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Abstract

The design of antibodies with high affinity and specificity for target antigens is
a cornerstone of therapeutic and diagnostic innovation. Traditional optimization
strategies, such as phage or yeast display and directed evolution, remain resource-
intensive and limited in their ability to integrate contextual information. Recent
Al-driven approaches have accelerated protein engineering, but most rely exclu-
sively on structured inputs, overlooking the potential of natural language as a flex-
ible design interface. In this work, we introduce TeBaAb, a novel text-based
antigen-conditioned framework for antibody redesign that combines generative
modeling with iterative optimization inspired by directed evolution. TeBaAb in-
tegrates a Conditional Variational Autoencoder (CVAE) jointly conditioned on
antigen sequences and textual descriptions of antibody properties, coupled with a
two-stage binding affinity predictor and an iterative enrichment loop. To support
this approach, we curated AbDes, a new dataset of 7,800 text—antibody—antigen
pairs with accompanying structural and binding information. Experimental eval-
uations demonstrate that TeBaAb improves the predicted binding affinity by an
average of 15.5% compared to the original antibodies, while preserving structural
confidence (RMSPE < 1.0A) and generating sequences that are diverse and novel.
By enabling text-conditioned antigen-specific antibody design, TeBaAb provides
a promising new paradigm for accelerating therapeutic antibody discovery and
expanding the antibody design space beyond traditional methods.

1 Introduction

Antibodies are Y-shaped glycoproteins produced by the adaptive immune system to recognize
and neutralize antigens. Their high specificity arises from complementarity-determining regions
(CDRs)—hypervariable loops in the variable domains of the heavy and light chains—that bind to
distinct epitopes on the antigen surface. This mechanism underlies their essential role in immune
defense and has been widely exploited in biotechnology and medicine. Monoclonal antibodies, in
particular, are a leading class of biopharmaceuticals used in targeted therapies for cancer, autoim-
mune diseases, and infectious pathogens [4]. Given their clinical impact, substantial effort has gone
into designing antibodies with improved biophysical and functional properties [11].

Traditional antibody engineering methods, such as phage display and directed evolution [24]], are
effective but often slow, labor-intensive, and limited by the scale of experimental screening. These
approaches struggle to explore the vast combinatorial space of antibody sequences and to optimize
multiple objectives simultaneously. Recently, artificial intelligence (AI) has enabled data-driven
models that predict sequence—function relationships, generate novel antibodies, and estimate bio-
physical properties in silico—paving the way for faster, more scalable, and more targeted antibody
discovery pipelines [11].

Submitted to Multi-modal Foundation Models and Large Language Models for Life Sciences workshop
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Despite the success of Al-driven approaches in an-

tibody design, most existing computational meth-

ods focus on generating or optimizing antibody se-

quences conditioned solely on structured inputs, Conditonaly
such as antigen sequences or 3D structures. These Newelte o g".,,;,
models typically lack the ability to incorporate flexi- pepssen e N
ble, high-level design intents specified by users, such _— *

as functional requirements, therapeutic context, or CEILS \‘ (/
developability constraints, especially when such in-

formation is only available in natural language form. “ 3-*4,‘-‘ N &
This limitation restricts the usability and adaptabil- Trke e s
ity of current systems in real-world therapeutic dis- varania F— predieter
covery workflows, where expert knowledge is often e
communicated through free-text annotations or de-

sign briefs. bining

affinity

Recently, there has been a growing interest in using
natural language as a conditioning modality for pro-
tein generation [17]]. Text-conditioned design offers
a promising path toward more intuitive and control-
lable protein engineering, allowing users to specify
desired properties or functional behaviors directly
through human language. Inspired by these ad-
vances, we introduce TeBaAb, a text-based, antigen-
conditioned framework for antibody redesign that al-
lows guided optimization through natural language
prompts and directed evolution strategies. A broader
overview of related work in text-conditioned protein
and antibody design is provided in Appendix [A]

Figure 1: The TeBaAb pipeline integrates
generative modeling, predictive evaluation,
and iterative refinement for antibody re-
design. A Conditional Variational Au-
toencoder (CVAE) generates candidate se-
quences conditioned on antigen sequences
and textual descriptions. A two-stage affin-
ity predictor evaluates binding strength, and
top variants are iteratively fed back into the
CVAE, forming an in-silico directed evolu-
tion loop.

In summary, this work makes the following key contributions:

* We propose a novel framework for antibody design. Our framework integrates two key
components: Conditional VAE for antibody generation and an optimization pipeline to
achieve a higher binding affinity antibody that is guided by our predictor model.

* Although comprehensive data on antibody-antigen pairs are scarce, we have aggregated
data from multiple sources, annotated antibodies, to create AbDes, a uniform dataset for
antibody design. The dataset and the source code will be publicly released upon acceptance
of the paper.

* Our experiments demonstrate the feasibility of designing antibodies based on descriptions
while still targeting specific antigens, opening up a new research direction in the field of
antibody discovery.

2 Methods

The TeBaAb framework operates in two coordinated phases, as illustrated in Figure[l] First, a Con-
ditional Variational Autoencoder (CVAE) generates candidate antibody sequences conditioned on
both the antigen sequence and a natural language description of the desired antibody properties.
This conditioning ensures that the generated variants are biologically relevant and compatible with
the original scaffold. In the second phase, a two-stage deep learning predictor estimates the bind-
ing affinity of each candidate, enabling rapid in silico prioritization without requiring immediate
experimental validation.

To further refine the candidates, TeBaAb incorporates an iterative optimization loop inspired by
directed evolution [25]. In each round, the top-performing sequences, those with the highest pre-
dicted binding affinities, are reintroduced as inputs to the CVAE, guiding the generation toward
progressively improved variants. Over successive iterations, this loop mimics natural selection by
converging on antibody sequences with enhanced predicted performance, while operating entirely
within a computational framework.
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Detailed descriptions of each component, including model architectures, training protocols, and
input encoding strategies, are provided in Appendix B}

3 Experiments

3.1 Dataset

Text-conditioned antibody design requires a multimodal dataset combining antibody sequences,
antigen context, and descriptive language. While existing resources such as SAbDab [7], AbSet [2],
and ABSD [20] provide rich antibody—antigen data, they lack the natural language annotations
needed for training models like TeBaAb.

To address this, we curated AbDes, a new dataset of 7,800 antibody—antigen pairs with aligned
textual descriptions. Starting from AbSet, we filtered entries with complete heavy/light chains and
antigen sequences, then retrieved associated metadata from the Protein Data Bank (PDB) [3] using
each entry’s PDB ID. Extracted fields include titles, source organisms, expression systems, and clas-
sification labels, forming lightweight but informative natural language annotations. The structure of
each entry and representative examples are provided in Appendix [C.2]

To train the binding affinity predictor used in TeBaAb’s optimization loop, we extracted experi-
mentally determined AG values from SAbDab. Due to data scarcity, only 400 such entries were
available with complete sequence triplets and affinity labels. Despite the limited size, these high-
quality records were essential for supervising the affinity oracle.

3.2 Results

In this section, we present a comprehensive evaluation of the TeBaAb framework, demonstrating
its efficacy in the redesign of antibody sequences. As our method introduces a novel approach to
text-conditioned antibody design, direct baseline comparisons with existing models are not feasi-
ble. Instead, we evaluate TeBaAb across several key metrics defined in Appendix Maximum
Binding Affinity (MBA), diversity, novelty, and structural confidence. In addition, we analyze
the influence of natural language descriptions on the design outcomes to assess how textual condi-
tioning guides optimization. These results are provided in Appendix [D}

3.2.1 Binding Affinity Optimization

Our primary objective is to enhance the binding affinity of antibodies to antigens. Table |l| sum-
marizes the average predicted binding affinity for the original antibodies and their corresponding
TeBaAb optimized variants. We report the predicted AG values, where lower values indicate
stronger binding. The improvement in binding affinity is evident from the decrease in AG for
optimized sequences.

Table 1: Average Predicted Binding Affinity (AG) for Original vs. TeBaAb-Optimized Antibodies.
Metric Original AG (Avg.) Optimized AG (Avg.) Average Improvement (%)

Binding affinity -10.04 -11.60 15.5

Note: Improvement (%) is calculated as (|Optimized AG| — |Original AG|)/|Original AG| x 100,
reflecting the increase in absolute affinity.

As shown in Figure [2) TeBaAb consistently generates antibody sequences with improved predicted
binding affinities, highlighting the framework’s ability to effectively optimize this critical property.

3.2.2 Sequence Diversity and Novelty

To evaluate the generative capabilities of TeBaAb beyond affinity optimization, we evaluated the
diversity and novelty of the antibody sequences generated. Diversity quantifies the variation within
the redesigned set, while novelty measures their distinctiveness from the training data. Table 2]
presents these metrics.
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Table 2: Sequence Diversity and Novelty of TeBaAb-Generated Antibodies.
Metric Value

Average Levenshtein Distance (Diversity) 87.73
Average Minimum Levenshtein Distance to Training Set (Novelty)  28.95

Note: Higher values for both metrics indicate greater diversity and novelty, respectively.

The calculated average Levenshtein distance [15]] in- o
dicates that TeBaAb is capable of producing a di- e T
verse set of antibody sequences, which is crucial e /I

for exploring a wide range of potential solutions. ®e *F I
Furthermore, the average minimum Levenshtein dis- ~ £*** Jﬂ

tance to the training set of 28.95 demonstrates the
framework’s ability to generate novel sequences,

minimizing overlap with existing data and poten- > ] ’T
tially leading to innovative designs. > ﬂhL TW |||

-16 -15 -14 -13  -12 -1 -10 -9 -8
Fitness Score (lower is better)

323 Structural Confidence Figure 2: Histogram & KDE: Original vs

The maintenance of the structural integrity of the Optimized Binding Affinity.

antibody scaffold is paramount for its stability and

function. We use ABodyBuilder2 [1]] to forecast the

three-dimensional configurations of modified antibody sequences, utilizing its ensemble of four
models to assess the reliability of the predictions. In Table[3] we report the root mean prediction er-
ror (RMSPE) for different regions of antibody. The prediction errors are below 1.0 A, demonstrating
the consistency and quality of the predicted structures, further suggesting that optimized sequences
maintain structural characteristics that are well modeled by standard prediction tools.

Table 3: Average Structural Confidence (RMSPE) for TeBaAb-Optimized Antibodies (A).

Region Original Pred. Error Optimized Pred. Error
Framework H-chain 0.32 0.72
CDR-H1 0.30 0.45
CDR-H2 0.19 0.27
CDR-H3 0.19 0.29
Framework L-chain 0.24 0.51
CDR-L1 0.25 0.74
CDR-L2 0.18 0.35
CDR-L3 0.24 0.36
Average 0.24 0.48

4 Conclusion

We introduced TeBaAb, a novel framework for text-based, antigen-conditioned antibody redesign
that integrates a CVAE generation model with an Oracle-guided optimization pipeline. To support
this, we curated AbDes, a dataset of 7,800 text-antibody-antigen triplets, enabling learning from nat-
ural language descriptions. Experimental results show that TeBaAb consistently improves predicted
binding affinity while maintaining high structural confidence, demonstrating its potential for prac-
tical therapeutic design. By enabling controllable antibody optimization from descriptive prompts,
TeBaAb opens a new direction in antibody engineering. Future work will extend textual condition-
ing to a wider range of properties, incorporate structural constraints, and pursue wet-lab validation
of designed candidates.
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A Related work

Text-Guided Protein Design. Recent advances in protein language models (PLMs) have laid the
foundation for text-guided protein design by modeling amino acid sequences analogously to natural
language. Transformer-based architectures such as ESM [21]], ProtTrans [8]], and various BERT-
based models have been pretrained on large-scale protein databases, capturing complex syntactic
and functional patterns in protein sequences. Building on these representations, recent approaches
have demonstrated the feasibility of generating or editing proteins from natural language prompts.
Pinal [6], a 16B-parameter model trained on 1.7B protein—text pairs, uses a two-stage pipeline to
map text to structural motifs and then generate sequences, validated experimentally. ProteinDT [[18]]
introduces a three-stage framework: Contrastive alignment (ProteinCLAP), a facilitator network and
adecoder trained in 441K text-protein pairs for zero-shot generation and editing. Other models, such
as PAAG [27] and ProDVa [16], target functional domain design, and fragment-based generation,
respectively. Large-scale models such as ProGen [19] and ESM-3 [10] enable prompt-guided gener-
ation and prediction of fitness. These works demonstrate the growing potential of natural language
as a controllable interface for protein design.

Challenges in Antibody Design. Despite advances in general protein design, direct application
to antibody engineering faces unique challenges. Antibodies require precise three-dimensional ar-
rangements in their Complementarity Determining Regions (CDRs) while maintaining structural
integrity and minimal immunogenicity, constraints fundamentally different from general proteins.
Critical limitations include data scarcity: Although general protein-text datasets contain millions of
entries, detailed antibody annotations linking natural language descriptions to binding properties and
therapeutic functions remain limited [2} 23|]. Additionally, structural constraints in antibody design
are exceptionally stringent, as function depends exquisitely on precise CDR conformations. Current
text-based models may struggle to capture these antibody-specific constraints, potentially generating
non-functional or immunogenic sequences [12]. These challenges highlight the need for antigen-
conditioned antibody design frameworks that bridge general text-based capabilities with specialized
antibody requirements. Our TeBaAb framework addresses this gap by combining text-based prop-
erty specification with explicit antigen conditioning and iterative optimization tailored for antibody
engineering.

B Detailed Methodology

B.1 Conditional Variational Autoencoder
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Figure 3: The CVAE integrates antibody embeddings (IgBERT), antigen embeddings (ESMC), and
textual description embeddings (SciBERT) to generate antibody sequences. The encoder produces
a latent distribution, and the transformer-based decoder reconstructs sequences conditioned on both
latent variables and contextual inputs, enabling antigen-specific and text-guided antibody design.

Let the embedding of the antibody be denoted by x € R%?, representing the encoded representation
of the antibody sequence obtained from IgBERT [14]], a specialized antibody pre-trained language
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model. The conditioning vector is defined as: ¢ = [Cantigen; Cdescription | » Where Cangigen € R% rep-
resents the antigen embedding extracted using ESMC [10], a protein language model specifically
designed to understand protein sequences, and Cescription € R denotes the textual description
embedding generated by SciBERT [3]], a domain-adapted language model for scientific text.

Encoder. The encoder, parameterized by ¢, takes the concatenated vector [x; c] and outputs pa-
rameters of the approximate posterior:
44(z | x,¢) = N (2z; po(x, c), diag(ai(x&))),
where /14 and log 035 are learned via neural networks. We then sample the latent representation using
the reparameterization trick:
z = py(x,¢) + op(x,¢) ©€, €~ N(0,I).

Decoder. The decoder, implemented as a transformer network parameterized by 6, models the
antibody sequence autoregressively conditioned on z and c:

L
pG(Xseq | z,¢) = HPO(xi | <4, 2, ),
i=1
where Xeq = (1, ..., ) denotes the amino acid sequence of length L, with each x; represented

as a one-hot vector.

Objective. The training objective minimizes a weighted sum of the reconstruction loss and the KL
divergence loss. This is equivalent to maximizing the Evidence Lower Bound (ELBO):

Lovar(9,05%,€) = ~Ey (51x.¢) [108 Po (Xseq | 2,€)] + 8 Dxr. (¢5(2 | x, ¢) || p(2)),

Reconstruction Loss KL Divergence Loss

where p(z) = N(0,1) is the prior distribution over the latent space, and 3 is a dynamically adjusted
weight for the KL divergence term, controlled by a proportional-integral (PI) controller [9].

The two components of the loss are:

* Reconstruction Loss (Lon): Implemented as a token-level cross-entropy loss, it mea-
sures how well the model reconstructs the input sequence Xq given the latent variable z

and conditions c.
L

Lrecon = — Z logp9($i | T<iyZ, C),
i=1
where L is the sequence length, z; is the i-th token, and z; denotes the tokens preceding
x;. Padding tokens are masked (ignored) during loss computation.

* KL Divergence Loss (Dky,): This term regularizes the latent space by minimizing the
Kullback-Leibler divergence between the approximate posterior ¢,(z | x,c) (learned by
the encoder) and the standard normal prior p(z). This ensures a meaningful and well-
structured latent space, facilitating effective sampling for generation.

The PI controller adaptively modulates 3 during training, encouraging an optimal balance between
latent compression (smaller KL divergence) and reconstruction fidelity (lower reconstruction error).

B.2 Binding Affinity Predictor

Inspired by recent advances in protein interaction prediction [22, [13]], to predict antibody-antigen
binding affinity, we employ a two-stage deep learning framework. First, a contrastive model aligns
the embeddings of antibodies and antigens in a shared latent space. Then, a cross-attention model
predicts the binding affinity by capturing their interactions. The contrastive model My, uses
encoders ¢, and ¢, to project antibody (ab) and antigen (ag) embeddings into a common space.
For a batch of N pairs {(ab;, ag;)} ;, projections are:

Pab,; = normalize(¢qp(ab;)),

Pag,i = normalize(¢dyg(ag;)).
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The contrastive loss is defined as:
N
1 eXpP(Pab,i * Pag,i/T
Leont = N E log ( ~ (Pab,i ag i/T) )
i=1 Zj:l eXp(pab,i : pﬂg,j/'r)

The affinity predictor, M, uses these encoders and applies multi-head cross-attention as follows:

Hab sy = MultiHeadAttention(proj,,, proj,,; Proj,),
Ha,g—an = MultiHeadAttention(proj,,, Proj,, Projy,),
H= Hab%ag + Hag%aba g = Q(H)
Finally, the loss is the mean squared error defined as:

1 N
_ E s~ )2
,Cafff N -71(:’/1 yz) .

B.3 Directed Evolution

Our antibody redesign strategy employs a directed evolution approach to iteratively improve anti-
body sequences towards higher binding affinity. This method mimics natural selection, progressively
enriching sequences that exhibit superior fitness. The core idea is to explore the sequence space
around an initial set of antibody sequences, evaluate the fitness of newly generated variants, and
then select the most promising ones to serve as the basis for the next generation of exploration. This
iterative refinement process aims to converge on sequences with optimal binding characteristics.

The directed evolution process commences by selecting K initial antibody sequences. These se-
quences are then subjected to an iterative optimization loop spanning G generations. In each gener-
ation, for every selected antibody sequence, a set of B neighboring sequences are generated. This
generation step is powered by our CVAE. Given an antibody sequence embedding, along with the
corresponding antigen embedding (Caniigen) and a desired property embedding (Cgescription)s CVAE
samples novel antibody sequences, yet contextually relevant. This allows for exploration of the
sequence space while maintaining desired characteristics.

The fitness of these newly generated sequences is then rigorously evaluated. For this, we utilize
our pre-trained Binding Affinity Predictor. This predictor acts as a computational oracle, providing
an estimated binding affinity (y) for each antibody-antigen pair. A lower predicted binding affinity
(for example, a more negative value of AG) signifies a stronger binding interaction, thus indicating
a higher fitness. The selection criterion for advancing sequences to the next generation is based
on these predicted affinity values. Specifically, the top K antibody sequences, exhibiting the most
favorable (lowest) predicted binding affinities, are chosen from the combined pool of parent and
newly generated sequences to propagate to the subsequent generation. This ensures that the popula-
tion progressively shifts towards higher-affinity regions of the sequence space.

The fitness score F'(.S, A) for an antibody sequence S against a target antigen A is directly defined
by its predicted binding affinity (§(S, A)) calculated using our binding affinity predictor F'(S, A) =
7(S, A), where S represents the antibody sequence being evaluated and A represents the target
antigen sequence. The objective of the directed evolution process is to minimize F(.S, A), thus
identifying antibody sequences with the strongest predicted binding affinity to the specific target
antigen.

B.4 Decoder model

The decoder is built on a Transformer architecture [26] and serves as the core module for generating
antibody sequences (see Fig. [). It reconstructs sequences from a rich, combined representation
that merges latent features, descriptive metadata, and antigen-specific embeddings. These inputs
are concatenated and projected into a sequence of hidden states, forming the “memory” for cross-
attention.

During generation, the target tokens are first embedded and enriched with positional encodings, then
passed through a stack of Transformer decoder layers. Within each layer, self-attention captures
dependencies within the generated sequence so far, while cross-attention draws on the memory to
integrate contextual information from the input.
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Training employs teacher forcing, periodically replacing predicted tokens with their ground-truth
counterparts at a fixed probability to stabilize learning. When teacher forcing is not applied, the
decoder generates tokens sequentially using greedy decoding. Finally, hidden states are projected
onto vocabulary logits, enabling step-by-step prediction of the next amino acid in the sequence.
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Figure 4: This figure illustrates the design of Transformer-based decoder for antibody sequence
generation. The decoder integrates latent features, antigen embeddings, and textual description em-
beddings into a shared representation that serves as memory for cross-attention. Antibody sequences
are reconstructed autoregressively: input tokens (heavy and light chains) are embedded with posi-
tional encodings, processed through Transformer layers, and predicted step by step. Self-attention
captures dependencies within the sequence, while cross-attention injects contextual information, en-
abling controllable generation of antibody sequences aligned with antigen specificity and descriptive
properties.

Table 4: Comparative Performance: TeBaAb (with Description) vs. TeBaAb (without Description).

Metric TeBaAb (w TeBaAb (w/o
Description) Description)

Binding Affinity Improvement (Avg AG %) 15.5 8.9

Diversity 87.73 86.70

Novelty 28.95 26.11

Average Optimized Pred. Error (A) 0.48 0.36

C Implementation Details

C.1 Evaluation metrics

To comprehensively assess the performance of our antibody redesign framework, we employ four
primary evaluation metrics: maximum binding affinity (MBA), sequence diversity, novelty, and
structural confidence.

Maximum Binding Affinity (MBA). The MBA metric quantifies the highest predicted binding
affinity between the redesigned antibody and its specific antigen, reflecting the functional efficacy
of the generated sequences. We use the free-energy-change scoring function to estimate MBA.
Formally, MBA is defined as:

MBA = rne:agq{—AG(s7 a)}, (D

where S represents the set of redesigned antibody sequences, s denotes a single antibody sequence,
and a denotes the target antigen. A lower predicted free energy (AG) indicates a higher binding
affinity.

Diversity. To ensure the generation of varied antibody sequences rather than mere repetitions or
minor modifications of known sequences, we measure diversity within the set of redesigned anti-
bodies. Sequence diversity is computed using the pairwise Levenshtein distance [15] averaged over
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all pairs of generated sequences, formally represented as:

9 N-1 N
Diversity = m Z Z Lev(si, 5;), 2
i=1 j=i+1

where N is the number of antibody sequences and Lev(s;, s;) denotes the Levenshtein distance
between two antibody sequences s; and s;.

Novelty. Novelty assesses the degree to which the antibodies generated differ from known se-
quences in our training dataset. We calculate novelty as the average minimum sequence distance
between each generated antibody sequence and all sequences in the training dataset (Dy.qy,). The
novelty score is defined as:

1
Novelty = 5] Z min  Lev(s,s’). (3)
seS

./ .
8'€Dtrain

Higher novelty scores indicate more distinctive and potentially innovative antibody sequences.

Structural Confidence. Assessing the structural quality of the redesigned antibodies is critical
to ensure stability and functionality. We used ABodyBuilder2 [[1] to predict the three-dimensional
structures of redesigned antibody sequences, leveraging its ensemble of four models to estimate the
reliability of the prediction. The root mean squared predicted error (RMSPE) (A), derived from the
diversity among these predictions, serves as a structure-related metric:

4)

where N is the number of residues, and Var(x;) represents the variance in the predicted coordinates
of residue 7 in the ensemble. Lower RMSPE values indicate greater confidence in the predicted
structure, ensuring structural reliability for redesigned antibodies without requiring a reference scaf-
fold.

C.2 AbDes Dataset

In this appendix, we provide example entries from the AbDes dataset to illustrate its structure and
the type of information it contains. The dataset is designed to facilitate text-conditioned antibody
design by linking antibody sequences and their target antigens with rich textual descriptions of
antibody properties.

The AbDes dataset comprises entries with the following key fields:

* Antibody Sequence: The complete heavy- and light-chain amino acid sequences of the
antibody (e.g. ‘heavy_chain|light_chain®).

* Antigen Sequence: The target antigen to which the antibody binds. Following [7], we use
‘/* to separate different antigen fragments.

* Description: A free-text description of the antibody’s properties. This field represents our
unique contribution, derived from PDB annotations and literature.

* AG (Binding Affinity): The predicted binding free energy, where available. This value
indicates the strength of the antibody-antigen interaction (lower values signify stronger
binding). Note that AG values are available for a subset of the dataset.

D Additional Results: Impact of Textual Description

This section presents an additional evaluation designed to specifically highlight the contribution of
the textual description input to the performance of the TeBaAb framework. Although our primary
evaluation focuses on the full TeBaAb model (which incorporates textual descriptions), understand-
ing the isolated impact of this novel conditioning is crucial. To achieve this, we compare the per-
formance of our best performing TeBaAb configuration (with input of textual description) against

11
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Table 5: Example Entries from the AbDes Dataset (General Structure).

Antibody Sequence Antigen Description Binding
Affinity

QVQLV...|QSALT... VVKFMDVY... Vascular endothelial growth -11.55
factor in complex with a neu-
tralizing antibody, classified
as an immune system, de-
rived from mus musculus and
expressed in escherichia coli,
forms a Hetero 6-mer with
Cyclic - C2 symmetry.
QVQLQ..|QVQLQY.. KVFGRCEL.. Hen egg white lysozyme, -10.45

dl18a mutant, in complex
with mouse monoclonal an-
tibody dl.3, classified as
a complex (immunoglobu-
lin/hydrolase), derived from
mus musculus and expressed
in escherichia coli, forms a
Hetero 3-mer with Asymmet-
ric - Cl symmetry, and has
pseudo-symmetry of Asym-
metric - C1 with Hetero 3-mer

stoichiometry.
QIQLVQ..|DIVMT... IRDFNNLT... Refined crystal structure -11.02

of the influenza virus n9

neuraminidase-nc41 fab

complex, classified as a
hydrolase(o-glycosyl),  de-

rived from influenza a virus
(a/tern/australia/g70c/1975(h11n9)),
forms a Hetero 12-mer with
Cyclic - C4 symmetry.

Note: Sequences are truncated for brevity.

a variant of TeBaAb where the textual description component (‘des_rep®) is excluded during both
training and inference. This allows us to isolate the specific benefits conferred by conditioning the
generation on textual properties.

All other hyperparameters and training procedures remained consistent with the TeBaAb model that
performs the best described in Section |3} This ensures a direct comparison of the impact of the de-
scription input. Table[]presents a comparative overview of key evaluation metrics: Binding Affinity,
Sequence Diversity, Novelty, and Structural Confidence, between the full TeBaAb framework and
its variant without textual description input.

12



	Introduction
	Methods
	Experiments
	Dataset
	Results
	Binding Affinity Optimization
	Sequence Diversity and Novelty
	Structural Confidence


	Conclusion
	Related work
	Detailed Methodology
	Conditional Variational Autoencoder
	Binding Affinity Predictor
	Directed Evolution
	Decoder model

	Implementation Details
	Evaluation metrics
	AbDes Dataset

	Additional Results: Impact of Textual Description

