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ABSTRACT

It is now possible to reconstruct dynamic human motion and shape from a sparse
set of cameras using Neural Radiance Fields (NeRF) driven by an underlying
skeleton. However, a challenge remains to model the deformation of cloth and
skin in relation to skeleton pose. Unlike existing avatar models that are learned
implicitly or rely on a proxy surface, our approach is motivated by the observa-
tion that different poses necessitate unique frequency assignments. Neglecting
this distinction yields noisy artifacts in smooth areas or blurs fine-grained tex-
ture and shape details in sharp regions. We develop a two-branch neural net-
work that is adaptive and explicit in the frequency domain. The first branch is a
graph neural network that models correlations among body parts locally, taking
skeleton pose as input. The second branch combines these correlation features
to a set of global frequencies and then modulates the feature encoding. Our ex-
periments demonstrate that our network outperforms state-of-the-art methods in
terms of preserving details and generalization capabilities. Our code is available
at https://github.com/ChunjinSong/PM-Avatars.

1 INTRODUCTION

Human avatar modeling has garnered significant attention as enabling 3D telepresence and digitiza-
tion with applications ranging from computer graphics (Wu et al., 2019; Bagautdinov et al., 2021;
Peng et al., 2021a; Lombardi et al., 2021) to medical diagnosis (Hu et al., 2022). To tackle this chal-
lenge, the majority of approaches start from a skeleton structure that rigs a surface mesh equipped
with a neural texture (Bagautdinov et al., 2021; Liu et al., 2021) or learnable vertex features (Kwon
et al., 2021; Peng et al., 2021a;b). Although this enables reconstructing intricate details with high
precision (Liu et al., 2021; Thies et al., 2019) in controlled conditions, artifacts remain when learning
the pose-dependent deformation from sparse examples. To counteract, existing methods typically
rely on a parametric template obtained from a large number of laser scans, which still limits the
variety of the human shape and pose. Moreover, their explicit notion of vertices and faces is diffi-
cult to optimize and can easily lead to foldovers and artifacts from other degenerate configurations.
Moreover, the processed meshes are usually sampled uniformly in one static pose thus not being
adaptive to dynamic shape details like wrinkles.

Our objective is to directly reconstruct human models with intricate and dynamic details from given
video sequences with a learned neural radiance field (NeRF) model (Mildenhall et al., 2020). Most
related are surface-free approaches such as A-NeRF (Su et al., 2021) and NARF (Noguchi et al.,
2021) that directly transform the input query points into relative coordinates of skeletal joints and
then predict density and color for volumetric rendering without an intermediate surface represen-
tation. To further enhance the ability to synthesize fine details, (Su et al., 2022; Li et al., 2023)
explicitly decompose features into local part encodings before aggregating them to the final color.
Closely related are also methods that learn a neural radiance field of the person in a canonical T-
pose (Jiang et al., 2022; Li et al., 2022a; Wang et al., 2022). Despite their empirical success, as
depicted in Fig. 1, it is evident that a single query point, when considered in different pose con-
texts, is difficult to be learned. Specifically, the T-shirt region appears flat in one pose (2nd row)
but transforms into a highly textured surface in another (1st row). The commonly used positional
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Figure 1: Motivation. Our frequency modulation approach enables pose-dependent detail by using
explicit frequencies that depend on the pose context, varying over frames and across subjects. Our
mapping mitigates artifacts in smooth regions as well as synthesizes fine geometric details faithfully,
e.g., when wrinkles are present (1st row). By contrast, existing surface-free representations struggle
either with fine details (e.g. marker) or introduce noise artifacts in uniform regions (e.g. the black
clouds, 2nd row). To quantify the difference in frequency of these cases, we calculate the standard
deviation (STD) pixels within 5 × 5 patches of the input closeup and illustrate the frequency his-
tograms of the reference. Even for the same subject in similar pose the frequency distributions are
distinct, motivating our pose-dependent frequency formulation.

encoding (Mildenhall et al., 2020) maps points with fixed frequency transformations and is hence
non-adaptive. Entirely implicit mappings from observation to canonical space are complex and con-
tain ill-posed one to many settings. Thus they struggle to explicitly correlate pose context with the
matching feature frequency bands of query points. As a result, these methods either yield overly
smoothed details or introduce noisy artifacts in smooth regions.

In this paper, we investigate new ways of mapping the skeleton input to frequencies of a dynamic
NeRF model to tackle the aforementioned challenges. Specifically, we design a network with a
branch that is explicit in the frequency space and build a multi-level representation that adapts
to pose dependencies. To accomplish this, we utilize Sine functions as activations, leveraging its
explicit notion of frequency and its capability to directly enforce high-frequency feature transfor-
mations (Sitzmann et al., 2020; Mehta et al., 2021; Wu et al., 2023). The main challenge that we
address here is on how to control the frequency of the Sine activation for deforming characters.

We first apply a graph neural network (GNN) (Su et al., 2022) on the input pose to extract corre-
lations between skeleton joints, thereby encoding pose context. Given query point coordinates for
NeRF rendering, the joint-specific correlation features are first combined with a part-level feature
aggregation function and then utilized to generate point-dependent frequency transformation coef-
ficients. The frequency modulation process takes place within a set of intermediate latent features,
allowing us to optimize the modulation effects at different scales effectively. Lastly, similar to ex-
isting NeRF methods, we output density and color to synthesize and render images. Across various
scenarios, we consistently outperform state-of-the-art methods. Our core contributions are

• We introduce a novel and efficient neural network with two branches, tailored to generate
high-fidelity functional neural representations of human videos via frequency modulation.

• A simple part feature aggregation function that enables high-frequency detail synthesis in
sharp regions and reduces artifacts near overlapping joints.

• We conduct thorough evaluation and ablation studies, which delve into the importance of
window functions and frequency modulations with state-of-the-art results.

2 RELATED WORK

Our work is in line with those that apply neural fields to model human avatar representations. Here
we survey relevant approaches on neural field (Xie et al., 2022) and discuss the most related neural
avatar modeling approaches.
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Neural Fields. As a successful application, a breakthrough was brought by Neural Radiance Fields
(NeRF) (Mildenhall et al., 2020). Recently, extending NeRF to dynamic scenes becomes more
and more popular and enables numerous downstream applications (Park et al., 2021a; Pumarola
et al., 2021; Park et al., 2021b; Cao & Johnson, 2023). The key idea is to either extend NeRF
with an additional time dimension (T-NeRF) and additional latent code (Gao et al., 2021; Li et al.,
2022b; 2021b), or to employ individual multi-layer perceptrons (MLPs) to represent a time-varying
deformation field and a static canonical field that represents shape details (Du et al., 2021; Park et al.,
2021a;b; Tretschk et al., 2021; Yuan et al., 2021). However, these general extensions from static to
dynamic scenes only apply to small deformations and do not generalize to novel input poses.

Our method is also related to applying periodic functions for high frequency detail modeling within
the context of neural fields. NeRF (Mildenhall et al., 2020) encodes the 3D positions into a high-
dimensional latent space using a sequence of fixed periodic functions. Later on, Tanciket al. (Tancik
et al., 2020) carefully learn the frequency coefficients of these periodic functions, but they are still
shared for the entire scene. In parallel, Sitzmannet al. (Sitzmann et al., 2020) directly uses a Sine-
function as the activation function for latent features, which makes frequency bands adaptive to
the input. (Lindell et al., 2022; Fathony et al., 2021) further incorporate the multi-scale strategy
of spectral domains to further advance the modeling of band-limited signals. Recently, (Hertz
et al., 2021; Mehta et al., 2021; Wu et al., 2023) propose to modulate frequency features based
on spatial patterns for better detail reconstructions. However, differing from these methods, we
explicitly associate the desired frequency transformation coefficients with pose context, tailored to
the dynamics in human avatar modeling.

Neural Fields for Avatar Modeling. Using neural networks to model human avatars (Loper et al.,
2015) is a widely explored problem (Deng et al., 2020; Saito et al., 2021; Chen et al., 2021). How-
ever, learning personalized body models given only videos of a single avatar is particularly chal-
lenging which is our research scope in this paper.

In the pursuit of textured avatar modeling, the parametric SMPL body model is a common basis.
For instance, (Zheng et al., 2022; 2023) propose partitioning avatar representations into local radi-
ance fields attached to sampled SMPL nodes and learning the mapping from SMPL pose vectors to
varying details of human appearance. On the other hand, approaches without a surface prior, such as
A-NeRF (Su et al., 2021) and NARF (Noguchi et al., 2021), directly transform the input query points
into relative coordinates of skeletal joints. Later on, TAVA (Li et al., 2022a) jointly models non-rigid
warping fields and shading effects conditioned on pose vectors. ARAH (Wang et al., 2022) explores
ray intersection on a NeRF body model initialized using a pre-trained hypernetwork. Similar to for-
mer disentanglement (Wu et al., 2019; Song et al., 2019; Wu et al., 2020; 2022), DANBO (Su et al.,
2022) applies a graph neural network to extract part features and decompose an independent part
feature space for a scalable and customizable model. To reconstruct high-frequency details, Neural
Actor (Liu et al., 2021) utilizes an image-to-image translation network to learn texture mapping, with
a constraint on performers wearing tight clothes for topological consistency. Further studies (Peng
et al., 2021b;a; Dong et al., 2022) suggest assigning a global latent code for each training frame
to compensate for dynamic appearance. Most recently, HumanNeRF (Weng et al., 2022) and its
following works like Vid2Avatar (Guo et al., 2023) and MonoHuman (Yu et al., 2023) show high-
fidelity avatar representations for realistic inverse rendering from a monocular video. Despite the
significant progress, none of them explicitly associate the pose context with frequency modeling,
which we show is crucial for increasing shape and texture detail.

3 METHOD

Our objective is to reconstruct a 3D animatable avatar by leveraging a collection of N images, along
with the corresponding body pose represented as the sequence of joint angles [θk]

N
k=1. Our key

technical ingredient is a pose-guided frequency modulation network and its integration for avatar
reconstruction. Fig. 2 provides a method overview with three main components. First, we employ
a Graph Neural Network (GNN) to estimate local relationships between different body parts. The
GNN facilitates effective feature aggregation across body parts, enabling to learn the nearby pose
contexts without relying on surface priors. Then the aggregated GNN features are learned to mod-
ulate the frequencies of input positions. Lastly, the resulting per-query feature vector is mapped to
the corresponding density and radiance at that location as in the original NeRF framework.
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Figure 2: Method overview. First, a graph neural network takes a skeleton pose as input to encode
correlations of joints. Together with the relative coordinates {x̄i} of query point x, a window func-
tion is learned to aggregate the features from all parts. Then the aggregated GNN features are used
to compute frequency coefficients (orange) which later modulate the feature transformation of point
x (green). Finally, density σ and appearance c is predicted as in NeRF.

3.1 PART-RELATIVE POSE ENCODING

Inspired by DANBO (Su et al., 2022), we adopt a graph representation for the human skeleton,
where each node corresponds to a joint that is linked to neighboring joints by bones. For a given
pose with NB joints θ = [ω1, ω2, . . . , ωNB

], where ωi ∈ R6 (Zhou et al., 2019) is the rotation
parameter of bone i ∈ {1, 2, . . . , NB}, we regress a feature vector for each bone part as:

[G1, G2, . . . , GNB
] = GNN(θ), (1)

where GNN represents a learnable graph neural network. To process the irregular human skeleton,
we employ two graph convolutional layers, followed by per-node 2-layer Multi-Layer Perceptrons
(MLPs). To account for the irregular nature of human skeleton nodes, we learn individual MLP
weights for each node; see (Su et al., 2022) for more comprehensive details.

Figure 3: Learned window function. The query
point location is processed with a spatial and pose-
dependent window to remove spurious correla-
tions between distant joints.

Given a sample location x ∈ R3 in global coor-
dinates for which the NeRF should output color
and density, we first map it to the i-th bone-
relative space as[

x̂i

1

]
= T (ωi)

[
x
1

]
, (2)

where T (ωi) denotes the world-to-bone coor-
dinates transformation matrix computed by the
rotation parameter ωi. We first perform a valid-
ness test for the scaled relative positions {x̄i =
si · x̂i}, where si is a learnable scaling factor to
control the size of the volume the i-th part con-
tributes to. This facilitates the processing efficiency and concentrates the network on local patterns.
If no {x̄i} falls in [−1, 1], x is estimated to locate far from the body surface and is discarded. Then
these features are employed to drive the frequency modulation adaptively.

3.2 FREQUENCY MODULATION

Two-stage Window Function. To decide which per-part point-wise features to pass on to the down-
stream network and address the feature aggregation issues in (Su et al., 2022), we design a learnable
two-stage window function. In Fig. 3, the window function takes the per-part GNN feature set {Gi}
and the scaled relative position set {x̄i} of a valid point x as inputs. To facilitate learning volume
dimensions {si} that adapt to the body shape and to mitigate seam artifacts, we define

wp
i = exp(−α(∥x̄i∥β2 )), (3)

where ∥·∥2 is the L2-norm. The wp
i function attenuates the extracted feature based on the relative

spatial distances to the bone centers such that multiple volumes are separated via the spatial simi-
larities between x and the given parts. Thus we name wp

i as the spatial window function. We set
α = 2 and β = 6 as in (Lombardi et al., 2021). However, it is possible that one part might prioritize
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over other parts when multiple valid parts’ feature space overlap. This motivates us to take the pose
context into account and consider the point-wise feature of each part as the second stage. First, we
perform ẋi = sin(Wc · x̄i) for each x̄i, where Wc indicates a Gaussian initialized fully-connected
layer as in FFN (Tancik et al., 2020). After concatenating {ẋi} and the GNN features {Gi} cor-
respondingly, we apply a full-connected layer to regress {fp

i } as the point-wise feature of the i-th
part. Then we attenuate the feature as fw

i = fp
i · wp

i to focus on spatially nearby parts.

To further decide which part x belongs to, we compute relative weights by aggregating all {fw
i }

through a max pooling for the holistic shape-level representation. The max-pooled feature is fed
into a sequence of fully-connected layers which are activated by a Sigmoid function to output a
per-part weight wf

i . We call the feature window function wf
i to echo the spatial window function

wp
i since it operates on pose features. Finally, we compute the per-part weight wi = wp

i · wf
i and

output modulation frequencies as

fm =

NB∑
i=0

wi ·Gi, [θ1, θ2, · · · , θn] = MLP (fm), (4)

where fm, θi and n represent the aggregated part feature, the modulation frequency coefficient at
i-th layer and the layer number of the subsequent modulation module, respectively.

After the two-stage window function, the extracted fm sparsely correspond to a small part set. To
echo the locality assumption throughout the entire network, we also perform the window function
wi for the NB relative positions of query point x as {x̃i = x̄i · wi}. Note that, we aggregate the
part features before MLP-based frequency modulation to avoid time-consuming processing over all
parts for all samples. Thus computation complexity reduces significantly.

Frequency Prediction. Inspired by pi-GAN (Chan et al., 2021), we build the backbone network for
each x with a series of Sine-activated fully-connected layers (Sitzmann et al., 2020). To this end,
we first concatenate all the re-weighed positions {x̃i} as a whole and input it into a Sine-activated
fully-connected layer (Sitzmann et al., 2020). Later on, each fully-connected layer is defined as

fi = sin(θi ·Wifi−1 + bi), (5)
where Wi and bi are trainable weight and bias in the i-th layer Li. Finally, we concatenate the
Sine-activated features {fi} as S(x) = [f1, f2, · · · , fn] for further processing.

Design Discussions and relation to DANBO. Both our method and DANBO (Su et al., 2022) use
the GNN features as a building block to measure bone correlations. By contrast to DANBO which
directly estimates part-level feature spaces from GNN features, we leverage these aggregated GNN
features to estimate the appropriate frequencies, driving the frequency modulation for the input
positions. This enables the linked MLP networks to adaptively capture a wide spectrum of coarse
and fine details with high variability, as illustrated in the visual comparisons to DANBO in Fig. 1,
4, 5, 6. Moreover, although some work (Hertz et al., 2021; Wu et al., 2023) aims to modulate
frequency features with locality, we make the first step for pose-dependent frequency modulation,
which is critical in human avatar modeling. We start from existing conceptual components, analyze
their limitations, and propose a novel solution. Specifically, we focus on how to connect GNN pose
embeddings with frequency transformations. We then propose a simple window function to improve
efficiency without losing accuracy which is also special and helpful in neural avatar modeling.

3.3 VOLUME RENDERING AND LOSS FUNCTIONS

The output feature S(x) can accurately capture the information of pose dependency and spatial
positions, and thus enables adaptive pattern synthesis. To obtain high-quality human body, we learn
a neural field F to predict the color c and density σ at position x as

(c, σ) = F (S(x), r), (6)
where r ∈ R2 indicates the given ray directions. Following the existing neural radiance rendering
pipelines for human avatars (Su et al., 2021; 2022; Wang et al., 2022), we output the image of the
human subject as in the original NeRF:

Ĉ (r) =

n∑
i=1

Ti (1− exp(−σiδi)) ci, Ti = exp(−
i−1∑
j=1

σjδj). (7)
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Figure 4: Visual comparisons on MonoPerfCap. We can preserve better shape contours (1st row)
and produce realistic cloth textures without artifacts (highlighted by the red arrow on 2nd row).

Novel view

GT A-NeRF DANBO ARAH TAVA Ours

Figure 5: Visual comparisons for novel view synthesis. Compared to baselines, we can vividly
reproduce the structured patterns.

Here, Ĉ and δi indicate the synthesized image and the distance between adjacent samples along a
given ray respectively. Finally, we compute the L1 loss ∥·∥1 for training as

Lrec =
∑
r∈R

∥∥∥Ĉ(r)− Cgt(r)
∥∥∥
1
, (8)

where R is the whole ray set and Cgt is the ground truth. The usage of L1 loss is to enable more ro-
bust network training. Following (Lombardi et al., 2021), we add a regularization loss on the scaling
factors to prevent the per-bone volumes from growing too large and taking over other volumes:

Ls =

NB∑
i=1

(sxi · syi · s
z
i ), (9)

where {sxi , s
y
i , s

z
i } are the scaling factors along {x, y, z} axes respectively. Hence, our total loss

with weight λs is
L = Lrec + λsLs. (10)

4 RESULTS

In this section, we compare our approach with several state-of-the-art methods, including Neural-
Body (Peng et al., 2021b), Anim-NeRF (Peng et al., 2021a), A-NeRF (Su et al., 2021), TAVA (Li
et al., 2022a), DANBO (Su et al., 2022), and ARAH (Wang et al., 2022). These methods vary in their
utilization of surface-free, template-based, or scan-based priors. We also conduct an ablation study
to assess the improvement achieved by each network component. This study analyzes and discusses
the effects of the learnable window function. Source code will be released with the publication.
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Novel pose

Figure 6: Visual comparisons for novel pose rendering. For novel poses that are unseen during
training, cloth wrinkles form chaotically. Hence, none of the methods is expected to match the folds.
Ours yields the highest detail, including the highlighted marker texture.

Table 1: (a) Unseen pose synthesis on MonoPerfCap Xu et al. (2018). Our full model shows
better overall perceptual quality over chosen models from monocular videos. (b) Ablation studies
on Human3.6M S9. Our full model outperforms all ablated baselines across all metrics.

ND WP Avg

PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑
onlyGNN 20.03 0.841 22.71 0.863 21.37 0.852
onlySyn 19.57 0.827 22.66 0.860 21.12 0.844
DANBO 20.10 0.842 22.39 0.861 21.25 0.852

Ours 20.55 0.853 22.85 0.866 21.70 0.860
(a)

onlyGNN noGNN onlySyn only wp
i only wf

i no window Ours (full)

Novel view
PSNR↑ 25.91 26.08 25.86 26.21 25.91 22.21 26.39
SSIM↑ 0.917 0.925 0.916 0.925 0.921 0.639 0.929
LPIPS↓ 0.120 0.105 0.118 0.112 0.124 0.478 0.100

Novel pose
PSNR↑ 24.75 24.45 24.82 25.01 24.72 20.98 25.12
SSIM↑ 0.891 0.899 0.901 0.904 0.900 0.628 0.908
LPIPS↓ 0.146 0.131 0.141 0.133 0.148 0.502 0.122

(b)

4.1 EXPERIMENTAL SETTINGS

We evaluate our method on widely recognized benchmarks for body modeling. Following the pro-
tocol established by Anim-NeRF, we perform comparisons on the seven actors of the Human3.6M
dataset (Ionescu et al., 2011; 2013; Peng et al., 2021a) using the method described in (Gong et al.,
2018) to compute the foreground maps. Like DANBO, we also apply MonoPerfCap (Xu et al.,
2018) as a high-resolution dataset to evaluate the robustness to unseen poses in monocular videos.

To ensure a fair comparison, we follow the previous experimental settings including the dataset
split and used metrics (Su et al., 2021; 2022; Li et al., 2022a). Specifically, we utilize standard
image metrics such as pixel-wise Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index
Metric (SSIM) (Wang et al., 2004) to evaluate the quality of output images. Additionally, we employ
perceptual metrics like the Learned Perceptual Image Patch Similarity (LPIPS) (Zhang et al., 2018)
to assess the structural accuracy and textured details of the generated images. Since our primary
focus is on the foreground subjects rather than the background image, we report the scores based on
tight bounding boxes, ensuring the evaluation to be focused on the relevant regions of interest.

4.2 NOVEL VIEW SYNTHESIS

To evaluate the generalization capability under different camera views, we utilize multi-view
datasets where the body model is learned from a subset of cameras. The remaining cameras are
then utilized as the test set, allowing us to render the same pose from unseen view directions.

We present the visual results in Fig. 5. Comparing to the selected baselines, our method shows supe-
rior performance in recovering fine-grained details, as evident in the examples such as the stripe tex-
ture depicted on the first row. We attribute this to the explicit frequency modulation which mitigates
grainy artifacts and overly smooth regions. Tab. 2 quantifies our method’s empirical advantages,
supporting our previous findings.
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(b)(a)

Figure 7: Ablation studies on sub-branch networks (a) and on window functions (b). Only the
full model can faithfully synthesize the structured patterns (e.g. the strip textures) in (a) and avoid
artifacts and contour distortions in (b).

Reference DANBO Ours

Figure 8: Geometry reconstruction. Our method yields more precise, less noisy shape estimates.
Some noise remains as no template mesh or other surface prior is used.

4.3 NOVEL POSE RENDERING

We follow prior work and measure the quality of novel pose synthesis by training on the first part of
a video and testing on the remaining frames. Only the corresponding 3D pose is used as input. This
tests the generalization of the learned pose modulation strategy and applicability to animation.

We present the visual comparisons for the Human3.6M dataset in Fig. 6, where our method shows
superior results than baselines in terms of fine-grained and consistent renderings. Specifically, our
method generates sharper details such as those seen in wrinkles and better texture consistency, as
exemplified by the clearer marker (highlighted by boxes). Tab. 2 further quantitatively verifies that
our method generalizes well to both held-out poses and out-of-distribution poses across the entire
test set. Note that no methods match wrinkle locations perfectly, as these form chaotically, dependent
on the past motion, not just on the single frame used by all methods for conditioning. Learning such
motion dynamics remains an open problem that is orthogonal to learning pose-dependent detail.

Table 2: Novel-view and novel-pose synthesis
results, averaged over the Human3.6M test set.
Our method benefits from the explicit frequency
modulations, yielding better perceptual quality,
reaching the best overall score in all metrics.

Novel view Novel pose

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
Template/Scan-based prior
NeuralBody 23.36 0.905 0.140 22.81 0.888 0.157
Anim-NeRF 23.34 0.897 0.157 22.61 0.881 0.170
ARAH† 24.63 0.920 0.115 23.27 0.897 0.134

Template-free
A-NeRF 24.26 0.911 0.129 23.02 0.883 0.171
DANBO 24.69 0.917 0.116 23.74 0.901 0.131
TAVA 24.72 0.919 0.124 23.52 0.899 0.141
Ours 25.06 0.921 0.110 24.15 0.906 0.124
†: using public release that differs to Wang et al. (2022).

Moreover, we provide the visual comparisons
in Fig. 4 and the quantitative metrics in Tab. 1
(a) for the high-resolution outdoor monocu-
lar video sequences MonoPerfCap (Xu et al.,
2018). Being consistent with the results
on the Human3.6M sequences, our method
presents better capability in learning a gener-
alized model from monocular videos.

Furthermore, we test the animation ability of
our approach by driving models learned from
the Human3.6M dataset with extreme out-of-
distribution poses from AIST (Li et al., 2021a).
The qualitative results shown in Fig. 9 validate
that even under extreme pose variation our ap-
proach produces plausible body shapes with de-
sired texture details while the baseline show se-
vere artifacts. Here no quantitative evaluations are performed since no ground truth data is available.

4.4 GEOMETRY VISUALIZATION

In Fig. 8, we analyze the geometry reconstructed with our approach against reconstructions from the
baseline. Our method captures better body shapes and per-part geometry. Specifically, our results
present overall more complete body outline and a smoother surface. In contrast, the baselines pre-
dict more noisy blobs near the body surface. Together with the results of novel view and novel pose
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Figure 9: Animation capability. Our method maintains the reconstructed high frequency details
when retargeting and creates fewer artifacts, lending itself for retargeting.

synthesis, we also attribute our more consistent rendering results across novel views than the base-
lines to better geometry preservation. This might suggest that more faithful modeling of geometry
is also beneficial for the visual fidelity as shown in the appended video.

4.5 ABLATION STUDY RESULTS

To test the significance of each component, we conduct the ablation study on all Human3.6M se-
quences with six ablated models: 1. Only preserve the upper branch network with GNN features as
onlyGNN; 2. Only preserve the bottom branch network without frequency modulation as onlySyn;
3. For the two-stage window function, we only preserve wp

i to evaluate the effectiveness of the
spatial similarities between x and all bone parts as only wp

i ; 4. We only preserve wf
i for the im-

portance of max-pooled object-level feature as only wf
i ; 5. We remove the whole window function

as no window. 6. We concatenate all pose parameters into one vector and replace the GNN lay-
ers with one single MLP to evaluate the effectiveness of per-part modeling as noGNN; see Fig. 15
for detailed architecture. In Fig. 7,we present the qualitative ablation study results for S9. Specifi-
cally, the onlyGNN model is prone to produce blurry textures due to its low frequency bias while
the onlySyn model introduces noisy artifacts near stripe textures. Similar to onlySyn, the noGNN
model blurs the stripe patterns with noisy artifacts. Only the combination yields their full advantage
and successfully synthesizes structured patterns, as shown in Fig. 7 (a). As mentioned in method
section, wp

i and wf
i cater for the relationships in position space and feature space, respectively. As

shown by the results of novel pose rendering (Fig. 7 (b)), neither using wp
i or wf

i alone suffices to
produce the image quality of the full model, demonstrating the necessity of all contributions. Tab. 1
(b) lists our corresponding quantitative results of all sequences to further support our statement.

Tab. 1 (a) presents the quantitative scores from the MonoPerfCap dataset, showcasing the perfor-
mance of both the onlyGNN and onlySyn models. Similar to the result differences shown in Tab. 1
(b), our full model consistently outperforms these two ablated models, which reveals our full model’s
adaptability to diverse in-the-wild scenarios depicted in high-resolution images. With all these re-
sults, we conclude that each component clearly contribute to the empirical success of the full model.
More ablation studies on the pose-dependent frequency modulation can be found in the appendix.

5 CONCLUSION

We introduce a novel, frequency-based framework based on NeRF (Mildenhall et al., 2020) that
enables the accurate learning of human body representations from videos. The main contribution
of our approach is the explicit integration of desired frequency modeling with pose context. When
compared to state-of-the-art algorithms, our method demonstrates improved synthesis quality and
enhanced generalization capabilities, particularly when faced with unseen poses and camera views.
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Appendices
In this part, we first present the details about method implementation, used dataset and data split.
Then we provide more comparison results on the frequency histograms, geometry visualization and
motion retargeting. We also attach more ablation studies to emphasize the significance of pose-
guided frequency modulation and window functions. More qualitative results for novel view syn-
thesis and novel pose rendering are provided as well. Finally, we discuss the limitations and social
impacts of this project. See the attached video for the animation and geometry visualization results.

A IMPLEMENTATION DETAILS

For consistency, we maintain the same hyper-parameter settings across various testing experiments,
including the loss function with weight λs, the number of training iterations, and the network capac-
ity and learning rate. All the hyper-parameters are chosen depending on the final accuracy on chosen
benchmarks. Our method is implemented using PyTorch (Paszke et al., 2019). We utilize the Adam
optimizer (Kingma & Ba, 2014) with default parameters β1 = 0.9 and β2 = 0.99. We employ the
step decay schedule to adjust the learning rate, where the initial learning rate is set to 5× 10−4 and
we drop the learning rate to 10% every 500000 iterations. Like former methods (Su et al., 2021;
2022), we set λs = 0.001 and NB = 24 to accurately capture the topology variations and avoid
introducing unnecessary training changes. The learnable parameters in GNN, window function and
the frequency modulation part are activated by the Sine function while other parameters in the neural
field F are activated by Relu (Agarap, 2018). We train our network on a single NVidia RTX 3090
GPU for about 20 hours.

B MORE DETAILS ABOUT DATASETS

Follow the experimental settings of previous methods (Su et al., 2021; 2022), we choose the Hu-
man3.6M (Ionescu et al., 2011) and MonoPerfCap (Xu et al., 2018) as the evaluation benchmarks.
These datasets cover the indoor and outdoor scenes captured by monocular and multi-view videos.
Specifically, we use a total of 7 subjects for evaluation under the same evaluation protocol as in An-
imNeRF (Peng et al., 2021a). We compute the foreground images with (Gong et al., 2018) to focus
on the target characters. Likewise, we adopt the identical pair of sequences and configuration as em-
ployed in A-NeRF (Su et al., 2021): Weipeng and Nadia, consisting of 1151 and 1635 images each,
with a resolution of 1080 × 1920. We estimate the human and camera poses using SPIN (Kolotouros
et al., 2019) and following pose refinement (Su et al., 2021). We apply the released DeepLabv3
model (Chen et al., 2017) to estimate the foreground masks. The data split also stays the same as
the aforementioned methods for a fair comparison.

C MORE RESULTS

Histogram Comparisons. Showing the frequency histograms of different frames, like the Fig. 1 in
the main text, appear to be a clear solution to demonstrate our motivation. Thus we provide more
examples and corresponding analysis here. Using the two close-ups in Fig. 1 of the main text, we
present the corresponding frequency histograms for each method in Fig. 10. To test our effectiveness
when training over long sequences, we provide the histogram results of two frames collected in the
ZJU-MoCap (Peng et al., 2021b) dataset, in Fig. 11. Compared to DANBO, our method can produce
more similar contours to the ground truth histograms. Additionally, the matched histogram distances
(shown below the histogram subfigures and denoted as F-Dist) further confirm our advantages of
producing adaptive frequency distributions which is the key point of our method.

Besides measuring the holistic histogram similarities, we directly compute a frequency map by
regarding the standard deviation (STD) value at each pixel as a gray-scale value. As evidenced
in Fig. 11, our method provides significantly improved results, as represented by the error images
between the output frequencies and the ground truth values. All these results reveal that our method
can faithfully reconstruct the desired frequency distributions both locally and holistically.
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PSNR SSIM LPIPS F-Dist

20.31 0.813 0.329 0.209

PSNR SSIM LPIPS F-Dist

22.05 0.842 0.288 0.115

PSNR SSIM LPIPS F-Dist

21.39 0.785 0.310 0.166

PSNR SSIM LPIPS F-Dist

22.03 0.801 0.260 0.105

GT DANBO Ours GT DANBO Ours

Figure 10: Motivation Demonstration on Human3.6M frames. Using the two frames in Fig. 1
of the main text, we present the frequency histograms, compute three image quality metrics (e.g.
PSNR, SSIM, LPIPS) and the distances between the output frequency map and ground truth values
(F-Dist) to justify our pose-guided frequency modulation. Compared to DANBO which modulates
frequencies implicitly, our method can synthesize higher-quality images with more adaptive fre-
quency distributions across different pose contexts.

GT DANBO Ours GT DANBO Ours

PSNR SSIM LPIPS F-Dist

20.04 0.864 0.323 0.230

PSNR SSIM LPIPS F-Dist

21.28 0.842 0.288 0.181

PSNR SSIM LPIPS F-Dist

27.24 0.891 0.249 0.171

PSNR SSIM LPIPS F-Dist

30.66 0.933 0.141 0.120

Figure 11: Motivation Demonstration on ZJU-Mocap frames. To test our effectiveness over
long video sequences, we qualitatively and quantitatively evaluate our method with two ZJU-Mocap
frames. Being consistent with the findings in Fig. 10, our method outperforms DANBO with more
similar frequency histograms (3rd row) and better quantitative metrics on image quality and fre-
quency modeling (last row). Additionally, we further illustrate the color-coded frequency error maps
(2nd row) for both methods to show that our method can faithfully reconstruct the desired frequency
distributions both locally and holistically. For the left frame with smooth patterns, our method in-
troduces slightly few frequency errors as it is easy to model low-frequency variations. On the other
hand, for the right frame with much more high-frequency wrinkles, our method faithfully reproduces
the desired frequencies with significantly less errors, which clearly demonstrate the importance of
our pose-guided frequency modulation. Here red denotes positive and blue denotes negative errors.
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PSNR SSIM LPIPS F-Dist

18.50 0.811 0.281 0.269

PSNR SSIM LPIPS F-Dist

22.05 0.842 0.288 0.115

PSNR SSIM LPIPS F-Dist

15.04 0.713 0.350 0.451

PSNR SSIM LPIPS F-Dist

22.03 0.801 0.260 0.105

GT Only Syn Ours GT Only Syn OursOnly GNN Only GNN

PSNR SSIM LPIPS F-Dist

18.60 0.735 0.395 0.338

PSNR SSIM LPIPS F-Dist

20.11 0.774 0.386 0.169

Figure 12: Abaltion study on the network components with frequency analysis. Our full model
produces more adaptive frequency distributions and higher image quality than the ablated models.

MonohumanGT Vid2AvatarOurs Humannerf Vid2Avatar+mask

0.019 0.045 0.028 0.401 0.028

0.445 0.895 0.843 0.773 0.928

Figure 13: Visual comparisons on ZJU-Mocap with modern baselines. Among all methods,
only our model can successfully synthesize the avatar fist with accurate arm contours (top row) and
faithfully reconstruct the desired wrinkles (bottom row). In contrast, all baselines either distort or
blur the fist patterns (top row) and clothing textures (bottom row). Additionally, the state-of-the-art
methods fail to capture the cloth colors. Similar to Fig. 11, we illustrate the frequency error maps
and compute the distances between the output frequency map and ground truth values (F-Dist).
Being consistent with the findings in Fig. 10 and Fig. 11, the pose-guided frequency modulation
can better reconstruct the desired frequency distributions both locally and holistically. Thus more
adaptive patterns can be reproduced with reduced errors.
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Table 3: Novel-view synthesis results on the ZJU-Mocap Peng et al. (2021b) test set. The pose-
dependent frequency modulation facilitates generalizing to novel views with one single camera in-
put. Here ‘Vid2Avatar’ indicates the original Vid2Avatar implementation while ‘Vid2Avatar+mask’
is the model only focusing on the foreground human representations, thus obtaining better metrics
than the original version.

S377 S387 S393 S394 Avg

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

NeuralBody 28.90 0.967 27.15 0.953 28.30 0.957 28.41 0.956 28.19 0.958
HumanNeRF 30.21 0.975 27.95 0.963 28.38 0.961 30.00 0.963 29.14 0.965
MonoHuman 30.23 0.976 28.20 0.962 28.40 0.962 30.02 0.963 29.21 0.966
Vid2Avatar 29.52 0.951 28.10 0.938 27.19 0.929 28.95 0.932 28.44 0.938
Vid2Avatar+mask 29.53 0.976 28.15 0.965 27.95 0.962 29.83 0.965 28.87 0.967

Ours 30.72 0.979 28.20 0.965 28.91 0.964 30.36 0.965 29.55 0.968

Table 4: Novel pose rendering results on the ZJU-Mocap Peng et al. (2021b) test set. Similar to
Tab. 3, our method improves the quantitative results for novel pose rendering.

S377 S387 S393 S394 Avg

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

NeuralBody 29.18 0.969 26.43 0.951 28.15 0.956 28.14 0.956 27.98 0.958
HumanNeRF 30.18 0.975 27.60 0.962 28.39 0.961 28.78 0.960 28.74 0.965
MonoHuman 30.26 0.977 27.66 0.961 28.78 0.962 29.11 0.961 28.95 0.965
Vid2Avatar 29.86 0.954 27.42 0.938 27.20 0.929 28.55 0.932 28.26 0.938
Vid2Avatar+mask 29.85 0.977 27.38 0.964 28.09 0.962 29.25 0.963 28.64 0.967

Ours 30.95 0.979 27.71 0.964 28.96 0.964 29.60 0.963 29.31 0.968

MonohumanGT Vid2Avatar OursHumannerfVid2Avatar+mask

Template-based Template-free

Figure 14: Geometry reconstruction on ZJU-Mocap S377. Compared to other template-free
methods (HumanNeRF and MonoHuman), our method yields more precise and less noisy body
shape. Some bumpy patterns remains as no template mesh or other surface prior is used, in contrast
to Vid2Avatar.

Modern baselines on ZJU-Mocap sequences. To show our advantages with better generality, we
train our method and three baselines, including HumanNeRF Weng et al. (2022), MonoHuman Yu
et al. (2023), and Vid2Avatar Guo et al. (2023), over four ZJU-Mocap sequences (S377, S387,
S393 and S394) following the experimental settings of HumanNeRF and MonoHuman. All re-
sults are achieved through their public codes with default hyper-parameters. Note that, we denote
‘Vid2Avatar’ as the original Vid2Avatar implementation and correspondingly ‘Vid2Avatar+mask’
as the model only focusing on the foreground human representations with better empirical results.
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Table 5: Geoemtry Reconstruction on the ZJU-Mocap Peng et al. (2021b) test set. The pose-
dependent frequency modulation improves template-free baselines with more faithful reconstruction
and achieves similar results to template-based method.

S377 S387 S393 S394 Avg

Template/Scan-based prior
Vid2Avatar 0.1180 0.4696 0.3330 0.2480 0.2921
Vid2Avatar+mask 0.0336 0.0283 0.0404 0.0410 0.0359

Template-free
HumanNeRF 0.0401 0.0777 0.0609 0.0543 0.0582
MonoHuman 0.0897 0.0801 0.0836 0.1006 0.0885

Ours 0.0337 0.0365 0.0455 0.0441 0.0400

Table 6: Ablation studies on full Human3.6M sequences. Our full model improves over all ablated
baselines, showing the necessity of all components.

onlyGNN noGNN onlySyn only wp
i only wf

i no window Ours (full)

Novel view
PSNR↑ 24.72 24.90 24.29 24.99 23.63 23.32 25.06
SSIM↑ 0.914 0.918 0.911 0.920 0.835 0.842 0.921
LPIPS↓ 0.125 0.112 0.124 0.110 0.272 0.305 0.110

Novel pose
PSNR↑ 23.72 23.64 23.74 24.00 22.97 22.42 24.15
SSIM↑ 0.898 0.900 0.900 0.905 0.824 0.832 0.906
LPIPS↓ 0.140 0.129 0.138 0.125 0.283 0.310 0.124

(b)

MLP

! FC S

", $

{&!!} { (!!}

Window
Function

)"

Figure 15: Architecture of the ablated noGNN model. Compared to our full model, we achieve
noGNN by removing graph neural networks and directly feeding the joint parameters as a whole to
one single Multi-Layer Perceptron (MLP) for frequency modulation.

In Fig. 13, we illustrate the visual comparisons for our method and chosen baselines. Both Human-
NeRF and MonoHuman blur the highlighted avatar fist while we can faithfully reproduce the realistic
patterns on the top row. Additionally, on the bottom, the pose-based frequency modulation enables
smoother body contours and synthesizes more adaptive wrinkles (e.g. the wrinkle directions) while
the baselines all fail to produce accurate cloth colors. The provided error images also underline that
our method can more successfully simulate the ground truth images. Similar to Fig. 11, we compute
the matched histogram distances (F-Dist) for the close-ups. The lowest frequency distance demon-
strates that our method can best generate adaptive textures with appropriate frequency distributions.
Thus better dynamic wrinkles are enabled. Tab. 3- 4 lists the metric comparisons for novel view
synthesis and novel pose rendering, further championing our former observations.
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Novel pose

onlyGNNGT onlySyn Ours

Figure 16: Ablation study on sub-branch networks with novel pose rendering.

no windowGT only !!" only !!# Ours

Novel View

Figure 17: Ablation study on window functions with novel view synthesis.

Like ARAH Wang et al. (2022), we follow its settings and offer the geometry comparison results.
Specifically, we also apply NeuS Wang et al. (2021) to obtain the pseudo geometry ground truth
and compute quantitative metrics with L2 Chamfer Distance (CD). We show qualitative results in
Fig. 14 and quantitative results in Tab. 5. Our method possesses better geometry reconstruction with
smoother body surfaces than the template-free methods (HumanNeRF and MonoHuman) which
introduce obvious floating artifacts in empty space. The geometry scores are slightly worse than
Vid2Avatar which is a template based baseline and relies on SMPL parameters as a prior. The
SDF-based surface rendering also helps Vid2Avatar achieve smoother shapes.

Complete Metrics on Human3.6M sequences. Besides the overall average numbers in the Tab. 2 of
the main text, we also report a per-subject breakdown of the quantitative metrics against all baseline
methods. Specifically, Tab. 7 lists the scores for the novel view synthesis while Tab. 8 details each
method’s results in novel pose rendering. Being consistent with the visual results shown in Fig. 5
and 6 of the main text, our method almost outperforms all baselines for all subjects.

GT A-NeRF DANBO ARAH TAVA Ours

Figure 18: Failure case. How to generalize to challenging cases is still an open problem, where all
methods fail to capture the stripe-wise textures under this pose.
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DANBO

Ours

Novel view

Figure 19: Additional comparison results with DANBO for novel view synthesis. Due to the
adaptive frequency modulation, our method can better synthesize the shape contour (e.g. hands on
1st column), the sharp patterns (e.g. the marker on 2nd column), and high-frequency details (e.g. the
wrinkles on 1st column and the pant textures on 3rd column). Otherwise, DANBO which achieves
frequency learning implicitly, blurs the sharp patterns and smoothes the fine-grained details.

DANBO

Ours

Novel pose

Figure 20: Additional comparison results with DANBO for novel pose rendering. Due to the
adaptive frequency modulation, our method successfully reduces the noisy artifacts on 1st column,
reproduces the white markers on 2nd column and the black marker on 3rd column, reconstructs
the sharp shape contours (e.g. the hand) on both 4th and 5th columns. Otherwise, DANBO which
achieves frequency learning implicitly, blurs the sharp contours and smoothes the significant patterns
with fine-grained details.
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GT

Only GNN

Only Syn

Ours

Figure 21: Abaltion study on the network components with time consistency analysis. Our full
model can consistently produce more adaptive details (e.g. in the pant region), synthesize more
structured textures (e.g. the stripes) and preserve more realistic contours (e.g. the leg shape). See
texts for details.

Figure 22: Unseen pose renderings for the sequences from both Human3.6M (top two rows) and
MonoPerfCap (bottom two rows). Our network is robust to various poses across different datasets.
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GT A-NeRF DANBO ARAH TAVA Ours

Figure 23: Visual comparisons for novel view synthesis (1strow) and novel pose rendering (2nd
row). Compared to baselines, we can faithfully reconstruct the shape boundaries (e.g. the hands on
both 1st and 2ndrows) and the high-frequency details (e.g. the dynamic wrinkles on 2nd row).
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Table 7: Novel-view synthesis results on the Human3.6M Ionescu et al. (2011) test set. Our
method benefits from the explicit frequency modulations, leading to better perceptual quality. It
matches or outperforms all baselines across subjects, reaching the best overall score in all three
metrics.

S1 S5 S6 S7 S8 S9 S11 Avg

PSNR↑SSIM↑LPIPS↓ PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR↑SSIM↑LPIPS↓ PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS
Template/Scan-based prior
NeuralBody 22.88 0.897 0.139 24.61 0.917 0.128 22.83 0.888 0.155 23.17 0.915 0.132 21.72 0.894 0.151 24.29 0.911 0.122 23.70 0.896 0.168 23.36 0.905 0.140
Anim-NeRF 22.74 0.896 0.151 23.40 0.895 0.159 22.85 0.871 0.187 21.97 0.891 0.161 22.82 0.900 0.146 24.86 0.911 0.145 24.76 0.907 0.161 23.34 0.897 0.157
ARAH† 24.53 0.921 0.103 24.67 0.921 0.115 24.37 0.904 0.133 24.41 0.922 0.115 24.15 0.924 0.104 25.43 0.924 0.112 24.76 0.918 0.128 24.63 0.920 0.115

Template-free
A-NeRF 23.93 0.912 0.118 24.67 0.919 0.114 23.78 0.887 0.147 24.40 0.917 0.125 22.70 0.907 0.130 25.58 0.916 0.126 24.38 0.905 0.152 24.26 0.911 0.129
DANBO 23.95 0.915 0.107 24.85 0.923 0.107 24.54 0.903 0.129 24.45 0.920 0.113 23.36 0.917 0.116 26.15 0.925 0.108 25.58 0.917 0.127 24.69 0.917 0.116
TAVA 25.28 0.928 0.108 24.00 0.916 0.122 23.44 0.894 0.138 24.25 0.916 0.130 23.71 0.921 0.116 26.20 0.923 0.119 26.17 0.928 0.133 24.72 0.919 0.124

Ours 24.83 0.922 0.102 24.97 0.925 0.102 24.55 0.903 0.124 24.65 0.923 0.107 24.11 0.922 0.108 26.39 0.929 0.100 25.88 0.921 0.128 25.06 0.921 0.110
†: we evaluate using the officially released ARAH, which has undergone refactorization, resulting in slightly different numbers to the ones in Wang et al. (2022).

Table 8: Novel pose rendering results on the Human3.6M Ionescu et al. (2011) test set. Our
pose guided frequency modulation pipeline generalizes better across unseen poses.

S1 S5 S6 S7 S8 S9 S11 Avg

PSNR↑SSIM↑LPIPS↓ PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR↑SSIM↑LPIPS↓ PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS
Template/Scan-based prior
NeuralBody 22.10 0.878 0.143 23.52 0.897 0.144 23.42 0.892 0.146 22.59 0.893 0.163 20.94 0.876 0.172 23.05 0.885 0.150 23.72 0.884 0.179 22.81 0.888 0.157
Anim-NeRF 21.37 0.868 0.167 22.29 0.875 0.171 22.59 0.884 0.159 22.22 0.878 0.183 21.78 0.882 0.162 23.73 0.886 0.157 23.92 0.889 0.176 22.61 0.881 0.170
ARAH† 23.18 0.903 0.116 22.91 0.894 0.133 23.91 0.901 0.125 22.72 0.896 0.143 22.50 0.899 0.128 24.15 0.896 0.135 23.93 0.899 0.143 23.27 0.897 0.134

Template-free
A-NeRF 22.67 0.883 0.159 22.96 0.888 0.155 22.77 0.869 0.170 22.80 0.880 0.182 21.95 0.886 0.170 24.16 0.889 0.164 23.40 0.880 0.190 23.02 0.883 0.171
DANBO 23.03 0.895 0.121 23.66 0.903 0.124 24.57 0.906 0.118 23.08 0.897 0.139 22.60 0.904 0.132 24.79 0.904 0.130 24.57 0.901 0.146 23.74 0.901 0.131
TAVA 23.83 0.908 0.120 22.89 0.898 0.135 24.54 0.906 0.122 22.33 0.882 0.163 22.50 0.906 0.130 24.80 0.901 0.138 25.22 0.913 0.145 23.52 0.899 0.141

Ours 23.73 0.903 0.114 23.65 0.905 0.117 24.77 0.908 0.117 23.59 0.904 0.133 23.16 0.909 0.126 25.12 0.908 0.122 25.03 0.907 0.143 24.15 0.906 0.124
†: we evaluate using the officially released ARAH, which has undergone refactorization, resulting in slightly different numbers to the ones in Wang et al. (2022).

Visual Comparisons with Baselines. Pose-modulated frequency learning plays a critical role in
our method. To demonstrate the importance of this concept, we present more comparisons with
DANBO which performs frequency modeling implicitly. In Fig. 19 and Fig. 20, our method is
better at preserving large-scale shape contours as well as fine-grained textures with high-frequency
details. Besides the results in Fig. 5 and 6 of the main text, we offer two more characters from
Human3.6M sequences to evaluate the results on novel view synthesis and novel pose rendering.
As shown in Fig. 23, we can successfully reproduce the detailed shape structures (e.g. the hand
on 1st row) and high-frequency wrinkles (e.g. 2nd row). These findings stay consistent with the
discussions in main text and the quantitative results in Tab. 7-8.

Ablation studies. We formulate our framework from connections between frequencies and pose
contexts. To more comprehensively evaluate the effectiveness of our pose-guided frequency modu-
lation concept, we provide one more visual comparison in Fig. 16. It is clear that only our full model
successfully synthesizes high frequency patterns, e.g., shown in the pant region.

To additionally showcase the capabilities in reproducing the frequency distributions, we illustrate
the frequency histograms for the ground truth images and the network outputs in Fig. 12. Our full
model remarkably reduces the gap to the ground truth histograms qualitatively and quantitatively.

Moreover, as shown in Fig. 21, our full model presents much better time consistency than ablated
models. Specifically, the full model constantly preserves more adaptive details (e.g. the patterns in
the pant region) than the onlyGNN model and synthesizes more structured stripe-wise patterns than
the onlySyn model. Moreover, the onlySyn model distorts the leg shape on the last column.

To highlight the empirical importance of the window function wp
i and wf

i , Fig. 17 depicts qualitative
differences between the ablated baselines and our full model. It is clear that using wp

i or wf
i alone

cannot produce the image quality of the full model, demonstrating the necessity of the window
function design. Tab. 6 additionally presents the quantitative comparisons for all ablation models,
further supporting the aforementioned discussions.

Geometry Visualization. The attached video visualizes two examples for the geometry reconstruc-
tion comparison with DANBO. Like the discussions in the main text, we can present overall more
complete body outline and a smoother surface than the baseline. Please see video for details.

Motion Retargeting. Generality to unseen human poses is critical to a number of down-streamed
applications, e.g. Virtual Reality. We provide two examples in the attached video. Although our
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Novel view

Figure 24: Additional visual results for novel view synthesis. It is clear that our method can faithfully
reproduce a larger spectrum of details, from large-scale shape contours (e.g. 1st row) to fine-grained
textures (e.g. 2nd row), across different scenes.

Novel pose

Figure 25: Additional visual results for novel pose rendering. It is clear that our method can gener-
alize well to the unseen poses with different patterns.

model is trained on the Human3.6M sequences, it can consistently be adapted to the unseen poses
with challenging movements. The desired time consistency convincingly demonstrates our strong
generality to out-of-the-distribution poses.
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More Visual Results. In order to assess the performance of our method in handling unseen camera
views and human skeletons, we provide additional results showcasing novel view synthesis in Fig. 24
and novel pose rendering in Fig. 25. We also illustrate the rendering results for different sequences
of Human3.6M and MonoPerfCap datasets for unseen poses in Fig. 22.

From the results, it is evident that our method, with its developed frequency modulation modeling,
effectively captures diverse texture details and shape contours even when confronted with human
poses that differ significantly from those in the training set. This empirical advantage can be at-
tributed to the adaptive detail modeling capabilities facilitated by pose-modulated frequency learn-
ing strategy.

D LIMITATIONS AND DISCUSSIONS

Although our method is faster than other neural field approaches, computation time remains a con-
straint for real-time use. Our method is also person-specific, demanding individual training for each
person. And our method heavily relies on accurate camera parameters and lacks support for property
editing like pattern transfer. Thus this approach shines with ample training time and available data.
Additionally, as shown in Fig. 18, under extreme challenges, our method cannot vividly reproduce
the desired patterns but introduces blurry artifacts. However, we would like to note that, how to
advance the generalization to such cases is still open since the existing methods suffer from similar
or worse artefacts as well.

Social Impacts. Our research holds the promise of greatly improving the efficiency of human
avatar modeling pipelines, promoting inclusivity for underrepresented individuals and activities in
supervised datasets. However, it’s imperative to address the ethical aspects and potential risks of
creating 3D models without consent. Users must rely on datasets specifically collected for motion
capture algorithm development, respecting proper consent and ethical considerations. Furthermore,
in the final version, all identifiable faces will be blurred for anonymity.
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