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Abstract

Data poisoning attacks, in which a malicious adversary aims to influence a model by inject-
ing “poisoned” data into the training process, have attracted significant recent attention.
In this work, we take a closer look at existing poisoning attacks and connect them with old
and new algorithms for solving sequential Stackelberg games. By choosing an appropriate
loss function for the attacker and optimizing with algorithms that exploit second-order in-
formation, we design poisoning attacks that are effective on neural networks. We present
efficient implementations by parameterizing the attacker and allowing simultaneous and co-
ordinated generation of tens of thousands of poisoned points, in contrast to existing methods
that generate poisoned points one by one. We further perform extensive experiments that
empirically explore the effect of data poisoning attacks on deep neural networks. Our paper
sets a new benchmark on the possibility of performing indiscriminate data poisoning attacks
on modern neural networks.

1 Introduction

Adversarial attacks have repeatedly exposed critical vulnerabilities in modern machine learning (ML) mod-
els (Nelson et al., 2008; Szegedy et al., 2013; Kumar et al., 2020). As ML systems are deployed in increasingly
important settings, significant effort has been levied in understanding attacks and defenses towards robust
machine learning.

In this paper, we focus on data poisoning attacks. ML models require a large amount of data to achieve
good performance, and thus practitioners frequently gather data by scraping content from the web (Gao
et al., 2020; Wakefield, 2016). This gives rise to an attack vector, in which an adversary may manipulate
part of the training data by injecting poisoned samples. For example, an attacker can actively manipulate
datasets by sending corrupted samples directly to a dataset aggregator such as a chatbot, a spam filter, or
user profile databases; the attacker can also passively manipulate datasets by placing poisoned data on the
web and waiting for collection. Moreover, in federated learning, adversaries can also inject malicious data
into a diffuse network (Shejwalkar et al., 2021; Lyu et al., 2020).

A spectrum of such data poisoning attacks exists in the literature, including targeted, indiscriminate and
backdoor attacks. We focus on indiscriminate attacks for image classification, where the attacker aims at
decreasing the overall test accuracy of a model by adding a small portion of poisoned points. Current
indiscriminate attacks are most effective against convex models (Biggio et al., 2011; Koh & Liang, 2017;
Koh et al., 2018; Shumailov et al., 2021), and several defenses have also been proposed (Steinhardt et al.,
2017; Diakonikolas et al., 2019). However, existing poisoning attacks are less adequate against more complex
non-convex models, especially deep neural networks, either due to their formulation being inherently tied to
convexity or computational limitations. For example, most prior attacks generate poisoned points sequen-
tially. Thus, when applied to deep models or large datasets, these attacks quickly become computationally
infeasible. To our knowledge, a systematic analysis on poisoning deep neural works is still largely missing—a
gap we aim to fill in this work.

To address this difficult problem, we design more versatile data poisoning attacks by formulating the problem
as a non-zero-sum Stackelberg game, in which the attacker crafts some poisoned points with the aim of
decreasing the test accuracy, while the defender optimizes its model on the poisoned training set. We exploit
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second-order information and apply the Total Gradient Descent Ascent (TGDA) algorithm to address the
attacker’s objective, even on non-convex models.

We also examine the effectiveness of alternative formulations, including the simpler zero-sum setting as well
as when the defender leads the optimization. Moreover, we address computational challenges by proposing an
efficient architecture for poisoning attacks, where we parameterize the attacker as a separate network rather
than optimizing the poisoned points directly. By applying TGDA to update the attacker model directly, we
are able to generate tens of thousands of poisoned points simultaneously in one pass, potentially even in a
coordinated way.

In this work, we make the following contributions:

• We construct a new data poisoning attack based on TGDA that incorporates second-order optimiza-
tion. In comparison to prior data poisoning attacks, ours is significantly more effective and runs at
least an order of magnitude faster.

• We summarize and classify existing data poisoning attacks (specifically, indiscriminate attacks) in
both theoretical formulations and experimental settings.

• We propose an efficient attack architecture, which enables a much more efficient clean-label attack.
• We conduct experiments to demonstrate the effectiveness of our attack on neural networks and its

advantages over previous methods.

Notation. Throughout this paper, we denote training data as Dtr, validation data as Dv, test data as Dtest,
and poisoned data as Dp. We use L to denote the leader in a Stackelberg game, ℓ for its loss function, x
for its action, and θ for its model parameters (if they exist). Similarly, we use F to denote the follower, f
for its loss function, and w for its model parameters. Finally, we use ε as the poison budget, namely that
|Dp| = ε|Dtr|.

2 Background

In this section, we categorize existing data poisoning attacks according to the attacker’s power and objectives,
and specify the type of attack we study in this paper.

2.1 Power of an attacker

Injecting poisoned samples. Normally, without breaching the defender’s database (i.e., changing the
existing training data Dtr), an attacker can only inject poisoned data, actively or passively to the defender’s
database, such that its objective can be achieved when the model is retrained after collection. Such a situation
may be realistic when the defender gathers data from several sources, some of which may be untrusted (e.g.,
when scraping data from the public Internet). The goal of the attacker can be presented as:

w∗ = w∗(Dp) ∈ arg min
w

L(Dtr ∪ Dp, w), (1)

where w∗ is the attacker’s desired model parameter, which realizes the attacker’s objectives, L(·) is the loss
function. We focus on such attacks and further categorize them in the next subsection.

Perturbing training data. Some work makes the assumption that the attacker can directly change the
training data Dtr. This is perhaps less realistic, as it assumes the attacker has compromised the defender’s
database. We note that this threat model may be more applicable in an alternate setting, where the defender
wishes to prevent the data from being used downstream to train a machine learning model. This research
direction focuses on so called unlearnable examples (Huang et al., 2021; Yu et al., 2021; Fowl et al., 2021b;a),
and has faced some criticism that it provides “a false sense of security” (Radiya-Dixit et al., 2022).

In this paper, we focus on injecting poisoned samples as it is a more realistic attack.

2.2 Objective of an attacker

Data poisoning attacks can be further classified into three categories according to the adversary’s objective
(Cinà et al., 2022; Goldblum et al., 2022).
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Targeted attack. The attacker adds poisoned data Dp resulting in a w∗ such that a particular target
example from the test set is misclassified as the base class (Shafahi et al., 2018; Aghakhani et al., 2020;
Guo & Liu, 2020; Zhu et al., 2019). This topic is well studied in the literature, and we refer the reader to
Schwarzschild et al. (2021) for an excellent summary of existing methods.

Backdoor attack. This attack aims at misclassifying any test input with a particular trigger pattern (Gu
et al., 2017; Tran et al., 2018; Chen et al., 2018; Saha et al., 2020). Note that backdoor attacks require access
to both the training data as well as the input at inference time to plant the trigger.

Indiscriminate attack. This attack aims to induce a parameter vector w∗ that broadly decreases the model
utility. We consider image classification tasks where the attacker aims to reduce the overall classification
accuracy. Existing methods make different assumptions on the attacker’s knowledge:

• Perfect knowledge attack: the attacker has access to both training and test data (Dtr and Dtest),
the target model, and the training procedure (e.g., the min-max attack of Koh et al. 2018).

• Training-only attack: the attacker has access to training data Dtr, the target model, and the training
procedure (e.g., Muñoz-González et al. 2017; Biggio et al. 2012).

• Training-data-only attack: the attacker only has access to the training data Dtr (e.g., the label flip
attack of Biggio et al. 2011).

In Appendix A we give a more detailed summary of the existing indiscriminate data poisoning attacks.

In this work, we focus on training-only attacks because perfect knowledge attacks are not always feasible
due to the proprietary nature of the test data, while existing training-data-only attacks are weak and often
fail for deep neural networks, as we show in Section 5.

3 Total Gradient Descent Ascent Attack

In this section, we formulate the indiscriminate attack and introduce our attack algorithm. We first briefly
introduce the Stackelberg game and then link it to data poisoning.

3.1 Preliminaries on Stackelberg Game

The Stackelberg competition is a strategic game in Economics in which two parties move sequentially (von
Stackelberg, 1934). Specifically, we consider two players, a leader L and a follower F in a Stackelberg game,
where the follower F chooses w to best respond to the action x of the leader L, through minimizing its loss
function f :

∀x ∈ X ⊆ Rd, w∗(x) ∈ arg min
w∈W

f(x, w), (2)

and the leader L chooses x to maximize its loss function ℓ:

x∗ ∈ arg max
x∈X

ℓ(x, w∗(x)), (3)

where (x∗, w∗(x∗)) is known as a Stackelberg equilibrium.

When f = ℓ we recover the zero-sum setting where the problem can be written compactly as:

max
x∈X

min
w∈W

ℓ(x, w), (4)

see, e.g., Zhang et al. (2021) and the references therein.

For simplicity, we assume W = Rp and the functions f and ℓ are smooth, hence the follower problem is an
instance of unconstrained smooth minimization.

3.2 On Data Poisoning Attacks

There are two possible ways to formulate data poisoning as a Stackelberg game, according to the acting order.
Here we assume the attacker is the leader and acts first, and the defender is the follower. This assumption
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can be easily reversed such that the defender acts first. Both of these settings are realistic depending on
the defender’s awareness of data poisoning attacks. We will show in Section 5 that the ordering of the two
parties affects the results significantly.

Non-zero-sum formulation. In this section, we only consider the attacker as the leader as the other
case is analogous. Here recall that the follower F (i.e., the defender) aims at minimizing its loss function
f = L(Dtr ∪ Dp, w) under data poisoning:

w∗ = w∗(Dp) ∈ arg min
w

L(Dtr ∪ Dp, w), (5)

while the leader L (i.e., the attacker) aims at maximizing a different loss function ℓ = L(Dv, w∗) on the
validation set Dv:

Dp∗ ∈ arg max
Dp

L(Dv, w∗), (6)

where the loss function L(·) can be any task-dependent target criterion, e.g., the cross-entropy loss. Thus
we have arrived at the following non-zero-sum Stackelberg formulation of data poisoning attacks (a.k.a., a
bilevel optimization problem, see e.g. Muñoz-González et al. 2017; Huang et al. 2020; Koh et al. 2018):

max
Dp

L(Dv, w∗), s.t. w∗ ∈ arg min
w

L(Dtr ∪ Dp, w). (7)

Note that we assume that the attacker can inject εN poisoned points, where N = |Dtr| and ε is the power
of the attacker, measured as a fraction of the training set size.

Previous approaches. We mention two previous approaches for solving Equation (7).

(1) A direct approach: While the inner minimization can be solved via gradient descent, the outer maxi-
mization problem is non-trivial as the dependence of L(Dv, w∗) on Dp is indirectly through the parameter w
of the poisoned model. Thus, applying simple algorithms (e.g., Gradient Descent Ascent) directly will result
in zero gradients. Nevertheless, we can rewrite the desired derivative using the chain rule:

∂L(Dv, w∗)
∂Dp

= ∂L(Dv, w∗)
∂w∗

∂w∗

∂Dp
. (8)

The difficulty lies in computing ∂w∗
∂Dp

, i.e., measuring how much the model parameter w changes with respect
to the poisoned points Dp. Biggio et al. (2011) and Koh & Liang (2017) compute ∂w∗

∂Dp
exactly via KKT

conditions while Muñoz-González et al. (2017) approximate it using gradient ascent.

(2) Zero-sum reduction: Koh et al. (2018) also proposed a reduced problem of Equation (7), where the leader
and follower share the same loss function (i.e. f = ℓ):

max
Dp

min
w
L(Dtr ∪ Dp, w). (9)

This relaxation enables attack algorithms to optimize the outer problem directly. However, this formulation
may be problematic as its training objective does not necessarily reflect its true influence on test data.

This problem is addressed by Koh et al. (2018) with an assumption that the attacker can acquire a target
model parameter, usually using a label flip attack which considers a much larger poisoning fraction ε. By
adding a constraint involving the target parameter wtar, the attacker can search for poisoned points that
maximize the loss ℓ while keeping a low loss on wtar

∗ . However, such target parameters are hard to obtain
since, as we will demonstrate, non-convex models appear to be robust to label flip attacks and there are no
guarantees that wtar

∗ is the solution of Equation (7).

TGDA attack. In this paper, we solve Equation (7) and avoid the calculation of ∂w∗
∂Dp

using the Total
gradient descent ascent (TGDA) algorithm (Evtushenko, 1974; Fiez et al., 2020): TGDA takes a total
gradient ascent step for the leader and a gradient descent step for the follower:

xt+1 = xt + ηtDxℓ(xt, wt), (10)
wt+1 = wt − ηt∇wf(xt, wt) (11)
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where Dx := ∇xℓ − ∇wxf · ∇−1
wwf · ∇wℓ is the total derivative of ℓ with respect to x, which implicitly

measures the change of w with respect to Dp. As optimizing ℓ does not involve the attacker parameter θ, we
can rewrite Dx := −∇wxf ·∇−1

wwf ·∇wℓ. Here, the product (∇−1
wwf ·∇wℓ) can be efficiently computed using

conjugate gradient (CG) equipped with Hessian-vector products computed by autodiff. As CG is essentially
a Hessian-free approach (Martens, 2010), each step requires only linear time.

We thus apply the total gradient descent ascent algorithm and call this the TGDA attack. Avoiding
computing ∂w∗

∂Dp
enables us to parameterize Dp and generate points indirectly by treating L as a separate

model. Namely that Dp = Lθ(D′
tr), where θ is the model parameter and D′

tr is part of the training set to be
poisoned. Therefore, we can rewrite Equation (10) as:

θt+1 = θt + ηtDθℓ(θt, wt). (12)

Thus, we have arrived at a poisoning attack that generates Dp in a batch rather than individually, which
greatly improves the attack efficiency in Algorithm 1. Note that the TGA update does not depend on the
choice of ε. This is a significant advantage over previous methods as the running time does not increase as
the attacker is allowed a larger budget of introduced poisoned points, thus enabling data poisoning attacks
on larger training sets.

Algorithm 1: TGDA Attack
Input: Training set Dtr = {xi, yi}N

i=1, validation set Dv, training steps T , attacker step size α, attacker
number of steps m, defender step size β, defender number of steps n, poisoning fraction ε, L
with θpre and ℓ = L(Dv, w∗) , F with wpre and f = L(Dtr ∪ Dp, w).

1 Initialize poisoned data set D0
p ←− {(x′

1, y′
1), ..., (x′

εN , y′
εN )}

2 for t = 1, ..., T do
3 for i = 1, ..., m do
4 θ ← θ + αDθℓ(θ, wt) // TGA on L
5 for j = 1, ..., n do
6 w← w− β∇wf(θ, w) // GD on F

7 return model Lθ and poisoned set Dp = Lθ(D0
p)

Necessity of Stackelberg game. Although Equation (7) is equivalent to the bilevel optimization problem
in Muñoz-González et al. (2017); Huang et al. (2020); Koh et al. (2018)), our sequential Stackelberg formu-
lation is more suggestive of the data poisoning problem as it reveals the subtlety in the order of the attacker
and the defender.

4 Implementation

In this section, we (1) discuss the limitations of existing data poisoning attacks and how to address them,
(2) set an efficient attack architecture for the TGDA attack.

4.1 Current Limitations

We observe two limitations of existing data poisoning attacks.

Limitation 1: Inconsistent assumptions. We first summarize existing indiscriminate data poisoning
attacks in Table 1, where we identify that such attacks work under subtly different assumptions, on, for
example, the attacker’s knowledge, the attack formulation, and the training set size. These inconsistencies
result in somewhat unfair comparisons between methods.

Solution: We set an experimental protocol for generalizing existing attacks and benchmarking data poisoning
attacks for systematic analysis in the future. Here we fix three key variants:

(1) the attacker’s knowledge: as discussed in Section 2, we consider training-only attacks;
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Table 1: Summary of existing poisoning attack algorithms, evaluations, and their respective code. While
some papers may include experiments on other datasets, we only cover vision datasets as our main focus is
image classification. The attacks: Random label flip and Adversarial label flip attacks (Biggio et al., 2011),
P-SVM: PoisonSVM attack (Biggio et al., 2011), Min-max attack (Steinhardt et al., 2017), KKT attack
(Koh et al., 2018), i-Min-max: improved Min-max attack (Koh et al., 2018), MT: Model Targeted attack
(Suya et al., 2021), BG: Back-gradient attack (Muñoz-González et al., 2017).

Attack Dataset Model |Dtr| |Dtest| ε Code Multiclass Batch

Random label flip toy SVM / / 0-40%  ✓ ε|Dtr|

Adversarial label flip toy SVM / / 0-40%  × ε|Dtr|

P-SVM MNIST-17 SVM 100 500 0-9%  × 1

Min-max MNIST-17/Dogfish SVM 60000 10000 0-30%  ✓ 1

KKT MNIST-17/Dogfish SVM, LR 13007/1800 2163/600 3%  × 1

i-Min-max MNIST SVM 60000 10000 3%  ✓ 1

MT MNIST-17/Dogfish SVM, LR 13007/1800 2163/600 /  ✓ 1

BG MNIST SVM, NN 1000 8000 0-6%  ✓ 1

(2) the attack formulation: in Section 3, we introduce three possible formulations, namely non-zero-sum,
zero-sum, and zero-sum with target parameters. We will show in the experiment section that the latter two
are ineffective against neural networks.

Figure 1: Comparing the efficacy of
poisoning MNIST-17 with the Poi-
sonSVM and Back-gradient attacks.
The training set size is varied, while
the ratio of the number of poisoned
points to the training set size is fixed
at 3%. These attacks become less ef-
fective as training set sizes increase.

(3) the dataset size: existing works measure attack efficacy with
respect to the size of the poisoned dataset, where size is measured as
a fraction ε of the training dataset. However, some works subsample
and thus reduce the size of the training dataset. As we show in
Figure 1, attack efficacy is not invariant to the size of the training
set: larger training sets appear to be harder to poison. Furthermore,
keeping ε fixed, a smaller training set reduces the number of poisoned
data points and thus the time required for methods that generate
points sequentially, potentially concealing a prohibitive runtime for
poisoning the full training set. Thus we consider not only a fixed ε,
but also the complete training set for attacks.

Limitation 2: Running time. As discussed in Section 3, exist-
ing attacks approach the problem by optimizing individual points
directly, thus having to generate poisoned points one by one. Such
implementation takes enormous running time (see Section 5) and
does not scale to bigger models or datasets.

Solution: We design a new poisoning scheme that allows simultane-
ous and coordinated generation of Dp in batches requiring only one
pass. Thanks to the TGDA attack in Section 3, we can treat L as a
separate model (typically a neural network such as an autoencoder)
that takes part of the Dtr as input and generates Dp correspondingly.
Thus we fix the input and optimize only the parameters of L.

4.2 An efficient attack architecture

Once we have fixed the attack assumptions and poisoned data generation process, we are ready to specify
the complete three-stage attack architecture, which enables us to compare poisoning attacks fairly. One can
easily apply this unified framework for more advanced attacks in the future.

(1) Pretrain: The goals of the attacker L are to: (a) Reduce the test accuracy (i.e., successfully attack).
(b) Generate Dp that is close to Dtr (i.e., thwart potential defenses).
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The attacker achieves the first objective during the attack by optimizing ℓ. However, ℓ does not enforce that
the distribution of the poisoned points will resemble those of the training set. To this end, we pretrain L to
reconstruct Dtr, producing a parameter vector θpre. This process is identical to training an autoencoder.

For the defender, we assume that F is fully trained to convergence. Thus we perform standard training on
Dtr to acquire F with wpre. Here we record the performance of F on Dtest (denoted as acc1 for image
classification tasks) as the benchmark we are poisoning.

(2) Attack: We generate poisoned points using the TGDA attack. We assume that the attacker can inject
εN poisoned points, where N = |Dtr| and ε is the power of the attacker, measured as a fraction of the
training set size. We summarize the attack procedure in Figure 2.

Initialization: We take the pretrained model L with parameter θpre and F with pretrained parameter wpre

as initialization of the two networks; the complete training set Dtr; a validation set Dv and part of the
training set as initialization of the poisoned points D0

p = Dtr[0 : εN ].

Dtr

Dv

Attacker

θpre

θ∗

pretrain

attack

wpre

w∗

Defender

Dtr

D′
tr

attack

pretrain

Figure 2: Our experimental protocol benchmarks data
poisoning attacks. (1) Pretrain: the attacker and the
defender are first trained on Dtr to achieve perfect au-
toencoder/classifier respectively. (2) During the at-
tack, the attacker generates the optimal θ∗ (thus Dp)
wrt Dv and the the optimal w∗; the defender gener-
ates optimal w∗ wrt D′

tr = Dtr ∪ Dp and the optimal
θ∗ (which mimics testing).

TGDA attack: In this paper, we run the TGDA
attack to generate poisoned data. But it can be
changed to any suitable attack for comparison.

Specifically, we follow Algorithm 1 and perform m
steps of TGA updates for the attacker, and n steps
of GD updates for the defender in one pass. We
discuss the role of m and n in Section 5.

Note that previous works (e.g., Koh et al. 2018;
Muñoz-González et al. 2017) choose n = 1 by de-
fault. However, we argue that this is not necessarily
appropriate. When a system is deployed, the model
is generally trained until convergence rather than for
only a single step. Thus we recommend choosing a
much larger n (e.g., n = 20 in our experiments) to
better resemble the testing scenario.

Label Information: We specify that D0
p =

{xi, yi}εN
i=1. Prior works (e.g., Koh et al. 2018;

Muñoz-González et al. 2017) optimize x to produce
xp, and perform a label flip on y to produce yp (more
details in Appendix A). This approach neglects label
information during optimization.

In contrast, we fix yp = y, and concatenate x and
y to D0

p = {xi; yi}εN
i=1 as input to L. Thus we gen-

erate poisoned points by considering the label infor-
mation. We emphasize that we do not optimize or
change the label during the attack, but merely use
it to aid the construction of the poisoned xp. Thus, our attack can be categorized as clean label.

(3) Testing: Finally, we discuss how we measure the effectiveness of an attack. In a realistic setting, the
testing procedure should be identical to the pretrain procedure, such that we can measure the effectiveness
of Dp fairly. The consistency between pretrain and testing is crucial as the model F is likely to underfit with
fewer training steps.

Given the final θ, we produce the poisoned points Dp = Lθ(D0
p) and train F from scratch on Dtr∪Dp. Finally,

we acquire the performance of F on Dtest (denoted as acc2 for image classification tasks). By comparing
the discrepancy between pretrain and testing acc1 − acc2 we can evaluate the efficacy of an indiscriminate
data poisoning attack.
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5 Experiments

We evaluate our TGDA attack on various models for image classification tasks and show the efficacy of our
method for poisoning neural networks. In comparison to existing indiscriminate data poisoning attacks, we
show that our attack is superior in terms of both effectiveness and efficiency.

Specifically, our results confirm the following: (1) By applying the Stackelberg game formulation and in-
corporating second-order information, we can attack neural networks with improved efficiency and efficacy
using the TGDA attack. (2) The efficient attack architecture further enables the TGDA attack to generate
Dp in batches. (3) The poisoned points are visually similar to clean data, making the attack intuitively
resistant to defenses.

5.1 Experimental Settings

Hardware and package: Experiments were run on a cluster with T4 and P100 GPUs. The platform we use
is PyTorch (Paszke et al., 2019). Specifically, autodiff can be easily implemented using torch.autograd.
As for the total gradient calculation, we follow Zhang et al. (2021) and apply conjugate gradient for calcu-
lating Hessian-vector products.

Dataset: We consider image classification on MNIST (Deng, 2012) (60,000 training and 10,000 test images),
and CIFAR-10 (Krizhevsky, 2009) (50,000 training and 10,000 test images) datasets. We are not aware of
prior work that performs indiscriminate data poisoning on a dataset more complex than MNIST or CIFAR-
10, and, as we will see, even these settings give rise to significant challenges in designing efficient and effective
attacks. Indeed, some prior works consider only a simplified subset of MNIST (e.g., binary classification on
1’s and 7’s, or subsampling the training set to 1,000 points) or CIFAR-10 (e.g., binary classification on dogs
and fish). In contrast, we set a benchmark by using the full datasets for multiclass classification.

Training and validation set: During the attack, we need to split the clean training data into the training
set Dtr and validation set Dv. Here we split the data to 70% training and 30% validation, respectively.
Thus, for the MNIST dataset, we have |Dtr| = 42000 and |Dv| = 18000. For the CIFAR-10 dataset, we have
|Dtr| = 35000 and |Dv| = 15000.

Attacker models and Defender models: (1) For the attacker model, for MNIST dataset: we use a three-
layer neural network, with three fully connected layers and leaky ReLU activations; for CIFAR-10 dataset,
we use an autoencoder with three convoluational layers and three conv transpose layers. The attacker takes
the concatenation of the image and the label as the input, and generates the poisoned points. (2) For the
defender, we examine three target models for MNIST: Logistic Regression, a neural network (NN) with three
layers and a convolutional neural network (CNN) with two convolutional layers, maxpooling and one fully
connected layer; and only the CNN model for CIFAR-10 (as CIFAR-10 contains RBG images).

Hyperparameters: (1) Pretrain: we use a batch size of 1,000 for MNIST and 256 for CIFAR-10, and
optimize the network using our own implementation of gradient descent with torch.autograd. We choose
the learning rate as 0.1 and train for 100 epochs. (2) Attack: for the attacker, we choose α = 0.01, m = 1 by
default; for the defender, we choose β = 0.1, n = 20 by default. We set the batch size to be 1,000 for MNIST;
256 for CIFAR10 and train for 200 epochs, where the attacker is updated using total gradient ascent and
the defender is updated using gradient descent. We follow Zhang et al. (2021) and implement TGA using
conjugate gradient. We choose the poisoning fraction ε = 3% by default. Note that choosing a bigger ε will
not increase our running time, but we choose a small ε to resemble the realistic setting in which the attacker
is limited in their access to the training data. (3) Testing: we choose the exact same setting as pretrain to
keep the defender’s training scheme consistent.

Baselines: There is a spectrum of data poisoning attacks in the literature. However, due to their attack
formulations, only a few attacks can be directly compared with our method. See Table 1 in Appendix A
for a complete summary. For instance, the Poison SVM (Biggio et al., 2011) and KKT (Koh et al., 2018)
attacks can only be applied to convex models for binary classification; the Min-max (Koh et al., 2018) and
the Model targeted (Suya et al., 2021) attacks can be only applied to convex models. Thus we compare with
two baseline methods that can attack neural networks: the Back-gradient attack (Muñoz-González et al.,
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Table 2: The attack accuracy/accuracy drop (%) and attack running time (hours) on the MNIST dataset.
We only record the attack running time since pretrain and testing time are fixed across different methods.
As the label flip attack does not involve optimization, its running time is always 0. Our attack outperforms
the Back-gradient attack in terms of both effectiveness and efficiency across three different models.

Target Model
Clean Label Flip Back-gradient TGDA(ours)

Accuracy Accuracy/Drop Running time Accuracy/Drop Running time Accuracy/Drop Running time

LR 92.35 90.83 / 1.52 0 hrs 89.82 / 2.53 27 hrs 89.56 / 2.79 1.1 hrs
NN 98.04 97.99 / 0.05 0 hrs 97.67 / 0.37 239 hrs 96.54 / 1.50 15 hrs

CNN 99.13 99.12 / 0.01 0 hrs 99.02 / 0.09 2153 hrs 98.02 / 1.11 75 hrs

Table 3: The attack accuracy/accuracy drop (%) and attack running time (hours) on CIFAR-10.

Clean Label Flip MetaPoison TGDA(ours)

Accuracy/Drop 69.44 68.99 / 0.45 68.14/1.13 65.15 / 4.29

Running time 0 hrs 0 hrs 75hrs 346 hrs

2017) and the Label flip attack (Biggio et al., 2011). It is also possible to apply certain targeted attack
methods (e.g., MetaPoison, Huang et al. 2020) in the context of indiscriminate attacks. Thus we compare
with MetaPoison on CIFAR-10 under our unified architecture. We follow Huang et al. (2020) and choose
K = 2 unrolled inner steps, 60 outer steps, and an ensemble of 24 inner models.

5.2 Comparison with Benchmarks

MNIST. We compare our attack with the Back-gradient and the Label flip attacks with ε = 3% on MNIST
in Table 2. Since the Back-gradient attack relies on generating poisoned points sequentially, we cannot adapt
it into our unified architecture and run their code directly for comparison. For the label flip attack, we flip
the label according to the rule y ← 10− y, as there are 10 classes in MNIST.

We observe that label flip attack, though very efficient, is not effective against neural networks. Although
Muñoz-González et al. (2017) show empirically that the Back-gradient attack is effective when attacking sub-
sets of MNIST (1,000 training samples, 5,000 testing samples), we show that the attack is much less effective
on the full dataset. We also observe that the complexity of the target model affects the attack effectiveness
significantly. Specifically, we find that neural networks are generally more robust against indiscriminate
data poisoning attacks, among which, the CNN architecture is even more robust. Overall, our method out-
performs the baseline methods across the three target models. Moreover, with our unified architecture, we
significantly reduce the running time of poisoning attacks by more than an order of magnitude.

CIFAR-10. We compare our attack with the Label flip attack and the MetaPoison attack with ε = 3%
on CIFAR-10 in Table 3. We omit comparison with the Back-gradient attack as it is too computationally
expensive to run on CIFAR-10. We observe that the TGDA attack is very effective at poisoning the CNN
architecture, but the running time becomes infeasible on larger models (e.g., ResNet, He et al. 2016). Also,
MetaPoison is a more efficient attack (meta-learning with two unrolled steps is much quicker than calculating
total gradient), but since its original objective is to perform targeted attacks, its application to indiscriminate
attacks is not effective. Moreover, the difference between the efficacy of the TGDA attack on MNIST and
CIFAR-10 suggests that indiscriminate attacks may be dataset dependent, with MNIST being harder to
poison than CIFAR-10.

5.3 Ablation Studies

To better understand our TGDA attack, we perform ablation studies on the order in the Stackelberg game,
the attack formulation, roles in our unified attack framework, and the choice of hyperparameters. For
computational considerations, we run all ablation studies on the MNIST dataset.

Who acts first. In Section 3, we assume that the attacker is the leader and the defender is the follower,
i.e., that the attacker acts first. Here, we examine the outcome of reversing the order, where the defender

9
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Table 4: Comparing the TGDA attack with different orders: attacker as the leader and defender as the leader
in terms of test accuracy/accuracy drop(%). Attacks are more effective when the attacker is the leader.

Target Model Clean Attacker as leader Defender as leader

LR 92.35 89.56 / 2.79 89.79 / 2.56

NN 98.04 96.54 / 1.50 96.98 / 1.06

CNN 99.13 98.02 / 1.11 98.66 / 0.47

Table 5: Comparing the TGDA attack with different formulations: non-zero-sum and zero-sum in terms of
test accuracy/accuracy drop (%). Non-zero-sum is more effective at generating poisoning attacks.

Target Model Clean Non Zero-sum Zero-sum

LR 92.35 89.56 / 2.79 92.33 / 0.02

NN 98.04 96.54 / 1.50 98.07 / -0.03

CNN 99.13 98.02 / 1.11 99.55 / -0.42

acts first. Table 4 shows the comparison. We observe that across all models, reversing the order would result
in a less effective attack. This result shows that even without any defense strategy, the target model would
be more robust if the defender acts one step ahead of the attacker.

Figure 3: We visualize the poi-
soned data generated by the
TGDA attack with/without pre-
training the leader L on the
MNIST dataset.

Attack formulation. In Section 3, we discuss a relaxed attack formu-
lation, where ℓ = f and the game is zero-sum. We perform experiments
on this setting and show results in Table 5. We observe that the non-
zero-sum formulation is significantly more effective, and in some cases,
the zero-sum setting actually increases the accuracy after poisoning. We
also find that using target parameters would not work for neural networks
as they are robust to label flip attacks even when ε is large. We ran a
label flip attack with ε = 100% and observed only 0.1% and 0.07% ac-
curacy drop on NN and CNN architectures, respectively. This provides
further evidence that neural networks are robust to massive label noise,
as previously observed by Rolnick et al. (2017).

Role of pretraining. In Section 4, we propose two desired properties
of L, among which L should generate Dp that is visually similar to Dtr. Thus requires the pretraining of L
for reconstructing images. We perform experiments without pretraining L to examine its role in effecting
the attacker. Figure 3 confirms that without pretraining, the attacker will generate images that are visually
different from the Dtr distribution, thus fragile to possible defenses. Moreover, Table 6 indicates that
without pretraining L, the attack will also be ineffective. Thus we have demonstrated the necessity of the
visual similarity between Dp and Dtr.

Figure 4: Accuracy drop induced
by our TGDA poisoning attack
versus ε. Attack efficacy in-
creases modestly with ε.

Different ε. We have set ε = 3% in previous experiments. However,
unlike prior methods which generate points one at a time, the running time
of our attack does not scale with ε, and thus we can consider significantly
larger ε. Figure 4 shows that attack efficacy increases with ε, but the
accuracy drop is significantly less than ε when ε is very large.

Number of steps m and n. We discuss the choice of m and n, the
number of steps of L and F, respectively. We perform three choices of m
and n in Table 7. We observe that 20 steps of TGA and 1 step of GD
results in the most effective attack. This indicates that when m > n, the
outer maximization problem is better solved with more TGA updates.
However, setting 2 (m = 20, n = 1) takes 10 times more computation
than setting 1 (m = 1, n = 20), due to the fact that the TGA update is
expensive. We conclude that different choices of m and n would result in
a trade-off between effectiveness and efficiency.

10
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Table 6: Comparing the TGDA attack with/without pretraining the attacker L in terms of test accu-
racy/accuracy drop (%). Pretraining strongly improves attack efficacy.

Target Model Clean With Pretrain Without Pretrain

LR 92.35 89.56 / 2.79 92.09 / 0.26

NN 98.04 96.54 / 1.50 97.47 / 0.57

CNN 99.13 98.02 / 1.11 98.72 / 0.41

Table 7: Comparing different numbers of steps of the attacker (m) and defender (n) in terms of test accu-
racy/accuracy drop (%). Many attacker steps and a single defender step produces the most effective attacks.

Model Clean m = 1, n = 20 m = 20, n = 1 m = n = 20

LR 92.35 89.56 / 2.79 89.29 / 3.06 89.77 / 2.57

NN 98.04 96.54 / 1.50 96.33 / 1.71 96.85 / 1.19

5.4 Visualization of attacks

Finally, we visualize some poisoned points Dp generated by the TGDA attack in Figure 5. The poisoning
samples against NN and CNN are visually very similar with Dtr, as our attack is a clean label attack (see
Section 4). This result provides heuristic evidence that the TGDA attack may be robust against data
sanitization algorithms. Note that Dp against LR is visually distinguishable, and the reason behind this
discrepancy between the convex model and the neural networks may be that the attacker L is not expressive
enough to generate extremely strong poisoning attacks against neural networks.

5.5 Transferability of the TGDA attack

Even for training-only attacks, the assumption on the attacker’s knowledge can be too strong. Thus we study
the scenario when the attacker has limited knowledge regarding the defender’s model F and training process,
where the attacker has to use a surrogate model to simulate the defender. We report the transferability
of the TGDA attack on different surrogate models in Table 8. We observe that poisoned points generated
against LR and NN have a much lower impact against other models, while applying CNNs as the surrogate
model is effective on all models.

5.6 Against Defenses:

To further evaluate the robustness of the TGDA attack against data sanitization algorithms:

(1) We perform the loss defense (Koh et al., 2018) by removing 3% of training points with the largest loss. We
compare with pGAN (Muñoz-González et al., 2019), which includes a constraint on the similarity between
the clean and poisoned samples, and is thus inherently robust against defenses. In Table 9, we observe that
although we do not add an explicit constraint on detectability in our loss function, our method still reaches
comparable robustness against such defenses with pGAN.

Figure 5: We visualize the poisoned data generated by the TGDA attack (left: CIFAR-10; right: MNIST).

11
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Table 8: Transferability expeirments on MNIST.

Surrogate LR NN CNN
Target LR NN CNN LR NN CNN LR NN CNN

Accuracy Drop(%) 2.79 0.12 0.27 0.13 1.50 0.62 3.22 1.47 1.11

Table 9: Comparison with pGAN on MNIST with loss defense.

Method TGDA (w/wo defense) pGAN(w/wo defense)
Target Model LR NN CNN LR NN CNN

Accuracy Drop (%) 2.79/2.56 1.50/1.49 1.11/1.104 2.52/2.49 1.09/1.07 0.74/0.73

Table 10: TGDA attack on MNIST with MaxUp defense.

Method TGDA (w/wo defense)
Target Model LR NN CNN

Accuracy Drop (%) 2.79/2.77 1.50/1.50 1.11/1.11

(2) We examine the robustness of our TGDA attack against strong data augmentations, e.g., the MaxUp
defense1 of Gong et al. (2020). In a nutshell, MaxUp generates a set of augmented data with random
perturbations and then aims at minimizing the worst case loss over the augmented data. This training
technique addresses overfitting and serves as a valid defense against adversarial examples. However, it is
not clear if MaxUp is a good defense against indiscriminate data poisoning attacks. Thus, we implement
MaxUp under our testing protocol, where we add random perturbations to the training and the poisoned
data, i.e., {Dtr ∪Dp}, and then minimize the worst case loss over the augmented set. We report the results
in Table 10, where we observe that even though MaxUp is a good defense against adversarial examples, it is
not readily an effective defense against indiscriminate data poisoning attacks. Part of the reason we believe
is that in our formulation the attacker anticipates the retraining done by the defender, in contrast to the
adversarial example setting.

6 Conclusions

While indiscriminate data poisoning attacks have been well studied under various formulations and settings
on convex models, non-convex models remain significantly underexplored. Our work serves as a first explo-
ration into poisoning neural networks under a unified architecture. While prior state-of-the-art attacks failed
at this task due to either the attack formulation or a computationally prohibitive algorithm, we propose a
novel Total Gradient Descent Ascent (TGDA) attack by exploiting second-order information, which enables
generating thousands of poisoned points in only one pass. We perform experiments on (convolutional) neu-
ral networks and empirically demonstrate the feasibility of poisoning them. Moreover, the TGDA attack
produces poisoned samples that are visually indistinguishable from unpoisoned data (i.e., it is a clean-label
attack), which is desired in the presence of a curator who may attempt to sanitize the dataset.

Our work has some limitations. While our algorithm is over an order of magnitude faster than prior methods,
it remains computationally expensive to poison deeper models such as ResNet, or larger datasets such as
ImageNet. Similarly, while our attacks are significantly more effective than prior methods, we would ideally
like a poison fraction of ε to induce an accuracy drop of≫ ε, as appears to be possible for simpler settings (Lai
et al., 2016; Diakonikolas et al., 2016; 2019). We believe our work will set an effective benchmark for future
work on poisoning neural networks.

1We follow the implementation in https://github.com/Yunodo/maxup
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A Indiscriminte data poisoning attacks

We first show that perfect knowledge attacks and training-only attacks can be executed by solving a non-
zero-sum bi-level optimization problem.

A.1 Non-zero-sum setting

For perfect knowledge and training-only attacks, recall that we aim at the following bi-level optimization
problem:

max
Dp

L(Dv, w∗), s.t. w∗ ∈ arg min
w∈W

L(Dtr ∪ Dp, w), (13)

where we constrain |Dp| = ε|Dtr| to limit the amount of poisoned data the attacker can inject. The attacker
can solve (13) in the training only attack setting. With a stronger assumption where Dtest is available, we
substitute Dv with Dtest and arrive at the perfect knowledge attack setting.

Existing attacks generate poisoned points one by one by considering the problem:

max
xp

L(Dv, w∗), s.t. w∗ ∈ arg min
w∈W

L(Dtr ∪ {xp, yp}, w). (14)

While the inner minimization problem can be solved via gradient descent, the outer maximization problem
is non-trivial as the dependency of L(Dv, w∗) on xp is indirectly encoded through the parameter w of the
poisoned model. As a result, we rewrite the desired derivative using the chain rule:

∂D(Dv, w∗)
∂xp

= ∂D(Dv, w∗)
∂w∗

∂w∗

∂xp
, (15)

where the difficulty lies in computing ∂w∗
∂xp

, i.e., measuring how much the model parameter w changes with
respect to the poisoning point xp. Various approaches compute ∂w∗

∂xp
by solving this problem exactly, using

either influence functions (Koh & Liang, 2017) (Influence attack) or KKT conditions (Biggio et al., 2011)
(PoisonSVM attack2). Another solution is to approximate the problem using gradient descent (Muñoz-
González et al., 2017). We discuss each of these approaches below.

Influence attack. The influence function (Hampel, 1974) tells us how the model parameters change as
we modify a training point by an infinitesimal amount. Borrow the presentation from Koh & Liang (2017),
we compute the desired derivative as:

∂w∗

∂xp
= −H−1

w∗
∂2L({xp, yp}, w∗)

∂w∗∂xp
, (16)

where Hw∗ is the Hessian of the training loss at w∗:

Hw∗ := λI + 1
|Dtr ∪ Dp|

∑
(x,y)∈Dtr∪Dp

∂2L((x, y), w∗)
∂(w∗)2 (17)

Influence functions are well-defined for convex models like SVMs and are generally accurate for our settings.
However, they have been showed to be inaccurate for neural networks (Basu et al., 2021).

PoisonSVM attack. Biggio et al. (2012) replaces the inner problem with its stationary (KKT) conditions.
According to the KKT condition, we write the implicit function:

∂L(Dtr ∪ {xp, yp}, w∗)
∂w∗

= 0, (18)

2While this might naturally suggest the name “KKT attack,” this name is reserved for a different attack covered in Sec-
tion A.3.
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which yields the linear system:

∂2L(Dtr ∪ {xp, yp}, w∗)
∂w∗∂xp

+ ∂w∗

∂xp

∂2L(Dtr ∪ {xp, yp}, w∗)
∂(w∗)2 = 0, (19)

and thus we can solve the desired derivative as:

∂w∗

∂xp
= −∂2L(Dtr ∪ {xp, yp}, w∗)

∂w∗∂xp

(
∂2L(Dtr ∪ {xp, yp}, w∗)

∂(w∗)2

)−1

. (20)

This attack only applies to convex functions because of the stationary conditions.

Note that despite their differences in approaching the derivative, both attacks involve computing the inverse
Hessian in time O(p3), being p the cardinality of w.

Back-gradient attack. Muñoz-González et al. (2017) avoid solving the outer maximization problem ex-
actly by replacing it with a set of iterations performed by an optimization method such as gradient descent.
This incomplete optimization of the inner problem allows the algorithm to run faster than the two above
methods, and poisoning neural networks.

A.2 Zero-sum Setting

Steinhardt et al. (2017) reduce Equation (13) to a zero-sum game by replacing L(Dv, w∗) with L(Dtr ∪
Dp, w∗), and the original problem can be written as:

max
Dp

L(Dtr ∪ Dp, w∗), s.t. w∗ ∈ arg min
w∈W

L(Dtr ∪ Dp, w). (21)

which is identical to the saddle-point or zero-sum problem:

max
Dp

min
w
L(Dtr ∪ Dp, w) (22)

For an SVM model, given that the loss function is convex, we can solve (22) by swapping the min and max
and expand the problem to:

min
w

∑
(x,y)∈Dtr

L({x, y}, w) + max
{xp,yp}

L({xp, yp}, w), (23)

However, we emphasize that this relaxed gradient-based attack is problematic and could be ineffective since
the loss on the clean data Dtr could still be low. In other words, the inner maximization does not address
the true objective where we want to change the model parameter to cause wrong predictions on clean data.
This can be addressed by keeping the loss on the poisoned data small, but this contradicts the problem
formulation. One solution to this is to use target parameters in Section A.3.

A.3 Zero-sum Setting with Target parameters

Gradient-based attacks solve a difficult optimization problem in which the poisoned data Dp affects the
objective through the model parameter w∗. As a result, evaluating the gradient usually involves computing
a Hessian, a computationally expensive operation which can not be done in many realistic settings. Koh
et al. (2018) propose that if we have a target parameter wtar

∗ which maximizes the loss on the test data
L(Dtest, w∗), then the problem simplifies to:

find Dp, s.t. wtar
∗ = arg min

w∈W
L(Dtr ∪ Dp, w), (24)
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KKT attack. Since the target parameter wtar
∗ is pre-specified, the condition can be rewritten as:

wtar
∗ = arg min

w∈W
L(Dtr ∪ Dp, w) (25)

= arg min
w∈W

∑
{x,y}∈Dtr

L({x, y}, w) +
∑

{xp,yp}∈Dp

L({xp, yp}, w), (26)

Again we can use the KKT optimality condition to solve the argmin problem for convex losses:∑
{x,y}∈Dtr

L({x, y}, wtar
∗ ) +

∑
{xp,yp}∈Dp

L({xp, yp}, wtar
∗ ) = 0 (27)

Thus we can rewrite the problem as:

find Dp, s.t.
∑

{x,y}∈Dtr

L({x, y}, wtar
∗ ) +

∑
{xp,yp}∈Dp

L({xp, yp}, wtar
∗ ) = 0. (28)

If this problem has a solution, we can find it by solving the equivalent norm-minimization problem:

min
Dp

∥∥∥∥∥∥
∑

{x,y}∈Dtr

L({x, y}, wtar
∗ ) +

∑
{xp,yp}∈Dp

L({xp, yp}, wtar
∗ )

∥∥∥∥∥∥
2

2

, (29)

where the problem can only be minimized if the KKT condition is satisfied. This attack is called the KKT
attack.

Of course, the success of this attack relies on the target parameter wtar
∗ . Koh et al. (2018) propose to use

the label flip attack for such purpose where we use the trained parameter as the target. This attack achieves
comparable results to other attacks while being much faster since it can be solved efficiently using grid search
for binary classification. Note that for multi-class classification, this algorithm quickly become infeasible.

Improved min-max. Koh et al. (2018) applies the target parameters to address the issue for the relaxed
gradient-based attack, where we add the following constraint during training:

L({x, y}, wtar
∗ ) ≤ τ, (30)

where τ is a fixed threshold. Thus the attacker can search for poisoned points that maximize loss under the
current parameter w while keeping low loss on the target parameter wtar

∗ .

Model Targeted Poisoning. Suya et al. (2021) propose another algorithm for generating poisoned points
using target parameters. This attack considers a different attack strategy from the others, where the attacker
adopts an online learning procedure. In this case, the attacker does not have a poison fraction ε to generate
a specific amount of poisoned data. Instead, the attacker aims at reaching a stopping criteria (can be either
a desired accuracy drop or desired distance to the target parameter). However, such attacking procedure
may cause the poison fraction ε to be large and it is hard to measure the success of the attack. Thus, we
use the same setting as others for fair comparison.

A.4 Training-data-only attack

In the training-data-only attack setting, since the attacker does not have access to the training procedure,
the bi-level optimization methods are not applicable. The remaining strategies focus either on modifying
the labels only (i.e., label flip attacks).

Random label flip attack. Random label flipping is a very simple attack, which constructs a set of
poisoned points by randomly selecting training points and flipping their labels:

Dp = {(xi, ȳi) : (xi, yi) ∈ Dtr} s.t. |Dp| = ε|Dtr|, (31)
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where for each class j = 1, . . . , c, we set

ȳi = j with probability pj . (32)

Note that the weights {pj} may depend on the true label yi. For instance, for binary classification (i.e.,
c = 2), we may set pc+1−yi

= 1 in which case ȳi simply flips the true label yi.

Adversarial label flip attack. Biggio et al. (2011) consider an adversarial variant of the label flip attack,
where the choice of the poisoned points is not random. This attack requires access to the model and training
procedure, and thus is not a training-data-only attack. Biggio et al. (2011) design an attack focused on
SVMs. They choose to poison non-support vectors, as these are likely to become support vectors when an
SVM is trained on the dataset including these points with flipped labels.

Label flip for multi-class classification For binary classification, label flip is trivial. Koh et al. (2018)
provides a solution for multi-class classification problem. For marginal based models (for example, SVM),
we can write the multi-class hinge loss, where we have (Dogan et al., 2016):

L(w, (xi, yi)) = max{0, 1 + max
j ̸=yi

wjxi −wyixi}, (33)

where the choice of j is obvious: we choose the index with the highest function score except the target class
yi. Naturally, we can use this index j as the optimal label flip. As for non-convex models, the choice of
optimal label flip is not clear. In this case, one can use a heuristic by choosing the class with the biggest
training loss.
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