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ABSTRACT

Generating a video causally in an autoregressive manner is considered a promising
path toward infinite video generation in a flexible context. Prior autoregressive
approaches typically rely on vector quantization to convert a video into a discrete-
valued space, which could raise challenges in efficiency when modeling long videos.
In this work, we propose a novel approach that enables autoregressive video gener-
ation without vector quantization. We propose to reformulate the video generation
problem as an autoregressive modeling framework integrating temporal frame-by-
frame prediction and spatial set-by-set prediction. Unlike raster-scan prediction in
prior autoregressive models or joint distribution modeling of fixed-length tokens in
diffusion models, our approach maintains the causal property of GPT-style models
for flexible in-context capabilities, while leveraging bidirectional modeling within
individual frames for efficiency. We train a novel video autoregressive model with
the proposed approach, termed NOVA. Our results demonstrate that NOVA fully
surpasses prior autoregressive video models in data efficiency, inference speed,
visual fidelity, and video fluency, even with a much smaller model capacity, i.e.,
0.6B parameters. NOVA generalizes well across extended video durations and
enables diverse zero-shot applications in one unified model. Additionally, with a
significantly lower training cost, NOVA outperforms state-of-the-art image diffu-
sion models in text-to-image generation tasks. We will release all weights, models,
and code to facilitate the reproduction of NOVA and further development.

1 INTRODUCTION

Autoregressive large language models (LLMs) (Radford et al. (2019b); Touvron et al. (2023)) have
become a foundational architecture in natural language processing (NLP), exhibiting emerging capa-
bilities in in-context learning and long-context reasoning. In autoregressive (AR) vision generation
domain, prior approaches (Ramesh et al. (2021); Ding et al. (2021); Yu et al. (2022); Yan et al. (2021);
Villegas et al. (2022); Kondratyuk et al. (2023)) typically transform images or video clips (Yan et al.
(2021); Hu et al. (2023); Hong et al. (2022); Villegas et al. (2022)) into a discrete-valued token space
using vector quantization (Van Den Oord et al. (2017); Esser et al. (2021)), which are then flattened
into sequences for token-by-token prediction. However, training high-fidelity vector-quantized tok-
enizers while maintaining high compression rates is challenging. Hence, the cost of autoregressive
inference increases substantially with higher image resolutions or longer video sequences.

In contrast, diffusion-based models (Ho et al. (2020); Nichol & Dhariwal (2021)) can easily benefit
from non-quantized high-fidelity tokenizers (Esser et al. (2021)), thereby learning video sequences in
a highly-compressed latent space, significantly reducing training and inference costs. However, most
diffusion models learn only the joint distribution of a fixed number of frames, lacking the flexibility
to generate videos with varied lengths. More importantly, they miss the in-context learning ability of
AR models, i.e., integrating multiple tasks into a unified framework like GPT. Therefore, equipping
AR models with no-quantized visual tokenizers has become an area of active research.

A most recent step in this direction is MAR (Li et al. (2024b)), which utilizes non-quantized vectors
as visual tokens and models the conditional probability between token sets (Chang et al. (2022)),
enabling set-by-set AR generation for images. This design preliminarily connects AR to non-
quantized tokenizers in the class-to-image task, but its applicability to more complex scenarios (e.g.,
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text-to-image, text-to-video) remains unclear. Furthermore, its set-by-set AR manner is still faced
with challenges for in-context learning, i.e., supporting multiple tasks with a single framework.

In this paper, we develop NOVA, a generalized AR video generation model based on non-quantized
tokenizers, simultaneously taking advantage of 1) high-fidelity and high-rate visual compression
for low training and inference cost, and 2) in-context learning for integrating multiple generative
tasks in a unified model. Concretely, we factorize AR video generation into temporal frame-by-frame
prediction and spatial set-by-set prediction. NOVA regressively predicts each frame in a casual order
across temporal scale, and predicts each token set in a random order across spatial scale. In this way,
text-to-video generation can be regarded as a fundamental task that implicitly and comprehensively
encompasses various generative tasks, including text-to-image, image-to-video, text&image-to-video,
etc. Meanwhile, benefit from the non-quantized tokenizer, NOVA (0.6B parameters) requires only 192
GPU-days on an A100 (40G) for training. For text-to-video generation, NOVA efficiently matches
the performance of diffusion models of similar scale, surpassing AR counterparts in data efficiency,
inference speed, and video fluency. For text-to-image generation, it outperforms state-of-the-art
image diffusion models at significantly lower training costs. Additionally, NOVA also demonstrates
strong zero-shot generalization across various contexts. We believe that NOVA paves the way for
future research in effective and efficient AR video generation.

2 RELATED WORKS

2.1 DIFFUSION MODELS FOR VISUAL GENERATION.

Diffusion models (Ho et al. (2020); Song et al. (2020)) have made significant advances in visual
generation, including text-to-image tasks (Esser et al. (2024); Betker et al. (2023); Baldridge et al.
(2024)) and text-to-video tasks (Brooks et al. (2024); Lab & etc. (2024); Blattmann et al. (2023)).
Image diffusion models typically model the joint distribution of fixed-length tokens in pixel (Ho
et al. (2020); Nichol et al. (2021); Hoogeboom et al. (2023)) or latent space (Rombach et al. (2022);
Esser et al. (2024); Betker et al. (2023); Chen et al. (2023)). Besides, video diffusion models further
introduce temporal layers to capture relationships between a fixed number of video frames. After
training, additional tasks and modalities are added by incorporating extra inference tricks (Meng et al.
(2021)), structure moderation (Blattmann et al. (2023); Esser et al. (2023); Liew et al. (2023)), and
adapter layers (Zhang et al. (2023b); Guo et al. (2023)). Although these strategies can be composable,
they stand in contrast to the autoregressive approaches (Kondratyuk et al. (2023); Hong et al. (2022);
Radford (2018); Touvron et al. (2023)), which trains a single model end-to-end for multi-task learning,
offering notable context scalability and zero-shot generalizability across diverse application scenarios,
especially in extending video generation duration.

2.2 AUTOREGRESSIVE MODELS FOR VISUAL GENERATION

Raster-scan Autoregressive Models are typically implemented on the discrete-valued RGB pix-
els (Kalchbrenner et al. (2017); Reed et al. (2017)) or latent space (Esser et al. (2021); Van Den Oord
et al. (2017)), analogous to their language counterparts (Radford et al. (2019a); Anil et al. (2023)).
Recent studies involve scalable autoregressive transformers to generate token sequences in the raster-
scan order for image generation (Ramesh et al. (2021); Ding et al. (2021; 2022); Yu et al. (2022); Sun
et al. (2024b)), and video generation (Yan et al. (2021); Kondratyuk et al. (2023); Nash et al. (2022)).
Specifically, VAR (Tian et al. (2024)) introduces next-scale prediction to progressively process the
token-by-token sequence across multiple resolutions, leading to improved image quality.

Masked Autoregressive Models further develop a masked generative models (Chang et al. (2022)) to
introduce a generalized autoregressive concept. They introduce a bidirectional transformer and predict
randomly masked tokens by attending to unmasked conditions. This makes up for the suboptimal
modeling and inefficient inference of sequentially line-by-line strategy, which inspires a series of
subsequent works in text-to-image (Chang et al. (2023)) and text-to-video generation (Hong et al.
(2022); Yu et al. (2023); Villegas et al. (2022)). Particularly, MAR (Li et al. (2024b)) decouples
discrete tokenizers from autoregressive models and utilizes a diffusion procedure for per-token
probability distributions. It is fully validated in the class-to-image field, holding great potential in
the text-to-image domain. However, its application to text-to-video generation intuitively requires a
masked autoregressive process across entire video frames, challenging multi-context learning and
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Figure 1: Overview of our proposed NOVA. With text inputs and video flow, NOVA performs
an autoregressive modeling framework integrating temporal frame-by-frame prediction and spatial
set-by-set prediction. Finally, we implement diffusion denoising in a continuous-values space.

training efficiency. In contrast, our NOVA model breaks down video generation into frame-by-frame
temporal predictions combined with spatial set-by-set predictions. This allows each frame to act as
a meta causal unit, enabling extended video duration and zero-shot generalizability across various
contexts. Besides, the subsequent spatial set-of-tokens prediction unlocks the power of bidirectional
modeling patterns, enhancing inference efficiency while preserving visual quality and fidelity.

3 METHODOLOGY

We first review two categories of autoregressive video generation in Sec. 3.1. In Sec. 3.2-3.4, we
introduce framework pipeline and implementation details of our NOVA, illustrated in Figure 1.

3.1 RETHINKING AUTOREGRESSIVE MODELS FOR VIDEO GENERATION

Table 1: Symbology Settings.

N, n The number of all video tokens.
F, f The number of all video frames.
K, k The number of sets in an image.

As mentioned above, we regard text-to-video generation
and autoregressive (AR) model as the basic task and means,
respectively. We briefly retrospect related technical back-
ground. There exist two types of AR video generation
approaches: (1) Token-by-token generation via raster-
scan order. These studies (Kondratyuk et al. (2023)) per-
form causal per-token prediction within video frame sequence, which is defined as follows:

p (C, x1, ..., xN ) =

N∏
n

p (xn |C, x1, ..., xn−1) , (1)

where C indicates various condition contexts, e.g., label, text, image, and etc. Note that xn denotes
n-th token of N video raster-scale tokens. In contrast, (2) Masked set-by-set generation in a
random order treats all tokens inside each video frame equally, and implements per-set prediction in
a bidirectional transformer decoder (Yu et al. (2023)). However, such a generalized AR are trained
by extensive synchronous modeling on large fixed-length video frames, potentially resulting in poor
context scalability and coherence issues on extended video duration. Hence, NOVA attempts to
unbind per-set generation inside one video image from pre-frame prediction across video sequence,
accommodating temporal causal and spatial paradigms as a generalized AR framework.

3.2 TEMPORAL AUTOREGRESSIVE MODELING VIA FRAME-BY-FRAME PREDICTION

Inspired by (Zhuo et al. (2024)), we first utilize a pre-trained language model (Javaheripi et al.
(2023)) to encode text prompts into a token sequence before the training and inference stages. To
better control video dynamics, we adopt OpenCV (cv2) (Bradski (2000)) to compute the optical
flow between adjacent frames, and transform their average value across the entire video via a fully-
connected layer (FC). Besides, we employ open-source 3D variational autoencoder (VAE) (Lab &
etc. (2024)) with 4 temporal strides to translate multiple frames into the latent space, followed by a
patch embedding layer with 4 spatial strides to align with the channel dimensions of the subsequent
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Figure 2: Overview of our block-wise temporal and spatial generalized autoregressive attention.
Different from per-token generation, NOVA regressively predicts each frame in a casual order across
the temporal scale, and predicts each token set in a random order across the spatial scale.

transformer. Notably, next-token prediction in early AR models seems counter-intuitive for undirected
visual patches within a single image and suffers from high latency during inference. In contrast, video
frames can naturally be viewed as a causal sequence, with each frame acting as a meta unit for AR
generation. Therefore, we implement block-wise causal masking attention depicted on Figure 2(a),
ensuring that each frame can only attend to the text prompts, video flow, and its preceding frames,
while allowing all current frame tokens to be visible to each other as follows:

p (P,m,B, S1, ..., SF ) =

F∏
f

p (Sf |P,m,B, S1, ..., Sf−1) , (2)

where P,m indicate text prompts and video flow respectively. Here, Sf denotes the overall tokens
of f -th video frame, and B represent learnable begin-of-video (BOV) embeddings for predicting
initial video frame, the number of which corresponds to the patch number of one single frame.
Note that we add 1-D and 2-D sine-cosine embeddings (Vaswani et al. (2017)) with video frame
features to indicate time and position information respectively, which are convenient for temporal
and spatial extrapolation. From equation 2, we can reformulate text-to-image and image-to-video
generation as p (S1 |P,m,B) and p (Sf |∅,m,B, S1, ..., Sf−1). This generalized causal process
can synchronously model the condition contexts for each video frame, greatly enhancing training
efficiency, and allow kv-cache technology for fast decoding procedure during inference.

3.3 SPATIAL AUTOREGRESSIVE MODELING VIA SET-BY-SET PREDICTION

Inspired by (Chang et al. (2022); Li et al. (2024b)), we define each token set with multiple tokens
from random directions as a meta causal token, facilitating a generalized AR process with efficient
parallel decoding. Notably, we tried to utilize the temporal layers’ outputs targeting one frame as
indicator features to assist the spatial layers, gradually decoding all randomly masked token sets
within the corresponding image. However, this approach resulted in image structure collapse and
inconsistent video fluency over the increasing number of frames. We hypothesize that this occurs
because the indicator features from adjacent frames are similar, making it difficult to accurately
learn continuous and imperceptible motion changes without explicit modeling. Besides, the indicator
features derived from the ground-truth contextual frame during training contribute to weak robustness
and stability of spatial AR layers against cumulative inference errors.

To address this issue, we introduce a Scaling and Shift Layer that reformulates cross-frame motion
changes by learning relative distribution variations within a unified space, rather than directly
modeling the unreferenced distribution of the current frame. Notably, we select the BOV-attended
output of the temporal layers as the anchor feature set, as it serves as the initial feature set with
significantly less noise accumulation than subsequent frame feature sets. Specifically, we first translate
the features from current frame set into dimension-wise variance and mean parameters γ and β via
multi-layer perception (MLP). After that, we affine the normalized features from the anchor set into
indicator features S′

f via channel-wise scale and shift operation. Specially, we explicitly set γ = 1
and β = 0 for the first frame. With unmasked token features, we predict randomly masked visual

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

tokens in a set-by-set order through a bidirectional paradigm, which can be formulated as follows:

p (S′
f , S(f,1), ..., S(f,K)) =

K∏
k

p (S(f,k) |S′
f , S(f,1), ..., S(f,k−1)) , (3)

where S′
f denotes the indicator features for generating f -th video frame, and S(f,k) denotes k-th

token set of f -th video frame. We add 2-D sine-cosine embeddings with masked and unmasked
tokens to indicate their relative position. This generalized spatial AR prediction leverages powerful
bidirectional patterns within single-image tokens and achieves efficient inference with parallel masked
decoding. Notably, we incorporate post-norm layers before the residual connections in both temporal
and spatial AR layers. Our empirical findings show that this design effectively addresses architectural
and optimization challenges that previously hindered stable training in generalized video generation.

3.4 DIFFUSION PROCEDURE DENOISING FOR PER-TOKEN PREDICTION

During training, we import diffusion loss (Li et al. (2024b)) to estimate per-token probability in a
continuous-valued space. For example, we define one ground-truth token as xn and corresponding
NOVA’s output as zn. The loss function can be formulated as a denoising criterion:

L(xn | zn) = Eε,t

[∥∥ϵ− ϵθ
(
xt
n | t, zn

)∥∥2] . (4)

Here ϵ is a Gaussian vector sampled from N (0, I), and noisy data xt
n =

√
ᾱtxn +

√
1− ᾱtϵ, where

ᾱt is a noise schedule (Nichol & Dhariwal (2021)) indexed by a time step t. The noise estimator ϵθ is
multiple MLP blocks parameterized by θ. The notation ϵθ(x

t
n | t, zn) means that this network takes

xt
n as the input, and is conditional on both t and zn. We follow (Li et al. (2024b)) to sample t by 4

times during training for each image.

During inference, we sample xT
n from a random Gaussian noise N (0, I) and denoise it step-by-step

by sequentially sampling xT
n to x0

n via xt−1
n = 1√

αt

(
xt
n − 1−αt√

1−ᾱt
ϵθ (x

t
n|t, zn)

)
+ σtϵ, where σt is

the noise level at time step t, and ϵ is sampled from the Gaussian distribution N (0, I).

4 EXPERIMENT

4.1 EXPERIMENT SETUP

Datasets. We involve several diverse, curated, and high-quality datasets to facilitate the training of our
NOVA. For text-to-image training, we construct 16M image-text pairs sourced from DataComp (Gadre
et al. (2024)), COYO (Byeon et al. (2022)), Unsplash (team (2020)), and JourneyDB (Sun et al.
(2024a)), while for text-to-video training, we select 12M video-text pairs on a subset OpenSora
Plan (Lab & etc. (2024)) of Panda-70M (Chen et al. (2024b)) and internal video-text pairs. We
further collect 1M of high-resolution video-text pairs from Pexels (team (2014)) to fine-tune our final
video generation model. Following (Diao et al. (2024)), we train a caption engine based on EMU2
(17B) (Sun et al. (2023)) model to create high-quality descriptions for our image and video datasets.
The maximum text length is set to 256.

Architectures. We mostly follow (Li et al. (2024b)) to build NOVA’s spatial AR layer and denoising
MLP block, including a layer sequence of LayerNorm (Lei Ba et al. (2016)), AdaLN (Huang &
Belongie (2017)), linear layer, SiLU activation (Elfwing et al. (2018)), and another linear layer.
We configure the temporal encoder, spatial encoder, and decoder with 16 layers each, all using
1024 dimensions, while the denoising MLP consists of 3 blocks with 1280 dimensions. The spatial
layers adopt the encoder-decoder architecture of MAR (Li et al. (2024b)), similar to MAE (He et al.
(2022)). Specifically, the encoder processes the visible patches for reconstruction. The decoder
further processes visible and masked patches for generation. In total, NOVA comprises approximately
600 million parameters. To capture the latent features of images, we employ a pre-trained and frozen
VAE from (Zheng et al. (2024)), which achieves 4× compression in the temporal dimension and
8 × 8 compression in the spatial dimension. And we adopt the masking and diffusion schedulers
from (Li et al. (2024b); Nichol & Dhariwal (2021)), using a masking ratio between 0.7 and 1.0 during
training, and progressively reducing it from 1.0 to 0 following a cosine schedule (Chang et al. (2023))
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Table 2: Text-to-image evaluation on T2I-CompBench. We highlight the best values in blue , and
the second-best values in green . The baseline data come from Huang et al. (2023).

Model ModelSpec Attribute Binding Object Relationship Complex ↑ Mean ↑ A100 days ↓
#Param. Data Color ↑ Shape ↑ Texture ↑ Spatial ↑ Non-Spatial ↑

Stable-v1.4 1B 2B 0.3765 0.3576 0.4156 0.1246 0.3079 0.3080 0.3150 -
Stable-v2 1B 2B 0.5065 0.4221 0.4922 0.1342 0.3096 0.3386 0.3672 -
Composable-v2 1B 2B 0.4063 0.3299 0.3645 0.0800 0.2980 0.2898 0.2947 -
Structured-v2 1B 2B 0.4990 0.4218 0.4900 0.1386 0.3111 0.3355 0.3660 -
AttnExct-v2 1B 2B 0.6400 0.4517 0.5963 0.1455 0.3109 0.3401 0.4141 -
GORS 1B 2B 0.6603 0.4785 0.6287 0.1815 0.3193 0.3328 0.4335 -
DALL·E-v2 6.5B 650M 0.5750 0.5464 0.6374 0.1283 0.3043 0.3696 0.4268 -
SDXL 2.6B - 0.6369 0.5408 0.5637 0.2032 0.3027 0.3662 0.4441 -
Lumina-Next 2B 14M 0.5083 0.3330 0.4315 0.1823 0.3027 0.3662 0.3540 288
PixArt-α 0.6B 25M 0.6886 0.5582 0.7044 0.2082 0.3179 0.4117 0.4815 753

NOVA (T2I) 0.6B 16M 0.7164 0.5608 0.6861 0.2915 0.3094 0.4092 0.4955 127
NOVA (T2V) 0.6B 29M 0.6429 0.4657 0.6210 0.1824 0.3053 0.3487 0.4276 267

during inference. In line with common practice (Ho et al. (2020)), we train with a 1000-step noise
schedule but default to 100 steps for inference.

Training details. NOVA is trained with sixteen 8-A100 (40G) nodes. We utilize the AdamW
optimizer (Loshchilov et al. (2017)) (β1 = 0.9, β2 = 0.95) with a weight decay of 0.02 and a base
learning rate of 1e-4 in all experiments. The peak learning rate is adjusted for different batch sizes
during training using the scaling rule (Goyal (2017)) : lr = base lr × batchsize/256. We train
text-to-image models from scratch and then load these weights to train text-to-video models.

Evaluation. We use T2I CompBench (Huang et al. (2023)) to assess the alignment between the
generated images and text condition. We adhere to the guidelines by generating 10 image samples for
each of the 1800 compositional text prompts, which are divided into three main categories and six
subcategories. Each sample has a resolution of 512×512. We use VBench (Huang et al. (2024)) to
evaluate the capacity of text-to-video generation across 16 dimensions. For a given text prompt, we
randomly generate 5 samples, each with a video size of 29×768×480.

4.2 MAIN RESULTS

NOVA outperforms existing text-to-image models with superior performance and efficiency. In
Table 2, we compare NOVA with several recent state-of-the-art models, including Stable-v1.4 (Rom-
bach et al. (2022)), Stable-v2 (Rombach et al. (2022)), Composable-v2 (Liu et al. (2022a)), Structured-
v2 (Feng et al. (2022)), AttnExct-v2 (Chefer et al. (2023)), GORS (Huang et al. (2023)), DALL·E-
v2 (Ramesh et al. (2022)), SDXL (Podell et al. (2023)), Lumina-Next (Zhuo et al. (2024)), PixArt-
α (Chen et al. (2023)) from T2I-CompBench (Huang et al. (2023)). After text-to-image training,
NOVA achieves state-of-the-art (SOTA) performance across 4 out of 7 standard metrics and ranks
second in two others. This validate its strong capabilities in compositional text-to-image generation,
particularly in accurately capturing color binding and spatial relationships between objects. Notably,
these results are achieved with the smallest model capacity and the second smallest data scale, requir-
ing only 16% training overhead of the best competitor PixArt-α. Last but not least, we evaluate our
text-to-video NOVA model outperforms most specialized text-to-image generators, e.g., SD-v2 and
DALL·E-v2. This underscores the robustness and versatility of our model in multi-context scenarios,
with text-to-video generation as the fundamental training task.

NOVA rivals diffusion text-to-video models and significantly suppresses the AR counterpart.
We emphasize that the current version of our NOVA is designed to generate videos at 29 frames
and can extend video length through the pre-filling of recently generated frames. We conduct a
quantitative comparison between NOVA and leading open-source and proprietary text-to-video
models. As shown in Table 3, NOVA remarkably outperforms the counterpart CogVideo (Hong et al.
(2022)) across various text-to-video evaluation metrics, despite being significantly smaller in size
(0.6B vs. 9B). Additionally, we also compared NOVA with the latest diffusion models at a similar
data scale, including closed-source Gen-2 (VID (2023)), Kling (Kuaishou (2024)), Gen-3 (Runway
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Table 3: Text-to-video evaluation on VBench. We have classified existing video generation methods
into different categories for clarity. The baseline data are sourced from Huang et al. (2024).

Models #Param. Data Latency Total
Score

Quality
Score

Semantic
Score

Aesthetic
Quality

Object
Class

Multiple
Objects

Human
Action

Spatial
Relationship Scene Appearance

Style
Overall

Consistency

Closed-source models
Gen-2 - - - 80.58 82.47 73.03 66.96 90.92 55.47 89.20 66.91 48.91 19.34 26.17
Kling (2024-07) - - - 81.85 83.39 75.68 61.21 87.24 68.05 93.40 73.03 50.86 19.62 26.42
Gen-3 - - - 82.32 84.11 75.17 63.34 87.81 53.64 96.4 65.09 54.57 24.31 26.69
Diffusion models (w/ Stable Diffusion weights)
LaVie 3B 25M - 77.08 78.78 70.31 54.94 91.82 33.32 96.8 34.09 52.69 23.56 26.41
Show-1 4B 10M - 78.93 80.42 72.98 57.35 93.07 45.47 95.60 53.50 47.03 23.06 27.46
AnimateDiff-v2 1B 10M - 80.27 82.90 69.75 67.16 90.90 36.88 92.60 34.60 50.19 22.42 27.04
VideoCrafter-v2.0 2B 10M - 80.44 82.20 73.42 63.13 92.55 40.66 95.00 35.86 55.29 25.13 28.23
T2V-Turbo (VC2) 2B 10M - 81.01 82.57 74.76 63.04 93.96 54.65 95.20 38.67 55.58 24.42 28.16
Diffusion models
OpenSora-v1.1 1B 10M 48s 75.66 77.74 67.36 50.12 86.76 40.97 84.20 52.47 38.63 23.50 26.37
OpenSoraPlan-v1.1 1B 4.5M 60s 78.00 80.91 66.38 56.85 76.30 40.35 86.80 53.11 27.17 22.90 26.52
OpenSora-v1.2 1B 32M 55s 79.76 81.35 73.39 56.85 82.22 51.83 91.20 68.56 42.44 23.95 26.85
CogVideoX 2B 35M 90s 80.91 82.18 75.83 60.82 83.37 62.63 98.00 69.90 51.14 24.80 26.66
Autoregressive models
CogVideo 9B 5.4M 560s 67.01 72.06 46.83 38.18 73.4 18.11 78.20 18.24 28.24 22.01 7.70
NOVA 0.6B 13M 12s 75.84 77.11 70.74 55.79 84.84 53.90 84.80 58.71 50.87 20.76 25.22

NOVA

PixArt-α

Lumina-Next

SD-XL 

（1） （2） （3） （4） （5） （6） （7）

Figure 3: Text-to-image generation. Text prompts from left to right: “A digital artwork of a cat
styled in a whimsical fashion...”, “A solitary lighthouse standing tall against a backdrop of stormy
seas and dark, rolling clouds”, “A vibrant bouquet of wildflowers on a rustic wooden table”, “A selfie
of an old man with a white beard”, “A serene, expansive beach with no people”, “A blue apple and a
green cup.” and “A balloon on the bottom of a chicken.”

(2024)), open-source LaVie (Wang et al. (2023)), Show-1 (Zhang et al. (2023a)), AnimateDiff-
v2 (Guo et al. (2024)), VideoCrafter-v2.0 (Chen et al. (2024a)), T2V-Turbo (VC2) (Li et al. (2024a)),
OpenSora-v1.1 (Zheng et al. (2024)), OpenSoraPlan-v1.1 (Lab & etc. (2024)), OpenSora-v1.2 (Lab
& etc. (2024)), and CogVideoX (Yang et al. (2024)). The results underscore the effectiveness of
text-to-image pre-training within our generalized causal process. Notably, we have narrowed the gap
between autoregressive and diffusion methods in modeling large-scale video-text pairs, enhancing
both the quality and instruction-following capabilities of video generation. Besides, NOVA shows a
significant speed advantage over existing models in terms of inference latency.

4.3 QUALITATIVE RESULTS

High-Fidelity Image and High-Fluency Video. We present a qualitative comparison of current
leading image generation methods in Fig. 3. NOVA demonstrates strong visual quality and fidelity
across a range of prompt styles, and excels in color attribute binding and spatial object relationships.
We present text-to-video visualizations in Fig. 4, which highlight NOVA’s ability to capture multi-view
perspectives, smooth object motion, and stable scene transitions based on the provided text prompts.
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Text prompt : A 3D model of a 1800s victorian house.

Text prompt : A cat wearing sunglasses and working as a lifeguard at a pool.

Text prompt : A drone view of celebration with Christmas tree and fireworks, starry sky, background.

（1）

（2）

（3）

Figure 4: Text-to-video generation. We highlight the keywords in red color. NOVA follows the text
prompts and vividly captures the motion of subjects (i.e., 3D model, cat and fireworks).

A lighthouse ... a vibrant sunset sky... to a warm palette of oranges and yellows ... has a classic 
design with a domed top and a lantern room where the light would be housed, ...to intensify.

Figure 5: Zero-shot video extrapolation. We highlight the subjects in red and green respectively.
The top images are generated, while the bottom images are extrapolated.

Zero-Shot Generalization on Video Extrapolation. By pre-filling generated frames, NOVA can
produce videos that surpass the training length. For example, by shifting both the text and BOV
embeddings, we generate 5-second videos that are up to twice the original length, as shown in Fig. 5.
We observed that during video extrapolation, NOVA consistently preserves temporal consistency of
subject across frames. For instance, when the prompt describes a dome top and a lantern room, the
model accurately represents the lighting within the house and captures the transition of a sunset. This
further underscores the advantages of causal modeling in long-context video generation tasks.

Zero-Shot Generalization on Multiple Contexts. By pre-filling the reference image, NOVA can
generate videos from images, either with or without accompanying text. In Figure 6, we provide
a qualitative example. We show that NOVA can simulate realistic motions without text prompts.
Moreover, when text is included, perspective movements appear more natural. This indicates that
NOVA is able to capture the fundamental physics, such as interaction forces and fluid dynamics.

4.4 ABLATION STUDY

Effectiveness of temporal autoregressive modeling. To highlight the advantages of temporal
autoregressive modeling, we have facilitated spatial autoregressive to finish video generation task.
Specifically, we modify the attention mask of the temporal layer to bidirectional attention, and
randomly predict the entire video sequence using set by set prediction. We observe less subject
movement in videos under the same training iterations (Fig. 7). Additionally, in zero-shot generaliza-
tion across various contexts or video extrapolation, the network output exhibited more artifacts and
temporal inconsistencies. Furthermore, this approach is not compatible with kv-cache acceleration
during inference, leading to a linear increase in latency with the number of video frames. This further
demonstrates the superiority of causal modeling over multitask approaches for video generation.

Effectiveness of Scaling and Shift Layer. To capture cross-frame motion changes, we employ a
simple yet effective scaling and shifting layer to explicitly model the relative distribution from the

8
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(1) Image-To-Video Without Text

Text ：A cascade of water rushes down a rocky incline, frothing and churning as it descends, is 
surrounded by rugged, layered rock formations.

(2) Image-To-Video With Text

(3) Text-To-Video

(4) Text-To-Image

Figure 6: Zero-shot image-to-video generation. It is evident that NOVA successfully maintains
temporal consistency in objects, both with and without text. Such as ensuring ”water continues
to flow smoothly.” (Zoom in to view in red box). This highlights NOVA’s capability for zero-shot
multitasking.

frame 1

W/ 
TAM

W/O 
TAM

frame 6 frame 11 frame 16 frame 21 frame 26

W/ 
TAM

W/O 
TAM

Figure 7: Temporal autoregressive modeling (TAM) for video generation. We highlight the subtle
changes in frames generated from the same prompt. Compared to spatial-only autoregressive method,
the inclusion of TAM enables NOVA to more accurately capture the dynamics of subject movement.

BOV-attended feature space. In Figure 8(a), we demonstrate that this approach significantly reduces
the drift between text-to-image and image-to-video generation losses. As we gradually decrease the
inner rank of the MLP, the training difficulty increases, leading to a more comprehensive and robust
learning process for the network. However, extremely low rank values pose challenges for motion
modeling, as they significantly limit the layer’s representation capability (Figure 9). The rank is set to
24 by default in all text-to-video experiments, resulting in more accurate motion predictions.

Effectiveness of Post-Norm Layer. Training large-scale image and video generation models (Ding
et al. (2021); Team (2024)) from scratch often poses significant challenges with mixed precision,
which is also observed in other visual recognition methods (Liu et al. (2022b)). As shown in

9
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(a) Parameter decomposition for Scaling and Shift layer. (b) Normalization layer position.

Figure 8: Ablation studies on NOVA’s architecture components. We carefully examine the two
key stability factors in large-scale video generation training, as illustrated in (a) and (b).

        rank=8                 rank=16               rank=24               rank=32         w/o scale&shift    

First
Frame

Last
Frame

Figure 9: Visualization of decomposition ranks in the Scaling and Shift layer. The first row
displays the results of the first frame, while the second row presents the results of the last frame.

Figure 8(b), the training process with pre-normalization (Vaswani et al. (2017)) suffers from numerical
overflow and variance instability. We attempted various regularization techniques on the residual
branch, such as stochastic depth (Huang et al. (2016)) and residual dropout (Vaswani et al. (2017)), but
found them to be less effective in alleviating this issue. Inspired by (Liu et al. (2022b)), we introduce
post-normalization and empirically discover that it can effectively mitigate the accumulation of model
weights compared to pre-normalization, resulting in a smoother and more stable training process.

5 CONCLUSION

In this paper, we present NOVA, an innovative autoregressive model designed for both text-to-image
and text-to-video generation. NOVA delivers exceptional image quality and video fluency while
significantly minimizing training and inference overhead. Our key designs—temporal frame-by-frame
prediction, spatial set-by-set generation, and continuous-space modeling—enhance autoregressive
properties across various contexts and establish robust bidirectional modeling patterns for improved
efficiency. Extensive experiments demonstrate that NOVA achieves near-commercial quality in image
generation, alongside promising fidelity and fluency in video generation. For the first time, NOVA
provides valuable insights into autoregressive generation for the AIGC community and startups,
empowering them to develop high-quality, cost-effective models. As a first step, we would continue
scalable experiments with larger models and data scales to explore NOVA’s limits in future work.
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