7. For any t ≥ 0, if ∥x̃(t)∥2 ≤ ηλ2
1

2−ηλ1
, x̃(t) ∈ ∩Ij , it holds that

∥x̃(t+ 1)∥2 ≤ ηλ21 − (1− ηλ1)∥x̃(t)∥2 .

Proof of Lemma H.7. Note that

∥I − ηA− η
A2

∥x̃(t)∥2
∥2 ≤ max

1≤j≤D
{|1− ηλj − η

λ2j
∥x̃(t)∥

|} = η
λ21

∥x̃(t)∥
− (1− ηλj) .

The proof is completed by noting that ∥x̃(t+ 1)∥ ≤ ∥I − ηA− η A2

∥x̃(t)∥2
∥2 ∥x̃(t)∥2.

Lemma H.8. For any t ≥ 0, if ∥x̃(t)∥2 ≤ ηλ2
1

1−ηλ1
, it holds that

∥x̃(t+ 1)∥2
≤(ηλ21 − (1 + ηλ1)∥x̃(t)∥2)×√√√√ |x̃1(t)|2

∥x̃(t)∥2
+
(

max
j∈[2:M ]

(
|(1− ηλj)∥x̃(t)∥2 − ηλ2j |
ηλ21 − (1− ηλ1)∥x̃(t)∥2

))2(
1− |x̃1(t)|2

∥x̃(t)∥2
)
.

Proof of Lemma H.8. We will discuss the movement along v1 and orthogonal to v1. First,

∥P (2:D)x̃(t+ 1)∥2 = ∥(I − P (2:D)ηA− η
P (2:D)A2

∥x̃(t)∥2
)P (2:D)x̃(t)∥2

≤ ∥P (2:D) − P (2:D)ηA− η
P (2:D)A2

∥x̃(t)∥2
∥2∥P (2:D)x̃(t)∥2

≤ max
j∈[2:M ]

{|1− ηλj −
ηλ2j

∥x̃(t)∥2
|}∥P (2:D)x̃(t)∥2 .

Second, |x̃1(t+ 1)| = (
ηλ2

1

∥x̃(t)∥2
− 1 + ηλ1)|x̃1(t)|. Hence we have that

∥x̃(t+ 1)∥2
≤(ηλ21 − (1 + ηλ1)∥x̃(t)∥2)×√√√√ |x̃1(t)|2

∥x̃(t)∥2
+
(

max
j∈[2:M ]

(
|(1− ηλj)∥x̃(t)∥2 − ηλ2j |
ηλ21 − (1− ηλ1)∥x̃(t)∥2

)
}
)2(

1− |x̃1(t)|2
∥x̃(t)∥2

)
.

Lemma H.9. For t, t′ ∈ S, 0 ≤ t ≤ t′, then |x̃1(t)| ≤ |x̃1(t′)|.

Proof of Lemma H.9. For t ∈ S, by Lemma H.5, t+1 ∈ S or t+1 ̸∈ S, t+2 ∈ S. We will discuss by case.

1. If t+ 1 ∈ S, we can use Lemma H.6 to show |x̃1(t)| ≤ |x̃1(t+ 1)|.
2. If t+ 1 ̸∈ S, t+ 2 ∈ S, then

|x̃1(t+ 2)| = (ηλ21 − (1− ηλ1)∥x̃(t)∥2)(ηλ21 − (1− ηλ1)∥x̃(t+ 1)∥2)
∥x̃(t)∥2∥x̃(t+ 1)∥2

|x̃1(t)| .
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As

(ηλ21 − (1− ηλ1)∥x̃(t)∥2)(ηλ21 − (1− ηλ1)∥x̃(t+ 1)∥2) ≥ ∥x̃(t)∥2∥x̃(t+ 1)∥2
⇐⇒ η2λ41 − ηλ21(1− ηλ1)(∥x̃(t)∥2 + ∥x̃(t+ 1)∥2)

≥ (2ηλ1 − η2λ21)∥x̃(t)∥2∥x̃(t+ 1)∥2
⇐⇒ η2λ41 − ηλ21(1− ηλ1)∥x̃(t)∥2

≥
(
(2ηλ1 − η2λ21)∥x̃(t)∥2 + ηλ21(1− ηλ1)

)
∥x̃(t+ 1)∥2 ,

combining with Lemma H.7, we only need to prove,

η2λ41 − ηλ21(1− ηλ1)∥x̃(t)∥2
≥
(
(2ηλ1 − η2λ21)∥x̃(t)∥2 + ηλ21(1− ηλ1)

) (
ηλ21 − (1− ηλ1)∥x̃(t)∥2

)
.

Through some calculation, this is equivalent to

((2− ηλ1)∥x̃(t)∥2 − ηλ21)((1− ηλ1)∥x̃(t)∥2 − ηλ21) ≥ 0 .

which holds for ∥x̃(t)∥2 ≤ ηλ2
1

2−ηλ1
.

Combining the two cases and using induction, we can get the desired result.

Lemma H.10. ∥x̃(t)∥ converges to ηλ2
1

2−ηλ1
when t→ ∞.

Proof of Lemma H.10. By Lemma H.9, |x̃1(t)| increases monotonously for t ∈ S. By Lemma H.5, S is
infinite. By Lemma H.2, for sufficiently large t, |x̃1(t)| is bounded. Combining the three facts, we know
x̃1(t) for t ∈ S converges.

Formally ∀ϵ > 0, there exists Tϵ > 0 such that ∀t, t′ ∈ S, t′ > t > Tϵ,
∥x̃1(t

′)∥2

∥x̃1(t)∥2
< 1 + ϵ.

Then by Lemma H.5, ∀t ∈ S, t+ 1 ∈ S or t+ 2 ∈ S, we will discuss by case. For t ≥ Tϵ,

1. If t+ 1 ∈ S, then

1 + ϵ ≥ ∥x̃1(t+ 1)∥2
∥x̃1(t)∥2

=
ηλ21 − (1− ηλ1)∥x̃(t)∥2

∥x̃(t)∥2
.

2. If t+ 1 ̸∈ S and t+ 2 ∈ S, then

1 + ϵ ≥ ∥x̃1(t+ 2)∥2
∥x̃1(t)∥2

=
(ηλ21 − (1− ηλ1)∥x̃(t)∥2)(ηλ21 − (1− ηλ1)∥x̃(t+ 1)∥2)

∥x̃(t)∥2∥x̃(t+ 1)∥2

≥
(ηλ21 − (1− ηλ1)∥x̃(t)∥2)

(
ηλ21 − (1− ηλ1)

(
ηλ21 − (1− ηλ1)∥x̃(t)∥2

))
∥x̃(t)∥2 (ηλ21 − (1− ηλ1)∥x̃(t)∥2)

=
ηλ21 − (1− ηλ1)

(
ηλ21 − (1− ηλ1)∥x̃(t)∥2

)
∥x̃(t)∥2

.

Here in the last inequality, we apply Lemma H.7.

Concluding, ∥x̃(t)∥2 ≥ min
(

ηλ2
1

2−ηλ2
1+ϵ

,
η2λ3

1

(2−λ1η)λ1η+ϵ

)
,∀t > Tϵ, t ∈ S. As ∀t ̸∈ S, t > Tϵ, we have

∥x̃(t)∥2 ≥ ηλ2
1

2−ηλ2
1

. Hence we have ∀t > Tϵ, ∥x̃(t)∥2 ≥ min
(

ηλ2
1

2−ηλ2
1+ϵ

,
η2λ3

1

(2−λ1η)λ1η+ϵ

)
.

Further by Lemma H.7, ∀t > Tϵ + 1, ∥x̃(t)∥2 ≤ ηλ21 − (1− ηλ1)min
(

ηλ2
1

2−ηλ2
1+ϵ

,
η2λ3

1

(2−λ1η)λ1η+ϵ

)
.

Combining both bound, we have lim
t→∞

∥x̃(t)∥2 =
ηλ2

1

2−ηλ1
.

Lemma H.11. ∥x̃1(t)∥2 converges to ηλ2
1

2−ηλ1
, when t→ ∞.
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Proof of Lemma H.11. Notice that

∥P (2:D)x̃(t+ 1)∥2 ≤ max

(
|1− ηλ2 − η

λ22
∥x̃(t)∥2

|, |1− ηλD − η
λ2D

∥x̃(t)∥2
|
)
∥P (2:D)x̃(t)∥2 .

When ∥x̃(t)∥2 > ηλ2
2

2−ηλ2−δ ,

−1 + δ ≤ 1− ηλ2 − η
λ22

∥x̃(t)∥2
≤ 1− ηλD − η

λ2D
∥x̃(t)∥2

≤ 1− ηλD

∥P (2:D)x̃(t+ 1)∥2 ≤ max(1− ηλD, 1− δ)∥P (2:D)x̃(t)∥2

Hence for sufficiently large t, ∥P (2:D)x̃(t)∥2 shrinks exponentially, showing that lim
t→∞

∥x̃1(t)∥2 =
ηλ2

1

2−ηλ1
.

I ANALYSIS FOR FULL-BATCH SAM ON GENERAL LOSS (PROOF OF THEOREM 4.5)

The goal of this section is to prove the following theorem.
Theorem 4.5 (Main). Let {x(t)} be the iterates of full-batch SAM (Equation 3) with x(0) = xinit ∈ U .
Under Assumptions 3.2 and 4.4, for all η, ρ such that η ln(1/ρ) and ρ/η are sufficiently small, the dynamics
of SAM can be characterized in the following two phases:

• Phase I: (Theorem I.1) Full-batch SAM (Equation 3) follows Gradient Flow with respect to L until entering
an O(ηρ) neighborhood of the manifold Γ in O(ln(1/ρ)/η) steps;

• Phase II: (Theorem I.3) Under a mild non-degeneracy assumption (Assumption I.2) on the initial point
of phase II, full-batch SAM (Equation 3) tracks the solution X of Equation 7, the Riemannian Gradient
Flow with respect to the loss λ1(∇2L(·)) in an O(ηρ) neighborhood of manifold Γ. Quantitatively, the
approximation error between the iterates x and the corresponding limiting flow X is O(η ln(1/ρ)), that is,

∥x
(
⌈T3/(ηρ2)⌉

)
−X(T3)∥2 = O(η ln(1/ρ)) .

Moreover, the angle between ∇L
(
x(⌈ T3

ηρ2 ⌉
)

and the top eigenspace of ∇2L(x(⌈ T3

ηρ2 ⌉)) is O(ρ).

Readers may refer to Appendix E for notation.

To prove the theorem, we will separate the dynamic of SAM on general loss L to two phases.

Define

Rj(x) =

√√√√ M∑
i=j

λ2i (x)⟨vi(x), x− Φ(x)⟩2 − ηρλ2j (x),∀j ∈ [M ], x ∈ U,

which is the length projection of x−Φ(x) on button−k non-zero eigenspace of ∇2L(Φ(x)). We will provide
a fine-grained convergence bound on Rj(x).
Theorem I.1 (Phase I). Let {x(t)} be the iterates defined by SAM ( Equation 3) and x(t) = xinit ∈ U , then
under Assumption 3.2 there exists a positive number T1 independent of η and ρ, such that for any T ′

1 > T1,
it holds for all η, ρ such that (η + ρ) ln(1/ηρ) is sufficiently small, we have

max
T1 ln(1/ηρ)≤ηt≤T ′

1 ln(1/ηρ)
max
j∈[M ]

max{Rj(x(t)), 0} = O(ηρ2)

max
T1 ln(1/ηρ)≤ηt≤T ′

1 ln(1/ηρ)
∥Φ(x(t))− Φ(xinit)∥ ≤ O((η + ρ) ln(1/ηρ))

Theorem I.1 implies SAM will converge to an O(ηρ) neighbor of Γ. Notice in the time frame defined
by Theorem I.1, x(t) effectively operates at a local regime around Φ(⌈T1 ln(1/ηρ)/η⌉), this allows us to
approximate L with the quadratic Taylor expansion of L at Φ(⌈T1 ln(1/ηρ)/η⌉) and prove the following
theorem Theorem I.3.

Towards proving Theorem I.3, we need to make one assumption about the trajectory of SAM, Assumption I.2.
Assumption I.2. There exists step t, satisfying that T1 ln(1/ηρ)/η ≤ t ≤ O(ln(1/ηρ/η)), |⟨x(t) −
Φ(x(t)), v1(x(t))⟩| ≥ Ω(ρ2) and that ∥x(t) − Φ(x(t))∥2 ≤ λ1(t)ηρ − Ω(ρ2), where T1 is the constant
defined in Theorem I.1.

38



Published as a conference paper at ICLR 2023

We remark that the above assumption is very mild as we only need the above two conditions in Assumption I.2
to hold for some step in Θ̃(1/η) steps after Phase I ends, and since then our analysis for Phase II shows that
these two conditions will hold until Phase II ends.
Theorem I.3 (Phase II). Let {x(t)} be the iterates defined by SAM (Equation 3) under Assump-
tions 3.2 and 4.4, for all η, ρ such that η ln(1/ρ) and ρ/η is sufficiently small, further assuming that
(1) maxj∈[M ] max{Rj(x(0)), 0} = O(ηρ2), (2) ∥Φ(x(0)) − Φ(xinit)∥ = O((η + ρ) ln(1/ηρ)), (3)
|⟨x(0) − Φ(x(0)), v1(x(0))⟩| ≥ Ω(ρ2) and (4) ∥x(0) − Φ(x(t))∥2 ≤ λ1(0)ηρ − Ω(ρ2), the iterates x(t)
tracks the solution X of Equation 7. Quantitatively for t = ⌈T3/ηρ2⌉, we have that

∥Φ(x(t))−X(ηρ2t)∥ = O(η ln(1/ρ)) .

Moreover, the angle between ∇L(x(t)) and the top eigenspace of ∇2L(Φ(x(t))) is at most O(ρ). Quantita-
tively,

|⟨x(t)− Φ(x(t)), v1(x(t))⟩| = Θ(ηρ) .

max
j∈[2:M ]

|⟨x(t)− Φ(x(t)), vj(x(t))⟩| = O(ηρ2) .

In this section we will define K as {X(t) | 0 ≤ t ≤ T3} where X is the solution of Equation 7. To simplify
our proof, we assume WLOG L(x) = 0 for x ∈ Γ.

I.1 PHASE I (PROOF OF THEOREM I.1)

Proof of Theorem I.1. The proof consists of three major parts.

1. Tracking Gradient Flow. Lemma I.4 shows the existence of step tGF = O(1/η) such that x(tGF) is in a
subset of Kh and Φ(x(tGF)) is O(η + ρ) close to Φ(xinit).

2. Decreasing Loss. Lemma I.6 shows the existence of step tDEC = O(ln(1/ρ)/η) such that x(tDEC) is in
O(ρ) neighbor of Γ and Φ(x(tDEC)) is O((η + ρ) ln(1/ρ)) close to Φ(xinit).

3. Entering Invariant Set. Lemmas I.11 and I.13 shows the existence of step tINV = O(ln(1/ρη)/η) such
that for any t satisfying tINV ≤ t ≤ tINV +Θ(ln(1/η)/η), we have that x(t) ∈ ∩k∈[M ]Ik and Φ(x(t)) is
O((η + ρ) ln(1/ηρ)) close to Φ(xinit).

I.1.1 TRACKING GRADIENT FLOW

Lemma I.4 shows that the iterates x(t) tracks gradient flow to an O(1) neighbor of Γ.
Lemma I.4. Under condition of Theorem I.1, there exists tGF = O(1/η), such that the iterate x(tGF) is
O(1) close to the manifold Γ and Φ(x(tGF)) is O(η + ρ) is close to Φ(xinit). Quantitatively,

L(x(tGF)) ≤
µh2

32
∥x(tGF)− Φ(x(tGF))∥ ≤ h/4 ,

∥Φ(x(tGF))− Φ(xinit)∥ = O(η + ρ) .

Proof of Lemma I.4. Choose C = 1
4

√
µ
ζ . Since Φ(xinit) = limT→∞ ϕ(xinit, T ), there exists T > 0, such that

∥ϕ(xinit, T )− Φ(xinit)∥2 ≤ Ch/2 . Note that

x(t+ 1) = x(t)− η∇L(x(t) + ρ
∇L (x(t))

∥∇L (x(t)) ∥
) = x(t)− η∇L(x(t)) +O(ηρ) .

By Corollary L.3, let b(x) = −∇L(x), p = η and ϵ = O(ρ), we have that the iterates x(t) tracks gradient
flow ϕ(xinit, T ) in O(1/η) steps. Quantitatively for tGF = ⌈T

η ⌉, we have that

∥x(tGF)− ϕ(xinit, T )∥2 = O(ϵ+ p) = O(η + ρ) .

This implies x(tGF) ∈ Kh, hence by Taylor Expansion on Φ,
∥Φ(x(tGF))− Φ(xinit)∥2 = ∥Φ(x(tGF))− Φ(ϕ(xinit, T ))∥2

≤ O(∥x(tGF)− ϕ(xinit, T )∥2)
≤ O(η + ρ) .
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This implies
∥x(tGF)− Φ(x(tGF))∥2

≤∥x(tGF)− ϕ(xinit, T0)∥2 + ∥ϕ(xinit, T0)− Φ(xinit)∥2 + ∥Φ(xinit)− Φ(x(tGF))∥2
≤Ch/2 +O(η + ρ) ≤ Ch ≤ h/4 .

By Taylor Expansion, we conclude that L(x(tGF)) ≤ ζ∥x(tGF)− Φ(x(tGF))∥22/2 ≤ µh2

32 .

I.1.2 DECREASING LOSS

Lemma I.6 shows that the iterates x(t) converges to an O(ρ) neighbor of Γ in O(ln(1/ρ)/η) steps.
Lemma I.5. Under condition of Theorem I.1, if x(t) ∈ Kh and ∥∇L(x(t))∥ ≥ 4ζρ, then we have that
L(x(t+ 1)) decreases with respect to L(x(t)), quantitatively, we have that

L(x(t+ 1)) ≤ L(x(t))(1− ηµ/8) .

Moreover the movement of the projection of the iterates on the manifold is bounded, quantitatively, we have
that

∥Φ(x(t+ 1))− Φ(x(t))∥ ≤ O(η2) .

Proof of Lemma I.5. As x(t) ∈ Kh and L is µ-PL in Kh, we have L(x(t)) ≥ 0.

As x(t) ∈ Kh, by Lemma F.7 and Taylor Expansion, we have ∥x(t)x(t+ 1)∥ = O(η). hence for sufficiently
small η, x(t)x(t+ 1) ⊂ Kr. Using similar argument, the segment from x(t) to x(t) + ρ ∇L(x(t))

∥∇L(x(t))∥ is in Kr.

Then by Taylor Expansion on L,

L(x(t+ 1)) = L(x(t)− η∇L
(
x(t) + ρ

∇L (x(t))

∥∇L (x(t)) ∥

)
)

≤ L(x(t))− η

〈
∇L (x(t)) ,∇L

(
x(t) + ρ

∇L (x(t))

∥∇L (x(t)) ∥

)〉

+
ζη2∥∇L

(
x(t) + ρ ∇L(x(t))

∥∇L(x(t))∥

)
∥2

2
. (25)

By Taylor Expansion on ∇L, we have that

∥∇L
(
x(t) + ρ

∇L (x(t))

∥∇L (x(t)) ∥

)
−∇L (x(t)) ∥ ≤ ζρ .

After plugging in Equation 25, we have that
L(x(t+ 1)) ≤ L(x(t))− η∥∇L (x(t)) ∥2 + ηζρ∥∇L (x(t)) ∥+ ζη2∥∇L (x(t)) ∥2 + ζ3η2ρ2 . (26)

As ∥∇L(x(t))∥ ≥ 4ζρ, we have that the following term is bounded.

ζη2∥∇L (x(t)) ∥2 ≤ 1

2
η∥∇L (x(t)) ∥2 ,

ηζρ∥∇L (x(t)) ∥ ≤ 1

4
η∥∇L (x(t)) ∥2 ,

ζ3η2ρ ≤ ζ2ηρ2 ≤ 1

16
η∥∇L (x(t)) ∥2 .

After plugging in Equation 26, by Lemma F.2,

L(x(t+ 1)) ≤ L(x(t))− 1

16
η∥∇L (x(t)) ∥2

≤ L(x(t))(1− ηµ/8) .

As x(t) ∈ Kh, by Taylor Expansion, we have
∥∇L (x(t)) ∥ ≤ ζh .

Hence by Lemma F.7 and Taylor Expansion,
∥Φ(x(t+ 1))− Φ(x(t))∥ ≤ ξηρ∥∇L (x) ∥2 + νηρ2 + ξη2∥∇L (x) ∥22 + ξζ2η2ρ2 ≤ O(η2),

which completes the proof.

40



Published as a conference paper at ICLR 2023

Lemma I.6. Under condition of Theorem I.1, assuming there exists tGF such that L(x(tGF)) ≤ µh2

32 and
x(tGF) ∈ Kh/4, then there exists tDEC = tGF +O(ln(1/ρ)/η), such that x(tDEC) is in O(ρ) neighbor of Γ,
quantitatively, we have that

∥∇L(x(tDEC))∥2 ≤ 4ζρ .

Moreover the movement of the projection of Φ(x(·)) on the manifold is bounded,
∥Φ(x(tGF))− Φ(x(tDEC))∥2 = O(η ln(1/ρ)) .

Proof of Lemma I.6. Choose tDEC as the minimal t ≥ tGF such that ∥∇L(x(tDEC))∥2 ≤ 4ζρ. Define
C = ⌈ln1− ηµ

8
(64ρ2/h2)⌉ = O(ln(1/ρ)/η).

We will first perform an induction on t ≤ min{tDEC, tGF + C} = tGF +O(ln(1/ρ)/η) to show that
L(x(t)) ≤ (1− ηµ/8)t−tGFL(x(tGF))

∥Φ(x(t))− Φ(x(tGF))∥ = O(η2(t− tGF))

For t = tGF, the result holds trivially. Suppose the induction hypothesis holds for t. Then by F.1 and Taylor
Expansion,

∥Φ(x(t))− x(t)∥ ≤

√
2L(x(tGF))

µ
≤ h/4 .

Then we have that
dist(K,x(t)) ≤dist(K,x(tGF)) + ∥x(tGF)− Φ(x(tGF))∥2

+ ∥Φ(x(tGF))− Φ(x(t))∥+ ∥Φ(x(t))− x(t)∥
≤3h/4 +O(η2(t− tGF)) = 3h/4 +O(η ln(1/ρ)) ≤ h .

That is x(t) ∈ Kh. Then as t ≤ tDEC, ∥∇L(x(t))∥2 ≥ 4ζρ. Then by Lemma I.5, we have that

L(x(t+ 1)) ≤ (1− ηµ/8)L(x(t)) ≤ (1− ηµ/8)t+1−tGFL(x(tGF)) ,

∥Φ(x(t+ 1))− Φ(x(tGF))∥ ≤ ∥Φ(x(t+ 1))− Φ(x(t))∥+ ∥Φ(x(t))− Φ(x(tGF))∥
≤ O(η2(t− tGF)) ,

which completes the induction.

Now if tDEC ≥ tGF + C = tGF +Ω(ln(1/ρ)/η), As the result of the induction, we have that

L(x(tGF + C)) ≤ (1− ηµ

8
)CL(x(tGF)) ≤

64ρ2

h2
L(x(tGF)) ≤ 8ρ2µ .

By Lemma F.2, we have that ∥∇L(x(tGF+C))∥2 ≤ ζ
√

2L(x(tGF+C))
µ = 4ζρ, which leads to a contradiction.

Hence we have that tDEC ≤ tGF + C = tGF +O(ln(1/ρ)/η). By induction, we have that

∥Φ(x(tDEC))− Φ(x(tGF))∥ = O(η2(tDEC − tGF)) = O(η ln(1/ρ)) .

This completes the proof.

I.1.3 ENTERING INVARIANT SET

We first introduce some notations that is required for the proof in this and following subsection.

Define
x̂ = x− Φ(x) ,

A(x) = ∇2L (Φ(x)) ,

x̃ = A(x)x̂ ,

x̃j = ⟨x̃, vj(x)⟩ ,

P (j:D)(x) =

M∑
i=j

vi(x)v
T
i (x) .
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Note x̃ ≈ ∇L(x) for x near the manifold Γ. We also use x̃(t), A(t) and x̂(t) to denote ˜x(t), A(x(t)) and
ˆx(t).

Recall the original definition of Rj(x) is

Rj(x) =

√√√√ M∑
i=j

λ2i (x)⟨vi(x), x− Φ(x)⟩2 − ηρλ2j (x) ,

Based on the above notions, we can rephrase the notion R as

Rj(x) = ∥P (j:D)(x)x̃∥ − ηρλ2j (x) .

We additionally define the approximate invariant set Ij as

Ij = {∥P (j:D)(x)x̃∥ ≤ ηρλ2j (x) +O(ηρ2)} .

Lemma I.7. Assuming t satisfy that x(t) ∈ Kh, then we have that
µ

2
∥x(t)− Φ(x(t))∥ ≤ ∥x̃(t)∥ ≤ ζ∥x(t)− Φ(x(t))∥

Proof of Lemma I.7. First by Lemma F.4, Φ(x(t)) ∈ Kr, hence

∥x̃(t)∥ = ∥∇2L(Φ(x(t)))(x(t)− Φ(x(t)))∥ ≤ ζ∥x(t)− Φ(x(t))∥ .
Also

∥x̃(t)∥ = ∥∇2L(Φ(x(t)))(x(t)− Φ(x(t)))∥ ≥ µ∥P⊥
Φ(x(t)),Γ(x(t)− Φ(x(t)))∥ .

By Lemma F.4 and Lemma E.6, we have

∥x(t)− Φ(x(t))∥ ≤ ∥P⊥
Φ(x(t)),Γ(x(t)− Φ(x(t)))∥+ ∥PΦ(x(t)),Γ(x(t)− Φ(x(t)))∥

≤ ζν

4µ2
∥x(t)− Φ(x(t))∥2 + 1

µ
∥x̃(t)∥

≤ 1

2
∥x(t)− Φ(x(t))∥+ 1

µ
∥x̃(t)∥.

Hence ∥x(t)− Φ(x(t))∥ ≤ 2
µ∥x̃(t)∥.

Lemma I.8. Assuming t satisfy that x(t) ∈ Kh and ∥x̃(t)∥2 = O(ρ), then we have that

∥Φ(x(t+ 1))− Φ(x(t))∥ = O(ηρ2) .

Proof of Lemma I.8. By Lemma I.7, we have ∥x(t)− Φ(x(t))∥ = O(ρ). By Lemma F.7, we have that

∥Φ(x(t+ 1))− Φ(x(t))∥ ≤ ζξηρ∥x− Φ(x)∥2 + ζ2ξη2∥x− Φ(x)∥22 + νηρ2 + ξζ2η2ρ2

≤ O(ηρ2).

Lemma I.9. Assuming t satisfy x(t) ∈ Kh/2 and ∥x(t)− Φ(x(t))∥2 = O(ρ), define x′ as x′(t) = x(t) and
for τ ≥ t,

x′(τ + 1) = x′(τ)− η∇2L(Φ(x(t)))(x′(τ)− Φ(x(t)))

−ηρ∇2L(Φ(x(t)))
∇2L(Φ(x(t)))(x′(τ)− Φ(x(t)))

∥∇2L(Φ(x(t)))(x′(τ)− Φ(x(t)))∥2

Then

∥x′(t+ 1)− x(t+ 1)∥2 = O(ηρ2)

and further if ∥x(t+ 1)− Φ(x(t+ 1))∥2 = Ω(ηρ), then

∥x′(t+ 2)− x(t+ 2)∥2 = O(ηρ2).

42



Published as a conference paper at ICLR 2023

Proof of Lemma I.9. By ∥x(t)−Φ(x(t))∥ = O(ρ), x(t) ∈ Kh/2, and Lemma F.7, we have that ∥x(t+1)−
x(t)∥ = O(ηρ) and hence x(t+1) ∈ K3h/4. This also implies ∥x(t+1)−Φ(x(t+1))∥2 = O(ρ). Similarly
we have x(t+ 2) ∈ K3h/4.

For k ∈ {1, 2}, by Taylor Expansion,

x(t+ k + 1) =x(t+ k)− η∇L(x(t+ k))− ηρ∇2L(x(t+ k))
∇L (x(t+ k))

∥∇L (x(t+ k)) ∥
+O(ηρ2)

=x(t+ k)− η∇2L(Φ(x(t+ k)))(x(t+ k)− Φ(x(t+ k))) +O(ηρ2)

− ηρ∇2L(Φ(x(t+ k)))
∇L (x(t+ k))

∥∇L (x(t+ k)) ∥
+O(ηρ2)

=x(t+ k)− η∇2L(Φ(x(t+ k)))(x(t+ k)− Φ(x(t+ k)))

− ηρ∇2L(Φ(x(t+ k)))
∇L (x(t+ k))

∥∇L (x(t+ k)) ∥
+O(ηρ2).

Now by Lemmas I.7 and I.8, ∥Φ(x(t+ k))− Φ(x(t))∥2 = O(ηρ2),
x(t+ k + 1) =x(t+ k)− η∇2L(Φ(x))(x(t+ k)− Φ(x(t)))

− ηρ∇2L(Φ(x))
∇L (x(t+ k))

∥∇L (x(t+ k)) ∥
+O(ηρ2). (27)

Now we first prove the first claim, we have for k = 0, ∥x(t+k)−x′(t+k)∥2 = 0, by Lemma F.4 and eq. 27,

x(t+ 1) =x(t)− η∇2L(Φ(x))(x(t)− Φ(x))− ηρ
∇2L(Φ(x))(x(t)− Φ(x))

∥∇2L(Φ(x))(x(t)− Φ(x))∥2
+O(ηρ2)

=x′(t+ 1) +O(ηρ2).

The second claim is slightly more complex. By the first claim and Lemma F.4, we have that
∇L (x(t+ 1))

∥∇L (x(t+ 1)) ∥
=

∇2L(Φ(x(t+ 1)))(x(t+ 1)− Φ(x(t+ 1)))

∥∇2L(Φ(x(t+ 1)))(x(t+ 1)− Φ(x(t+ 1)))∥2
+O(∥x(t+ 1)− Φ(x(t+ 1))∥2). (28)

We first show ∥∇2L(Φ(x(t+1)))(x(t+1)−Φ(x(t+1)))∥2 is of order ∥x(t+1)−Φ(x(t+1))∥2 = Ω(ρ2)
to show that the normalized gradient term is stable with respect to small perturbation,

∥∇2L(Φ(x(t+ 1)))(x(t+ 1)− Φ(x(t+ 1)))∥2
≥∥PΦ(x(t+1)),Γ∇2L(Φ(x(t+ 1)))(x(t+ 1)− Φ(x(t+ 1)))∥2
≥∥∇2L(Φ(x(t+ 1)))PΦ(x(t+1)),Γ(x(t+ 1)− Φ(x(t+ 1)))∥2
≥µ∥PΦ(x(t+1)),Γ(x(t+ 1)− Φ(x(t+ 1)))∥2
≥µ(∥(x(t+ 1)− Φ(x(t+ 1)))∥2 − ∥P⊥

Φ(x(t+1)),Γ(x(t+ 1)− Φ(x(t+ 1)))∥2)

≥µ(∥(x(t+ 1)− Φ(x(t+ 1)))∥2 −
νζ

4µ2
∥x(t+ 1)− Φ(x(t+ 1))∥22)

≥µ
2
∥(x(t+ 1)− Φ(x(t+ 1)))∥2 = Ω(ηρ).

Based on Lemma F.7, we have
Φ(x(t+ 1))− Φ(x(t)) = O(ηρ2).

We further have by the first claim and Lemma I.8,
∇2L(Φ(x(t+ 1)))(x(t+ 1)− Φ(x(t+ 1)))−∇2L(Φ(x))(x′(t+ 1)− Φ(x(t)))

=∇2L(Φ(x))(x(t+ 1)− Φ(x(t+ 1)))−∇2L(Φ(x))(x′(t+ 1)− Φ(x(t))

+O(∥x(t+ 1)− Φ(x(t+ 1))∥2∥Φ(x(t+ 1))− Φ(x)∥2)
=∇2L(Φ(x))(x(t+ 1)− Φ(x(t+ 1)))−∇2L(Φ(x))(x′(t+ 1)− Φ(x(t))) +O(ηρ3)

=∇2L(Φ(x))(x(t+ 1)− x′(t+ 1)) +∇2L(Φ(x))(Φ(x(t+ 1))− Φ(x(t))) +O(ηρ3)

=O(ηρ2)
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This implies
∇2L(Φ(x(t+ 1)))(x(t+ 1)− Φ(x(t+ 1)))

∥∇2L(Φ(x(t+ 1)))(x(t+ 1)− Φ(x(t+ 1)))∥2
=

∇2L(Φ(x))(x′(t+ 1)− Φ(x))

∥∇2L(Φ(x))(x′(t+ 1)− Φ(x))∥2
+O(ρ)

Combining with Equation 28, we have
∇L (x(t+ 1))

∥∇L (x(t+ 1)) ∥
=

∇2L(Φ(x))(x′(t+ 1)− Φ(x))

∥∇2L(Φ(x))(x′(t+ 1)− Φ(x))∥2
+O(ρ)

By the above approximation and Equation 27,
x(t+ 2) = x′(t+ 2) +O(ηρ2) .

Lemma I.10. Assuming t satisfy that x(t) ∈ K3h/4 and ∥x̃(t)∥2 = O(ρ), then we have that

∥x̃(t+ 1)− x̃(t) + ηA(t)x̃(t) + ηρA2(t)
x̃(t)

∥x̃(t)∥
∥2 = O(ηρ2) .

Proof of Lemma I.10. By Lemma I.9, we know

∥x(t+ 1)− x(t) + ηx̃(t) + ηρA(t)
x̃(t)

∥x̃(t)∥
∥ ≤ O(ηρ2) .

This implies

∥A(t)(x(t+ 1)− Φ(x(t)))− x̃(t) + ηA(t)x̃(t) + ηρA2(t)
x̃(t)

∥x̃(t)∥
∥

=∥A(t)(x(t+ 1)− x(t) + ηx̃(t) + ηρA(t)
x̃(t)

∥x̃(t)∥
)∥

≤ζ∥x(t+ 1)− x(t) + ηx̃(t) + ηρA(t)
x̃(t)

∥x̃(t)∥
∥ = O(ηρ2) . (29)

We also have
x̃(t+ 1)−A(t)(x(t+ 1)− Φ(x(t)))

=(A(t+ 1)−A(t))(x(t+ 1)− Φ(x(t+ 1)))−A(t)(Φ(x(t))− Φ(x(t+ 1)))

=O(ηρ2) .

Plugging in Equation 29, we have that

∥x̃(t+ 1)− x̃(t) + ηA(t)x̃(t) + ηρA2(t)
x̃(t)

∥x̃(t)∥
∥2 = O(ηρ2) .

Lemma I.11. Under condition of Theorem I.1, assuming there exists tDEC such that x(tDEC) ∈ Kh/2

and ∥∇L(x(tDEC))∥ ≤ 4ζρ, then there exists tDEC2 = tDEC + O(ln(1/η)/η), such that x(tDEC2) is in
I1 ∩K3h/4.

Furthermore, for any t satisfying tDEC2 ≤ t ≤ tDEC2 +Θ(ln(1/η)/η), we have that x(t) ∈ I1 ∩K3h/4 and
∥Φ(x(t))− Φ(x(tDEC))∥ = O(ρ2 ln(1/η)).

Proof of Lemma I.11. For simplicity, denote C = ⌈ln1−ηµ
ηµ3

4ζ2 ⌉+Θ(ln(1/ρ)/η) = O(ln(1/η)/η). Here the
quantity Θ(ln(1/ρ)/η) is the same quantity in the statement of the lemma.

We will prove the induction hypothesis for tDEC ≤ t ≤ tDEC + 2C,
∥x̃(t− 1)∥ ≥ ηρλ21(t), t > tDEC ⇒ ∥x̃(t)∥ ≤ (1− ηµ)∥x̃(t− 1)∥,

∥x̃(t− 1)∥ ≤ ηρλ21(t− 1), t > tDEC ⇒ ∥x̃(t)∥ ≤ ηρλ21(t) +O(ηρ2),

∥Φ(x(t))− Φ(x(tDEC))∥ ≤ O(ηρ2(t− tDEC)),

x(t) ∈ K3h/4.
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The induction hypothesis holds trivially for t = tDEC.

Assume the induction hypothesis holds for t′ ≤ t. By Lemmas F.1 and I.7, ∥x̃(tDEC)∥2 ≤ ζ∥x(tDEC) −
Φ(x(tDEC))∥ ≤ ζ

µ∥∇L(x(tDEC))∥ ≤ 4ζ2

µ ρ. Combining with the induction hypothesis, we have ∥x̃(t)∥ ≤
4ζ2

µ ρ.

By x(t) ∈ K3h/4 and Lemma I.8, we have that

∥Φ(x(t+ 1))− Φ(x(t))∥ ≤ O(ηρ2) .

Hence we have that

∥Φ(x(t+ 1))− Φ(x(tDEC))∥ ≤ ∥Φ(x(t+ 1))− Φ(x(t))∥+ ∥Φ(x(t))− Φ(x(tDEC))∥
≤ O(ηρ2(t+ 1− tDEC)). (30)

This proves the third statement of the induction hypothesis.

By ∥x̃(t)∥ = O(ρ) and Lemma I.10, we have that

∥x̃(t+ 1)− x̃(t) + ηA(t)x̃(t) + ηρA2(t)
x̃(t)

∥x̃(t)∥
∥2 = O(ηρ2) .

Analogous to the proof of Lemmas H.1 and H.2, we have

1. If ∥x̃(t)∥ > ηρλ21(t), we would have

∥x̃(t)− ηA(t)x̃(t)− ηρA2(t)
x̃(t)

∥x̃(t)∥
∥

≤∥x̃(t)∥∥I − ηA(t)− ηρA2(t)
1

∥x̃(t)∥
∥

≤∥x̃(t)∥max{ηλ1, 1− ηλD − ηρλ2D
1

∥x(t)∥
}

≤max{(1− ηλD)∥x̃(t)∥ − ηρλ2D, ηλ1∥x̃(t)∥}
≤max{(1− ηµ)∥x̃(t)∥ − ηρµ2, ηζ∥x̃(t)∥}

Hence we have

∥x̃(t+ 1)∥ ≤ max{(1− ηµ)∥x̃(t)∥ − ηρµ2, ηζ∥x̃(t)∥}+O(ηρ2) ≤ (1− ηµ)∥x̃(t)∥.

2. If ∥x̃(t)∥2 ≤ ηρλ21(t), then by Lemma H.1, we have that

∥x̃(t)− ηA(t)x̃(t)− ηρA2(t)
x̃(t)

∥x̃(t)∥
∥2 ≤ ηρλ21(t) .

Hence by Lemma K.1

∥x̃(t+ 1)∥ ≤ ηρλ21(t) +O(ηρ2) ≤ ηρλ21(t+ 1) +O(ηρ2) .

Concluding the two cases, we have shown the first and second claim of the induction hypothesis holds. Hence
we can show that ∥x̃(t+ 1)∥ ≤ 4ζ2

µ ρ. Then by Lemma I.7, we have that ∥x(t+ 1)− Φ(x(t+ 1))∥ ≤ 8ζ2

µ2 ρ.

As t ≤ tDEC + 2C = tDEC +O(ln(1/η)/η), by Equation 30,

∥Φ(x(t+ 1))− Φ(x(tDEC))∥ ≤ O(−ρ2 ln η) .

This implies

dist(x(t+ 1),K) ≤dist(x(tDEC),K) + ∥x(tDEC)− Φ(x(tDEC))∥
+ ∥Φ(x(tDEC))− Φ(x(t+ 1))∥+ ∥x(t+ 1)− Φ(x(t+ 1))∥

=h/2 +O(ρ2 ln(1/η)) +O(ρ) ≤ 3h/4.

This proves the fourth claim of the inductive hypothesis.

The induction is complete.
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Now define tDEC2 the minimal t ≥ tDEC, such that ∥x̃(t)∥ ≤ ηρλ21(t).

If tDEC2 > tDEC + C, then by the induction, Lemmas F.1 and I.7,
∥x̃(tDEC + C)∥ ≤ (1− ηµ)C∥x̃(tDEC)∥

≤ ηµ3

4ζ2
∥x̃(tDEC)∥

≤ ηµ3

4ζ2
ζ∥x(tDEC)− Φ(x(tDEC)∥

≤ ηµ2

4ζ
∥∇L(tDEC)∥

≤ µ2ηρ

≤ λ21(tDEC + C)ηρ .

This is a contradiction. Hence we have tDEC2 ≤ tDEC + C. By the induction hypothesis x(tDEC2) ∈
I1 ∩K3h/4.

Furthermore by induction, for any t satisfying tDEC2 ≤ t ≤ tDEC + 2C, we have that
∥x̃(t)∥ ≤ ηρλ21(t) +O(ηρ2) .

By the induction hypothesis x(t) ∈ I1 ∩K3h/4 and ∥Φ(x(t))− Φ(x(tDEC))∥ = O(ρ2 ln(1/ρ)).

Lemma I.12. Under condition of Theorem I.1, assuming t satisfy that x(t) ∈ I1 ∩K3h/4, then we have that{
Rk(x(t)) ≥ 0 ⇒ Rk(x(t+ 1)) + λ2k(t+ 1)ηρ ≤ (1− ηµ)(Rk(x(t)) + λ2k(t)ηρ),

Rk(x(t)) ≤ 0 ⇒ Rk(x(t+ 1)) ≤ O(ηρ2).

Proof of Lemma I.12. As x(t) ∈ I1, ∥x̃(t)∥2 ≤ ζηρ+O(ηρ2).

As ∥x̃(t)∥2 = O(ρ), we have x(t)x(t+ 1) ⊂ Kh and Φ(x(t))Φ(x(t+ 1)) ⊂ Kr.

We will begin with a quantization technique separating [M ] into disjoint continuous subset S1, ..., Sp such
that ∀i ̸= j,

min
k∈Si,l∈Sj

|λk(t)− λl(t)| ≥ ρ .

By Lemmas I.8 and K.1, we have that for any n ∈ [M ],
|λk(t)− λk(t+ 1)| = O(∥∇2L(Φ(x(t)))−∇2L(Φ(x(t+ 1)))∥)

= O(∥Φ(x(t))− Φ(x(t+ 1))∥)
= O(ηρ2).

This implies
min

k∈Si,l∈Sj

|λk(t+ 1)− λl(t+ 1)| ≥ ρ−O(ηρ2) ≥ 0.99ρ .

Define
P

(t)

S(i) ≜
∑
k∈Si

vn(t)vn(t)
T .

By Theorem K.3, for any k,

∥P (t)
Sk

− P
(t+1)
Sk

∥ ≤ O(
∥∇2L(Φ(x(t)))−∇2L(Φ(x(t+ 1)))∥

ρ
) = O(ηρ) .

By Lemma I.10, we have that

∥x̃(t+ 1)− x̃(t) + ηA(t)x̃(t) + ηρA2(t)
x̃(t)

∥x̃(t)∥
∥2 = O(ηρ2) .

We will write x′(t+ 1) as shorthand of x̃(t)− ηA(t)x̃(t)− ηρA2(t) x̃(t)
∥x̃(t)∥ .

Now we discuss by cases,
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1. If
√∑p

i=j ∥P
(t)

S(i) x̃(t)∥2 > maxk∈Sj
λ2k(t)ηρ > µ2ηρ, by Lemma H.3,√√√√ p∑

i=j

∥P (t)

S(i) x̃(t+ 1)∥2 ≤

√√√√ p∑
i=j

∥P (t)

S(i)x′(t+ 1)∥2 +O(ηρ2)

≤max{
(
1− ηλD(t+ 1)

)
∥

p∑
i=j

P
(t)

S(i) x̃(t)∥ − ηρλD(t+ 1)2
∥
∑p

i=j P
(t)

S(i) x̃(t)∥
∥x̃(t)∥

,

ηmax
k∈Sj

λk(t+ 1)∥
p∑

i=j

P
(t)

S(i) x̃(t)∥}+O(ηρ2)

≤max{
(
1− ηµ

)
∥

p∑
i=j

P
(t)

S(i) x̃(t)∥ − ηρ
µ3

2ζ
, ηζ∥

p∑
i=j

P
(t)

S(i) x̃(t)∥}+O(ηρ2) .

This further implies√√√√ p∑
i=j

∥P (t+1)

S(i) x̃(t+ 1)∥2 ≤

√√√√ p∑
i=j

∥P (t)

S(i) x̃(t+ 1)∥2 +O(ηρ∥x̃(t+ 1)∥)

≤max{
(
1− ηµ

)
∥

p∑
i=j

P
(t)

S(i) x̃(t)∥ − ηρ
µ3

2ζ
, ηζ∥

p∑
i=j

P
(t)

S(i) x̃(t)∥}+O(ηρ2)

≤
(
1− ηµ

)
∥

p∑
i=j

P
(t)

S(i) x̃(t)∥ .

2. If
√∑p

i=j ∥P
(t)

S(i) x̃(t)∥2 ≤ maxk∈Sj λ
2
k(t)ηρ, then by Lemma H.1, we have that

∥
p∑

i=j

P
(t)

S(i)x
′(t+ 1)∥2 ≤ ηρmax

k∈Sj

λ2k(t) .

Hence we have that √√√√ p∑
i=j

∥P (t)

S(i) x̃(t+ 1)∥2 ≤

√√√√ p∑
i=j

∥P (t)

S(i)x′(t+ 1)∥2 +O(ηρ2)

≤ max
k∈Sj

λ2k(t)ηρ+O(ηρ2)

≤ max
k∈Sj

λ2k(t+ 1)ηρ+O(ηρ2) .

This further implies√√√√ p∑
i=j

∥P (t+1)

S(i) x̃(t+ 1)∥2 ≤

√√√√ p∑
i=j

∥P (t)

S(i) x̃(t+ 1)∥2 +O(ηρ∥x̃(t+ 1)∥)

≤ max
k∈Sj

λ2k(t)ηρ+O(ηρ2)

≤ max
k∈Sj

λ2k(t+ 1)ηρ+O(ηρ2) .

Finally taking into quantization error, as all the eigenvalue in the same group at most differ Dρ, for any
i ∈ Sj , we have that −λ2i (t+ 1) + maxk∈Sj

λ2k(t+ 1) ≤ 2Dζρ+D2ρ2.

Hence the previous discussion concludes as

1. If Rk(x(t)) ≥ 0

Rk(x(t+ 1)) + λ2k(t+ 1)ηρ ≤ (1− ηµ)(Rk(x(t)) + λ2k(t).ηρ)
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2. If Rk(x(t)) < 0

Rk(x(t+ 1)) ≤ O(ηρ2).

Lemma I.13. Under condition of Theorem I.1, assuming there exists tDEC2 such that for any t satisfying
tDEC2 ≤ t ≤ tDEC2 + Θ(ln(1/η)/η), we have that x(t) ∈ I1 ∩K3h/4 . Then there exists tINV = tDEC2 +
O(ln(1/η)/η)) such that for any t satisfying tINV ≤ t ≤ tINV +Θ(ln(1/η)/η), we have that

x(t) ∈ (∩k∈[M ]Ik) ∩K7h/8 .

∥Φ(x(t))− Φ(x(tDEC2))∥ = O(ρ2 ln(1/η)) .

Proof of Lemma I.13. The proof is almost identical with Lemma I.11 replacing the first two iterative hypoth-
esis to Lemma I.12 and is omitted here.

I.2 PHASE II (PROOF OF THEOREM I.3)

Proof of Theorem I.3. Let tALIGN = O(ln(1/ρ)/η) be the quantity defined in Lemma I.19.

We will inductively prove the following induction hypothesis P(t) holds for tALIGN ≤ t ≤ T3/ηρ
2 + 1,

x(t) ∈ Kh/2, tALIGN ≤ τ ≤ t

|⟨x(τ)− Φ(x(τ)), v1(x(τ))⟩| = Θ(ηρ), tALIGN ≤ τ ≤ t

max
j∈[2:M ]

|⟨x(τ)− Φ(x(τ)), vj(x(τ))⟩| = O(ηρ2), tALIGN ≤ τ ≤ t

∥Φ(x(τ))−X(ηρ2τ)∥ = O(η ln(1/ρ)), tALIGN ≤ τ ≤ t

P(tALIGN) holds due to Lemma I.19. Now suppose P(t) holds, then x(t+ 1) ∈ Kh. By Lemma I.19 again,
|⟨x(t+1)−Φ(x(t+1)), v1(x(t+1))⟩| = Θ(ηρ) and maxj∈[2:M ] |⟨x(t+1)−Φ(x(t+1)), vj(x(t+1))⟩| =
O(ηρ2) holds.

Now by Lemma I.20,
∥Φ(x(τ + 1))− Φ(x(τ)) + ηρ2P⊥

Φ(x(τ)),Γ∇λ1(t)/2∥ = O(ηρ3 + η2ρ2) , tALIGN ≤ τ ≤ t.

By Corollary L.3, let b(x) = −∂Φ(x)∇λ1(∇2L(x))/2, p = ηρ2 and ϵ = O(η + ρ), it holds that
∥Φ(x(τ))−X(ηρ2τ)∥

=O(∥Φ(x(tALIGN))− Φ(xinit)∥+ T3ηρ
2 + (ρ+ η)T3)

=O(η ln(1/ρ)), tALIGN ≤ τ ≤ t+ 1

This implies ∥x(t+1)−X(ηρ2(t+1))∥2 ≤ ∥x(t+1)−Φ(x(t+1))∥2+∥Φ(x(t+1))−X(ηρ2(t+1))∥2 =

Õ(η ln(1/ρ)) < h/2. Hence x(t + 1) ∈ Kh/2. Combining with P(t) holds, we have that P(t + 1) holds.
The induction is complete.

Now P(⌈T3/ηρ2⌉) is equivalent to our theorem.

I.2.1 ALIGNMENT TO TOP EIGENVECTOR

We will continue to use the notations introduced in Appendix I.1.3.

We further define

S = {t|∥x̃(t)∥ ≤ ηλ21
2− ηλ1

ρ+O(ηρ2)} ,

T = {t|∥x̃(t)∥ ≤ 1

2

(
ηλ21

2− ηλ1
+

ηλ22
2− ηλ2

)
ρ} ,

U = {t|Ω(ρ2) ≤ ∥x̃1(t)∥ ≤ 1

2

(
ηλ21

2− ηλ1
+

ηλ22
2− ηλ2

)
ρ} .

Here the constant in O depends on the constant in Ij and will be made clear in Lemma I.16.

For s ∈ S, define next(s) as the smallest integer greater than s in S.
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Lemma I.14. Under the condition of Theorem I.3, there exist constants C1, C2 < 1 independent of η and ρ,
if ∥x̃1(t)∥2 ≤ 1

2

(
ηλ1(t)

2

2−ηλ1(t)
+ ηλ2(t)

2

2−ηλ2(t)

)
ρ and x(t) ∈ (∩j∈[M ]Ij) ∩K7h/8, then

∥x̃(t)∥2 ≥ C1
ηλ21

2− ηλ1
ρ⇒ ∥x̃(t+ 1)∥2 ≤ C2

ηλ21
2− ηλ1

ρ

Proof of Lemma I.14. By Lemma I.10, if we write x′(t+1) as shorthand of x̃(t)−ηA(t)x̃(t)−ηρA2(t) x̃(t)
∥x̃(t)∥ ,

then ∥x̃(t+ 1)− x′(t+ 1)∥ = O(ηρ2).

Define Iquadj as {x|Rj(x) ≤ 0}. Then we can find a surrogate xsur(t) such that xsur(t) ∈ (∩j∈[M ]Iquadj )∩Kh

and ∥xsur(t) − x̃(t)∥2 = O(ηρ2). We will write x′sur(t + 1) as shorthand of xsur(t) − ηA(t)xsur(t) −
ηρA2(t) xsur(t)

∥xsur(t)∥ .

Let

h(t) ≜ (2− t)

√
1

2t

(
(ζ −∆)2

ζ2
+ 1

)
+ (1− 1

2t

(
(ζ −∆)2

ζ2
+ 1

)
)max{ζ

2 − µ2

ζ2
,
(ζ −∆)2

ζ2
}.

As h(1) < 1, we can choose C1 < 1, such that h(C1) < 1.

We can further choose C2 = max{(h(C1) + 1)/2, 1− µ2

3ζ2 } < 1.

We will discuss by cases

1. If

∥x̃(t)∥2 ≥ ηλ41
λ21(1− ηλD) + (λ21 − λ2D)(1− ηλ1)

ρ

Then
∥x̃(t)∥2
ηλ2

1

2−ηλ1
ρ
=

λ21(2− ηλ1)

λ21(1− ηλD) + (λ21 − λ2D)(1− ηλ1)

=
λ21(2− ηλ1)

λ21(2− ηλ1 − ηλD)− λ2D(1− ηλ1)

≥ 1

1− λ2
D

λ2
1

1−ηλ1

2−ηλ1

≥ 1 +
λ2D
λ21

1− ηλ1
2− ηλ1

≥ 1 +
µ2

3ζ2
.

In such case we have

∥ x̃(t)

∥x̃(t)∥
− xsur(t)

∥xsur(t)∥
∥ = O(ρ) .

Then we have ∥x′sur(t+ 1)− x′(t+ 1)∥ = O(ηρ2). By Lemma H.5, we have that
∥x̃(t+ 1)∥2 ≤ ∥x̃(t+ 1)− x′(t+ 1)∥2 + ∥x̃(t+ 1)− x′sur(t+ 1)∥+ ∥x′sur(t+ 1)∥

≤ max(
ηλ21

2− ηλ1
ρ− ηρ

λ4D
2λ21

, ηρλ21 − (1− ηλ1)∥x̃(t)∥2) +O(ηρ2)

≤ max(1− λ4D(2− ηλ1)

2λ41
, (2− ηλ1)− (1− ηλ1)(1 +

µ2

3ζ2
))

ηλ21
2− ηλ1

ρ

≤ (1− µ2

3ζ2
)

ηλ21
2− ηλ1

ρ ≤ C2
ηλ21

2− ηλ1
ρ .

2. If

∥x̃(t)∥2 ≤ ηλ41
λ21(1− ηλD) + (λ21 − λ2D)(1− ηλ1)

ρ ≤ ηλ21
1− ηλ1

ρ.

Then we have
| − ηρλ2D + (1− ηλD)∥x̃(t)∥2|
ηρλ21 − (1− ηλ1)∥x̃(t)∥2

≤ λ21 − λ2D
λ21

.

|ηρλ22 − (1− ηλ2)∥x̃(t)∥2|
ηρλ21 − (1− ηλ1)∥x̃(t)∥2

≤ λ22
λ21
.
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By Lemma H.8,
∥x′(t+ 1)∥2

≤(ηρλ21 − (1− ηλ1)∥x̃(t)∥2)

√
∥x̃21(t)∥2
∥x̃(t)∥22

+ (1− ∥x̃21(t)∥2
∥x̃(t)∥22

)max{
λ21 − λ2D
λ21

,
λ22
λ21

}

≤(ηρλ21 − (1− ηλ1)∥x̃(t)∥2)

√
∥x̃21(t)∥2
∥x̃(t)∥22

+ (1− ∥x̃21(t)∥2
∥x̃(t)∥22

)max{ζ
2 − µ2

ζ2
,
(ζ −∆)2

ζ2
} .

As

∥x̃1(t)∥2 ≤ 1

2

(
ηλ21

2− ηλ1
+

ηλ22
2− ηλ2

)
ρ .

For ∥x̃(t)∥2 ≥ ηλ2
1

2−ηλ1
ρC1,

∥x̃1(t)∥2
∥x̃(t)∥2

≤ 1

2

(
λ22(2− ηλ1)

λ21(2− ηλ2)
+ 1

)
/C1 ≤ 1

2

(
λ22
λ21

+ 1

)
/C1 ≤ 1

2C1

(
(ζ −∆)2

ζ2
+ 1

)
.

After plugging in, we have that

∥x̃(t+ 1)∥2 ≤ ∥x′(t+ 1)∥2 +O(ηρ2) ≤ h(C1)
ηλ21

2− ηλ1
ρ+O(ηρ2) ≤ C2

ηλ21
2− ηλ1

ρ.

This concludes the proof.

Lemma I.15. Under the condition of Theorem I.3, for any t ≥ 0 satisfying that (1) x(t) ∈ (∩j∈[M ]Ij)∩Kh,
(2) t ̸∈ S, it holds that t+ 1 ∈ S.

Moreover, if |x̃1(t)| ≥ Ω(ρ2) and ∥x̃(t)∥2 ≤ ηρλ21 − Ω(ρ2), then it holds that ∥x̃1(t+ 1)∥ ≥ Ω(ρ2).

Proof of Lemma I.15. As t ̸∈ S, it holds that

∥x̃(t)∥ ≥ ηλ21
2− ηλ1

ρ+Θ(ηρ2).

By Lemma I.10, if we write x′(t + 1) as shorthand of x̃(t) − ηA(t + 1)x̃(t) − ηρA2(t) x̃(t)
∥x̃(t)∥ , then ∥x̃(t +

1)− x′(t+ 1)∥ = O(ηρ2).

Define Iquadj as {x|Rj(x) ≤ 0}. Then we can find a surrogate xsur(t) such that xsur(t) ∈ (∩j∈[M ]Iquadj ) ∩
Kh, and ∥xsur(t) − x̃(t)∥2 = O(ηρ2). We will write x′sur(t + 1) as shorthand of xsur(t) − ηA(t)xsur(t) −
ηρA2(t) xsur(t)

∥xsur(t)∥ .

As ∥x̃(t)∥ = Ω(ηρ), we have

∥ xsur(t)

∥xsur(t)∥
− x̃(t)

∥x̃(t)∥
∥2 = O(ρ) .

Hence we have that ∥x̃(t+1)−x′sur(t+1)∥ = ∥x̃(t+1)−x′(t+1)∥+∥x′(t+1)−x′sur(t+1)∥ = O(ηρ2)

Notice we have ∥xsur(t)∥2 ≥ ηλ2
1

2−ηλ1
ρ for properly chosen function in the definition S, hence, by Lemma H.5

∥x′sur(t+ 1)∥2 ≤ ηλ21
2− ηλ1

ρ.

This further implies t+ 1 ∈ S.

We also have

|⟨x′sur(t+ 1), v1⟩| = |⟨xsur(t), v1⟩ − ηλ1⟨xsur(t), v1⟩ − ηρλ21
⟨xsur(t), v1⟩
∥xsur(t)∥

|

= |⟨xsur(t), v1⟩|(ηλ1 +
ηρλ21

∥xsur(t)∥
− 1)

We will discuss by cases. Let C satisfies that C =
√

1
2 (λ

4
2 + λ41).
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1. If ∥xsur(t)∥ ≤ Cηρ, then as we have λ2
1

C ≥
√
2ζ2√

ζ2+(ζ−∆)2)
.

|⟨x′sur(t+ 1), v1⟩| ≥ |⟨xsur(t), v1⟩|(
λ21
C

− 1) ≥ Ω(ρ2).

2. If ∥xsur(t)∥ ≥ Cηρ, then as x(t) ∈ I2, we have that |⟨xsur(t), v1⟩| ≥ Ω(ηρ). Then as ∥xsur(t)∥ ≤
∥x̃(t)∥2 +O(ηρ2) ≤ λ21ηρ− Ω(ρ2), we have that

|⟨x′sur(t+ 1), v1⟩| ≥ |⟨xsur(t), v1⟩|(
λ21ηρ

λ21ηρ− Ω(ρ2)
− 1) ≥ Ω(ρ2).

By previous approximation results, we have that ∥x̃1(t+ 1)∥ ≥ Ω(ρ2).

Lemma I.16. Under the condition of Theorem I.3, for any t ≥ 0 satisfying that (1) x(t) ∈ (∩j∈[M ]Ij) ∩
K15h/16, (2) t ∈ S, it holds that next(t) is well defined and next(t) ≤ t+ 2.

Proof of Lemma I.16. Following similar argument in Lemma H.1, we have that x(t+1) ∈ (∩j∈[M ]Ij)∩Kh.

If t+ 1 ̸∈ S, then we can apply Lemma I.15 to show that t+ 2 ∈ S.

Lemma I.17. Under the condition of Theorem I.3, there exists constant C > 0 independent of η and ρ,
assuming that (1) x(t) ∈ (∩j∈[M ]Ij) ∩K7h/8, (2) t ∈ S, (3) Ω(ρ2) ≤ ∥x̃1(t)∥, then

∥x̃1(next(t))∥ ≥ ∥x̃1(t)∥ −O(ηρ2) .

Proof of Lemma I.17. This is by standard approximation as in previous proof and Lemma H.9.

Lemma I.18. Under the condition of Theorem I.3, there exists constant C > 0 independent of η and ρ,
assuming that (1) x(t) ∈ (∩j∈[M ]Ij) ∩ K7h/8, (2) t ∈ S (3) Ω(ρ2) ≤ ∥x̃1(t)∥ ≤ 1

2

(
ηλ2

1

2−ηλ1
+

ηλ2
2

2−ηλ2

)
ρ,

then

∥x̃1(next(t))∥ ≥ min{(1 + Cη)∥x̃1(t)∥,
1

2

(
ηλ21

2− ηλ1
+

ηλ22
2− ηλ2

)
ρ} ,

or ∥x̃1(next(next(t)))∥ ≥ min{(1 + Cη)∥x̃1(t)∥,
1

2

(
ηλ21

2− ηλ1
+

ηλ22
2− ηλ2

)
ρ}.

Proof of Lemma I.18. In this proof, we will sometime drop the t in λk(t) or A(t). Applying Lemma I.16, we
have next(t) and next(next(t)) are well-defined. We can suppose ∥x̃1(next(t))∥2 ≤ 1

2

(
ηλ2

1

2−ηλ1
+

ηλ2
2

2−ηλ2

)
,

else the result holds already.

By assumption, we have ∥x̃1(t)∥ ≥ Ω(ρ2).

Using Lemma I.10,

∥x̃(t+ 1)− x̃(t) + ηAx̃(t) + ηρA2 x̃(t)

∥x̃(t)∥
∥ ≤ O(ηρ2) .

Denote

x′(t+ 1) = x̃(t) + ηAx̃(t) + ηρA2 x̃(t)

∥x̃(t)∥
,

as the one step update of SAM on the quadratic approximation of the general loss.

Now using Lemma I.14 and the induction hypothesis, we have for some C1 and C2 smaller than 1, ∥x̃(t)∥ ≥
C1

ηλ2
1

2−ηλ1
ρ⇒ ∥x′(t+ 1)∥ ≤ C2

ηλ2
1

2−ηλ1
ρ.

We will discuss by cases,

1 If ∥x̃(t)∥ ≤ C1
ηλ2

1

2−ηλ1
ρ

If next(t) = t+ 1, then

∥x′1(t+ 1)∥
∥x̃1(t)∥

=
ηρλ21 − (1− ηλ1)∥x̃(t)∥

∥x̃(t)∥
≥ (2− C1)− ηλ1 + C1ηλ1

C1
≥ 1

C1
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As we have x̃1(t) = Ω(ρ2), we have x′1(t+ 1) = Ω(ρ2), then as ∥x̃1(t+ 1)− x′1(t+ 1)∥ = O(ηρ2), this
implies

∥x̃1(t+ 1)∥ ≥ ∥x′1(t+ 1)∥ −O(ηρ2) ≥ 1

C1
∥x̃1(t+ 1)∥ −O(ηρ2) ≥ 1

2
(
1

C1
+ 1)∥x̃1(t)∥.

If next(t) = t+2, define x′(t+2) = x′(t+1)− ηAx′(t+1)− ηρA2 x′(t+1)
∥x′(t+1)∥ , as ∥x̃1(t+1)∥ = Ω(ηρ),

by Lemma I.9, we have ∥x′(t+ 2)− x̃(t+ 2)∥ = O(ηρ2).

∥x′(t+ 2)∥
∥x̃1(t)∥

=
(ηρλ21 − (1− ηλ1)∥x̃(t)∥)(ηρλ21 − (1− ηλ1)∥x′(t+ 1)∥)

∥x̃(t)∥∥x′(t+ 1)∥

≥
(ηρλ21 − (1− ηλ1)∥x̃(t)∥)

(
ηρλ21 − (1− ηλ1)

(
ηρλ21 − (1− ηλ1)∥x̃(t)∥

))
∥x̃(t)∥ (ηρλ21 − (1− ηλ1)∥x̃(t)∥)

=
ηρλ21 − (1− ηλ1)

(
ηρλ21 − (1− ηλ1)∥x̃(t)∥

)
∥x̃(t)∥

≥ (1− ηλ1)
2 +

ηλ1
C1

(2− ηλ1) ≥ 1 + 4Cη.

Combining with |x̃1(t)| ≥ Ω(ρ2), we have that

∥x̃1(next(t))∥ ≥ (1 + Cη)∥x̃1(t)∥

2 Case 2 ∥x̃(t)∥ > C1
ηλ2

1

2−ηλ1
ρ, then ∥x̃(t+ 1)∥ ≤ C2

ηλ2
1

2−ηλ1
ρ, next(t) = t+ 1

By Lemma I.17, ∥x̃1(t+ 1)∥ ≥ (1− Cη)∥x̃1(t)∥.
As ∥x̃(next(t))∥ ≤ C2

ηλ2
1

2−ηλ1
, similar to the first case,

∥x̃1(next(next(t)))∥ ≥ (1 + 4Cη)∥x̃1(next(t))∥ ≥ (1 + Cη)∥x̃1(t)∥.

In conclusion, if ∥x̃1(t)∥ ≤ 1
2

(
ηλ2

1

2−ηλ1
+

ηλ2
2

2−ηλ2

)
ρ, we would have there exists C > 0

∥x̃1(next(t))∥ ≥ (1 + Cη)∥x̃1(t)∥ or ∥x̃1(next(next(t)))∥ ≥ (1 + Cη)∥x̃1(t)∥.

Lemma I.19. Under the condition of Theorem I.3, there exists constant T2 > 0 independent of η and ρ, we
would have that when t = tALIGN = ⌈T2 ln(1/ρ)/η⌉,

|⟨x(t)− Φ(x(t)), v1(x(t))⟩| = Θ(ηρ) ,

max
j∈[2:M ]

|⟨x(t)− Φ(x(t)), vj(x(t))⟩| = O(ηρ2) .

Further if x(t′) ∈ Kh holds for t′ = 0, 1, ..., tLOCAL, then for t satisfying tALIGN ≤ t ≤ tLOCAL

|⟨x(t)− Φ(x(t)), v1(x(t))⟩| = Θ(ηρ) ,

max
j∈[2:M ]

|⟨x(t)− Φ(x(t)), vj(x(t))⟩| = O(ηρ2) .

Proof of Lemma I.19. Let C be the constant defined in Lemma I.18.

By Lemma I.15, we can suppose WLOG ∥x̃1(0)∥ ≥ ρ2 and 0 ∈ S. Define

C1 ≜ ⌈log1+Cη(
ηλ21

2− ηλ1
/ρ)⌉

C2 ≜ C1 + ⌈ln
max{1− µ2

2ζ2
,1− ∆2

4ζ2
}
ρ2

ζ2
⌉ = O(log(1/ρ)/η).

We will choose tALIGNMID as the minimal t ∈ S, such that ∥x̃1(t)∥ ≥ 1
2

(
ηλ2

1

2−ηλ1
+

ηλ2
2

2−ηλ2

)
ρ.
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Then by induction and Lemmas I.17 and I.18, we easily have that for t ≤ min{C2 + 1, tALIGNMID} and
t ∈ S, we have that

x(t) ∈ K7h/8 ∩ (∩jIj) ,

∥x̃1(t)∥ ≥ min{(1 + Cη)t/4∥x̃1(0)∥,
1

2

(
ηλ21

2− ηλ1
+

ηλ22
2− ηλ2

)
ρ}

or ∥x̃1(next(t))∥ ≥ min{(1 + Cη)t/4∥x̃1(0)∥,
1

2

(
ηλ21

2− ηλ1
+

ηλ22
2− ηλ2

)
ρ} .

The detailed induction is analogous to previous inductive argument and is omitted. If tALIGNMID ≥ C1, then
we have for the minimal t ≥ C1 and t ∈ S

∥x̃1(t)∥ ≥ ηλ21
2− ηλ1

ρ .

This is a contradiction and we have that tALIGNMID ≤ C1.

By Lemma I.17, ∥x̃1(next(t))∥ ≥ ∥x̃1(t)∥ − O(ηρ2) for ∥x̃1(t)∥ ≥ 1
2

(
ηλ2

1

2−ηλ1
+

ηλ2
2

2−ηλ2

)
ρ and t ∈ S and

then by Lemma I.18,

∥x̃(t)∥ ≥ ∥x̃1(t))∥ ≥ 1

4

(
ηλ21

2− ηλ1
+ 3

ηλ22
2− ηλ2

)
ρ.

for C2 ≥ t ≥ tALIGNMID.

We will then show that for t ≥ tALIGNMID + C1 iteration, ∥P (2:D)x̄(t+ 1)∥ ≤ O(ηρ2).

For C1 ≥ t ≥ tALIGNMID,

1− ηλ2 − ηρ
λ22

∥x̃(t)∥
≤ 1− ηλD − ηρ

λ2D
∥x̃(t)∥

≤ 1− λ2D
2λ21

≤ 1− µ2

ζ2
.

Notice that,

1− ηλ2 − ηρ
λ22

∥x̃(t)∥
≥ 1− ηλ2 − ηρ

λ22
∥x̃(t)∥

≥1− ηλ2 −
4λ22

λ21 + 3λ22
(2− ηλ2) ≥ −1 +

2(λ21 − λ22)

λ21 + 3λ22
≥ −1 +

∆2

2ζ2

Hence,

∥P (2:D)(t)x′(t+ 1)∥2 ≤ max{1− µ2

ζ2
, 1− ∆2

2ζ2
}∥P (2:D)(t)x̃(t)∥2

Now by Lemma K.1 and Theorem K.3,
∥P (2:D)(t)− P (2:D)(t+ 1)∥ ≤ O(ηρ2)

∥v1(t)− v1(t+ 1)∥ ≤ O(ηρ2)

∥λ1(t)− λ1(t+ 1)∥ ≤ O(ηρ2)

By Lemma I.10, we have that ∥x′(t+ 1)− x̃(t+ 1)∥ = O(ηρ2).

Combining the above, it holds that

∥P (2:D)(t+ 1)x̃(t+ 1)∥ ≤ max{1− µ2

2ζ2
, 1− ∆2

4ζ2
}∥P (2:D)(t)x̃(t)∥+O(ηρ2)

Hence when t = tALIGN = tALIGNMID + C2,
∥x̃(t)∥ ≥ ∥x̃1(t)∥ ≥ Ω(ηρ) ,

∥P (2:D)(t)x̃(t)∥ ≤ O(ηρ2) .

By x(t) ∈ I1, we easily have ∥x̃1(t)∥ = O(ηρ). Hence we conclude that
∥x̃1(t)∥ = Θ(ηρ) ,

∥P (2:D)(t)x̃(t)∥ = O(ηρ2) .

The second claim is just another induction similar to previous steps and is omitted as well.
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I.2.2 TRACKING RIEMANNIAN GRADIENT FLOW

We are now ready to show that Φ(x(t)) will track the solution of Equation 7. The main principal of this proof
has been introduced in Section 4.3.

Lemma I.20. Under the condition of Theorem I.3, for any t satisfying that

x(t) ∈ Kh,

∥x̃1(t)∥ = Θ(ηρ),

∥P (2:D)(t)x̃(t)∥ = O(ηρ2) ,

it holds that

∥Φ(x(t+ 1))− Φ(x(t)) + ηρ2P⊥
Φ(x(t)),Γ∇λ1(t)/2∥ ≤ O(ηρ3 + η2ρ2) .

Proof of Lemma I.20. To begin with, we can approximate Φ(x(t + 1)) − Φ(x(t)) by its first order Taylor
Expansion, by Lemma F.7,

∥Φ(x(t+ 1))− Φ(x(t))− ∂Φ(x(t))(x(t+ 1)− x(t))∥ = O(∥x(t+ 1)− x(t)∥2) = O(η2ρ2) .

Then by plugging in the update rule and another Taylor Expansion,

∥∂Φ(x(t))(x(t+ 1)− x(t))−ηρ∂Φ(x(t))∇2L (x)
∇L (x)

∥∇L (x) ∥

−ηρ2∂Φ(x(t))∂∇2L (x)[
∇L (x)

∥∇L (x) ∥
,

∇L (x)

∥∇L (x) ∥
]/2∥2 = O(ηρ3).

Using Lemma F.3, we have

∥ηρ∂Φ(x(t))∇2L (x)
∇L (x)

∥∇L (x) ∥
∥ = ηρ∥∇L (x) ∥∥∂2Φ(x(t))

[
∇L (x)

∥∇L (x) ∥
,

∇L (x)

∥∇L (x) ∥

]
∥ = O(ηρ∥∇L (x) ∥) .

Putting together, we have that

∥Φ(x(t+ 1))− Φ(x(t))− ηρ2∂Φ(x(t))∂∇2L (Φ(x(t)))[
∇L (x)

∥∇L (x) ∥
,

∇L (x)

∥∇L (x) ∥
]/2∥

≤O(η2ρ2 + ηρ3) +O(ηρ∥∇L (x) ∥) .

As we have ∥x̃(t)∥ = Θ(ηρ), hence by Lemmas F.2 and I.7,

∥Φ(x(t+ 1))− Φ(x(t))− ηρ2∂Φ(x(t))∂∇2L (Φ(x(t)))[
∇L (x(t))

∥∇L (x(t)) ∥
,

∇L (x(t))

∥∇L (x(t)) ∥
]/2∥

≤O(ηρ3 + η2ρ2)

Finally, we have that

∥ηρ2∂Φ(x(t))∂∇2L (Φ(x(t)))[
∇L (x(t))

∥∇L (x(t)) ∥
,

∇L (x(t))

∥∇L (x(t)) ∥
]/2

− ηρ2∂Φ(x(t))∂∇2L (Φ(x(t)))[v1(t), v1(t)]/2∥ ≤ O(ηρ3)

as the angle between ∇L(x)
∥∇L(x)∥ and v1(t) is O(ρ).

By Lemma F.3, it holds that

∂Φ(x(t))∂∇2L (Φ(x(t)))[v1(t), v1(t)] = P⊥
X,Γ∇(λ1(t))

Putting together we have that,

∥Φ(x(t+ 1))− Φ(x(t)) + ηρ2P⊥
X,Γ∇λ1(t)/2∥ ≤ O(ηρ3 + η2ρ2).

It completes the proof.
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I.3 PROOF OF THEOREM 4.5

Proof of Theorem 4.5. By Theorem I.1, there exists constant T1 independent of η, ρ, such that for any T ′
1 >

T1 independent of η, ρ, it holds that

max
T1 ln(1/ηρ)≤ηt≤T ′

1 ln(1/ηρ)
max
j∈[M ]

Rj(x(t)) = O(ηρ2).

max
T1 ln(1/ηρ)≤ηt≤T ′

1 ln(1/ηρ)
∥Φ(x(t))− Φ(xinit)∥ = O((η + ρ) ln(1/ηρ)).

By Assumption I.2, there exists step T1 ln(1/ηρ) ≤ ηtPHASE ≤ T ′
1 ln(1/ηρ), such that

max
j∈[M ]

Rj(x(tPHASE)) = O(ηρ2),

∥Φ(x(tPHASE))− Φ(xinit)∥ = O((η + ρ) ln(1/ηρ)),

|⟨x(tPHASE)− Φ(x(tPHASE)), v1(x(tPHASE))⟩| ≥ Ω(ρ2).

∥x(tPHASE)∥2 ≤ λ1(tPHASE)ηρ− Ω(ρ2).

Hence by Theorem I.3, if we consider a translated process with x′(t) = x(t + tPHASE), we would have for
any T3 such that the solution X of Equation 7 is well defined, we have that for t = ⌈ T3

ηρ2 ⌉

∥Φ(x′(t))−X(ηρ2t)∥2 = O(η ln(1/ρ)) .

This implies for t satisfying X(ηρ2(t− tPHASE)) is well-defined,

∥Φ(x(t))−X(ηρ2(t− tPHASE))∥2 = O(η ln(1/ρ)).

Finally, as

∥X(ηρ2(t− tPHASE))−X(ηρ2t)∥2 = O(ηρ2tPHASE) = O(ρ ln(1/ηρ)) = O(η ln(1/ρ)).

We have that

∥Φ(x(t))−X(ηρ2t)∥2 = O(η ln(1/ρ)).

The alignment result is a direct consequence of Theorem I.3.

I.4 PROOFS OF COROLLARIES 4.6 AND 4.7

Proof of Corollary 4.6. We will do a Taylor expansion on LMax
ρ . By Theorem I.1 and I.3, we have

∥x(⌈T3/ηρ2⌉)) − X(T3)∥ = Õ(η + ρ) and ∥x(⌈T3/ηρ2⌉)) − Φ(x(⌈T3/ηρ2⌉)))∥2 = O(ηρ). For conve-
nience, we denote x(⌈T3/ηρ2⌉) by x.

RMax
ρ (x) = max

∥v∥2≤1
ρvT∇L(x) + ρ2vT∇2L(x)v/2 +O(ρ3)

Since max∥v∥2≤1 ∥vT∇L(x)∥2 = O(∥x− Φ(x)∥2) = O(ηρ), it holds that

RMax
ρ (x) = ρ2 max

∥v∥2≤1
vT∇2L(x)v/2 +O(η2ρ2 + ρ3)

= ρ2λ1(∇2L(x)) +O(η2ρ2 + ρ3)

= ρ2λ1(∇2L(X(T3))) + Õ(ηρ2),

which completes the proof.

Proof of Corollary 4.7. We choose T such that X(Tϵ) is sufficiently close to X(∞), such that λ1(X(Tϵ)) ≤
λ1(X(∞)) + ϵ/2. By Corollary 4.6 (let T3 = Tϵ), we have that for all ρ, η such that η ln(1/ρ) and
ρ/η are sufficiently small, ∥RMax

ρ (x(⌈Tϵ/(ηρ2)⌉)) − ρ2λ1(X(Tϵ))/2∥ ≤ õ(1). This further implies
∥RMax

ρ (x(⌈Tϵ/(ηρ2)⌉))−ρ2λ1(X(∞))/2∥ ≤ ϵρ2+o(1). We also have L(x(⌈Tϵ/(ηρ2)⌉))−infx∈U ′ L(x) =
o(1). Then we can leverage Theorem G.6 and Theorem G.3 to get the desired bound.
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I.5 DERIVATIONS FOR SECTION 4.3

We will first show our derivation of Equation 9.

In Phase II, x(t) is O(ηρ)-close to the manifold Γ and therefore it can be shown that ∥x(t) − Φ(x(t))∥2 =
O(ηρ) holds for every step in Phase II. This also implies that ∥x(t+ 1)− x(t)∥2 = O(ηρ) (See Lemma F.7).
Using Taylor expansion around x(t), we have that

Φ(x(t+ 1))− Φ(x(t)) =∂Φ(x(t))(x(t+ 1)− x(t)) +O(∥x(t+ 1)− x(t)∥22)

=− η∂Φ(x(t))∇L
(
x(t) + ρ

∇L(x(t))
∥∇L(x(t))∥2

)
+O(η2ρ2) . (31)

For any x ∈ RD, applying Taylor expansion on ∇L
(
x+ ρ ∇L(x)

∥∇L(x)∥2

)
around x, we have that

∇L
(
x+ ρ

∇L(x)
∥∇L(x)∥2

)
=∇L(x) + ρ∇2L(x)

∇L(x)
∥∇L(x)∥2

+
ρ2

2
∂2(∇L)(x)

[ ∇L(x)
∥∇L(x)∥2

,
∇L(x)

∥∇L(x)∥2

]
+O(ρ3). (32)

Using Equation 32 with x = x(t), plugging in Equation 31 and then rearranging, we have that

Φ(x(t+ 1))− Φ(x(t)) +
ηρ2

2
∂Φ(x(t))∂2(∇L)(x(t))

[ ∇L(x(t))
∥∇L(x(t))∥2

,
∇L(x(t))

∥∇L(x(t))∥2

]
=− η∂Φ(x(t))∇L(x(t))− ηρ∂Φ(x(t))∇2L(x(t))

∇L(x(t))
∥∇L(x(t))∥2

+O(η2ρ2 + ηρ3) .

By Lemma 3.1, we have that ∂Φ(x(t))∇L(x(t)) = 0. Furthermore, by Lemma F.5, we have that
∂Φ(Φ(x(t)))∇2L(Φ(x(t))) = 0. This implies that

∂Φ(x(t))∇2L(x(t)) = ∂Φ(Φ(x(t)))∇2L(Φ(x(t))) +O(∥x(t)− Φ(x(t))∥2) = O(ηρ) .

Thus we conclude that

Φ(x(t+ 1))− Φ(x(t)) = −ηρ
2

2
∂Φ(x(t))∂2(∇L)(x(t))

[ ∇L(x(t))
∥∇L(x(t))∥2

,
∇L(x(t))

∥∇L(x(t))∥2

]
+O(η2ρ2 + ηρ3) . (9)

We will then show our derivation of Equation 10

Φ(x(t+ 1))− Φ(x(t))

=− ηρ2

2
∂Φ(x(t))∂2(∇L)(x(t))

[ ∇L(x(t))
∥∇L(x(t))∥2

,
∇L(x(t))

∥∇L(x(t))∥2

]
+O(η2ρ2 + ηρ3)

=− ηρ2

2
∂Φ(x(t))∂2(∇L)(x(t))

[
v1(∇2L(x(t))), v1(∇2L(x(t)))

]
+O(η2ρ2 + ηρ3)

=− ηρ2

2
∂Φ(x(t))∇λ1(∇2L(x(t))) +O(η2ρ2 + ηρ3)

=− ηρ2

2
∂Φ(Φ(x(t)))∇λ1(∇2L(Φ(x(t)))) +O(η2ρ2 + ηρ3), (10)

where the second to last step we use the property of the derivative of eigenvalue (Lemma K.7) and the last step
is due to Taylor expansion of ∂Φ(·)∇λ1(∇2L(·)) at Φ(x(t)) and the fact that ∥Φ(x(t))− x(t)∥ = O(ηρ).

We will finally show our derivation of Equation 12.

The update of the gradient (Equation 12) can be viewed as an O(ηρ2)-perturbed version of the update of the
iterate in the quadratic case. Note O(ηρ2) is a higher order term comparing to the other two terms, which are
on the order of Θ(η2ρ) and Θ(ηρ) respectively. By controlling the error terms, the mechanism and analysis
of the implicit alignment between Hessian and gradient still apply to the general case. We can also show that
once this alignment happens, it will be kept until the end of our analysis, which is Θ(η−1ρ−2) steps.
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Finally, we derive Equation 12 by Taylor expansion. We first apply Taylor expansion (Equation 32) on the
update rule of the iterate of SAM (Equation 3):

x(t+ 1) = x(t)− η∇L(x(t))− ηρ∇2L(x(t))
∇L(x(t))

∥∇L(x(t))∥2
+O(ηρ2). (33)

Since phase II happens in an O(ηρ)-neighborhood of manifold Γ, we have ∥x(t+ 1)− x(t)∥2 = O(ηρ).
Then by Equation 33 and Taylor expansion on ∇L(x(t+ 1)) at x(t), we have that

∇L(x(t+ 1))=∇L(x(t))−∇2L(x(t))
(
x(t+ 1)− x(t)

)
+O(η2ρ2)

=∇L(x(t))−η∇2L(x(t))
(
∇L(x(t)) + ρ∇2L(x(t))

∇L(x(t))
∥∇L(x(t)))∥2

)
+O(ηρ2) . (34)

J ANALYSIS FOR 1-SAM (PROOF OF THEOREM 5.4)

The goal of this section is to prove the following theorem.

Theorem 5.4. Let {x(t)} be the iterates of 1-SAM (Equation 13) and x(0) = xinit ∈ U , then under Set-
ting 5.1, for almost every xinit, for all η and ρ such that (η+ρ) ln(1/ηρ) is sufficiently small, with probability
at least 1 − O(ρ) over the randomness of the algorithm, the dynamics of 1-SAM (Equation 13) can be split
into two phases:

• Phase I (Theorem J.1): 1-SAM follows Gradient Flow with respect to L until entering an Õ(ηρ) neighbor-
hood of the manifold Γ in O(ln(1/ρη)/η) steps;

• Phase II (Theorem J.2): 1-SAM tracks the solution of Equation 14, X , the Riemannian gradient flow with
respect to Tr(∇2L(·)) in an Õ(ηρ) neighborhood of manifold Γ. Quantitatively, the approximation error
between the iterates x and the corresponding limiting flow X is Õ(η1/2 + ρ), that is,

∥x(⌈T3/(ηρ2)⌉)−X(T3)∥2 = Õ(η1/2 + ρ).

As mentioned in our proof setups in Appendix E, we will prove Theorem 5.4 under a more general (and
weaker) condition, namely Condition E.1 and Assumption 3.2. The only usage of Setting 5.1 in the proof is
Theorems 5.2 and E.2, which are restated below.

Theorem 5.2. Loss L, set Γ and integer M defined in Setting 5.1 satisfy Assumption 3.2.

Theorem E.2. Setting 5.1 implies Condition E.1.

Condition E.1. Total loss L = 1
M

∑M
k=1 Lk. For each k ∈ [M ], Lk is C4, and there exists a (D − 1)-

dimensional C2-submanifold of RD, Γk, where for all x ∈ Γk, x is a global minimizer of Lk, Lk(x) = 0 and
rank(∇2Lk(x)) = 1. Moreover, Γ = ∩M

k=1Γk for Γ defined in Assumption 3.2.

Analogous to the full-batch setting, we will split the trajectory into two phases.

Theorem J.1 (Phase I). Let {x(t)} be the iterates defined by SAM (Equation 13) and x(0) = xinit ∈ U ,
then under Assumption 3.2 and E.1, for almost every xinit, there exists a constant T1, it holds for sufficiently
small (η + ρ) ln 1/ηρ, we have with probability 1−O(ρ), there exists t ≤ T1 ln(1/ηρ)/η, such that ∥x(t)−
Φ(x(t))∥2 = O(ηρ) and ∥Φ(xinit)− Φ(x(t))∥2 = Õ(η1/2 + ρ).

Theorem J.1 shows that SAM will converges to an Õ(ηρ) neighborhood of the manifold without getting far
away from Φ(x(0)), where we can perform a local analysis on the trajectory of Φ(x(t)).

Under Assumptions 3.2 and E.1, we have Tr(∇2Lk(x)) = λ1(∇2Lk(x)) is differentiable for x ∈ Γi. Hence
Tr(∇2L(x)) =

∑M
k=1 Tr(∇2Lk(x)) is also differentiable and we have (14) is well defined for some finite

time T2.

Theorem J.2 (Phase II). Let {x(t)} be the iterates defined by SAM (Equation 13) under Assumptions 3.2
and E.1, assuming (1) ∥x(0)−Φ(x(0))∥2 = O(ηρ) and (2) ∥Φ(xinit)−Φ(x(0))∥2 = Õ(η1/2 + ρ), then for
almost every x(0), for any T2 > 0 till which solution of (14)X exists, for sufficiently small (η+ρ) ln 1/(ηρ),
we have with probability 1−O(ηρ), for all ηρ2t < T2, ∥Φ(x(t))−X(ηρ2t)∥2 = Õ(η1/2 + ρ) and ∥x(t)−
Φ(x(t))∥2 = O(ηρ).
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Combining Theorems E.2, J.1 and J.2, the proof of Theorem 5.4 is clear and we deferred it to Appendix J.3.

Now we recall our notations for stochastic setting with batch size one. Notations for Stochastic Setting:
Since Lk is rank-1 on Γk for each k ∈ [M ], we can write it as Lk(x) = Λk(x)wk(x)w

⊤
k (x) for any x ∈ Γk,

where wk is a continuous function on Γk with pointwise unit norm. Given the loss function Lk, its gradient
flow is denoted by mapping ϕk : RD × [0,∞) → RD. Here, ϕk(x, τ) denotes the iterate at time τ of a
gradient flow starting at x and is defined as the unique solution of ϕk(x, τ) = x −

∫ τ

0
∇Lk(ϕk(x, t))dt,

∀x ∈ RD. We further define the limiting map Φk as Φk(x) = limτ→∞ ϕk(x, τ), that is, Φk(x) denotes
the convergent point of the gradient flow starting from x. Similar to Definition 3.3, we define Uk = {x ∈
RD|Φ(x) exists and Φk(x) ∈ Γk} be the attraction set of Γi. We have that each Uk is open and Φk is C2

on
Uk by Lemma B.15 in Arora et al. (2022).

In this section we will defineK as {X(t) | t ∈ [0, T3]} whereX is the solution of (14). We will denote h(K)
in Lemma E.6 by h. Using Theorem D.3, we will assume the update is always well defined.

J.1 PHASE I (PROOF OF THEOREM J.1)

Proof of Theorem J.1. The proof consists of two steps.

1. Tracking Gradient Flow. By Lemma J.3, with probability 1 − ρ2, there exists step tGF = O(1/η) such
that

∥x(tGF)− Φ(x(tGF))∥2 ≤ h/4.

∥Φ(x(tGF))− Φ(xinit)∥2 = Õ(η1/2 + ρ).

2. Decreasing Loss. By Lemma J.7, with probability 1 − O(ρ), there exists step tDEC = tGF +
O(ln(1/ρ)/η) = O(ln(1/ρ)/η) such that

∥∇L(x(tDEC))∥2 = O(ρ).

∥Φ(x(tDEC))− Φ(xinit)∥2 ≤ ∥Φ(x(tDEC))− Φ(x(tGF))∥2 + ∥Φ(x(tGF))− Φ(xinit)∥2
= Õ(η1/2 + ρ).

Then by Lemma J.12, with probability 1 − O(ρ), there exists step tDEC2 = tDEC + O(ln(1/ηρ)/η) =
O(ln(1/ηρ)/η), it holds that

∥x(tDEC2)− Φ(x(tDEC2))∥2 = O(ηρ).

∥Φ(x(tDEC2))− Φ(xinit)∥2 ≤ ∥Φ(x(tDEC2))− Φ(x(tDEC))∥2 + ∥Φ(x(tDEC))− Φ(xinit)∥2
= Õ(η1/2 + ρ).

Concluding, let T1 be the constant satisfying tDEC2 ≤ T1 ln(1/ηρ)/η, then we have for t = tDEC2 ≤
T1 ln(1/ηρ)/η such that

∥x(t)− Φ(x(t))∥2 = O(ηρ).

∥Φ(x(t))− Φ(xinit)∥2 = Õ(η1/2 + ρ).

J.1.1 TRACKING GRADIENT FLOW

Lemma J.3 shows that the iterates x(t) tracks gradient flow to an O(1) neighbor of Γ.
Lemma J.3. Under condition of Theorem J.1, with probability 1−O(ρ2), there exists tGF = O(1/η), such
that the iterate x(tGF) is O(1) close to the manifold Γ and Φ(x(tGF)) is Õ(η1/2 + ρ) is close to Φ(xinit).
Quantitatively,

L(x(tGF)) ≤
µh2

32
∥x(tGF)− Φ(x(tGF))∥ ≤ h/4 ,

∥Φ(x(tGF))− Φ(xinit)∥ = Õ(η1/2 + ρ) .

Proof of Lemma J.3. Choose C = 1
4

√
µ
ζ .
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There exists T > 0, such that

∥ϕ(xinit, T )− Φ(xinit)∥2 ≤ Ch/2 .

Consider

x(t+ 1) = x(t)− η∇Lk(x(t) + ρ
∇Lk (x(t))

∥∇Lk (x(t)) ∥
)

= x(t)− η∇Lk(x(t)) +O(ηρ) .

By Theorem L.1, let b(x) = −∇L(x),p = η and ϵ = O(ρ), for sufficiently small η and ρ, the iterates x(t)
tracks gradient flow ϕ(xinit, T ) in O(1/η) steps in expectation, Quantitatively, with probability 1 − ρ2, for
tGF = ⌈T0

η ⌉, we have that

∥x(tGF)− ϕ(xinit, T0)∥2 = Õ(
√
p+ ϵ) ≤ Õ(η1/2 + ρ) .

This implies x(tGF) ∈ Kh, hence by Taylor Expansion on Φ,

∥Φ(x(tGF))− Φ(xinit)∥2 = ∥Φ(x(tGF))− Φ(ϕ(xinit, T ))∥2
≤ O(∥x(tGF)− ϕ(xinit, T )∥2)
≤ Õ(η1/2 + ρ) .

This implies

∥x(tGF)− Φ(x(tGF))∥2 ≤∥x(tGF)− ϕ(xinit, T0)∥2 + ∥ϕ(xinit, T0)− Φ(xinit)∥2
+ ∥Φ(xinit)− Φ(x(tGF))∥2

≤Ch/2 + Õ(η1/2 + ρ) ≤ Ch ≤ h/4 .

By Taylor Expansion,

L(x(tGF)) ≤ ζ∥x(tGF)− Φ(x(tGF))∥22/2 ≤ µh2

32
.

J.1.2 DECREASING LOSS

Lemma J.4. Under condition of Theorem J.1, assuming x(t0) ∈ Kh/4 and for any t satisfying t0 ≤ t ≤
t0 +O(ln(1/ηρ)/η), max

t0≤τ≤t0+O(ln(1/ηρ)/η)
L(x(τ)) ≤ µh2

16 , it holds that

x(τ) ∈ Kh,∀t0 ≤ τ ≤ t.

Moreover, we have that

∥Φ(x(t))− Φ(x(t0))∥ = O((η + ρ) ln(1/ηρ)).

Proof of Lemma J.4. We will prove by induction. For τ = t0, the result holds trivially. Suppose the result
holds for t− 1, then for any τ satisfying t0 ≤ τ ≤ t− 1, by Lemmas F.1 and F.8,

∥Φ(x(τ + 1))− Φ(x(τ))∥ ≤ ξηρ∥∇L (x(τ)) ∥2 + νηρ2 + ξη2∥∇L (x(τ)) ∥22 + ξζ2η2ρ2

= O(η2 + ηρ) .

Also by Lemma F.1, ∥x(t)− Φ(x(t))∥2 ≤ h/2
√
2, this implies,

dist(K,x(t)) ≤dist(K,x(t0)) + ∥x(t0)− Φ(x(t0))∥2
+ ∥Φ(x(t0))− Φ(x(t))∥+ ∥Φ(x(t))− x(t)∥

≤0.99h+O(η2(t− tGF)) = 0.99h+O(η ln(1/ηρ)) ≤ h .
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Lemma J.5. Under condition of Theorem J.1, if x(τ) ∈ Kh, then we have that

E[L(x(τ + 1))|x(τ)] ≤ L(x(τ))− ηµ

2
L(x(τ)) .

Moreover it holds that,

E[lnL(x(τ + 1))|x(τ)] ≤ lnE[L(x(τ + 1))|x(τ)] ≤ lnL(x(τ))− ηµ

2
.

Proof of Lemma J.5. By Lemma F.8 and Taylor Expansion,
E[L(x(τ + 1))|x(τ)]

=E
[
L

(
x(τ)− η∇Lk[x(τ) + ρ

∇Lk (x(τ))

∥∇Lk (x(τ)) ∥
]

)
|x(τ)

]
≤E

[
L(x(τ))− η

〈
∇L (x(τ)) ,∇Lk

(
x(τ) + ρ

∇Lk (x(τ))

∥∇Lk (x(τ)) ∥

)〉]
+ E

[
ζη2

2
∥∇Lk[x(τ) + ρ

∇Lk (x(τ))

∥∇Lk (x(τ)) ∥
]∥22
]

≤L(x(τ))− η∥∇L (x(τ)) ∥22 + ηρζ∥∇L (x(τ)) ∥2 + ζη2E[∥∇Lk(x(τ))∥22] + ζ3η2ρ2

≤L(x(τ))− η

2
∥∇L (x(τ)) ∥22

≤L(x(τ))− ηµ

2
L(x(τ)) .

Lemma J.6. Under condition of Theorem J.1, assuming x(t0) ∈ Kh/4 and L(x(t0)) ≤ µh2

32 , then with
probability 1−O(ρ), for any t satisfying t0 ≤ t ≤ t0 +O(ln(1/ηρ)/η), it holds that x(t) ∈ Kh. Moreover,
we have that

∥Φ(x(t))− Φ(x(t0))∥ = O((η + ρ) ln(1/ηρ)).

Proof of Lemma J.6. By Uniform Bound and Lemma J.4,

P(∃t0 ≤ t ≤ t0 +O(ln(1/ηρ)/η), L(x(t)) ≥ µh2

16
)

≤
t0+O(ln(1/ηρ)/η)∑

t=t0

P(L(x(t)) ≥ µh2

16
and L(x(τ)) ≤ µh2

16
,∀t0 ≤ τ ≤ t− 1)

≤
t0+O(ln(1/ηρ)/η)∑

t=t0

P(L(x(t)) ≥ µh2

16
and x(τ) ∈ Kh,∀t0 ≤ τ ≤ t− 1)

Consider each term, and applying uniform bound again,

P (L(x(t)) ≥ µh2

16
and x(τ) ∈ Kh,∀t0 ≤ τ ≤ t− 1)

≤
t∑

τ=t0

P (L(x(t)) ≥ µh2

16
and L(x(τ)) ≤ µh2

32

and ∀t− 1 ≥ τ ′ ≥ τ + 1,
µh2

16
> L(x(τ ′)) >

µh2

32

and ∀t− 1 ≥ τ ′′ ≥ τ, x(τ ′′) ∈ Kh) .

Then if we consider each term, we have that it is bounded by

P (L(x(t)) ≥ µh2

16
and ∀t− 1 ≥ τ ′ ≥ τ + 1, L(x(τ ′)) >

µh2

32

and ∀t− 1 ≥ τ ′′ ≥ τ, x(τ ′′) ∈ Kh | L(x(τ)) ≤ µh2

32
) .

60



Published as a conference paper at ICLR 2023

Define a coupled process L̃(τ + 1) = lnL(x(τ + 1)) and

L̃(τ ′) =

{
lnL(x(τ ′)), if L̃(τ ′ − 1) = lnL(x(τ ′ − 1)) ≥ ln(µh

2

32 ),

L̃(τ ′ − 1)− ηµ/2, if otherwise.

Then clearly

P (L(x(t)) ≥ µh2

16
and ∀t ≥ τ ′ ≥ τ + 1, L(x(τ ′)) >

µh2

32

and ∀t ≥ τ ′′ ≥ τ, x(τ ′′) ∈ Kh | L(x(τ)) ≤ µh2

32
)

≤ P (L̃(t) ≥ ln(
µh2

16
)) .

Consider a fixed τ ′ satisfying τ + 1 ≤ τ ′ ≤ t. By Lemma J.5, we have that

L̃(x(τ ′ + 1))− L̃(x(τ ′)) ≤ −ηµ/2.

Hence L̃(t) + ηµt/2 is a super martingale.

Further it holds that if L(x(τ ′ − 1)) ≥ (µh
2

32 ), then

L(x(τ ′ − 1))− L(x(τ ′)) = O(∥x(τ ′ − 1)− x(τ ′)∥) = O(η) .

Using the smoothness at log(x) at µh2

32 which is a positive constant,

∥L̃(τ ′ + 1)− L̃(τ ′)∥ ≤ O(η) ≤ Cη .

Here C is a constant independent of η. This implies L̃(x(τ + 1)) ≤ µh2

16
√
2

Now by Azuma-Hoeffding bound (Lemma K.4), we have that

P (L̃(t)− L̃(τ + 1) + (t− τ − 1)ηµ/2 > a) ≤ 2 exp(− a2

8(t− τ − 1)(C + µ)2η2
).

With a = ln( µh2

16L̃(τ+1)
) + (t− τ − 1)ηµ/2 ≥ (ln 2 + (t− τ − 1)ηµ)/2, we have that

P (L̃(t) > ln(
µh2

16
)) ≤ 2 exp(− (ln 2 + (t− τ − 1)ηµ)2

32(C + µ)2η2
)

≤ 2 exp(− ln 2(t− τ − 1)µ

8(C + µ)2η
)

Hence we have

P(∃t0 ≤ t ≤ t0 +O(ln(1/ηρ)/η), L(x(t)) ≥ µh2

16
)

≤O(2 exp(− ln 2(t− τ − 1)µ

8(C + µ)2η
) ln2(1/ηρ)/η2) ≤ ρ.

Hence with probability 1− ρ, L(x(t)) ≤ µh2

16 ,∀t0 ≤ t ≤ t0 +O(ln(1/ηρ)/η), combining with Lemma J.4,
we have completed our proof.

Lemma J.7. Under condition of Theorem J.1, assuming there exists tGF such that L(x(tGF)) ≤ µh2

32 and
x(tGF) ∈ Kh/4, then with probability 1−O(ρ), there exists tDEC = tGF+O(ln(1/ρ)/η), such that x(tDEC)
is in O(ρ) neighbor of Γ, quantitatively, we have that

∥∇L(x(tDEC))∥2 ≤ 4ζρ .

Moreover the movement of the projection of Φ(x(·)) on the manifold is bounded,

∥Φ(x(tGF))− Φ(x(tDEC))∥2 = O((η + ρ) ln(1/ρ)) .
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Proof of Lemma J.7. For simplicity of writing, define T1 ≜ ⌈
2 ln h2

256ρ3µ

ηµ ⌉ = O(ln(1/ρ)/η).

By Lemma J.6, we may assume x(t) ∈ Kh for tGF ≤ t ≤ T1 + tGF.

Define indicator function as

A(t) = 1[∇L (x(τ)) ≥ 4ζρ,∀t ≥ τ ≥ tGF] .

By Lemma J.5, we have that,

E[L(x(t+ 1))A(t+ 1)] ≤ E[L(x(t+ 1))A(t)] ≤ (1− ηµ

2
)E[L(x(t))A(t)].

We can then conclude that with T2 = T1 + tGF, using Lemma F.2,

8µρ2EA(T2 + 1) ≤ E[L(x(T2 + 1))A(T2 + 1)] ≤ (1− ηµ

2
)T1L(x(tGF)) ≤ 8µρ3.

We have

EA(T2 + 1) ≤ ρ.

This implies A(T2 + 1) = 0 with probability 1 − O(ρ), which indicates the existence of tDEC. The second
claim is a direct application of Lemma J.6.

Lemma J.8 (A general version of Lemma 5.5). Under Assumption 3.2 and Condition E.1, for x ∈ Kh and
p ∈ C,∇2Lk(p) = Λk(p)wk(p)wk(p)

⊤, there exists s ∈ {1,−1},

∇Lk (x)

∥∇Lk (x) ∥
= swk(p) +O(∥x− p∥2) .

Further if |w⊤
k (x− p)| ≥ ∥x− p∥3/22 , then s = sign(w⊤

k (x− p)). This implies

∇Lk (x)

∥∇Lk (x) ∥

⊤
(x− p) ≥ sw⊤

k (x− p)−O(∥x− p∥22)

≥ ∥w⊤
k (x− p)∥2 −O(∥x− p∥3/22 ) .

Proof of Lemma J.8. We will calculate the direction of ∇Lk(x)
∥∇Lk(x)∥ using two different approximations and

compare them to get our result.

1. According to Lemma F.4,

∇Lk (x)

∥∇Lk (x) ∥
=

∇2Lk(Φk(x))(x− Φk(x))

∥∇2Lk(Φk(x))(x− Φk(x))∥2
+O(∥x− Φk(x)∥2).

Suppose ∇2Lk(Φk(x)) = Λk(Φk(x))wk(Φk(x))wk(Φk(x))
⊤, then

∇Lk (x)

∥∇Lk (x) ∥
= wk(Φk(x)) +O(∥x− Φk(x)∥2)

As ∇2Lk(p) = Λk(p)wk(p)wk(p)
⊤, using Davis-Kahan Theorem K.3, we would have ∃s ∈ {−1, 1},

such that ∥wk(Φk(x))− swk(p)∥2 ≤ ζ∥Φk(x)− p∥2.

∇Lk (x)

∥∇Lk (x) ∥
= swk(p) +O(∥Φk(x)− p∥2 + ∥x− p∥2).

According to Lemma F.1, we have ∥x− Φk(x)∥2 ≤ ∥∇Lk(x)∥2

µ ≤ ζ∥x−p∥2

µ . This implies,

∇Lk (x)

∥∇Lk (x) ∥
= swk(p) +O(∥x− p∥2). (35)

Equation 35 is our first statement.
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2. By Taylor expansion at p,
∇Lk (x) = Λk(x)wk(p)wk(p)

⊤(x− p) +O(ν∥x− p∥22).
That being said, when |w⊤

k (x− p)| ≥ ∥x− p∥3/22 , we have
∥∇Lk (x)− Λkwkw

⊤
k (x− p)∥2 ≤ O(∥x− p∥22) .

∥∇Lk (x) ∥ ≥ ∥Λkwkw
⊤
k (x− p)∥2 −O(∥x− p∥22) ≥ Ω(∥x− p∥3/22 ).

Concluding,

∥ ∇Lk (x)

∥∇Lk (x) ∥
− Λkwkw

⊤
k (x− p)

∥Λkwkw⊤
k (x− p)∥

∥2 ≤ O(∥x− p∥1/22 )

Hence we have
∇Lk (x)

∥∇Lk (x) ∥
= sign(w⊤

k (x− p))wk +O(∥x− p∥1/22 ) . (36)

Comparing (35) and (36), we have s = sign(wk(p)
⊤(x− p)) when |w⊤

k (x− p)| ≥ ∥x− p∥3/22 .

Lemma J.9. Under condition of Theorem J.1, for any constant C > 0 independent of η, ρ, there exists
constant C1 > C2 > 0 independent of η, ρ, if x(t) ∈ Kh and C1ηρ ≤ ∥x(t)−Φ(x(t))∥ ≤ Cρ, then we have
that

Ek[∥x(t+ 1)− Φ(x(t+ 1))∥2 | x(t)] ≤ ∥x(t)− Φ(x(t))∥2 − C2ηρ .

Proof of Lemma J.9. By Lemma F.2, ∥x(t)− Φ(x(t))∥ = O(ρ). Hence we have that by Taylor Expansion,

x(t+ 1) = x(t)− η∇Lk

(
x(t) + ρ

∇Lk (x(t))

∥∇Lk (x(t)) ∥

)
= x(t)− η∇Lk (x(t))− ηρ∇2Lk(x(t))

∇Lk (x(t))

∥∇Lk (x(t)) ∥
+O(ηρ2)

= x(t)− η∇Lk (x(t))− ηρΛkwkw
⊤
k

∇Lk (x(t))

∥∇Lk (x(t)) ∥
+O(ηρ2) .

Here Λk, wk indicates Λk(Φ(x(t))), wk(Φ(x(t))).

Notice that given ∥x(t)− Φ(x(t))∥ = O(ρ), by Lemma F.8, we have that
∥Φ(x(t+ 1))− Φ(x(t))∥2 = O(ηρ2),

∥x(t+ 1)− x(t)∥2 = O(ηρ).
This implies x(t+ 1) ∈ Kr.

Further by Taylor Expansion, ∇Lk(x(t)) = Λkwkw
⊤
k (x(t)− Φ(x(t))) +O(ρ2).

By Lemma J.8, we have for some sk(t) ∈ {−1, 1}.

w⊤
k

∇Lk (x(t))

∥∇Lk (x(t)) ∥
= sk(t)wk +O(∥x(t)− Φ(x(t))∥2) .

We also have
sk(t) ̸= sign(w⊤

k (x(t)− Φ(x(t)))) ⇒ ∥w⊤
k (x(t)− Φ(x(t)))∥2 ≤ ∥x(t)− Φ(x(t))∥3/22 . (37)

Concluding,
x(t+ 1)− Φ(x(t+ 1))

=(x(t)− Φ(x(t)))− ηΛkwkw
⊤
k (x(t)− Φ(x(t)))− ηρΛksk(t)wkw

⊤
k wk +O(ηρ2).

After we take square and expectation,
E[∥x(t+ 1)− Φ(x(t+ 1))∥22 | x(t)]

≤∥x(t)− Φ(x(t))∥22 +
2η2

M

M∑
k=1

Λ2
k|w⊤

k (x(t)− Φ(x(t)))|2 + 2η2ρ2

M

M∑
k=1

Λ2
k

− 2
η

M

M∑
k=1

Λk|w⊤
k (x(t)− Φ(x(t)))|2 − 2

ηρ

M

M∑
k=1

Λksk(t)w
⊤
k (x(t)− Φ(x(t)))

+O(ηρ2∥x(t)− Φ(x(t))∥+ η2ρ3) .
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We will then carefully examine each positive term,

2η2

M

M∑
k=1

Λ2
k|w⊤

k (x(t)− Φ(x(t)))|2 = 2Mη2(x(t)− Φ(x(t)))⊤∇2L(x(t))2(x(t)− Φ(x(t)))

≤ 2Mζη2∥x(t)− Φ(x(t))∥2 = O(η2ρ2) .

2η2ρ2

M

M∑
k=1

Λ2
k ≤ 2ζ2η2ρ2 = O(η2ρ2) .

This implies,
E[∥x(t+ 1)− Φ(x(t+ 1))∥22 | x(t)]

≤∥x(t)− Φ(x(t))∥22 − 2
ηρ

M

M∑
k=1

Λksk(t)w
⊤
k (x(t)− Φ(x(t)))

+O(ηρ2∥x(t)− Φ(x(t))∥+ η2ρ2) .

We will now lower bound
∑M

k=1 Λksk(t)w
⊤
k (x(t)− Φ(x(t))). By Equation 37,

M∑
k=1

Λksk(t)w
⊤
k (x(t)− Φ(x(t))) ≥

M∑
k=1

Λk∥w⊤
k (x(t)− Φ(x(t)))∥2 − 2

M∑
k=1

Λk∥x(t)− Φ(x(t))∥3/22

≥
M∑
k=1

Λk∥w⊤
k (x(t)− Φ(x(t)))∥2 −O(∥x(t)− Φ(x(t))∥3/22 ) .

For
∑M

k=1 Λk∥w⊤
k (x(t)− Φ(x(t)))∥2, by Lemma Lemma F.4,

M∑
k=1

Λk∥w⊤
k (x(t)− Φ(x(t)))∥2 ≥

√√√√ M∑
k=1

Λ2
k∥w⊤

k (x(t)− Φ(x(t)))∥22

=
√

(x(t)− Φ(x(t)))⊤∇2L(Φ(x(t)))2(x(t)− Φ(x(t)))

= ∥∇2L(Φ(x(t)))(x(t)− Φ(x(t)))∥2
≥ µ∥∂Φ(Φ(x(t)))(x(t)− Φ(x(t)))∥2
≥ µ∥x(t)− Φ(x(t))∥2 −O(∥x(t)− Φ(x(t))∥22) .

Concluding, we have that
M∑
k=1

Λksk(t)w
⊤
k (x(t)− Φ(x(t))) ≥ µ∥x(t)− Φ(x(t))∥2/2 .

So
E[∥x(t+ 1)− Φ(x(t+ 1))∥22 | x(t)]

≤∥x(t)− Φ(x(t))∥22 −
µηρ

M
∥x(t)− Φ(x(t))∥2

+O(ηρ2∥x(t)− Φ(x(t))∥+ η2ρ2)

≤(∥x(t)− Φ(x(t))∥2 − C2ηρ)
2 .

The inequality holds if ∥x(t)− Φ(x(t))∥2 > C1ηρ.

Finally by Jenson’s Inequality,
E[∥x(t+ 1)− Φ(x(t+ 1))∥2|x(t)] ≤ ∥x(t)− Φ(x(t))∥2 − C2ηρ.

Lemma J.10. Under condition of Theorem J.1, for any constant C > 0 independent of η, ρ, there exists
constant C3 > 0 independent of η, ρ, if x(t) ∈ Kh and ∥x(t)− Φ(x(t))∥ ≤ Cρ, then we have that

|∥x(t+ 1)− Φ(x(t+ 1))∥2 − ∥x(t)− Φ(x(t))∥2| ≤ C3ηρ .
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Proof of Lemma J.10. This is a direct application of Lemma F.8.

Lemma J.11. Under condition of Theorem J.1, assuming x(t0) ∈ Kh/2 and ∥x(t0)− Φ(x(t0))∥ ≤ f(η, ρ)
for some fixed function f and f(η, ρ) ∈ Ω(ηρ ln2(1/ηρ)) ∩ O(ρ), then with probability 1 − O(ρ), for any t
satisfying t0 ≤ t ≤ t0 +O(ln(1/ηρ)/η), it holds that ∥x(t)− Φ(x(t)∥ ≤ 2f(η, ρ). Moreover, we have that

∥Φ(x(t))− Φ(x(t0))∥ = O((η + ρ) ln(1/ηρ)).

Proof of Lemma J.11. By Lemma J.6, we have that x(t) ∈ Kh for any t satisfying that t0 ≤ t ≤ t0 +
O(ln(1/ηρ)/η) and with probability 1−O(ρ) we will suppose this hold for the following deduction.

By Uniform Bound,
P(∃t0 ≤ t ≤ t0 +O(ln(1/ηρ)/η), ∥x(t)− Φ(x(t)∥ ≥ 2f(η, ρ))

≤
t0+O(

ln(1/ηρ)
η )∑

t=t0

P(∥x(t)− Φ(x(t))∥ ≥ 2f(η, ρ)) and ∥x(τ)− Φ(x(τ))∥ ≤ 2f(η, ρ),∀t0 ≤ τ ≤ t− 1).

Consider each term and apply Uniform bound again,
P(∥x(t)− Φ(x(t))∥ ≥ 2f(η, ρ)) and ∥x(τ)− Φ(x(τ))∥ ≤ 2f(η, ρ),∀t0 ≤ τ ≤ t− 1)

≤
t∑

τ=t0

P(∥x(t)− Φ(x(t))∥ ≥ 2f(η, ρ)) and ∥x(τ)− Φ(x(τ))∥ ≤ f(η, ρ),

and f(η, ρ) ≤ ∥x(τ ′)− Φ(x(τ ′))∥ ≤ 2f(η, ρ),∀τ + 1 ≤ τ ′ ≤ t− 1).

Then if we consider each term, it is bounded by
P(∥x(t)− Φ(x(t))∥ ≥ 2f(η, ρ))

and f(η, ρ) ≤ ∥x(τ ′)− Φ(x(τ ′))∥ ≤ 2f(η, ρ),∀τ + 1 ≤ τ ′ ≤ t− 1

| ∥x(τ)− Φ(x(τ))∥ ≤ f(η, ρ)). (38)

Now let C be the positive constant satisfying 2f(η, ρ) ≤ Cρ, suppose C1, C2 are the constants corresponds
to C in Lemma J.9 and C3 is the constant correspond to C in Lemma J.10. By definition C3 > C2.

Define a coupled process ỹ(τ + 1) = y(τ + 1) and

ỹ(τ ′) =

{
∥x(τ ′)− Φ(x(τ ′))∥2, if ỹ(τ ′ − 1) = ∥x(τ ′ − 1)− Φ(x(τ ′ − 1))∥2 > f(η, ρ)

ỹ(τ ′ − 1)− C2ηρ, if otherwise.

Now clearly Equation 38 is bounded by P(ỹ(t) ≥ 2f(η, ρ)).

As E[ỹ(τ ′)] ≤ ỹ(τ ′ − 1) − C2ηρ by Lemma J.9 and ∥ỹ(τ ′) − ỹ(τ ′ − 1)∥ ≤ C3ηρ by Lemma J.10. This
implies ∥ỹ(τ ′)∥ − C2ηρτ

′ is a super martingale. By Azuma-Hoeffding bound(Lemma K.4), we have

P (ỹ(t) ≥ ỹ(τ + 1)− C2ηρ(t− τ − 1) + h) ≤ 2 exp(− h2

4(t− τ − 1)(C3 + C2)2η2ρ2
).

Choosing h = C2ηρ(t− τ − 1)− ∥x(τ + 1)− Φ(x(τ + 1))∥+ 2f(η, ρ)

P (ỹ(t+ 1) ≥ 2f(η, ρ))

≤2 exp(− (C2ηρ(t− τ)− ∥x(τ + 1)− Φ(x(τ + 1))∥+ 2f(η, ρ))2

8(t− τ)(C3 + C2)2η2ρ2
)

≤2 exp(− (C2ηρ(t− τ) + f(η, ρ)/2)2

4(t− τ)(C3 + C2)2η2ρ2
)

≤2 exp(− C2f(η, ρ)

2(C3 + C2)2ηρ
) ≤ η10ρ10.

We then have
P(∃t0 ≤ t ≤ t0 +O(ln(1/ηρ)/η), ∥x(t)− Φ(x(t)∥ ≥ 2f(η, ρ)) ≤ ρ.

65



Published as a conference paper at ICLR 2023

Lemma J.12. Under condition of Theorem J.1, assuming there exists tDEC such that x(tDEC) ∈ Kh/2 and
∥∇L(x(tDEC))∥ ≤ 4ζρ, then with probability 1−O(ρ), there exists tDEC2 = tDEC +O(ln(1/ηρ)/η), such
that ∥x(tDEC2)− Φ(tDEC2)∥ ≤ O(ηρ).

Furthermore, for any t satisfying tDEC2 ≤ t ≤ tDEC2 + Θ(ln(1/ηρ)/η), we have that ∥Φ(x(t)) −
Φ(x(tDEC))∥ = O(ρ2 ln(1/ηρ)).

Proof of Lemma J.12. We have that x(t) ∈ Kh (Lemma J.6) and ∥x(t)−Φ(x(t))∥ ≤ Cρ for some constant
C (Lemma J.11) for any t satisfying that tDEC ≤ t ≤ tDEC + O(ln(1/ηρ)/η) with probability 1 − O(ρ)
and we will suppose this holds for the following deduction. The second statement then follows directly
from Lemma F.8.

Let C1, C2 be the constant in Lemma J.9 corresponding to C, For simplicity of writing, define T1 ≜

⌈
C ln( C

C1ηρ2
)

C2η
⌉ = O(ln(1/ηρ)/η). Define indicator function as

A(t) = 1[∥x(t)− Φ(x(t))∥ ≥ C1ηρ,∀t ≥ τ ≥ tGF] .

By Lemma J.9, we have that,
E[∥x(t+ 1)− Φ(x(t+ 1))∥A(t+ 1)] ≤ E[∥x(t+ 1)− Φ(x(t+ 1))∥A(t)]

≤ E[∥x(t)− Φ(x(t))∥A(t)]− C2ηρE[A(t)]

≤ E[∥x(t)− Φ(x(t))∥A(t)](1− C2η

C
)

We can then conclude that with T2 = T1 + tDEC, using Lemma F.2,
C1ηρEA(T2 + 1) ≤ E[∥x(T2 + 1)− Φ(x(T2 + 1))∥2A(T2 + 1)]

≤ (1− C2η

C
)T1∥x(tDEC)− Φ(x(tDEC))∥ ≤ C1ηρ

3.

This implies A(T2 + 1) = 0 with probability 1−O(ρ), which indicates the existence of tDEC2.

J.2 PHASE II (PROOF OF THEOREM J.2)

Proof of Theorem J.2. We will inductively prove the following induction hypothesis P(t) holds with proba-
bility 1−O(η3ρ3t) for t ≤ T3/ηρ

2 + 1,
x(τ) ∈ Kh/2, τ ≤ t

∥x(τ)− Φ(x(τ))∥2 ≤ 2∥x(0)− Φ(x(0))∥2 = O(ηρ), τ ≤ t

∥Φ(x(τ))−X(ηρ2τ)∥ = Õ(η1/2 + ρ), τ ≤ t

P(0) holds trivially. Now suppose P(t) holds, then x(t + 1) ∈ Kh. By Lemma J.13, we have that with
probability 1−O(η3ρ3), ∥x(t+ 1)− Φ(x(t+ 1))∥ ≤ 2∥x(0)− Φ(x(0))∥2 = O(ηρ).

Now we have
2∥x(0)− Φ(x(0))∥2 = O(ηρ), τ ≤ t+ 1.

x(τ) ∈ Kh, τ ≤ t+ 1
By Lemma J.14, it holds that

∥Φ(x(τ + 1))− Φ(x(τ)) + ηρ2P⊥
Φ(x(τ)),Γ∇λ1

(
∇2Lkτ

(
Φ(x(τ))

))
/2∥ ≤ Õ(ηρ3 + η2ρ2) .

As
EktP

⊥
Φ(x(t)),Γ∇λ1

(
∇2Lkt

(
Φ(x(t))

))
= P⊥

Φ(x(t)),Γ∇Tr(∇2L(Φ(x(t)))).

By Theorem L.1, let b(x) = −∂Φ(x)∇Tr(∇2L(x)), bk(x) = −∂Φ(x)Tr(∇2Lkt
(x)), p = ηρ2 and ϵ =

O(η + ρ), it holds that, with probability 1−O(η3ρ3),
∥Φ(x(τ))−X(ηρ2τ)∥

=O(∥Φ(x(0))− Φ(xinit)∥+ T3ηρ
2 +

√
ηρ2T3 log(2eT3/(η2ρ4)) + (ρ+ η)T3)

=Õ(η1/2 + ρ), τ ≤ t+ 1

This implies ∥x(t+1)−X(ηρ2(t+1))∥2 ≤ ∥x(t+1)−Φ(x(t+1))∥2+∥Φ(x(t+1))−X(ηρ2(t+1))∥2 =

Õ(η1/2 + ρ) < h/2. Hence x(t + 1) ∈ Kh/2. Combining with P(t) holds with probability 1 − O(η3ρ3t),
we have that P(t+ 1) holds with probability 1−O(η3ρ3(t+ 1)). The induction is complete.

Now P(⌈T3/ηρ2⌉) is equivalent to our theorem.
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J.2.1 CONVERGENCE NEAR MANIFOLD

Lemma J.13. Under condition of Theorem J.2, assuming x(t) ∈ Kh,∀t0 ≤ t ≤ t0 + O(1/ηρ2) and
∥x(t0) − Φ(x(t0))∥ ≤ f(η, ρ) for some fixed function f and f(η, ρ) ∈ Ω(ηρ ln2(1/ηρ)) ∩ O(ρ), then with
probability 1 − O(η3ρ3), for any t satisfying t0 ≤ t ≤ t0 + O(1/ηρ2), it holds that ∥x(t) − Φ(x(t))∥ ≤
2f(η, ρ).

Proof of Lemma J.13. The proof is almost identical to Lemma J.11 and is omitted.

J.2.2 TRACKING RIEMANNIAN GRADIENT FLOW

Lemma J.14. Under the condition of Theorem J.2, for any t satisfying that x(t) ∈ Kh and

∥x(t)− Φ(x(t))∥ = O(ηρ ln2(1/ηρ)).

It holds that

∥Φ(x(t+ 1))− Φ(x(t)) + ηρ2P⊥
Φ(x(t)),Γ∇λ1

(
∇2Lkt

(
Φ(x(t))

))
/2∥ ≤ Õ(ηρ3 + η2ρ2) .

Proof of Lemma J.14. We will abbreviate kt by k in this proof.

By Taylor Expansion,

x(t+ 1) = x(t)− η∇Lk

(
x(t) + ρ

∇Lk (x(t))

∥∇Lk (x(t)) ∥

)
= x(t)− η∇Lk (x(t))− ηρ∇2Lk (x(t))

∇Lk (x(t))

∥∇Lk (x(t)) ∥

− ηρ2∂2(∇Lk)[
∇Lk (x(t))

∥∇Lk (x(t)) ∥
,

∇Lk (x(t))

∥∇Lk (x(t)) ∥
]/2 +O(ηρ3).

Now as ∥x(t)− Φ(x(t))∥2 = Õ(ηρ), by Lemma F.8, it implies

∥x(t+ 1)− x(t)∥2 = O(ηρ) .

Then we have

∥Φ(x(t+ 1))− Φ(x(t))− ∂Φ(x(t))(x(t+ 1)− x(t))∥2 ≤ ξ∥x(t+ 1)− x(t)∥22 = O(η2ρ2).

Using Lemma F.6, we have

∥η∂Φ(x(t))∇Lk (x(t)) ∥2 = O(η∥x(t)− Φ(x(t))∥22) = O(η3ρ2 + ηρ4),

∥ηρ∂Φ(x(t))∇2Lk (x(t))
∇Lk (x(t))

∥∇Lk (x(t)) ∥
∥2 = O(ηρ∥x(t)− Φ(x(t))∥2) = Õ(η2ρ2 + ηρ3).

Hence

∥Φ(x(t+ 1))− Φ(x(t)) + ηρ2∂Φ(x(t))∂2(∇Lk)[
∇Lk (x(t))

∥∇Lk (x(t)) ∥
,

∇Lk (x(t))

∥∇Lk (x(t)) ∥
]/2∥2 = Õ(η2ρ2 + ηρ3).

Notice finally that by Lemma J.8,

∂Φ(x(t))∂2(∇Lk)[
∇Lk (x(t))

∥∇Lk (x(t)) ∥
,

∇Lk (x(t))

∥∇Lk (x(t)) ∥
]

=∂Φ(Φ(x(t)))∂2(∇Lk)[wk, wk] +O(∥x(t)− Φ(x(t))∥2)
=P⊥

Φ(x(t)),Γ∇(λ1(∇2Lk(Φ(x(t))))) +O(∥x(t)− Φ(x(t))∥2).

Hence we have

Φ(x(t+ 1))− Φ(x(t)) = −ηρ2P⊥
Φ(x(t)),Γ∇λ1

(
∇2Lkt

(
Φ(x(t))

))
/2 + Õ(η2ρ2 + ηρ3)

This completes the proof.
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J.3 PROOF OF THEOREM 5.4

Proof of Theorem 5.4. By Theorem J.1, there exists constant T1 independent of η, ρ, such that there exists
tPHASE ≤ T1 ln(1/ηρ)/η, with probability 1−O(ρ), it holds that

∥x(tPHASE)− Φ(x(tPHASE))∥2 = O(ηρ).

∥Φ(x(tPHASE))− Φ(xinit)∥ = Õ(η1/2 + ρ)

Hence by Theorem J.2, if we consider a translated process with x′(t) = x(t + tPHASE), we would have for
any T3 such that the solution X of Equation 14 is well defined, we have that for t = ⌈ T3

ηρ2 ⌉

∥Φ(x′(t))−X(ηρ2t)∥2 = O(η ln(1/ρ)) .

This implies for t satisfying X(ηρ2(t− tPHASE)) is well-defined,

∥Φ(x(t))−X(ηρ2(t− tPHASE))∥2 = Õ(η1/2 + ρ).

Finally, as

∥X(ηρ2(t− tPHASE))−X(ηρ2t)∥2 = O(ηρ2tPHASE) = O(ρ ln(1/ηρ)) = Õ(ρ).

We have that

∥Φ(x(t))−X(ηρ2t)∥2 = Õ(η1/2 + ρ).

We also have

∥x(t)− Φ(x(t))∥2 = O(ηρ).

by Theorem J.2.

J.4 PROOFS OF COROLLARIES 5.6 AND 5.7

Proof of Corollary 5.6. We will do Taylor expansion on Ek[L
Max
k,ρ ](x). By Theorem J.1 and J.2, we have

∥x(⌈T3/ηρ2⌉) − X(T3)∥2 = Õ(η1/2 + ρ) and ∥Φ(x(⌈T3/ηρ2⌉)) − x(⌈T3/ηρ2⌉)∥2 = Õ(η1/2 + ρ). For
convenience, we denote x(⌈T3/ηρ2⌉) by x.

Ek[R
Max
k,ρ ](x) = max

∥v∥≤1
Ek[ρv

⊤∇Lk(x) + ρ2v⊤∇2Lk(x)v/2] +O(ρ3)

Since max∥v∥≤1 |v⊤∇Lk(x)| = O(∥x− Φ(x)∥) = Õ(η1/2 + ρ), it holds that,

Ek[R
Max
k,ρ ](x) = ρ2Ek[ max

∥v∥≤1
v⊤∇2L(x)v/2] +O

(
(η1/4 + ρ1/4)ρ2

)
= ρ2Ek max

∥v∥≤1
[v⊤∇2L(X(T3))v/2] +O

(
(η1/4 + ρ1/4)ρ2

)
= ρ2Tr(X(T3))/2 +O

(
(η1/4 + ρ1/4)ρ2

)

Proof of Corollary 5.7. We choose Tϵ such thatX(Tϵ) is sufficiently close toX(∞), such that Tr(X(Tϵ)) ≤
Tr(X(∞)) + ϵ/2. By corollary 5.6 (let T3 = Tϵ), we have for all ρ, η such that (η + ρ) ln(1/ηρ)
is sufficiently small, ∥Ek[R

Max
k,ρ ](x(⌈Tϵ/(ηρ2)⌉)) − ρ2Tr(X(T ))/2∥2 ≤ o(1). This further implies

∥Ek[R
Max
k,ρ ](x(⌈Tϵ/(ηρ2)⌉)) − ρ2Tr(X(∞))/2∥2 ≤ ϵρ2/2 + o(1). We also have L(x(⌈Tϵ/(ηρ2)⌉)) −

infx∈U ′ L(x) = o(1). Then we can leverage Theorems G.6 and G.14 to get the desired bound.

J.5 OTHER OMITTED PROOFS FOR 1-SAM

We will use ℓ′(y, yk) and ℓ′′(y, yk) to denote dℓ(y′,yk)
dy′ |y′=y and d2ℓ(y′,yk)

dy′2 |y′=y .

Lemma J.15. Under Setting 5.1, fix k ∈ [M ], for any p satisfying ℓ(fk(p), yk) = 0, we have that

∇2Lk(p) = ℓ′′(fk(p), yk)∇fk(p)(∇fk(p))⊤ .

68



Published as a conference paper at ICLR 2023

Proof of Lemma J.15. ℓ(fk(p), yk) = 0 implies ℓ′(fk(p), yk) = 0. Then by Taylor Expansion,
∇2Lk(p) = ∇2

pℓ(fk(p), yk)

= ∂p[ℓ
′(fk(p), yk)∇fk(p)]

= ℓ′′(fk(p), yk)∇fk(p)∇fk(p)⊤ + ℓ′(fk(p), yk)∇2fk(p)

= ℓ′′(fk(p), yk)∇fk(p)∇fk(p)⊤ .
This concludes the proof.

Proof of Lemma 5.5. By Lemma J.15, as L(p) = 1
M

∑M
k=1 Lk(p), we have

∇2L(p) =
1

M

M∑
k=1

∂2ℓ(y′, yk)

(∂y′)2
|y′=fk(x)∇fk(p)∇fk(p)

⊤ .

By definition of Γ in Setting 5.1, we have for any p ∈ Γ, {∇fk(p)}nk=1 are linearly independent, which
implies that ∇fk(p) ̸= 0 for any p ∈ Γ.

For any p ∈ Γ, as ∇fk(p)
∥∇fk(p)∥ is well defined and continuous at p, there exists a open ball V containing p such

that for any x ∈ V , ∥∇fk(x)∥2 ≥ C1 > 0 and ∥∇[ ∇fk(x)
∥∇fk(x)∥ ]∥2 ≤ C2 for some constants C1 and C2.

Suppose ∇Lk(x) ̸= 0, then as by Taylor Expansion,
∇Lk(x) = ℓ′(fk(x), yk)∇fk(x) .

We have ∇Lk(x)
∥∇Lk(x)∥ = ∇fk(x)

∥∇fk(x)∥ = ∇fk(p)
∥∇fk(p)∥ + C2∥x− p∥, which completes the proof.

We note that the alignment result in Lemma 5.5 is not directly used in our proof. Instead, we use its gener-
alized version Lemma J.8 which holds under holds under a more general condition than Setting 5.1, namely
Condition E.1.

K TECHNICAL LEMMAS

Lemma K.1 (Corollary 4.3.15 in Horn et al. (2012)). Let Σ, Σ̂ ∈ RD×D be symmetric and non-negative with
eigenvalues λ1 ≥ ... ≥ λD and λ̂1 ≥ ... ≥ λ̂D, then for any i,

|λ̂i − λi| ≤ ∥Σ− Σ̂∥2
Definition K.2 (Unitary invariant norms). A matrix norm ∥ · ∥∗ on the space of matrices in Rp×d is unitary
invariant if for any matrix K ∈ Rp×d, ∥UKW∥∗ = ∥K∥∗ for any unitary matrices U ∈ Rp×p,W ∈ Rd×d.

Theorem K.3. [Davis-Kahan sin(θ) theorem (Davis et al., 1970)] Let Σ, Σ̂ ∈ Rp×p be symmetric, with
eigenvalues λ1 ≥ . . . ≥ λp and λ̂1 ≥ . . . ≥ λ̂p respectively. Fix 1 ≤ r ≤ s ≤ p, let d ≜ s−r+1 and let V =

(vr, vr+1, . . . , vs) ∈ Rp×d and V̂ = (v̂r, v̂r+1, . . . , v̂s) ∈ Rp×d have orthonormal columns satisfying Σvj =

λjvj and Σ̂v̂j = λ̂j v̂j for j = r, r+1, . . . , s. Define ∆ ≜ min
{
max{0, λs − λ̂s+1},max{0, λ̂r−1 − λr}

}
,

where λ̂0 ≜ ∞ and λ̂p+1 ≜ −∞, we have for any unitary invariant norm ∥ · ∥∗,
∆ · ∥ sinΘ(V̂ , V )∥∗ ≤ ∥Σ̂− Σ∥∗.

Here Θ(V̂ , V ) ∈ Rd×d, with Θ(V̂ , V )j,j = arccosσj for any j ∈ [d] and Θ(V̂ , V )i,j = 0 for all i ̸= j ∈ [d].
σ1 ≥ σ2 ≥ · · · ≥ σd denotes the singular values of V̂ ⊤V. [sinΘ]ij is defined as sin(Θij).
Lemma K.4 (Azuma-Hoeffding Bound). Suppose {Zn}n∈N is a super-martingale, suppose −α ≤ Zi+1 −
Zi ≤ β, then for all n > 0, a > 0, we have

P(Zn − Z0 ≥ a) ≤ 2 exp(−a2/(2n(α+ β)2))

Lemma K.5 (Azuma-Hoeffding Bound, Vector Form, Hayes (2003)). Suppose {Zn}n∈N is a RD-valued
martingale, suppose ∥Zi+1 − Zi∥2 ≤ σ, then for all n > 0, a > 0, we have

P(∥Zn − Z0∥2 ≥ σ(1 + a)) ≤ 2 exp(1− a2/2n).

In other words, for any 0 < δ < 1, with probability at least 1− δ, we have that

∥Zn − Z0∥2 ≤ σ

(
1 +

√
2n log

2e

δ

)
≤ 2σ

√
2n log

2e

δ
.
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Lemma K.6 (Discrete Gronwall Inequality, Borkar (2009)). Let {x(t)}t∈N be a sequence of nonnegative
real numbers, {an}n∈N be a sequence of positive real numbers and C,L > 0 scalars such that for all n,

x(t) ≤ C + L

t−1∑
n=0

anx(n).

Then for Tt =
∑t

n=0 an, it holds that x(t+ 1) ≤ CeLTt .

Lemma K.7 (Magnus (1985)). Let A : RD → RD×D be any C1 symmetric matrix function and x∗ ∈ RD

satisfying λ1(A(x∗)) > λ2(A(x
∗)) and v1 be the top eigenvector ofA(x∗). It holds that ∇λ1(A(x))|x=x∗ =

∇(v⊤1 A(x)v1)|x=x∗ .

We then present some of the technical lemmas we required to prove Lemma H.5.

Lemma K.8. If 0 < c < b−a
b2 , a

√
a2+2b2

2(1−cb) ≥
a2+b2

2−ca−cb , then a > 1
2b, cb ≤

1
2

Proof of Lemma K.8. Notice that

ca

√
a2 + b2

1− cb
≥ ca

√
a2 + 2b2

2(1− cb)
≥ cb2 + ca2

2− cb− ca
≥ cb2 + ca2

2− cb
.

So

√
1− cb+

1√
1− cb

≥
√

1 +
b2

a2

As c < b−a
b2 , we have 1 > 1− cb > a

b .

So √
a

b
+

√
b

a
≥
√

1 +
b2

a2

The above inequality implies a ≥ 1
2b. As c < b−a

b2 ,cb ≤ 1
2 .

Lemma K.9. When 0 < a < b, 0 < c < b−a
b2 , we have

cb2 + ca2(2− cb− 2

3
ca)− (1− cb)

c(a2 + b2)

2− ca− cb
− ca2(

1

2
a2 + b2)

2− ca− cb

(a2 + b2)
≤ cb2

2− cb

Proof of Lemma K.9. Equivalently, we are going to prove

(1− cb)b2
(

1

2− ca− cb
− 1

2− cb

)
+ a2

1− cb

2− ca− cb
+ a2(

1

2
a2 + b2)

2− ca− cb

(a2 + b2)
≥ a2(2− cb− 2

3
ca)

Further simplifying, we only need to prove

(1− cb)cab2

(2− cb)(2− ca− cb)
+ a2

1− cb

2− ca− cb
≥ 1

3
ca3 +

a4

2(a2 + b2)
(2− ca− cb)

We have the following auxiliary inequalities,

(1− cb)b > a

1− cb

2− ca− cb
≥ 1

a+b
b + b−a

(1−cb)b

≥ 1
a+b
b + b−a

a

=
ab

a2 + b2
≥ a2

a2 + b2

1− cb

a2
≥ 2− ca− cb

a2 + b2
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Using the above auxiliary inequalities we have
(1− cb)cab2

(2− cb)(2− ca− cb)
+ a2

1− cb

2− ca− cb
≥ 1

3
ca3 +

a4

2(a2 + b2)
(2− ca− cb)

⇐ ca2b

(2− cb)(2− ca− cb)
+

(
1− 1

2
(2− ca− cb)

)
a2(1− cb)

2− ca− cb
≥ 1

3
ca3

⇐ ca2b

(2− cb)(2− ca− cb)
+
ca2(a+ b)(1− cb)

2(2− ca− cb)
≥ 1

3
ca3

⇐ ca2b

(2− cb)(2− ca− cb)
+

ca2b(1− cb)

2(2− ca− cb)
≥ 1

3
ca2b

⇐ 1

(2− cb)2
+

1− cb

2(2− cb)
≥ 1

3

⇐3(1− cb)(2− cb) + 6 ≥ 2(2− cb)2

⇐(cb)2 − cb+ 4 ≥ 0

Lemma K.10. When 0 < a < b, 0 < c < b−a
b2 , a

√
a2+2b2

2(1−cb) ≥
a2+b2

2−ca−cb , we have

cb2 + ca2(2− cb− 2

3
ca)− (1− cb)cb2 − ca2(

1

2
a2 + b2)

1

b2
≤ cb2

2− cb

Proof of Lemma K.10. Equivalently, we are going to prove,

cb3 + a2(2− cb− 2

3
ca) ≤ b2

2− cb
+
a2( 12a

2 + b2)

b2

⇐⇒ cb3 + a2(1− cb− 2

3
ca) ≤ b2

2− cb
+

a4

2b2

We have the auxiliary inequality 1
2−cb >

1
2 + cb

4 .

Hence

cb3 + a2(1− cb− 2

3
ca) ≤ b2

2− cb
+

a4

2b2

⇐cb3 + a2(1− cb− 2

3
ca) ≤ b2

2
+

a4

2b2
+
cb3

4

⇐c(
3b3

4
− ba2 − 2

3
a3) ≤ b2

2
+

a4

2b2
− a2

1 Case 1, If 3b3

4 − ba2 − 2
3a

3 ≤ 0, then

c(
3b3

4
− ba2 − 2

3
a3) ≤ 0 ≤ b2

2
+

a4

2b2
− a2

2 Case 2, If 3b3

4 − ba2 − 2
3a

3 > 0, then

c(
3b3

4
− ba2 − 2

3
a3) ≤ b2

2
+

a4

2b2
− a2

⇐b− a

b2
(
3b3

4
− ba2 − 2

3
a3) ≤ (b2 − a2)2

2b2

⇐2(
3b3

4
− ba2 − 2

3
a3) ≤ (b− a)(b+ a)2

⇐2(b3 − ba2)− (b− a)(b+ a)2 ≤ b3

2
+

4a3

3

⇐(b− a)(2b(a+ b)− (a+ b)2) ≤ b3

2
+

4a3

3

⇐(b− a)2(b+ a) ≤ b3

2
+

4a3

3
Using Lemma K.8,a > b

2 ,(b− a)2(b+ a) = (b2 − a2)(b− a) ≤ b2(b− a) ≤ b3

2
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Lemma K.11. When 0 ≤ a ≤ b, 0 ≤ c ≤ b−a
b2 , b

2 ≥ a
√

a2+2b2

2(1−cb) ≥
a2+b2

2−ca−cb , we have

cb2 + ca2(2− cb− 2

3
ca)− 2ca

√
(b2 +

1

2
a2)(1− cb) ≤ cb2

2− cb

Proof of Lemma K.11. Define

F (a) ≜ a2(2− cb− 2

3
ca)− 2a

√
(b2 +

1

2
a2)(1− cb)

S(c, b) ≜ {a|0 ≤ a ≤ b, 0 < c ≤ b− a

b2
, b2 ≥ a

√
a2 + 2b2

2(1− cb)
≥ a2 + b2

2− ca− cb
}

amin(c, b) ≜ inf S(c, b)

amax(c, b) ≜ supS(c, b) ≤ b− cb2

Consider
dF (a)

da
= 2a(2− cb− 2

3
ca)− 2

3
ca2 − 2

√
(b2 +

1

2
a2)(1− cb)− a2

√
1− cb

b2 + 1
2a

2

d2F (a)

da2
= 2(2− cb− 2

3
ca)− 4

3
ca− 4

3
ca− a

√
1− cb

b2 + 1
2a

2
− 2a

√
1− cb

b2 + 1
2a

2
+

a3

2(b2 + 1
2a

2)
3
2

√
1− cb

≥ 4− 2cb− 4ca− 3a

√
1− cb

b2 + 1
2a

2

Define u ≜ cb, v ≜ a
b , then u+ v ≤ 1.

d2F (a)

da2
≥ 4− 2u− 4uv − 3

√
1− u

1√
1
2 + 1

v2

≥ 4− 2u− 4u(1− u)− 3
√
1− u

1√
1
2 + 1

(1−u)2

≥ 4u2 − 6u+ 4− 3
√
1− u

(1− u)√
(1−u)2

2 + 1

As
√

(1−u)2

2 + 1 ≥
√

(1−u)2+1
2 ≥

√
1− u,we have

d2F (a)

da2
≥ 4u2 − 6u+ 4− 3(1− u) = 4u2 + 1− 3u > 0

The above inequality shows that F (a) is convex w.r.t to a for amin(c, b) ≤ a ≤ amax(c, b). Hence F (a) ≤
max (F (amin(c, b)), F (amax(c, b))). Below we use amin, amax as shorthands for amin(c, b),amax(c, b).

For F (amin), we have amin

√
a2
min+2b2

2(1−cb) =
a2
min+b2

2−camin−cb . This implies

2amin

√
(b2 +

1

2
a2min)(1− cb) = (1− cb)

(a2min + b2)

2− camin − cb
+ a2min(

1

2
a2min + b2)

2− camin − cb

(a2min + b2)

Hence using Lemma K.9,

F (amin) = a2min(2− cb− 2

3
camin)− (1− cb)

c(a2min + b2)

2− camin − cb
− ca2min(

1

2
a2min + b2)

2− camin − cb

(a2min + b2)

≤ 1

c
(
cb2

2− cb
− cb2)
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For F (amax), we know that amax must satisfy at least of the following three equalities and we discuss three
cases one by one.

1. amax

√
a2
max+2b2

2(1−cb) =
a2
max+b2

2−camax−cb , in this case we simply redo the calculation in Part 1.

2. b2 = amax

√
a2
max+2b2

2(1−cb) . This implies

2amax

√
(b2 +

1

2
a2max)(1− cb) = (1− cb)b2 + a2max(

1

2
a2max + b2)

1

b2

Hence using Lemma K.10,

F (amax) = a2max(2− cb− 2

3
camax)− (1− cb)cb2 − ca2max(

1

2
a2max + b2)

1

b2

≤ 1

c
(
cb2

2− cb
− cb2)

3. cb2 = b− amax. Define v ≜ amax

b , cb = 1− v. Note that 1− cb = amax

b and b2 ≥ amax

√
b(a2

max+2b2)
2amax

.
These imply a3max + 2amaxb

2 − 2b3 ≤ 0 ⇒ amax < 0.9b. This implies v ≤ 0.9. By Lemma K.8,
0.5 ≤ v.
As v ∈ [0.5, 0.9], it holds that

v(1 + v) +
1

1 + v
≤ 2

√
(1 +

v2

2
)v.

This implies

v2(2− (1− v)− 2

3
(1− v)v)− 2v

√
(1 +

v2

2
)v ≤ −v

1 + v
=

1

2− cb
− 1

Finally,

F (amax) = a2max(2− cb− 2

3
camax)− 2amax

√
(b2 +

1

2
a2max)(1− cb)

= b2

(
v2(2− (1− v)− 2

3
(1− v)v)− 2v

√
(1 +

v2

2
)v

)
≤ b2(

1

2− cb
− 1) .

In conclusion, it holds that,

F (a) ≤ max (F (amin(c, b)), F (amax(c, b)))

≤ 1

c
(
cb2

2− cb
− cb2).

L OMITTED PROOFS ON CONTINUOUS APPROXIMATION

In this section we give a general approximation result (Theorem L.1) between a continuous-time flow (Equa-
tion 39) and a discrete-time (stochastic) iterates (Equation 40) in some compact subset of RD, denoted by
K. This result is used multiple times in our analysis for full-batch SAM and 1-SAM. 7 Let b : K → RD is a
C1-lipschitz function, that is, ∀x, x′ ∈ K, it holds that ∥b(x)− b(x′)∥2 ≤ C1 ∥x− x′∥2. Let bk be mappings
from K to RD for k ∈ [M ] satisfying that b(x) = 1

M

∑M
k=1 bk(x) for all x ∈ K.

We consider the continuous-time flow X : [0, T ] → K, which is the unique solution of

dX(τ) = b(X(τ))dτ. (39)

and the discrete-time iterate {x(t)}t∈N which approximately satisfy

x(t+ 1) ≈ x(t) + pbkt(x(t)), (40)

7Though we believe this approximation result is folklore, we cannot find a reference under the exact setting as ours.
For completeness, we provide a quick proof in this section.
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where kt is independently sampled from uniform distribution over [M ] for each t ∈ N and x(t) is a deter-
ministic function of k0, . . . , kt−1. We use Ft to denote the σ-algebra generated by k0, . . . , kt−1 and F∗ to
denote the filtration (Ft)t∈N. Thus x(t) is adapted to filtration F∗. Note b is undefined outside K, thus in
the analysis we only consider the process stopped immediately leaving K, that is, xK(t) ≜ x(min(t, tK)),
where tK ≜ {t′ ∈ N | x(t′) /∈ K}. If x(t) is in K for all t ≥ 0, then tK = ∞. It is easy to verify that tK is
a stopping time with respect to the filtration F∗. For convenience, we denote XK(τ) = X(min(τ, ptK)) as
the stopped continuous counterpart of xK .

Theorem L.1. Suppose there exist constants C2, ϵ, ϵ > 0 satisfying that

1. ∥bk(x)∥2 ≤ C2, for any x ∈ K and k ∈ [M ];
2. ∥bk(x)− b(x)∥2 ≤ C3, for any x ∈ K and k ∈ [M ];

3.
∥∥∥bkt(x(t))−

x(t+1)−x(t)
p

∥∥∥
2
≤ ϵ, for all t.

Then for any integer 0 ≤ k ≤ T/p and 0 < δ < 1, with probability at least 1− δ, it holds that

max
0≤t≤T/p

∥∥xK(t)−XK(pt)
∥∥ ≤ Hp,δe

C1T ,

where Hp,δ ≜ ∥x(0)−X(0)∥2 + C1C2Tp+ 2C3

√
pT log 2eT

δp + ϵT .

Proof of Theorem L.1. Summing up Equation 39 and Equation 40, for any t ≤ tK , we have that

X(pt)−X(0) =

∫ pt

τ=0

b(X(τ))dτ, (41)

and that

x(t)− x(0) =

t−1∑
t′=0

x(t′ + 1)− x(t′) (42)

Denote ∥x(t)−X(pt)∥2 by Et, we have that for t ≤ tK ,

Et − E0

≤

∥∥∥∥∥
∫ pt

τ=0

b(X(τ))dτ −
t−1∑
t′=0

(x(t′ + 1)− x(t′))

∥∥∥∥∥
2

≤

∥∥∥∥∥
∫ pt

τ=0

b(X(τ))dτ − p

t−1∑
t′=0

b(X(pt′))

∥∥∥∥∥
2︸ ︷︷ ︸

(A)

+

∥∥∥∥∥p
t−1∑
t′=0

b(X(pt′))− p

t−1∑
t′=0

b(x(t′))

∥∥∥∥∥
2︸ ︷︷ ︸

(B)

+

∥∥∥∥∥p
t−1∑
t′=0

b(x(t′))− p

t−1∑
t′=0

bkt′ (x(t
′))

∥∥∥∥∥
2︸ ︷︷ ︸

(C)

+

∥∥∥∥∥p
t−1∑
t′=0

bkt′ (x(t
′))−

t−1∑
t′=0

(x(t′ + 1)− x(t′))

∥∥∥∥∥
2︸ ︷︷ ︸

(D)

. (43)

Below we will proceed by bounding the four terms (A), (B), (C) and (D) in Equation 43.

1. Note that for any 0 ≤ τ ≤ τ ′ ≤ T , we have that

∥X(τ)−X(τ ′)∥2 =

∥∥∥∥∥
∫ τ ′

s=τ

b(X(s))ds

∥∥∥∥∥
2

≤
∫ τ ′

s=τ

∥b(X(s))∥2 ds ≤ (τ ′ − τ)C2.

Thus, by C1-lipschitzness of b,

(A) =

∥∥∥∥∫ pt

τ=0

b(X(τ))− b(X(⌊τ/p⌋p))dτ
∥∥∥∥
2

≤
∫ pt

τ=0

∥b(X(τ))− b(X(⌊τ/p⌋p))∥2 dτ

≤C1C2p
2t ≤ C1C2pT.

2. By definition of Et and C1-lipschitzness of b, we have that (B) ≤ C1p
∑t−1

t′=0Et′ .
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3. We claim that for any 0 < δ < 1, we have that for probability at least 1− δ, it holds that

(C) ≤ 2C3

√
2pT log

2eT

δp
. (44)

Below we prove our claim. We denote p
∑min(t,tK)−1

t′=0 b(x(t′))−p
∑min(t,tK)−1

t′=0 bkt′ (x(t
′)) by St, which

is a martingale with respect to filtration F∗, since tK is a stopping time. Note

∥St − St+1∥2 ≤ max
k∈[M ],x∈K

∥b(x)− bk(x)∥2 ≤ C3,

by Azuma-Hoeffding’s inequality (vector form, Lemma K.5), it holds that for any 0 ≤ t ≤ T/p and
0 ≤ δ ≤ 1, with probability at least 1− δ,

∥St∥2 ≤ 2C3p

√
2t log

2e

δ
.

Applying an union bound on the above inequality over t = 0, . . . , ⌊T/p⌋ − 1, we conclude that with

probability at least 1− δ, (C) ≤ 2C3p
√
2T/p log 2eT

δp = 2C3

√
2Tp log 2eT

δp .
4. We have that

(D) ≤ p

t−1∑
t′=0

∥∥∥∥bkt′ (x(t
′))− x(t′ + 1)− x(t′)

p

∥∥∥∥ ≤ ptϵ ≤ ϵT.

Combining the above upper bounds for (A), (B), (C) and (D), we conclude that for any 0 ≤ t ≤
min(T/p, tK),

Et ≤ Hp,δ + C1p

t−1∑
t′=0

Et′ . (45)

Applying the discrete gronwall inequality (Lemma K.6) on Equation 45, we have that

Et ≤ Hp,δe
C1pt ≤ Hp,δe

C1T ,

which completes the proof.

Corollary L.2. If min0≤τ≤T dist(X(τ),RD \K) > Hp,δe
C1T , then with probability at least 1 − δ, tK >

⌊T/p⌋ and therefore

max
0≤t≤T/p

∥x(t)−X(pt)∥ ≤ Hp,δe
C1T .

Proof of Corollary L.2. By Theorem L.1, we know with probability at least 1− δ, we have that

max
0≤t≤T/p

∥∥xK(t)−XK(pt)
∥∥ ≤ Hp,δe

C1T .

Therefore dist(xK(t),RD \K) ≥ dist(XK(pt),RD \K)−dist(XK(pt), xK(t)) > 0 for any 0 ≤ t ≤ T/p,
which implies xK(t) /∈ RD \K, or equivalently, xK(t) ∈ K. Thus we conclude that tK ≥ ⌊T/p⌋.

Corollary L.3. Suppose M = 1 and there exist constants C2, ϵ > 0 satisfying that

1. ∥b(x)∥2 ≤ C2 for any x ∈ K;

2.
∥∥∥b(x)− x(t+1)−x(t)

p

∥∥∥ ≤ ϵ, for all x ∈ K.

Then for any k ∈ N such that kp ≤ T , it holds that

max
0≤t≤T/p

∥∥xK(t)−XK(pt)
∥∥ ≤ Hpe

C1T ,

where Hp ≜ ∥x(0)−X(0)∥2 + C1C2Tp+ ϵT .

Therefore, similar to Corollary L.2, if min0≤τ≤T dist(X(τ),RD \K) > Hpe
C1T , then it holds that tK >

⌊T/p⌋ and that

max
0≤t≤T/p

∥x(t)−X(pt)∥ ≤ Hp,δe
C1T .
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Proof of Corollary L.3. For any δ ∈ (0, 1], choosing C3 = 0 and by Theorem L.1, we have that

P
[

max
0≤t≤T/p

∥∥xK(t)−XK(pt)
∥∥ ≤ Hpe

C1T

]
≥ 1− δ .

Since δ can be any number in (0, 1], the above probability is exactly 1.

We end this section with a summary of applications of Theorem L.1 and corollary L.3 in our proofs (Table 2).

Setting p bk ϵ
Full-batch SAM, Phase I (Lemma I.4) η −∇L(·) ρ
Full-batch SAM, Phase II (Theorem I.3) ηρ2 −∂Φ(·)∇λ1(∇2L(·))/2 ρ+ η
1-SAM, Phase I (Lemma J.3) η −∇Lk(·) ρ
1-SAM, Phase II (Theorem J.2) ηρ2 −∂Φ(·)∇Tr(∇2Lk(·))/2 ρ+ η

Table 2: Summary of applications of Theorem L.1 and corollary L.3 in our analysis

76


	Introduction
	Related Works
	Notations and Assumptions
	Explicit and Implicit Bias in the Full-Batch Setting
	Worst- and Ascent-direction Sharpness Have Different Explicit Biases
	SAM Provably Decreases Worst-direction Sharpness
	Analysis Overview For Sharpness Reduction in Phase II of Theorem 4.5

	Explicit and Implicit Biases in the Stochastic Setting
	Stochastic Worst-, Ascent- and Average- direction Sharpness Have the Same Explicit Biases as Average Direction Sharpness
	Stochastic SAM Minimizes Average-direction Sharpness 

	Conclusion
	Additional Related Works
	Experimental Details for Figure 1
	Additional Preliminary
	Well-definedness of SAM
	Proof Setups
	Proofs of thm:derivemanifoldassumption,thm:rank1manifold

	Properties of Limiting Map of Gradient Flow, 
	Analysis for Explicit Bias
	A General Theorem for Explicit Bias in the Limit Case
	Bad Limiting Regularizers May Not Capture Explicit Bias
	Proof of thm:generalreg
	Proofs of corr:generalregextension
	Limiting Regularizers For Different Notions of Sharpness
	Proof of Theorems 4.2 and 5.3

	Analysis Full-batch SAM on Quadratic Loss (Proof of thm:nsamquad)
	Entering Invariant Set
	Alignment to Top Eigenvector

	Analysis for Full-batch SAM on General Loss (Proof of Theorem 4.5)
	Phase I (Proof of Theorem I.1)
	Tracking Gradient Flow
	Decreasing Loss
	Entering Invariant Set

	Phase II (Proof of Theorem I.3)
	Alignment to Top Eigenvector
	Tracking Riemannian Gradient Flow

	Proof of Theorem 4.5
	Proofs of Corollaries 4.6 and 4.7
	derivations for sec:prooffull

	Analysis for 1-SAM (Proof of Theorem 5.4)
	Phase I (Proof of Theorem J.1)
	Tracking Gradient Flow
	Decreasing Loss

	Phase II (Proof of Theorem J.2)
	Convergence Near Manifold
	Tracking Riemannian Gradient Flow

	Proof of Theorem 5.4
	Proofs of Corollaries 5.6 and 5.7
	Other Omitted Proofs for 1-SAM

	Technical Lemmas
	Omitted Proofs on Continuous Approximation

