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Abstract

The design of antibodies with high affinity and specificity for target antigens is1

a cornerstone of therapeutic and diagnostic innovation. Traditional optimization2

strategies, such as phage or yeast display and directed evolution, remain resource-3

intensive and limited in their ability to integrate contextual information. Recent4

AI-driven approaches have accelerated protein engineering, but most rely exclu-5

sively on structured inputs, overlooking the potential of natural language as a flex-6

ible design interface. In this work, we introduce TeBaAb, a novel text-based7

antigen-conditioned framework for antibody redesign that combines generative8

modeling with iterative optimization inspired by directed evolution. TeBaAb in-9

tegrates a Conditional Variational Autoencoder (CVAE) jointly conditioned on10

antigen sequences and textual descriptions of antibody properties, coupled with a11

two-stage binding affinity predictor and an iterative enrichment loop. To support12

this approach, we curated AbDes, a new dataset of 7,800 text–antibody–antigen13

pairs with accompanying structural and binding information. Experimental eval-14

uations demonstrate that TeBaAb improves the predicted binding affinity by an15

average of 15.5% compared to the original antibodies, while preserving structural16

confidence (RMSPE < 1.0Å) and generating sequences that are diverse and novel.17

By enabling text-conditioned antigen-specific antibody design, TeBaAb provides18

a promising new paradigm for accelerating therapeutic antibody discovery and19

expanding the antibody design space beyond traditional methods.20

1 Introduction21

Antibodies are Y-shaped glycoproteins produced by the adaptive immune system to recognize22

and neutralize antigens. Their high specificity arises from complementarity-determining regions23

(CDRs)—hypervariable loops in the variable domains of the heavy and light chains—that bind to24

distinct epitopes on the antigen surface. This mechanism underlies their essential role in immune25

defense and has been widely exploited in biotechnology and medicine. Monoclonal antibodies, in26

particular, are a leading class of biopharmaceuticals used in targeted therapies for cancer, autoim-27

mune diseases, and infectious pathogens [4]. Given their clinical impact, substantial effort has gone28

into designing antibodies with improved biophysical and functional properties [11].29

Traditional antibody engineering methods, such as phage display and directed evolution [24], are30

effective but often slow, labor-intensive, and limited by the scale of experimental screening. These31

approaches struggle to explore the vast combinatorial space of antibody sequences and to optimize32

multiple objectives simultaneously. Recently, artificial intelligence (AI) has enabled data-driven33

models that predict sequence–function relationships, generate novel antibodies, and estimate bio-34

physical properties in silico—paving the way for faster, more scalable, and more targeted antibody35

discovery pipelines [11].36

Submitted to Multi-modal Foundation Models and Large Language Models for Life Sciences workshop
(NeurIPS 2025).



CVAE

Affinity 
Predictor

Top Performing 
Variants

Conditionally 
generate 
diverse 

antibody 
mutants

Predict 
binding 
affinity

New elite 
population

Antibody of interest
AI

In silico 
mutagenesis

Computational 
screening

Iterative 
enrichment

Figure 1: The TeBaAb pipeline integrates
generative modeling, predictive evaluation,
and iterative refinement for antibody re-
design. A Conditional Variational Au-
toencoder (CVAE) generates candidate se-
quences conditioned on antigen sequences
and textual descriptions. A two-stage affin-
ity predictor evaluates binding strength, and
top variants are iteratively fed back into the
CVAE, forming an in-silico directed evolu-
tion loop.

Despite the success of AI-driven approaches in an-37

tibody design, most existing computational meth-38

ods focus on generating or optimizing antibody se-39

quences conditioned solely on structured inputs,40

such as antigen sequences or 3D structures. These41

models typically lack the ability to incorporate flexi-42

ble, high-level design intents specified by users, such43

as functional requirements, therapeutic context, or44

developability constraints, especially when such in-45

formation is only available in natural language form.46

This limitation restricts the usability and adaptabil-47

ity of current systems in real-world therapeutic dis-48

covery workflows, where expert knowledge is often49

communicated through free-text annotations or de-50

sign briefs.51

Recently, there has been a growing interest in using52

natural language as a conditioning modality for pro-53

tein generation [17]. Text-conditioned design offers54

a promising path toward more intuitive and control-55

lable protein engineering, allowing users to specify56

desired properties or functional behaviors directly57

through human language. Inspired by these ad-58

vances, we introduce TeBaAb, a text-based, antigen-59

conditioned framework for antibody redesign that al-60

lows guided optimization through natural language61

prompts and directed evolution strategies. A broader62

overview of related work in text-conditioned protein63

and antibody design is provided in Appendix A.64

In summary, this work makes the following key contributions:65

• We propose a novel framework for antibody design. Our framework integrates two key66

components: Conditional VAE for antibody generation and an optimization pipeline to67

achieve a higher binding affinity antibody that is guided by our predictor model.68

• Although comprehensive data on antibody-antigen pairs are scarce, we have aggregated69

data from multiple sources, annotated antibodies, to create AbDes, a uniform dataset for70

antibody design. The dataset and the source code will be publicly released upon acceptance71

of the paper.72

• Our experiments demonstrate the feasibility of designing antibodies based on descriptions73

while still targeting specific antigens, opening up a new research direction in the field of74

antibody discovery.75

2 Methods76

The TeBaAb framework operates in two coordinated phases, as illustrated in Figure 1. First, a Con-77

ditional Variational Autoencoder (CVAE) generates candidate antibody sequences conditioned on78

both the antigen sequence and a natural language description of the desired antibody properties.79

This conditioning ensures that the generated variants are biologically relevant and compatible with80

the original scaffold. In the second phase, a two-stage deep learning predictor estimates the bind-81

ing affinity of each candidate, enabling rapid in silico prioritization without requiring immediate82

experimental validation.83

To further refine the candidates, TeBaAb incorporates an iterative optimization loop inspired by84

directed evolution [25]. In each round, the top-performing sequences, those with the highest pre-85

dicted binding affinities, are reintroduced as inputs to the CVAE, guiding the generation toward86

progressively improved variants. Over successive iterations, this loop mimics natural selection by87

converging on antibody sequences with enhanced predicted performance, while operating entirely88

within a computational framework.89
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Detailed descriptions of each component, including model architectures, training protocols, and90

input encoding strategies, are provided in Appendix B.91

3 Experiments92

3.1 Dataset93

Text-conditioned antibody design requires a multimodal dataset combining antibody sequences,94

antigen context, and descriptive language. While existing resources such as SAbDab [7], AbSet [2],95

and ABSD [20] provide rich antibody–antigen data, they lack the natural language annotations96

needed for training models like TeBaAb.97

To address this, we curated AbDes, a new dataset of 7,800 antibody–antigen pairs with aligned98

textual descriptions. Starting from AbSet, we filtered entries with complete heavy/light chains and99

antigen sequences, then retrieved associated metadata from the Protein Data Bank (PDB) [5] using100

each entry’s PDB ID. Extracted fields include titles, source organisms, expression systems, and clas-101

sification labels, forming lightweight but informative natural language annotations. The structure of102

each entry and representative examples are provided in Appendix C.2.103

To train the binding affinity predictor used in TeBaAb’s optimization loop, we extracted experi-104

mentally determined ∆G values from SAbDab. Due to data scarcity, only 400 such entries were105

available with complete sequence triplets and affinity labels. Despite the limited size, these high-106

quality records were essential for supervising the affinity oracle.107

3.2 Results108

In this section, we present a comprehensive evaluation of the TeBaAb framework, demonstrating109

its efficacy in the redesign of antibody sequences. As our method introduces a novel approach to110

text-conditioned antibody design, direct baseline comparisons with existing models are not feasi-111

ble. Instead, we evaluate TeBaAb across several key metrics defined in Appendix C.1: Maximum112

Binding Affinity (MBA), diversity, novelty, and structural confidence. In addition, we analyze113

the influence of natural language descriptions on the design outcomes to assess how textual condi-114

tioning guides optimization. These results are provided in Appendix D.115

3.2.1 Binding Affinity Optimization116

Our primary objective is to enhance the binding affinity of antibodies to antigens. Table 1 sum-117

marizes the average predicted binding affinity for the original antibodies and their corresponding118

TeBaAb optimized variants. We report the predicted ∆G values, where lower values indicate119

stronger binding. The improvement in binding affinity is evident from the decrease in ∆G for120

optimized sequences.121

Table 1: Average Predicted Binding Affinity (∆G) for Original vs. TeBaAb-Optimized Antibodies.
Metric Original ∆G (Avg.) Optimized ∆G (Avg.) Average Improvement (%)
Binding affinity -10.04 -11.60 15.5

Note: Improvement (%) is calculated as (|Optimized ∆G| − |Original ∆G|)/|Original ∆G| × 100,
reflecting the increase in absolute affinity.

As shown in Figure 2, TeBaAb consistently generates antibody sequences with improved predicted122

binding affinities, highlighting the framework’s ability to effectively optimize this critical property.123

3.2.2 Sequence Diversity and Novelty124

To evaluate the generative capabilities of TeBaAb beyond affinity optimization, we evaluated the125

diversity and novelty of the antibody sequences generated. Diversity quantifies the variation within126

the redesigned set, while novelty measures their distinctiveness from the training data. Table 2127

presents these metrics.128
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Table 2: Sequence Diversity and Novelty of TeBaAb-Generated Antibodies.
Metric Value
Average Levenshtein Distance (Diversity) 87.73
Average Minimum Levenshtein Distance to Training Set (Novelty) 28.95

Note: Higher values for both metrics indicate greater diversity and novelty, respectively.
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Figure 2: Histogram & KDE: Original vs
Optimized Binding Affinity.

The calculated average Levenshtein distance [15] in-129

dicates that TeBaAb is capable of producing a di-130

verse set of antibody sequences, which is crucial131

for exploring a wide range of potential solutions.132

Furthermore, the average minimum Levenshtein dis-133

tance to the training set of 28.95 demonstrates the134

framework’s ability to generate novel sequences,135

minimizing overlap with existing data and poten-136

tially leading to innovative designs.137

3.2.3 Structural Confidence138

The maintenance of the structural integrity of the139

antibody scaffold is paramount for its stability and140

function. We use ABodyBuilder2 [1] to forecast the141

three-dimensional configurations of modified antibody sequences, utilizing its ensemble of four142

models to assess the reliability of the predictions. In Table 3, we report the root mean prediction er-143

ror (RMSPE) for different regions of antibody. The prediction errors are below 1.0 Å, demonstrating144

the consistency and quality of the predicted structures, further suggesting that optimized sequences145

maintain structural characteristics that are well modeled by standard prediction tools.146

Table 3: Average Structural Confidence (RMSPE) for TeBaAb-Optimized Antibodies (Å).
Region Original Pred. Error Optimized Pred. Error
Framework H-chain 0.32 0.72
CDR-H1 0.30 0.45
CDR-H2 0.19 0.27
CDR-H3 0.19 0.29
Framework L-chain 0.24 0.51
CDR-L1 0.25 0.74
CDR-L2 0.18 0.35
CDR-L3 0.24 0.36
Average 0.24 0.48

4 Conclusion147

We introduced TeBaAb, a novel framework for text-based, antigen-conditioned antibody redesign148

that integrates a CVAE generation model with an Oracle-guided optimization pipeline. To support149

this, we curated AbDes, a dataset of 7,800 text-antibody-antigen triplets, enabling learning from nat-150

ural language descriptions. Experimental results show that TeBaAb consistently improves predicted151

binding affinity while maintaining high structural confidence, demonstrating its potential for prac-152

tical therapeutic design. By enabling controllable antibody optimization from descriptive prompts,153

TeBaAb opens a new direction in antibody engineering. Future work will extend textual condition-154

ing to a wider range of properties, incorporate structural constraints, and pursue wet-lab validation155

of designed candidates.156
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A Related work240

Text-Guided Protein Design. Recent advances in protein language models (PLMs) have laid the241

foundation for text-guided protein design by modeling amino acid sequences analogously to natural242

language. Transformer-based architectures such as ESM [21], ProtTrans [8], and various BERT-243

based models have been pretrained on large-scale protein databases, capturing complex syntactic244

and functional patterns in protein sequences. Building on these representations, recent approaches245

have demonstrated the feasibility of generating or editing proteins from natural language prompts.246

Pinal [6], a 16B-parameter model trained on 1.7B protein–text pairs, uses a two-stage pipeline to247

map text to structural motifs and then generate sequences, validated experimentally. ProteinDT [18]248

introduces a three-stage framework: Contrastive alignment (ProteinCLAP), a facilitator network and249

a decoder trained in 441K text-protein pairs for zero-shot generation and editing. Other models, such250

as PAAG [27] and ProDVa [16], target functional domain design, and fragment-based generation,251

respectively. Large-scale models such as ProGen [19] and ESM-3 [10] enable prompt-guided gener-252

ation and prediction of fitness. These works demonstrate the growing potential of natural language253

as a controllable interface for protein design.254

Challenges in Antibody Design. Despite advances in general protein design, direct application255

to antibody engineering faces unique challenges. Antibodies require precise three-dimensional ar-256

rangements in their Complementarity Determining Regions (CDRs) while maintaining structural257

integrity and minimal immunogenicity, constraints fundamentally different from general proteins.258

Critical limitations include data scarcity: Although general protein-text datasets contain millions of259

entries, detailed antibody annotations linking natural language descriptions to binding properties and260

therapeutic functions remain limited [2, 23]. Additionally, structural constraints in antibody design261

are exceptionally stringent, as function depends exquisitely on precise CDR conformations. Current262

text-based models may struggle to capture these antibody-specific constraints, potentially generating263

non-functional or immunogenic sequences [12]. These challenges highlight the need for antigen-264

conditioned antibody design frameworks that bridge general text-based capabilities with specialized265

antibody requirements. Our TeBaAb framework addresses this gap by combining text-based prop-266

erty specification with explicit antigen conditioning and iterative optimization tailored for antibody267

engineering.268

B Detailed Methodology269

B.1 Conditional Variational Autoencoder270

Antigen-Antibody 
Complex

Antibody
Sequence

Antigen
Sequence

Textual 
Description

Ab Language Model
(IgBERT)

Protein Language Model
(ESMC)

Scientific Language 
Model
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New Antibody 
Sequence

Feature Extraction CVAE
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Figure 3: The CVAE integrates antibody embeddings (IgBERT), antigen embeddings (ESMC), and
textual description embeddings (SciBERT) to generate antibody sequences. The encoder produces
a latent distribution, and the transformer-based decoder reconstructs sequences conditioned on both
latent variables and contextual inputs, enabling antigen-specific and text-guided antibody design.

Let the embedding of the antibody be denoted by x ∈ Rdab , representing the encoded representation271

of the antibody sequence obtained from IgBERT [14], a specialized antibody pre-trained language272
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model. The conditioning vector is defined as: c =
[
cantigen; cdescription

]
, where cantigen ∈ Rdag rep-273

resents the antigen embedding extracted using ESMC [10], a protein language model specifically274

designed to understand protein sequences, and cdescription ∈ Rddes denotes the textual description275

embedding generated by SciBERT [3], a domain-adapted language model for scientific text.276

Encoder. The encoder, parameterized by ϕ, takes the concatenated vector [x; c] and outputs pa-277

rameters of the approximate posterior:278

qϕ(z | x, c) = N
(
z;µϕ(x, c), diag(σ

2
ϕ(x, c))

)
,

where µϕ and log σ2
ϕ are learned via neural networks. We then sample the latent representation using279

the reparameterization trick:280

z = µϕ(x, c) + σϕ(x, c)⊙ ϵ, ϵ ∼ N (0, I).

Decoder. The decoder, implemented as a transformer network parameterized by θ, models the281

antibody sequence autoregressively conditioned on z and c:282

pθ(xseq | z, c) =
L∏

i=1

pθ(xi | x<i, z, c),

where xseq = (x1, . . . , xL) denotes the amino acid sequence of length L, with each xi represented283

as a one-hot vector.284

Objective. The training objective minimizes a weighted sum of the reconstruction loss and the KL285

divergence loss. This is equivalent to maximizing the Evidence Lower Bound (ELBO):286

LCVAE(ϕ, θ;x, c) = −Eqϕ(z|x,c)
[
log pθ(xseq | z, c)

]︸ ︷︷ ︸
Reconstruction Loss

+β DKL

(
qϕ(z | x, c) ∥ p(z)

)︸ ︷︷ ︸
KL Divergence Loss

,

where p(z) = N (0, I) is the prior distribution over the latent space, and β is a dynamically adjusted287

weight for the KL divergence term, controlled by a proportional-integral (PI) controller [9].288

The two components of the loss are:289

• Reconstruction Loss (Lrecon): Implemented as a token-level cross-entropy loss, it mea-290

sures how well the model reconstructs the input sequence xseq given the latent variable z291

and conditions c.292

Lrecon = −
L∑

i=1

log pθ(xi | x<i, z, c),

where L is the sequence length, xi is the i-th token, and x<i denotes the tokens preceding293

xi. Padding tokens are masked (ignored) during loss computation.294

• KL Divergence Loss (DKL): This term regularizes the latent space by minimizing the295

Kullback-Leibler divergence between the approximate posterior qϕ(z | x, c) (learned by296

the encoder) and the standard normal prior p(z). This ensures a meaningful and well-297

structured latent space, facilitating effective sampling for generation.298

The PI controller adaptively modulates β during training, encouraging an optimal balance between299

latent compression (smaller KL divergence) and reconstruction fidelity (lower reconstruction error).300

B.2 Binding Affinity Predictor301

Inspired by recent advances in protein interaction prediction [22, 13], to predict antibody-antigen302

binding affinity, we employ a two-stage deep learning framework. First, a contrastive model aligns303

the embeddings of antibodies and antigens in a shared latent space. Then, a cross-attention model304

predicts the binding affinity by capturing their interactions. The contrastive model Mcont, uses305

encoders ϕab and ϕag to project antibody (ab) and antigen (ag) embeddings into a common space.306

For a batch of N pairs {(abi,agi)}Ni=1, projections are:307

pab,i = normalize(ϕab(abi)),

pag,i = normalize(ϕag(agi)).
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The contrastive loss is defined as:308

Lcont = − 1

N

N∑
i=1

log

(
exp(pab,i · pag,i/τ)∑N
j=1 exp(pab,i · pag,j/τ)

)
.

The affinity predictor, Maff, uses these encoders and applies multi-head cross-attention as follows:309

Hab→ag = MultiHeadAttention(projab,projag,projag),

Hag→ab = MultiHeadAttention(projag,projab,projab),

H = Hab→ag +Hag→ab, ŷ = θ(H).

Finally, the loss is the mean squared error defined as:310

Laff =
1

N

N∑
i=1

(ŷi − yi)
2.

B.3 Directed Evolution311

Our antibody redesign strategy employs a directed evolution approach to iteratively improve anti-312

body sequences towards higher binding affinity. This method mimics natural selection, progressively313

enriching sequences that exhibit superior fitness. The core idea is to explore the sequence space314

around an initial set of antibody sequences, evaluate the fitness of newly generated variants, and315

then select the most promising ones to serve as the basis for the next generation of exploration. This316

iterative refinement process aims to converge on sequences with optimal binding characteristics.317

The directed evolution process commences by selecting K initial antibody sequences. These se-318

quences are then subjected to an iterative optimization loop spanning G generations. In each gener-319

ation, for every selected antibody sequence, a set of B neighboring sequences are generated. This320

generation step is powered by our CVAE. Given an antibody sequence embedding, along with the321

corresponding antigen embedding (cantigen) and a desired property embedding (cdescription), CVAE322

samples novel antibody sequences, yet contextually relevant. This allows for exploration of the323

sequence space while maintaining desired characteristics.324

The fitness of these newly generated sequences is then rigorously evaluated. For this, we utilize325

our pre-trained Binding Affinity Predictor. This predictor acts as a computational oracle, providing326

an estimated binding affinity (ŷ) for each antibody-antigen pair. A lower predicted binding affinity327

(for example, a more negative value of ∆G) signifies a stronger binding interaction, thus indicating328

a higher fitness. The selection criterion for advancing sequences to the next generation is based329

on these predicted affinity values. Specifically, the top K antibody sequences, exhibiting the most330

favorable (lowest) predicted binding affinities, are chosen from the combined pool of parent and331

newly generated sequences to propagate to the subsequent generation. This ensures that the popula-332

tion progressively shifts towards higher-affinity regions of the sequence space.333

The fitness score F (S,A) for an antibody sequence S against a target antigen A is directly defined334

by its predicted binding affinity (ŷ(S,A)) calculated using our binding affinity predictor F (S,A) =335

ŷ(S,A), where S represents the antibody sequence being evaluated and A represents the target336

antigen sequence. The objective of the directed evolution process is to minimize F (S,A), thus337

identifying antibody sequences with the strongest predicted binding affinity to the specific target338

antigen.339

B.4 Decoder model340

The decoder is built on a Transformer architecture [26] and serves as the core module for generating341

antibody sequences (see Fig. 4). It reconstructs sequences from a rich, combined representation342

that merges latent features, descriptive metadata, and antigen-specific embeddings. These inputs343

are concatenated and projected into a sequence of hidden states, forming the “memory” for cross-344

attention.345

During generation, the target tokens are first embedded and enriched with positional encodings, then346

passed through a stack of Transformer decoder layers. Within each layer, self-attention captures347

dependencies within the generated sequence so far, while cross-attention draws on the memory to348

integrate contextual information from the input.349
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Training employs teacher forcing, periodically replacing predicted tokens with their ground-truth350

counterparts at a fixed probability to stabilize learning. When teacher forcing is not applied, the351

decoder generates tokens sequentially using greedy decoding. Finally, hidden states are projected352

onto vocabulary logits, enabling step-by-step prediction of the next amino acid in the sequence.353

[CLS] H1 ... Hn [SEP] L1 ... Ln Antibody Tokens

E[CLS] EH1 ... EHn E[SEP] EL1 ... ELn Token Embeddings

P0 P1 ... ... ... ... ... Pn-1 Position Embeddings

+ + + + + + + +

Transformer

EH1 ... EHn E[SEP] EL1 ... ELn E[EOS] Token Embeddings

H1 ... Hn [SEP] L1 ... Ln [EOS] Antibody Tokens

MemoryCombined 
Representation

Antibody 
Latent

Antigen 
Embedding

Description 
Embedding

Input

Output

Figure 4: This figure illustrates the design of Transformer-based decoder for antibody sequence
generation. The decoder integrates latent features, antigen embeddings, and textual description em-
beddings into a shared representation that serves as memory for cross-attention. Antibody sequences
are reconstructed autoregressively: input tokens (heavy and light chains) are embedded with posi-
tional encodings, processed through Transformer layers, and predicted step by step. Self-attention
captures dependencies within the sequence, while cross-attention injects contextual information, en-
abling controllable generation of antibody sequences aligned with antigen specificity and descriptive
properties.

Table 4: Comparative Performance: TeBaAb (with Description) vs. TeBaAb (without Description).
Metric TeBaAb (w

Description)
TeBaAb (w/o
Description)

Binding Affinity Improvement (Avg ∆G %) 15.5 8.9
Diversity 87.73 86.70
Novelty 28.95 26.11
Average Optimized Pred. Error (Å) 0.48 0.36

C Implementation Details354

C.1 Evaluation metrics355

To comprehensively assess the performance of our antibody redesign framework, we employ four356

primary evaluation metrics: maximum binding affinity (MBA), sequence diversity, novelty, and357

structural confidence.358

Maximum Binding Affinity (MBA). The MBA metric quantifies the highest predicted binding359

affinity between the redesigned antibody and its specific antigen, reflecting the functional efficacy360

of the generated sequences. We use the free-energy-change scoring function to estimate MBA.361

Formally, MBA is defined as:362

MBA = max
s∈S

{−∆G(s, a)}, (1)

where S represents the set of redesigned antibody sequences, s denotes a single antibody sequence,363

and a denotes the target antigen. A lower predicted free energy (∆G) indicates a higher binding364

affinity.365

Diversity. To ensure the generation of varied antibody sequences rather than mere repetitions or366

minor modifications of known sequences, we measure diversity within the set of redesigned anti-367

bodies. Sequence diversity is computed using the pairwise Levenshtein distance [15] averaged over368
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all pairs of generated sequences, formally represented as:369

Diversity =
2

N(N − 1)

N−1∑
i=1

N∑
j=i+1

Lev(si, sj), (2)

where N is the number of antibody sequences and Lev(si, sj) denotes the Levenshtein distance370

between two antibody sequences si and sj .371

Novelty. Novelty assesses the degree to which the antibodies generated differ from known se-372

quences in our training dataset. We calculate novelty as the average minimum sequence distance373

between each generated antibody sequence and all sequences in the training dataset (Dtrain). The374

novelty score is defined as:375

Novelty =
1

|S|
∑
s∈S

min
s′∈Dtrain

Lev(s, s′). (3)

Higher novelty scores indicate more distinctive and potentially innovative antibody sequences.376

Structural Confidence. Assessing the structural quality of the redesigned antibodies is critical377

to ensure stability and functionality. We used ABodyBuilder2 [1] to predict the three-dimensional378

structures of redesigned antibody sequences, leveraging its ensemble of four models to estimate the379

reliability of the prediction. The root mean squared predicted error (RMSPE) (Å), derived from the380

diversity among these predictions, serves as a structure-related metric:381

RMSPE =

√√√√ 1

N

N∑
i=1

Var(xi), (4)

where N is the number of residues, and Var(xi) represents the variance in the predicted coordinates382

of residue i in the ensemble. Lower RMSPE values indicate greater confidence in the predicted383

structure, ensuring structural reliability for redesigned antibodies without requiring a reference scaf-384

fold.385

C.2 AbDes Dataset386

In this appendix, we provide example entries from the AbDes dataset to illustrate its structure and387

the type of information it contains. The dataset is designed to facilitate text-conditioned antibody388

design by linking antibody sequences and their target antigens with rich textual descriptions of389

antibody properties.390

The AbDes dataset comprises entries with the following key fields:391

• Antibody Sequence: The complete heavy- and light-chain amino acid sequences of the392

antibody (e.g. ‘heavy chain|light chain‘).393

• Antigen Sequence: The target antigen to which the antibody binds. Following [7], we use394

‘/‘ to separate different antigen fragments.395

• Description: A free-text description of the antibody’s properties. This field represents our396

unique contribution, derived from PDB annotations and literature.397

• ∆G (Binding Affinity): The predicted binding free energy, where available. This value398

indicates the strength of the antibody-antigen interaction (lower values signify stronger399

binding). Note that ∆G values are available for a subset of the dataset.400

D Additional Results: Impact of Textual Description401

This section presents an additional evaluation designed to specifically highlight the contribution of402

the textual description input to the performance of the TeBaAb framework. Although our primary403

evaluation focuses on the full TeBaAb model (which incorporates textual descriptions), understand-404

ing the isolated impact of this novel conditioning is crucial. To achieve this, we compare the per-405

formance of our best performing TeBaAb configuration (with input of textual description) against406
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Table 5: Example Entries from the AbDes Dataset (General Structure).
Antibody Sequence Antigen Description Binding

Affinity
QV QLV...|QSALT... V V KFMDV Y... Vascular endothelial growth

factor in complex with a neu-
tralizing antibody, classified
as an immune system, de-
rived from mus musculus and
expressed in escherichia coli,
forms a Hetero 6-mer with
Cyclic - C2 symmetry.

-11.55

QV QLQ...|QV QLQ... KV FGRCEL... Hen egg white lysozyme,
d18a mutant, in complex
with mouse monoclonal an-
tibody d1.3, classified as
a complex (immunoglobu-
lin/hydrolase), derived from
mus musculus and expressed
in escherichia coli, forms a
Hetero 3-mer with Asymmet-
ric - C1 symmetry, and has
pseudo-symmetry of Asym-
metric - C1 with Hetero 3-mer
stoichiometry.

-10.45

QIQLV Q...|DIVMT... IRDFNNLT... Refined crystal structure
of the influenza virus n9
neuraminidase-nc41 fab
complex, classified as a
hydrolase(o-glycosyl), de-
rived from influenza a virus
(a/tern/australia/g70c/1975(h11n9)),
forms a Hetero 12-mer with
Cyclic - C4 symmetry.

-11.02

Note: Sequences are truncated for brevity.

a variant of TeBaAb where the textual description component (‘des rep‘) is excluded during both407

training and inference. This allows us to isolate the specific benefits conferred by conditioning the408

generation on textual properties.409

All other hyperparameters and training procedures remained consistent with the TeBaAb model that410

performs the best described in Section 3. This ensures a direct comparison of the impact of the de-411

scription input. Table 4 presents a comparative overview of key evaluation metrics: Binding Affinity,412

Sequence Diversity, Novelty, and Structural Confidence, between the full TeBaAb framework and413

its variant without textual description input.414
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