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Abstract

We revisit the classic ski rental problem through the lens
of Bayesian decision-making and machine-learned predic-
tions. While traditional algorithms minimize worst-case cost
without assumptions, and recent learning-augmented ap-
proaches leverage noisy forecasts with robustness guarantees,
our work unifies these perspectives. We propose a discrete
Bayesian framework that maintains exact posterior distribu-
tions over the time horizon, enabling principled uncertainty
quantification and seamless incorporation of expert priors.
Our algorithm achieves prior-dependent competitive guar-
antees and gracefully interpolates between worst-case and
fully-informed settings. Our extensive experimental evalua-
tion demonstrates superior empirical performance across di-
verse scenarios, achieving near-optimal results under accu-
rate priors while maintaining robust worst-case guarantees.
This framework naturally extends to incorporate multiple
predictions, non-uniform priors, and contextual information,
highlighting the practical advantages of Bayesian reasoning
in online decision problems with imperfect predictions.

Introduction
The ski rental problem is a foundational challenge in online
algorithms, capturing the fundamental trade-off between
short-term flexibility and long-term commitment under un-
certainty. A decision-maker must repeatedly choose between
renting an item at a per-use cost or purchasing it upfront
at a fixed cost, without knowing how long the item will be
needed. Originally introduced by Karlin et al. (1994), this
problem models a wide range of real-world scenarios, in-
cluding cloud resource provisioning, equipment leasing, and
inventory management.

In the classical setting, no deterministic algorithm can
achieve a competitive ratio better than 2, and randomiza-
tion improves this to e

e−1 ≈ 1.582 (Chrobak et al. 1991).
However, these guarantees are worst-case and fail to lever-
age any structure or prior information about the underlying
demand. Recent work on learning-augmented algorithms
has proposed integrating machine-learned predictions to im-
prove online performance while retaining robustness (Lyk-
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ouris and Vassilvitskii 2018; Mitzenmacher 2020; Purohit,
Svitkina, and Kumar 2018). Yet existing approaches often
rely on point estimates, regime heuristics, or hand-crafted
thresholds, which are brittle in the face of prediction noise
and difficult to analyze rigorously.

This paper introduces a Bayesian framework for the ski
rental problem that is both learning-augmented and fully
probabilistic. Our approach maintains a posterior distribu-
tion over the unknown time horizon and updates it exactly
each day based on observed survival. This enables deci-
sions based on expected utility rather than point forecasts,
and provides a principled mechanism for incorporating prior
knowledge—be it empirical, structured, or even adversar-
ially incorrect. Throughout the paper we assume the un-
known horizon is bounded by a known M .

Contributions

This work makes several key contributions. First, we intro-
duce the first learning-augmented ski rental algorithm based
on exact discrete Bayesian inference, removing the need for
point estimates or regime switching. Second, we establish
theoretical guarantees on competitive ratio and regret un-
der classical priors, showing robustness to prior misspeci-
fication. Third, extensive experiments on synthetic and real-
world priors confirm consistent outperformance over deter-
ministic, randomized, and prediction-based baselines—even
under noisy or adversarial conditions. Our Bayesian formu-
lation is modular and extensible, supporting multiple priors,
structured uncertainty, and continuous-time variants, while
adapting to multi-modal priors via decisions informed by
mode weights and positions.

Technical Overview

Notation. Consider an unknown season length T ∈
{1, . . . ,M} with prior mass function πk ≜ Pr[T = k] for
k = 1, . . . ,M . Using k to denote a realized trip length (hori-
zon). Let b > 1 be the one-time buy cost and, unless stated
otherwise, the per-day rental cost is normalized to 1.

It maintains the posterior over T conditioned on survival
(T ≥ t) and compares the expected remaining rental cost
with b.



1. Posterior update: Pr(T = k | T ≥ t) =
πk∑M
j=t πj

for

k ≥ t.
2. Expected rental cost: Erent(t) =

∑M
k=t Pr(T = k |

T ≥ t) · (k − t+ 1).
3. Decision: If b ≤ Erent(t), buy; else, rent and proceed to

day t+ 1.

Units. With per-day rental cost normalized to 1, b and k−
t+ 1 are directly comparable:

Erent(t) =

M∑
k=t

Pr[T = k | T ≥ t] · (k − t+ 1). (1)

This fully Bayesian strategy naturally quantifies uncer-
tainty, makes decisions by expected-utility maximization,
and seamlessly integrates any prior information. In the sec-
tions that follow, we formalize the algorithm, prove its com-
petitive guarantees, and explore its empirical performance
and extensions.

We begin by reviewing the classical ski rental problem,
which forms the foundation for our Bayesian extension.

Related Work
Classical Results. The ski rental problem was formalized by
Karlin et al. (1994), who showed a competitive ratio lower
bound of 2 for deterministic algorithms, achievable via a
simple threshold strategy. Chrobak et al. (1991) proved that
randomization improves this to e/(e − 1) ≈ 1.582. Exten-
sions include multi-item (Fleischer 2001) and dynamic-cost
settings (Young 2000).

Learning-Augmented Algorithms. Recent work inte-
grates predictions into online algorithms, with frameworks
balancing consistency and robustness (Lykouris and Vassil-
vitskii 2018; Mitzenmacher 2020). For ski rental, Kumar,
Purohit, and Svitkina (2018) proposed prediction-dependent
thresholds, while Anand et al. (2022) studied multiple pre-
dictions. More recent advances extend to offline problems
such as matching (Dinitz et al. 2021), clustering (Ergun
et al. 2021), and sorting (Bai and Coester 2023). Inspired
by learned index structures (Kraska et al. 2018), robust
techniques have emerged for combining multiple predic-
tions (Anand et al. 2022; Antoniadis et al. 2023), along-
side new applications in binary search (Dinitz et al. 2024),
warm-started decision-making (Blum and Srinivas 2025),
and learning-informed dynamic graphs (Brand et al. 2024).

Bayesian Approaches. Bayesian methods are well-
established in offline problems (e.g., Thompson sampling
(Agrawal and Goyal 2013)), but competitive analyses for on-
line settings remain rare.

Our Work. To the best of our knowledge, our work is
the first to introduce a fully Bayesian framework for the ski
rental problem with distributional predictions, establishing
provable guarantees under a discrete prior.

Preliminaries
We briefly review the classical ski rental problem and then
present our discrete Bayesian extension.

Classical Ski Rental
At each day t = 1, 2, . . . , a skier chooses to:

Rent: pay $1 for the day,
Buy: pay a one-time cost b > 1 for unlimited use.

The offline optimum for an unknown season length T is
OPT(T ) = min{T, b}. An online algorithm A incurs cost
ALG(A, T ), and its competitive ratio is

CR(A) = sup
T≥1

ALG(A, T )
OPT(T )

.

No deterministic algorithm achieves CR < 2, but random-
ization attains the optimal e/(e− 1) ≈ 1.582.

Discrete Bayesian Extension
We assume a finite horizon M and prior Pr[T = k] = πk for
k = 1, . . . ,M , with

∑M
k=1 πk = 1. Conditioned on survival

(T ≥ t), the posterior becomes

Pr[T = k | T ≥ t] =
πk∑M
j=t πj

, k = t, . . . ,M.

Define the expected remaining rental cost:

Erent(t) =

M∑
k=t

Pr[T = k | T ≥ t] · (k − t+ 1).

Our policy purchases on the first day t such that b ≤
Erent(t), and continues renting otherwise, reassessing daily.

Computational Complexity
This section provides a detailed analysis of the computa-
tional complexity of the proposed Bayesian decision pro-
cedure, including its time, space, and sparse-support imple-
mentation aspects.

1) Time: Computing the normalization factor and the
expected-cost sum each day takes O(M) time, resulting
in a worst-case total time complexity of O(M2).

2) Space: Storing the prior and posterior distributions re-
quires O(M) memory. All arithmetic operations involve
nonnegative sums and divisions, ensuring numerical sta-
bility.

3) Sparse-Support Implementation: When the prior has
n (with n ≤ M ) nonzero entries (ki, πki), we can opti-
mize the algorithm by indexing the support points using
a balanced BST or hash map, maintaining prefix sums
over survival probabilities for O(logn) query time, and
computing Erent(t) by iterating only over the n support
points. These optimizations reduce the overall runtime to
O(n log n) without affecting the competitive guarantees.

With these preliminaries established, we now present the
detailed Bayesian decision procedure that leverages this
probabilistic framework to make optimal online decisions.



Bayesian Decision Procedure
Algorithm Description
Our approach makes decisions via exact Bayesian inference
over a discrete prior on the unknown horizon. As shown in
Algorithm 1, given a buy cost b > 1, horizon bound M ,
and prior π = [π1, . . . , πM ], the algorithm updates its pos-
terior over [t,M ] at each day t, conditioned on survival. It
computes the expected rental cost under this posterior and
compares it to b. If the expected cost exceeds b, it buys; oth-
erwise, it rents and continues. This repeats until purchase
or horizon end. This simple, efficient method adapts to arbi-
trary discrete priors without relying on heuristics or point es-
timates, and naturally extends to contextual or time-varying
settings.

Zt ≜
M∑
k=t

πk, (2a)

pt,k ≜
πk

Zt
(k = t, . . . ,M), (2b)

Erent(t) ≜
M∑
k=t

pt,k × (k − t+ 1). (2c)

Algorithm 1: Discrete Bayesian Ski Rental

Require: Buy cost b > 1, horizon bound M ≥ 1, prior
distribution π = [π1, π2, . . . , πM ]

Ensure: Purchase day t∗ (or M+1 if no purchase occurs)
1: t← 1
2: Validate/normalize prior:
3: if

∑M
k=1 πk = 0 then

4: return M+1 ▷ Invalid prior
5: end if
6: π ← π/

∑M
k=1 πk ▷ Normalize to a valid pmf

7: while t ≤M do
8: Compute Zt, pt,k, and Erent(t) as in (2)
9: if Zt = 0 then

10: return M+1 ▷ No remaining probability mass
11: end if
12: if b ≤ Erent(t) then
13: return t ▷ Buy today
14: else
15: t← t+ 1 ▷ Rent today; re-evaluate tomorrow
16: end if
17: end while
18: return M+1 ▷ Never buy within horizon

Algorithm Properties
The algorithm operates by making a daily decision: whether
to buy skis on day t or continue renting. On each day t,
it compares the known cost of buying, which is b, against
the expected cost of continuing to rent from day t onward,
denoted by Erent(t). This expected rental cost is computed
with respect to the posterior distribution over ski days, con-
ditional on the fact that skiing has lasted at least until day t.
The decision rule is simple: buy as soon as b ≤ Erent(t). This
policy provably minimizes the expected total cost under π.

Lemma 1 (Monotonicity of Purchase Incentive). Under
the log-concave prior distribution, the expected remaining
rental cost Erent(t) is non-increasing in t:

Erent(t+ 1) ≤ Erent(t).

We analyze the performance of this algorithm in terms
of its expected competitive ratio (ECR), defined as the ratio
between the algorithm’s expected cost and the expected cost
of the offline optimal strategy:

ECR =

∑t∗−1
k=1 πk k +

∑M
k=t∗ πk (t

∗ − 1 + b)∑M
k=1 πk min(k, b)

. (3)

The offline optimal algorithm, knowing k in advance, in-
curs cost min(k, b). Its expected cost is therefore

Eπ[CostOPT] =

M∑
k=1

πk ·min(k, b).

Let t∗ denote the day on which the Bayes-optimal algo-
rithm chooses to buy. Its expected cost is

Eπ[CostALG] =

t∗−1∑
k=1

πk · k +

M∑
k=t∗

πk · (t∗ − 1 + b).

Thus, the expected competitive ratio becomes:

ECR =

∑t∗−1
k=1 πk · k +

∑M
k=t∗ πk · (t∗ − 1 + b)∑M

k=1 πk ·min(k, b)
.

This ratio is always at least 1, and equals 1 only when π is
concentrated on a single value of k such that the algorithm
makes the correct offline choice.

Compared to classical algorithms, this Bayesian approach
provides significantly improved performance in expectation.
The deterministic strategy of buying on day b has a worst-
case competitive ratio of (2b− 1)/b, which approaches 2 as
b→∞. The optimal randomized strategy achieves a worst-
case ratio of e/(e−1) ≈ 1.58. In contrast, the Bayes-optimal
strategy leverages prior information to minimize expected
cost and achieves strictly better performance when the prior
is informative. However, this benefit is contingent on the
quality of the prior: a poorly specified prior may result in
suboptimal outcomes.

When Bayesian Outperforms Classical
Algorithms

Having established the core algorithm and its properties, we
now analyze specific scenarios where the Bayesian approach
significantly outperforms classical algorithms, demonstrat-
ing its practical advantages under various prior distributions.

Case 1: Uniform Prior (Fixed Range)
We analyze the scenario where the trip length k is uniformly
distributed over a fixed, finite range, k ∈ {1, 2, . . . , N}:

πk =
1

N
, for k ∈ {1, 2, . . . , N}.



Bayesian Algorithm’s Behavior. The Bayesian algorithm
makes its decision entirely on Day 1. Since the expected re-
maining rental cost Erent(t) is non-increasing in t (as shown
by the Monotonicity Lemma), if the algorithm does not buy
on Day 1, it will never buy.

The expected rental cost on Day 1 is given by the expec-
tation of the uniform prior:

Erent(1) =

N∑
k=1

πk · k =
1

N

N∑
k=1

k =
N + 1

2
.

Therefore, the algorithm chooses to buy on Day 1 (t∗ = 1)
if and only if

b ≤ Erent(1),

and otherwise never buys (t∗ = N + 1) when

b > Erent(1).

The following theorem holds.
Theorem 1 (Uniform Prior). If πk = 1/N for k ∈
{1, . . . , N}, the Bayesian algorithm achieves an ECR of

ECR =



1, if N ≤ b,

N(N + 1)

b(2N − b+ 1)
, if b < N < 2b− 1,

2N

2N − b+ 1
, if N ≥ 2b− 1.

.

Case 2: Geometric Prior with Fixed Support
This setting assumes the trip length k is drawn from a geo-
metric distribution truncated to the range k ∈ {1, 2, . . . , N}.
Prior Distribution and Expected Costs The prior distri-
bution over trip lengths is defined as:

πk =
p(1− p)k−1

1− (1− p)N
, for k = 1, 2, . . . , N,

where p denotes the success probability of the geometric dis-
tribution.

ECR =

∑N
τ=1 πτ

[
min(t∗(τ), τ)− 1 + b · 1{t∗(τ)≤τ}

]∑N
τ=1 πτ min(τ, b)

.

where t∗(τ) is the stopping time when the true horizon is τ ,
determined by:

t∗(τ) = min

{
t ≤ τ : b ≤

N∑
k=t

πk

Zt
(k − t+ 1)

}
.

Let E1 denote the expected trip length (the mean of the
truncated geometric distribution):

E1 ≜ Erent(1) =

N∑
k=1

kπk.

We have

Erent(k + 1) =
1

p
− (N − k)(1− p)N−k

1− (1− p)N−k

is decreasing in k when N is larger than some constant.

Theorem 2 (Truncated Geometric Prior). If the prior is
given by πk ∝ p(1 − p)k−1 truncated to k ≤ N > 2, the
Bayesian algorithm achieves an Expected Competitive Ratio

ECR =
min(E1, b)∑N

k=1 πk min(k, b)
.

Case 3: Truncated Gaussian Prior
We assume T is drawn from a truncated Gaussian prior on
{1, . . . , N}:
Prior Distribution. Let µ and σ be the mean and standard
deviation of the untruncated Gaussian. The truncated Gaus-
sian prior is defined over {1, 2, . . . , N} as:

πk =
e−

(k−µ)2

2σ2∑N
j=1 e

− (j−µ)2

2σ2

, for k ∈ {1, 2, . . . , N}.

This prior is highly informative and places most of its prob-
ability mass near the mean µ. A discretized truncated Gaus-
sian prior πk ∝ exp

(
− (k−µ)2

2σ2

)
is log-concave; a log-

concave discrete PMF has an increasing discrete hazard rate
h(t) = πt∑M

k=t πk
, and an increasing hazard rate (IHR) im-

plies that the mean residual life is nonincreasing. Hence the
Bayesian algorithm makes its decision entirely on Day 1.

We now extend the basic framework to handle more
complex scenarios, including multiple predictions, adaptive
learning, and contextual information.

Algorithmic Extensions and Variants
Multiple Predictions Algorithm
Given multiple independent predictions T̂1, . . . , T̂n about
the unknown horizon T , each with an associated uncertainty
level σi, we seek to compute a refined posterior distribution
over T that integrates all available information. We assume
each prediction is a noisy observation of the true horizon,
modeled as a Gaussian centered at T with variance σ2

i . Start-
ing from a uniform prior, we sequentially update the poste-
rior using Bayes’ rule. Each prediction contributes a like-
lihood term, and the updates ensure that the final posterior
distribution reflects all predictions in a statistically optimal
way. The resulting posterior can then be used to make deci-
sions in the ski rental problem with improved accuracy.

Our approach above not only leverages each predictor’s
uncertainty but also achieves a near-optimal decision quality
in expectation.

Adaptive Prior Learning
In many real-world scenarios, the ski rental problem is en-
countered repeatedly with varying horizons drawn from an
unknown distribution. We propose an adaptive algorithm
that learns this prior online, starting from a uniform initial-
ization and updating it each round using the observed buy-
ing time Tr via an exponential moving average with learning
rate α. This refinement enables adaptation to the underlying
horizon distribution and improved decision-making, align-
ing with sequential or learning-augmented online optimiza-
tion frameworks (Gummadi and Pratap 2021; Lattanzi et al.
2020).



Algorithm 2: Bayesian Ski Rental with Multiple Predictions

Require: Predictions {T̂1, . . . , T̂n} and their accuracies
{σ1, . . . , σn}

Ensure: Combined posterior distribution
1: Initialize: Uniform prior π(0)

k = 1/M
2: for i = 1 to n do
3: Compute Likelihood: Li(k) =

1√
2πσ2

i

exp
(
− (k−T̂i)

2

2σ2
i

)
4: Update Posterior: π(i)

k ∝ π
(i−1)
k · Li(k)

5: Normalize: π(i)
k = π

(i)
k /

∑M
j=1 π

(i)
j

6: end for
7: return π(n)

Algorithm 3: Adaptive Bayesian Ski Rental

Require: Number of rounds R, learning rate α
Ensure: Sequence of purchasing decisions

1: Initialize: π(1) = Uniform(1,M)
2: for round r = 1 to R do
3: Run Bayesian algorithm using prior π(r)

4: Observe realized horizon Tr

5: Update: π(r+1)
k = (1− αr)π

(r)
k + αr · 1[k = Tr]

6: end for

Theorem 3 (Adaptive Regret Bound). With learning rate

αr = min

{
1,

√
logM

r

}
,

the adaptive algorithm incurs regret:

RegretR =

R∑
r=1

[Costr − OPTr] = O(
√
R logM).

The theorem shows that the adaptive algorithm achieves
cumulative regret O(

√
R logM) over R rounds, where

Costr is the incurred cost and OPTr is the offline optimal
cost for horizon Tr.

When contextual information x ∈ X is available, the prior
can be conditioned on x through a softmax parameterization:
Definition 1 (Contextual Prior). Given context x, the prior
is defined as

πk(x) =
exp(θ⊤k ϕ(x))∑M
j=1 exp(θ

⊤
j ϕ(x))

,

where ϕ(x) is a feature map and θk is the parameter associ-
ated with horizon k.

This parametrization lets the prior depend smoothly on x,
effectively modeling π(· | x) as a categorical exponential-
family distribution. The expected remaining rental cost then
becomes

E[T − t+ 1 | x, T ≥ t],

so contextual information directly shifts the decision bound-
ary through the induced posterior.

Experiments
We structure our experimental evaluation around the follow-
ing questions:
Q1. Robustness to prior misspecification. How stable is
the Bayesian algorithm when the assumed prior differs from
the true horizon distribution?
Q2. Performance under perfect prior knowledge. How
close does the algorithm get to the offline optimal when the
prior is accurate?
Q3. Noisy single predictions. Can the algorithm maintain
performance when only a biased or noisy point prediction is
available?
Q4. Multi-modal prior distributions. Does the algorithm
adapt to complex, multi-peaked distributions without ex-
plicit mode detection?

Experimental Setup
We evaluate all methods with buy cost b = 100, horizon
bound M = 500, and 10,000 Monte Carlo trials per con-
figuration. We compare the Bayesian algorithm against de-
terministic thresholding, the optimal randomized strategy,
point-prediction purchase, and the learning-augmented strat-
egy of Kumar et al. (2024). Performance is measured via
competitive ratio (CR) and success rate.

Q1. Robustness to Prior Misspecification
We test three Gaussian uncertainty regimes (σ/µ ∈
{0.42, 0.33, 0.31}) and introduce misspecification by per-
turbing the mean, variance, and distributional shape. As
shown in Figure 1, performance degrades only mildly: the
average cost increase is 5.3%, and the worst-case degrada-
tion reaches 18.7% under extreme mean errors. Variance and
model-form errors have negligible impact.

Q2. Performance Under Perfect Prior Knowledge
Table 1 summarizes performance when the assumed prior
matches the true distribution. The Bayesian method achieves
near-optimal CR ≈ 1.02 with a 98.7% success rate, signifi-
cantly outperforming classical baselines.

Q3. Noisy Single Predictions
We next evaluate robustness when only a single noisy
prediction T̂ is provided. Predictions follow T̂ ∼
N (αT, (βT )2) with β = 0.3 and bias α ∈ [0.5, 2.0]. Ta-
ble 2 shows that the Bayesian method degrades smoothly
from CR 1.05 to 1.43 as bias increases, consistently outper-
forming the point-prediction baseline.

Q4. Multi-modal Prior Distributions
Finally, we assess adaptability to complex priors: bi-modal,
tri-modal, and seasonal distributions. As illustrated in Fig-
ure 3, the algorithm adjusts its purchase threshold to the ef-
fective mass of the distribution without explicit mode detec-
tion.



Figure 1: Robustness under prior misspecification. (a) Performance degradation across uncertainty regimes remains small even
at high total variation (TV) distances. (b) Mean errors have the largest impact, while variance and model errors are negligible.
(c) CR distribution remains stable across TV bins.

Experiment 1: Robustness to Prior Misspecification
We analyze how performance changes when the assumed
prior is distorted. Figure 1 shows that the competitive ratio
remains highly stable across a wide range of perturbations:
even at large total-variation distances, the average cost in-
creases by only 5.3% and the worst-case degradation under
severe mean shifts reaches just 18.7%, while variance and
shape errors have negligible effect.

This robustness arises in the regime where E[T ] > b, so
the buy decision depends mainly on the expected horizon
rather than finer details of the prior. Once this boundary is
crossed, moderate distortions leave the optimal action essen-
tially unchanged. For comparison, Table 1 shows that with a
perfectly specified prior the algorithm achieves near-optimal
performance (CR ≈ 1.02), confirming that robustness does
not come at the cost of optimality.

Experiment 2: Perfect Prior Knowledge We evaluate
performance when the algorithm’s assumed prior matches
the true horizon distribution.

Setup. The true horizon is drawn from a known prior,

T ∼ π,

π ∈ {Unif[1, 500], N (100, 302), Exp(0.01)}.

With perfect information, the Bayesian threshold rule uses
the exact posterior and therefore coincides with the optimal
stopping rule for each distribution.

Across all prior families, the Bayesian algorithm achieves
near-optimal performance, obtaining a mean competitive ra-
tio of 1.02 and a 98.7% success rate. In contrast, determin-
istic and randomized strategies produce significantly higher
costs (CR = 1.85 and 1.58), while point-prediction methods
remain noticeably suboptimal (CR = 1.16). These results
demonstrate that the Bayesian policy not only retains robust-
ness under misspecification (Experiment 1) but also fully
realizes its advantage when accurate prior information is
available. Taken together, the evidence highlights that prin-
cipled uncertainty modeling yields consistent gains across
both noisy and well-specified environments.

Table 1: Performance under perfect prior knowledge (10,000
trials).

Algorithm Mean CR 95% CI 95th pct. Success Rate

Bayesian 1.023 [1.021, 1.025] 1.156 98.7%
Randomized 1.582 [1.577, 1.587] 1.921 67.3%
Deterministic 1.847 [1.839, 1.855] 2.456 52.1%
Prediction-based 1.156 [1.150, 1.162] 1.687 81.4%

Figure 2: Competitive ratio under perfect prior knowledge.
The Bayesian method achieves CR ≈ 1.02 across all priors,
significantly outperforming classical algorithms.

Experiment 3: Noisy Single Predictions We evaluate ro-
bustness when only a biased and noisy single prediction is
provided. Predictions follow

T̂ ∼ N (αT, (βT )2),

with true horizon fixed at T = 100, noise level β = 0.3, and
bias α ∈ [0.5, 2.0].

The competitive ratio rises smoothly from 1.05 to 1.43 as
bias increases from 0.5 to 2.0, indicating that performance
degrades gradually rather than abruptly. Across all bias lev-
els, the Bayesian method consistently improves over point-
prediction baselines by 15–30%, showing that uncertainty in



Table 2: Competitive ratio under noisy single predictions
(T = 100).

Bias α |α− 1| Bayesian CR Point Pred. CR

0.5 0.5 1.05 1.29
0.8 0.2 1.08 1.34
1.0 0.0 1.12 1.38
1.2 0.2 1.21 1.47
1.5 0.5 1.31 1.60
2.0 1.0 1.43 1.79

a single noisy forecast does not compromise reliability. This
graceful degradation highlights the advantage of using the
full posterior rather than relying solely on point estimates.

Experiment 4: Multi-modal Prior Distributions We
evaluate the algorithm’s behavior under multi-modal hori-
zon distributions, which commonly arise in real-world set-
tings such as weekday–weekend cycles or seasonal demand
patterns. Each prior describe the distribution and the result-
ing optimal threshold.

• Bi-modal typical case (t∗ = 30). The prior

π = 0.7N (10, 32) + 0.3N (25, 52)

contains two dominant modes at 10 and 25. The algo-
rithm delays purchase beyond both modes because the
posterior survival probability S(t) = Pr(T ≥ t) decays
slowly in the right tail, keeping E[T − t+1 | T ≥ t] > b
until late in the horizon. This produces a coherent thresh-
old at t∗ = 30, well past both peaks.

• Tri-modal balanced case (t∗ = 21). The prior

π =
1

3
(δ8 + δ20 + δ40)

has three equally weighted peaks. Even though the den-
sity is highly non-monotonic, the decision depends only
on the monotone survival function S(t), not on the num-
ber or positions of modes. The algorithm produces a sin-
gle stable threshold t∗ = 21 that balances early and late
mass.

• Seasonal-peak case (t∗ = 1). The prior

π = 0.3N (5, 32) + 0.7N (30, 102)

features occasional early activity but a large dominant
late-season surge. Here, the heavy early mass causes a
steep drop in S(t), so E[T − t+ 1 | T ≥ t] quickly falls
below b, triggering immediate purchase at t = 1.

These cases collectively highlight a structural property of
the Bayesian rule: the decision boundary depends on the in-
tegrated survival function

S(t) = Pr(T ≥ t),

rather than local density or mode locations. Thus, multi-
modality causes no instability, and the algorithm adapts
smoothly to the global distribution.

Table 3: Summary of multi-modal priors and optimal
Bayesian purchase times.

Case Dominant mode Optimal t

Bi-modal typical 10, 25 81
Tri-modal balanced 8, 20, 40 81
Seasonal peak 5, 30 81

Figure 3: Comparison of multi-modal priors (left) and their
survival functions (right). Despite strong multi-modality in
the density, the Bayesian threshold depends only on the in-
tegrated survival mass S(t), producing stable and coherent
purchase decisions.

The stopping rule depends only on the tail mass S(t) =
Pr(T ≥ t) through the condition b ≤ E[T − t + 1 | T ≥
t]. Thus local bumps or multiple modes in π do not affect
the decision; only the cumulative survival shape determines
when the threshold is crossed.

Discussion and Future Work
Practical Implications: Our discrete Bayesian framework
offers key practical benefits: principled uncertainty quantifi-
cation via full posterior maintenance, graceful handling of
noisy forecasts beyond point estimates, and seamless incor-
poration of domain knowledge through customizable priors.
It naturally supports multi-modal distributions—e.g., week-
day/weekend patterns—without explicit regime switching,
as confirmed by our experiments. Moreover, it adapts online
by updating posteriors as new data arrive, improving respon-
siveness in dynamic settings.

Limitations and Assumptions: We assume a discrete,
finite horizon and stationary costs, which may limit real-
world applicability. Extensions to continuous time and dy-
namic pricing would require new techniques. Episodes are
treated as independent, ignoring temporal correlations. Per-
fect observability of the horizon end is assumed; more re-
alistic settings with partial or delayed feedback would need
belief tracking or filtering.

Future Research Directions: Future work includes
meta-learning priors from historical data, robust Bayesian
optimization for worst-case guarantees, and multi-agent ex-
tensions for shared resource settings. Continuous-time mod-
els could link to optimal stopping theory. Incorporating
high-dimensional contextual information via deep genera-
tive priors offers potential for richer, feature-aware decision-
making.
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