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Abstract

Recent work provides promising evidence that
Physics-Informed Neural Networks (PINN) can
efficiently solve partial differential equations
(PDE). However, previous works have failed to
provide guarantees on the worst-case residual er-
ror of a PINN across the spatio-temporal domain
— a measure akin to the tolerance of numerical
solvers — focusing instead on point-wise compar-
isons between their solution and the ones obtained
by a solver on a set of inputs. In real-world ap-
plications, one cannot consider tests on a finite
set of points to be sufficient grounds for deploy-
ment, as the performance could be substantially
worse on a different set. To alleviate this issue,
we establish guaranteed error-based conditions
for PINNSs over their continuous applicability do-
main. To verify the extent to which they hold,
we introduce 9-CROWN: a general, efficient and
scalable post-training framework to bound PINN
residual errors. We demonstrate its effectiveness
in obtaining tight certificates by applying it to
two classically studied PINNs — Burgers’ and
Schrodinger’s equations —, and two more chal-
lenging ones with real-world applications — the
Allan-Cahn and Diffusion-Sorption equations.

1. Introduction

Accurately predicting the evolution of complex systems
through simulation is a difficult, yet necessary, process in
the physical sciences. Many of these systems are repre-
sented by partial differential equations (PDE) the solutions
of which, while well understood, pose a major computa-
tional challenge to solve at an appropriate spatio-temporal
resolution (Raissi et al., 2019a; Kochkov et al., 2020). In-
spired by the success of machine learning in other do-
mains, recent work has attempted to overcome the afore-
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mentioned challenge through physics-informed neural net-
works (PINN) (Raissi et al., 2019a; Sun et al., 2020; Pang
et al., 2019). For example, the Diffusion-Sorption equa-
tion — which has real-world applications in the modeling of
groundwater contaminant transport — takes 59.83s to solve
per inference point using a classical PDE solver, while infer-
ence in its PINN version from Takamoto et al. (2022) takes
only 2.7 x 10~3s, a speed-up of more than 10 times.

The parameters of a PINN are estimated by minimizing
the residual of the given PDE, together with its initial and
boundary conditions, over a set of spatio-temporal training
inputs. Its accuracy is then empirically estimated by measur-
ing the solution estimate over a set of discrete input points,
and (typically) comparing them to numerical PDE solvers.
In other words, most current work on PINNs provides no
certified error bounds applicable for every input within the
domain of the PDE.

While testing on a finite set of points provides a good ini-
tial signal on the accuracy of the PINN, such an approach
cannot be relied upon in practice, and error certification is
needed to understand the quality of the PINN trained (Hille-
brecht & Unger, 2022). For example, by estimating the
maximum residual error of the Diffusion-Sorption PINN
from Takamoto et al. (2022) using 10* Monte Carlo sam-
ples across the domain we obtain an estimate of 1.1 x 103,
whereas the estimate using 106 samples is 21.09 — indicat-
ing the PINN has failed to learn a continuous function that
correctly maps to the solution of the underlying PDE. This
empirical difference shows the need for computing certified
error bounds to avoid deploying poorly trained PINNS.

We introduce formal, error-based correctness conditions
for PINNs which require that the residual error is globally
upper bounded by a tolerance parameter, that is, that the
continuous function learned approximates the underlying
PDE solution across the domain. To compute this bound
and verify the correctness conditions, we build on recent
progress in neural network verification. Specifically, we
efficiently extend the CROWN framework (Zhang et al.,
2018) by deriving linear upper and lower bounds for the
various nonlinear terms that appear in PINNs, and devise a
novel bound propagation strategy for the task at hand.

Our contributions are threefold. (i) We formally define
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correctness conditions for general PINNs that approximate
continuous solutions of PDEs. (ii) We introduce a gen-
eral, efficient, and scalable post-training error certifica-
tion framework (0-CROWN) to theoretically verify PINNs
over their entire spatio-temporal domains. (iii) We demon-
strate our post-training framework on two widely studied
PDE:s in the context of PINNs, Burgers’ and Schrodinger’s
equations (Raissi et al., 2019a), and two more challenging
ones with real-world applications, the Allan-Cahn equa-
tion (Monaco & Apiletti, 2023) and the Diffusion-Sorption
equation (Takamoto et al., 2022).

2. Related work

Since our certification framework for PINNSs is based on
the verification literature of image classifiers, in this section
we explore: related work for PINNs, and previous work on
neural network robustness verification.

Physics-informed Neural Networks. Raissi et al. (2019a)
introduced PINNs, which leverage automatic differentia-
tion to obtain approximate solutions to the underlying PDE.
Since then, a variety of different PINNs have emerged in
a range of applications, from fluid dynamics (Raissi et al.,
2019b; 2020; Sun et al., 2020; Jin et al., 2021), to meta
material design (Liu & Wang, 2019; Fang & Zhan, 2019a;
Chen et al., 2020) for different classes of PDEs (Pang et al.,
2019; Fang & Zhan, 2019b; Zhang et al., 2020). A few
works analyze the convergence of the training process of
PINNS under specific conditions (Shin et al., 2020; Wang
et al., 2022b). Mishra & Molinaro (2022) approximated
the generalization error of various PINNs under specific
stability and training process assumptions, and others intro-
duced approximation bounds under regularity assumptions
(Ryck & Mishra, 2022; Hillebrecht & Unger, 2022). Our
verification framework is applicable to any PINN where the
solution is modeled by a fully connected network.

Robustness Verification of Neural Networks. The pres-
ence of adversarial examples, i.e., small local input pertur-
bations that lead to large output changes, was established
by Szegedy et al. (2013) in image classifiers. As robust
classifiers emerged (Madry et al., 2017), so did attempts
to certify them formally. Those methods can be divided
into exact, i.e., complete (Katz et al., 2017; Ehlers, 2017;
Huang et al., 2017; Lomuscio & Maganti, 2017; Bunel et al.,
2018; De Palma et al., 2021; Ferrari et al., 2022), or con-
servative, i.e., sound but incomplete (Gowal et al., 2018;
Mirman et al., 2018; Wang et al., 2018; Wong & Kolter,
2018; Ayers et al., 2020). A promising set of conservative
methods poses the problem as a convex relaxation of the
original nonlinear network architecture, and solves it using
a linear programming solver (Salman et al., 2019; Zhang
et al., 2022) or by obtaining closed-form bounds (Zhang

et al., 2018; Wang et al., 2021). The latter are especially ap-
pealing due to their efficiency. Examples include CROWN
(Zhang et al., 2018) and a-CROWN (Xu et al., 2020b). Xu
et al. (2020a) extended the linear relaxation framework from
Zhang et al. (2018) to general computation graphs, but the
purely backward propagation nature makes it potentially
less efficient than custom bounds/hybrid approaches (Shi
et al., 2020). Our work adapts techniques from verification
to certify the full applicability domain of PINNS, in a similar
fashion to the global specification from Miiller et al. (2023).

3. Preliminaries
3.1. Notation

Given vector a € Rd, a; refers to its ¢-th component.
We use ax_z f and % interchangeably to refer to the
j-th partial derivative of a function f : R™ — R with
respect to the ¢-component of its input, x;. Where it
is clear, we use f(x) and f interchangeably. We take
]Lw’b(x) = Wx + b to be a function of x parameter-
ized by weights W) and bias b("). We define an L-layer
fully connected neural network g : R% — R?~ for an input
x as g(x) = yF)(x) where ¥ (x) = Lg,]f,{b(z(k’l)(x)),
2D (x) = o(y*D(x)), 29 (x) = x, in which W) ¢
R4 > k-1 and b(*) € R% are the weight and bias of layer
k, o is the nonlinear activation, and k € {1,..., L}.

3.2. Physics-informed neural networks (PINNs)

We consider general nonlinear PDEs of the form:

f(t,%x) = Qpu(t,x) + Nu](t,%x) =0, x € D, t € [0,7T],
(1)
where f is the residual of the PDE, ¢t is the temporal and x
is the spatial components of the input, v : [0,7] x D — R
is the solution, A is a nonlinear differential operator on ,
T e R+, and D C RP. Where possible, for conciseness we
will use x = (¢, %), forx € C = [0,7] x D, with xg = ¢.

We assume f is the residual of an R*" order PDE where
the differential operators of A/ applied to u yield the
partial derivatives for order {0,..., R} as: u € N©),
Ou € N, Dyeu € N@ Ogru € N®B) for
i € {0,...,D}'. With these, we can re-write f =
P(u, Oxos - - -, OxpU, - - ., Oxru), where P is a nonlinear
function of those terms. Furthermore, the PDE is defined
under (1) initial conditions, i.e., u(0,%X) = wuo(X), for
x € D, and (2) general Robin boundary conditions, i.e.,
au(t,X) + bopu(t,x) = up(t,X) fora,b € R, x € §D and
t € [0,T], and Oyu is the normal derivative at the border
with respect to some components of X.

"For simplicity, we assume A does not contain any cross-
derivative operators, yet an extension would be trivial to derive.
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Continuous-time PINNs (Raissi et al., 2019a) result from
approximating the solution, u(x), using a neural network
parameterized by 6, up(x). We refer to this network as
the approximate solution. In that context, the physics-
informed neural network (or residual) is fy(x) = Opug(x) +
Nug](x). For example, the one-dimensional Burgers’ equa-
tion (explored in detail in Section 5) is defined as:

fo(x) = Orug(x) + ug(x)0zup(x) — (0.01/7)02up (X).
@)
Note fp has the same order as f, and can be described
similarly as a nonlinear function with the partial derivatives
applied to uy instead of u. Burgers’ equation (from above)
has one 0" order term (uy), two 1%¢ order ones (9;ug and
Dyug), and a 2" order partial derivative (9,2u4), while
ug(x)dyup(x) is a nonlinear term of the fy polynomial.

3.3. Bounding neural network outputs using CROWN
(Zhang et al., 2018)

The computation of upper/lower bounds on the output of
neural networks over a domain has been widely studied
within verification of image classifiers (Katz et al., 2017;
Mirman et al., 2018; Zhang et al., 2018). For the sake of
computational efficiency, we consider the bounds obtained
using CROWN (Zhang et al., 2018)/a-CROWN (Xu et al.,
2020b) as the base for our framework.

Take g to be the fully connected neural network (as defined
in Section 3.1) we’re interested in bounding. The goal is to
compute max / mingcc g(x), where C is the applicability
domain. Typically within verification of image classifiers,
C=BL, ={x':|x —x|, <e} ie,itisalocal {,-ball
of radius € around an input x from the test set.

CROWN solves the optimization problem by back-
propagating linear bounds of g(x) through each hidden
layer of the network until the input is reached. To do so,
assuming constant bounds on ) (x) are known for x € C,
ie,Vx € C:yHFl <y (x) < y*)U CROWN relaxes
the nonlinearities of each z(*) using a linear lower and upper
bound approximation that contains the full possible range
of o(y®) (x)). By relaxing the activations of each layer and
back-propagating it through z(*), CROWN obtains a bound
on each y(®) as a function of y*~1). Back-substituting from
the output /) = g(x) until the input x results in:

min g(x) > min Alx+al, max g(x) < max AVx+a?,
xeC xeC xeC xeC

where A%, a’, AV and a¥ are computed in polynomial
time from W®*) b(¥) and the linear relaxation parame-
ters. The solution to the optimization problems above given
simple constraints C can be obtained in closed-form. «-
CROWN (Xu et al., 2020b) improves these bounds by opti-
mizing the linear relaxations of o (y(*) (x)) for tightness.

4. 0-CROWN: Error Certification for General
Physics-Informed Neural Networks

Take ug to be the learned approximate continuous solution
of the PDE f through the PINN fy. Previous works deriving
from Raissi et al. (2019a) have measured the correctness
of ug empirically by computing the solution error at a set
of discrete point compared to that obtained via numerical
solvers for f (Takamoto et al., 2022; Monaco & Apiletti,
2023) — a compromise arising from the fact we cannot bound
|luwg — u|| for general PDEs across their continuous domain.

To mitigate this issue for continuous-time PINNs, we ap-
proach the problem of error bounding by imposing correct-
ness conditions on the residual instead of the solution error.
By definition, ug is a correct solution to the PINN fy if
3 conditions are met: (1) the norm of the solution error
with respect to the initial condition is upper bounded by
an acceptable tolerance, @ the norm of the solution error
with respect to the boundary conditions is bounded by an
acceptable tolerance, and @ the norm of the residual is
bounded by an acceptable tolerance. We define these as
PINN correctness conditions, and formalize it in Defini-
tion 1. Note these conditions are general and, at this point,
no assumptions are made about ug or the PDE.

Definition 1 (Correctness Conditions for PINNSs). ug :
[0,T]xD — Risa dg, Oy, e-globally correct approximation
of the exact solution w : [0,T] x D — R if:

@ max ua(0,%) — uo(X)|* < 6,

@ max

te[0,7],%€68
2
< e.
©) max| fo(x)|* < e

- laug(x) + bOnug(x) — up(x)|> < 8,

In practice, dg, dp, and € correspond to tolerances similar to
the ones given by numerical solvers for f. While the residual
error upper bound is similar in nature to the empirical errors
used to monitor convergence in iterative solvers (e.g., in
Krylov subspace methods for linear systems), the bound
proposed here corresponds to the error of the continuous
approximate solution wug instead of the discretized version
provided in those solvers. In Section 5, we empirically
analyze the connection between residual and solution errors
using a numerical solver.

The verification of the conditions from Definition 1 requires
bounding: a linear function of ug for (1), a linear function
of ug and Onug for @, and the PINN output, fy, in @
To achieve @, assuming ug is a standard fully connected
neural network as in Raissi et al. (2019a), we can directly use
CROWN/a-CROWN (Zhang et al., 2018; Xu et al., 2020b).
However, bounding (2) and (3) with a linear function in x
efficiently requires a method to bound linear and nonlinear
functions of the partial derivatives of wug.
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Figure 1: Bounding Partial Derivatives with 9-CROWN: our hybrid scheme for bounding 0y, and 6,(12 up uses back-
propagation and forward substitution (inspired by Shi et al. (2020)) to compute bounds in O(L) instead of the O(L?)

complexity of full back-propagation as in Xu et al. (2020a).

We propose 0-CROWN, an efficient framework to: (i) com-
pute closed-form bounds on the partial derivatives of an
arbitrary fully-connected network ug (Section 4.1), and (ii)
bound a nonlinear function of those partial derivative terms,
i.e., fo (Section 4.2). Throughout this section, we assume
ug(x) = g(x) as defined in Section 3.1, with dy = D + 1.
Formal statements and proofs for the lemmas and theorems
presented in this section are in Appendix D.

4.1. Bounding Partial Derivatives of ug

The computation of the bounds for the 0! order derivative,
i.e., ug, and intermediate pre-activations can be computed
using CROWN/a-CROWN (Zhang et al., 2018; Xu et al.,
2020b). As such, for what follows, we assume that for
x € C, both the bounds on ug and y*), Vk are given.

Assumption 1. The pre-activation layer outputs of ug,
y*) = Lw7b(z(k’1)), are lower and upper bounded by
linear functions ILXC’);L (x) <y® < LXCL;U (x). Moreover,

forx € C, we have yF)L < y(B) < o (k).U,

Note that using CROWN/a-CROWN, A(F).L — a(k).L
AU a(k)U are functions of all the previous layers’ pa-
rameters. For 1! order derivatives, we start by explicitly
obtaining the expression of Ox, ug.

Lemma 1 (Expression for Ox,ug). Fori € {1,...,do}, the
partial derivative of ug with respect to x; can be computed

recursively as Oy, ug = W) 9y 2(E=1) for:

Oy 2F) = 3Z<k71)z(k)0x.z(k*1), 0y. 20 = e;,

for k € {1,....,L — 1}, and where 0,5-1z*) =
diag [o' (y™)] Wk,

Using this result, we can efficiently linearly lower and upper
bound Oy, ug.

Theorem 1 (Informal, -CROWN Linear Bounding O, ug).
There exist two linear functions Ox,u§ and Ox,uk such that,
Vx € C it holds that 0Ox, uaL < Ox,up < axiuQU, where the
linear coefficients can be computed recursively in closed-
form in O(L) time as a function of W*), AL a(k),L
ARU q).U k)L gpgd y(R).U,

The formal statement of Theorem 1 and expressions for
Ox, ul and Oy, uY are provided in Appendix D.3. Note that
this bound is not computed using fully backward propaga-
tion as in Xu et al. (2020a). Instead we use a hybrid scheme
in the spirit of Shi et al. (2020) for the sake of efficiency. We
perform backward propagation to compute 0,,x—1) 2(F) as a
function of y(*), and forward-substitute the pre-computed
CROWN bounds LY (x) < y®) < LY (x) at that
point instead of fully backward propagating which would
have O(L?) complexity. This induces a significant speed-up
while achieving tight enough bounds. Figure 1 showcases
the back-propagation and forward substitution paths for
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bounding Oy, up in blue. Similarly to CROWN with the
activation o, this bound requires relaxing o’ (yy(¥)).

Similarly, we can linearly bound 0,2uyg, a requirement to
bound fg in 2" order PINNS.

Lemma 2 (Expression for O 2ug(x)). Fori € {1,...,do},
the second partial derivative of ug with respect to X; can be
computed recursively as Oy2ug = W(L)axzz(L_l) where:

5X?Z(k) = xiz(kfl)z(k)axiz(k_l) +82(k71)2(k)3x32(k_1),

and 8,(722(0) =0, fork € {1,...,L — 1}, with Oy, 2*~1)
and 8Z{k71>z(k) as per in Lemma 1, and Oxizwfnz(k) =
diag [0 (y(k)) (W(k)ﬁxiz(kfl))] W),

Theorem 2 (Informal, 9-CROWN Linear Bounding dy2u).
Assume that through a previous bounding of Ox,ug, we
have linear lower and upper bounds on 8xiz(k’1) and
8Z(k_1)z(k). There exist two linear functions 3,(12 ug and
Bx?ug such that, Vx € C it holds that Bx?ug < 8x?ug <
8,(% ug, where the linear coefficients can be computed recur-
sively in closed-form in O(L) time as a function of W *),
AW)LL q(k).L - A(R)U q(k).U (k)L (K).U " and the pa-
rameters of the linear lower and upper bounds on Ox, Z(k=1)
and 8Z(k71)z(k).

The formal statement of Theorem 2 and expressions for
Oy2uk and O,2uf are in Appendix D.4. As with the first

derivative, this bound requires a relaxation of o (y(¥)).
Note that this also follows a hybrid computation scheme,
with the back-propagation and forward substitution paths for
bounding 8,(1; ug computations shown in green in Figure 1.

Assuming C = {x € R% : xI' < x < xY}, we can
obtain closed-form expressions for constant global bounds
on the linear functions Oy, ueU, 8xiu0L , E)xzu@U, Oy2 ug, which
we formulate and prove in Appendix D.5. While here we
only compute the expression for the second derivative with
respect to the same input, it would be trivial to extend it to
cross derivatives (i.e., Ox,x,ug for i # j).

4.2. Bounding fy

With the partial derivative terms bounded, to bound fy, we
use McCormick envelopes (McCormick, 1976) to obtain
linear lower and upper bound functions fF < f, < f&:

U U U T U

fo Mo T+ pTue + Zj=1 >0 SENG) ,Uj,iaxgue, and
L L L r ‘ L

fo = my +piue + 325120 JENG) Hj,iaxg ug, where

pg - pf', and p; are functions of the global lower and up-
per bounds of uy and 9,;ug. In the example of Burgers’

equation (Equation 2), fU = u¥ + pYug + 1Y o Oxo g +
1Y 10, ug + 115 Oy2ug (and similarly for fg* with pi).

To get fY and f} as linear functions of x, we replace ug and

s W N

e ® 9 & !

1

=)

11

12
13

Algorithm 1 Greedy Input Branching
Input: function A, input domain C, # splits N}, # empirical
samples N, # branches per split Ny
Result: lower bound h;y,, upper bound A,
B,Ba=0,0
Rup, By, = min\max h(SAMPLE(C, N,))
hip, hyp = O-CROWN (A, C)
B[C] = (hup, hub)
Ba[C] = max(hyy — hip, hub — hup)
forie {1,...,Ny} do
C; = B.Pop(arg maxg Ba[C'])
foreach C’ € DOMAINSPLIT(C;, Ny) do
hjy, h.,, = 0-CROWN (h,C")
BIC') = (1)
BA[C) = max(huy — hjy, Wy, = frun)

hlb, hub = Hlincr Bo [Cl], maXxe Bl [C/]
return hlb, hub

0, ug with the lower and upper bound linear expressions
from Section 4.1, depending on the sign of the coefficients
pY and p*. Asin Section 4.1, since C = {x € R : xI' <
x < xY} we can then solve maxyec f§ and mingec f7 in
closed-form (see Appendix D.5), obtaining constant bounds
for fy in C. We explore the overall complexity of running
0-CROWN to bound fy in Appendix E, and define it gener-
ally as M for the sake of further complexity analysis.

4.3. Tighter Bounds via Greedy Input Branching

Using 0-CROWN we can compute a bound on a nonlinear
function of the derivatives of uy, which we will generally
refer to as h, for x € C. However, given the approximations
introduced by the relaxations, it is likely these bounds will
be too loose compared to the true values of & to be useful.

To improve them, we introduce greedy input branching (Al-
gorithm 1). We start by computing empirical estimates of
the min/max value of h across the domain (L2), and the
0-CROWN bounds over the full domain (L3), storing the
latter in the certified bounds list, 13, (L4) and the max dif-
ference between empirical and certified in the list Ba (LS5).
For N, iterations (branchings), we take C; as the interval
with the highest difference between empirical and certified
values (L7). We then split it into N4 pieces using Do-
MAINSPLIT, compute the new certificates for those smaller
sub-domains C’ (L9), and add those certified bounds and
their error w.r.t. the empirical estimate of the bounds to B
(L10) and Ba (L12), respectively. Finally, the tighter lower
and upper bounds are then the minimum lower bound and
the maximum upper bound in B3, respectively (L12). A more
detailed step-by-step description of the algorithm is given
in Appendix H.
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Table 1: Certifying with -CROWN: empirical lower bounds (I;) computed using Monte Carlo (MC) samples (10* and
108 points), and certified upper bounds (u;) using >-CROWN with greedy input branching for @ initial conditions, @
boundary conditions, and @ residual condition for (a) Burgers (Raissi et al., 2019a), (b) Schrodinger (Raissi et al., 2019a),
(c) Allen-Cahn (Monaco & Apiletti, 2023), and (d) Diffusion-Sorption (Takamoto et al., 2022) equations.

Empirical [ Certified up

MC max (10%) MC max (10°) O-CROWN uy, (time [s])
O \ug(o,m —uo(z)]? 1.59 x 1076 1.59 x 107° 2.63 x 107° (116.5)
—-1? ) 1078 ) 1078 ) 1077 (86.
(a) Burgers ® lug (t, 3| 8.08 x 0_8 8.08 x 0_8 6.63 x 0_7 (86.7)
\ug(t, 1)| 6.54 x 10 6.54 x 10 9.39 x 1077 (89.8)
0 x .23 x 10~ .80 x 10~ .03 x 10~ 8 X
1.23 x 1073 1.80 x 1072 1.03 x 107* (2.8 x 10%)
@ |ug(0,z) — uo(z)|? 7.06 x 107° 7.06 x 107° 8.35 x 107" (305.2)
— —5)|2 ) 1077 ) 1077 ) 107° (545.4
(b) Schridinger () lug (t,5) — ug(t, —5)| ] 7.38 x 0_5 7.38 x 0_5 5.73 x _05 (545 )3
\awue(t 5) — dpuo(t, —5)] 1.14 x 10 1.14 x 10 5.31 x 107° (2.4 x 10%)
Q) |fo(x 7.28 x 1074 7.67 x 1074 5.55 x 1073 (1.2 x 10°)
D |ue(0, )— uo(z)|? 1.60 x 1073 1.60 x 1073 1.61 x 1072 (52.7)
(c) Allen-Cahn Q) |ue(t,—1) —ug(t, 1)]? 5.66 x 10=° 5.66 x 10~° 5.66 x 107° (95.4)
Q) |fo(x)]? 10.74 10.76 10.84 (6.7 x 10°)
@ [ue(0,2)[? 0.0 0.0 0.0 (0.2)
(d) Diffusion- ® lug(t,0) — 1| 4.22 x 10~* 4.39 x 10~* 1.09 x 1073 (72.5)
Sorption lug (t,1) — DArug(t,1)|? 2.30 x 107° 2.34 x 107° 2.37 x 1077 (226.4)
Q) |fo(x)? 1.10 x 1073 21.09 21.34 (2.4 x 10%)

As the number of splits, NV, increases, so does the tightness
of our global bounds. For small dimensional spaces, it suf-
fices to split each branch C; into Ny = 2% equal branches.
Note that in higher dimensional spaces, a non-equal splitting
function, DOMAINSPLIT, can lead to improved convergence
to the tighter bounds. The time complexity of greedy input
branching is O (N, Ny M), where M is the complexity of
bounding each branch.

5. Experiments

The aim of this experimental section is to (i) showcase that
the Definition 1 certificates obtained with -CROWN are
tight compared to empirical errors computed with a large
number of samples (Section 5.1), (ii) highlight the relation-
ship of our residual-based certificates and the commonly
reported solution errors (Section 5.2), (iii) compare the effi-
ciency of our method to an alternative bound propagation
one (Section 5.3), and (iv) qualitatively analyze the impor-
tance of greedy input branching in the success of our method
(Section 5.4). On top of these results, in Appendix A we
study how the training method from Shekarpaz et al. (2022)
can lead to a reduction in empirical and certified errors, and
in Appendix B we showcase how 9-CROWN can be used
to identify failures in PINN training.

5.1. Certifying with 0-CROWN

To achieve (i), we apply our post-training certification frame-
work 9-CROWN to two widely studied PINNs from Raissi
et al. (2019a), Burgers’ and Schrédinger’s equations, as well
as to the more complex Allen-Cahn’s equation from Monaco
& Apiletti (2023), and the Diffusion-Sorption equation from
Takamoto et al. (2022). These PINNs were chosen for the
experimental section as they are well established from previ-
ous literature in the field, and either code or trained models
were available from that previous work. While we con-
sidered other suitable higher dimensional PINNs, such as
several of the Navier-Stokes equations from Jin et al. (2021),
or the Gray-Scott system from Giampaolo et al. (2022), nei-
ther training code nor the pre-trained models were released
that allow us to apply 9-CROWN.

Since uy for these PINNs use o = tanh activations, we need
to be able to linearly relax ¢’ and o’ given pre-activation
bounds. We propose a practical relaxation in Appendix F,
highlighting its effeciency compared to a simple baseline
in Appendix F.1. All timing results were obtained on a
MacBook Pro with a 10-core M1 Max CPU. Visualizations
of a fine-grained discretization of the solution and residual
error landscapes is provided in Figure 4 in the Appendix.

Burgers’ Equation This one-dimensional PDE is used
in several areas of mathematics, fluid dynamics, nonlinear
acoustics, gas dynamics and traffic flow, and is derived
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from the Navier-Stokes equations for the velocity field by
dropping the pressure gradient (Raissi et al., 2019a). It is
defined on a temporal domain ¢ € [0, 1] and spatial domain
x €[-1,1] as:

Opu(t, x) + u(t, z)0yu(t, x) — (0.01/7)02u(t, x) = 0,
3
for u(0,2) = —sin(7x), u(t,—1) = u(t,1) = 0. The
solution ug : R? — R is modeled by an 8-hidden layer,
20 neurons per layer network (Raissi et al., 2019a). The
training process took ~ 13.35 minutes, and resulted in a
mean /5 solution error of 6.1 - 10™%.

Schrodinger’s Equation  Schrodinger’s equation is a clas-
sical field equation used to study quantum mechanical sys-
tems. In Raissi et al. (2019a), Schrodinger’s equation is
defined with the temporal domain ¢ € [0, 7/2] and spatial
domain z € [—5, 5] as:

i Opu(t, ) + 0.5 Oppu(t, ) + |u(t,x)|2u(t,x) =0, 4

where u : [0,7/2] x D — C is a complex-valued solu-
tion, for initial conditions u(0, 2) = 2 sech(z), and periodic
boundary conditions u(t, —5) = u(¢,5) and O, u(t, —5) =
Oyu(t,5). As in Raissi et al. (2019a), ug : R2 — R?is a
5-hidden layer, 100 neurons per layer network. The training
took ~ 23.67 minutes, and resulted in a mean {5 solution
error of 1.74 - 1073.

Allan-Cahn Equation The Allan-Cahn equation is a form
of reaction-diffusion equation, describing the phase separa-
tion in multi-component alloy systems (Monaco & Apiletti,
2023). In 1D, it is defined on a temporal domain ¢ € [0, 1]
and spatial domain = € [—1, 1] as:

Opu(t, ) + pu(t, x)(u?(t, x) — 1) — vO2u(t,x) = 0, (5)

for p = 5, v = 1074, and u(0,z) = 2?cos(mz),
u(t,—1) = u(t,1). The solution us : R?> — R is mod-
eled by an 6-hidden layer, 40 neurons per layer network,
and due to its complexity, it is trained using the Causal train-
ing scheme from Monaco & Apiletti (2023). The training
process took ~ 18.56 minutes, and resulted in a mean /5
solution error of 7.9 - 1073,

Diffusion-Sorption The diffusion-sorption equation mod-
els a diffusion system which is retarded by a sorption pro-
cess, with one of the most prominent applications being
groundwater contaminant transport (Takamoto et al., 2022).
In (Takamoto et al., 2022), the equation is defined on a tem-
poral domain ¢ € (0,500] and spatial domain = € (0,1)
as:

Owu(t,z) — D/R(u(t, x))0z2u(t,x) = 0, (6)

where D = 5 x 107% is the effective diffusion coeffi-
cient, and R(u(t, x)) is the retardation factor representing

—-—— H ? — 7’
0.8 Linear fit, R = 0.878 L
///
=) -7
=~ 0.6 =
| -
$ //’
—_— bd
S 0.4 //,/
] -,
= -7
T 02 e
//
’/
’/
0.0
0.00 0.25  0.50 0.75 1.00 1.25 1.50
maxy | fy]

Figure 2: Residual and solution errors: connection of
the maximum residual error (maxgs | fy|) and the maximum
solution error, maxs: |ug — |, for networks at different
epochs of the training process (in orange).

the sorption that hinders the diffusion process (Takamoto
et al., 2022). In particular, we consider R(u(t,z)) =
1+ (1=9)/(¢)psknsu™ ~1(t,x), where ¢ = 0.29 is the
porosity of the porus medium, ps = 2880 is the bulk den-
sity, k = 3.5 x 10~% is the Freundlich’s parameter, and
ny = 0.874 is the Freundlich’s exponent. The initial and
boundary conditions are defined as u(0,2) = 0, u(¢,0) =0
and u(t,1) = DO,u(t,1). The solution uy : R? — R is
modeled by a 7-hidden layer, 40 neurons per layer network,
and we obtain the trained parameters from Takamoto et al.
(2022). The mean ¢, solution error is 9.9 - 10~2.

0-CROWN Error Certification We obtain certified
bounds on the PINN errors for the conditions of Definition
1 using 9-CROWN. We report in Table 1 our verification
of the initial conditions (1) using N, = 5k splits, boundary
conditions @ using N, = 5k splits, and the certified bounds
on the residual condition @ using N, = 2M splits. We ob-
serve that 9-CROWN upper bounds approach the empirical
error lower bounds obtained through high-density sampling
— showcasing tightness — while providing a guarantee on the
continuous solution.

5.2. Empirical relation of | fy| and |uy — u]

One question that might arise from our certification proce-
dure is the relationship between the PINN residual error,
| fo|, and the solution error with respect to true solution w,
|ug — wl, across the domain. By definition, achieving a low
| fo| implies wg is a valid solution for the PDE (assuming
boundary and initial conditions also hold), but there is no
formal guarantee related to |ug — u| within our framework.

Obtaining a bound on |ug — u| is typically a non-trivial
task given v might not be unique, and does not necessar-
ily exhibit an analytical solution. And while some recent
works perform this analysis for specific PDEs by exploit-
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Table 2: Efficiency of 0-CROWN: comparison of
0-CROWN (Ours), Interval Bound Propagation (IBP) and
LiRPA upper bounds obtained with greedy input branching
(for N, branches) in Burgers’ equation for fixed runtime
limits (150s, 100s, or 10%s). Lower is better.

Ours (N) IBP () LiRPA (Ny)
lue(0,z)]> 2.63x107% 4.12x107% 2.23x10°°
(150s) (10% (10%) (10%
lug(t,—1)|> 6.63x 1077 1.23x107° 6.34x 107"
(100s) (10% (10%) (10%
|ug(t, 1)|2 9.39 x 1077 5.69x107° 9.12x 1077
(100s) (10" (10%) (10%)
|fosa:,t)|2 1.30 x 100 2.78 x 10? 1.78 x 10?
(10%s) (1.3 x 10%) (5 x 10%) (1.9 x 10%)

ing their structure and/or smoothness properties (Mishra &
Molinaro, 2022; Ryck & Mishra, 2022; Wang et al., 2022a),
these methods typically suffer from scalability and bound
tightness issues. As such, we perform an empirical analysis
on Burgers’ equation using a numerical, finite-difference
solver to obtain 4(x) for sampled points x. We randomly
sample 10° domain points (S’), and compute the maximum
residual error, maxxes: |fo(x)], and the empirical maxi-
mum solution error, maxyxes [ug(x) — @(x)|, for networks
obtained at different epochs of the training process. We
report the results in Figure 2, with each point corresponding
to an instance of a network. As expected, there is a correla-
tion between these errors obtained using a numerical solver,
suggesting a similar correlation holds for |ug — u.

5.3. On the efficiency of 0-CROWN

To the best of our knowledge, 9-CROWN is the first frame-
work designed to bound the errors of general PINNs. To
highlight its efficiency, we compare is bounding perfor-
mance to that of Interval Bound Propagation (IBP) (Gowal
et al., 2018; Mirman et al., 2018) and LiRPA (Xu et al.,
2020a) for fixed runtime limits in Burgers’ equation. IBP
is fast yet yields loose bounds, whereas LiRPA’s full back-
propagation mechanism makes it slower despite having po-
tentially tighter bounds. The results are presented in Table
2, clearly showcasing how 0-CROWN achieves a balance
between speed (branching more than LiRPA yet less than
IBP) and tightness (outperforming both methods in the tight-
ness of the residual bounds). Note that both 9-CROWN and
LiRPA are reduced to CROWN in the initial and boundary
conditions, and as such the minor differences in bounds in
those cases can be attributed to implementation.

5.4. On the importance of greedy input branching

A key factor in the success of 9-CROWN in achieving tight
bounds of the residual is the greedy input branching proce-

0.0 0.2 0.4 0.6 0.8 1.0 1.2 14
t

Figure 3: Branching densities: relative density of the input
branching distribution obtained via Algorithm 1 applied to
Burgers’ (top) and Schrodinger’s (bottom) equations.

dure from Algorithm 1. To illustrate the fact that a uniform
sampling strategy would be significantly more computation-
ally expensive, we plot in Figure 3 the relative density of
branches (i.e., the percentage of branches per unit of input
domain) in the case of Burgers’ and Schrodinger’s equations.
As can be observed, there are clear imbalances at the level
of the branching distribution — with areas away from relative
optima of uy being relatively under sampled yet achieving
tight bounds — showcasing the efficiency of our strategy.

6. Discussion and Limitations

We show that 0-CROWN is able to obtain tight upper
bounds on the correctness conditions established in Def-
inition 1. We highlight in the case of the Diffusion-Sorption
equation that relying on empirical lower bound estimates
can be misleading — using 10* MC samples puts the maxi-
mum residual error at 1.10 x 103, while 10° samples give
an estimate of 21.09 —, motivating the need for O-CROWN
to obtain guarantees across the continuous domain. Note
that the absolute values of the residual errors can be seen
as a function of the PDE itself, and thus cannot be directly
compared across different PINNs. However, in Appendix
B we effectively show how 9-CROWN bounds can be used
to detect failure cases in PINN training, highlighting an-
other potential use of our framework on top of certifying
well-trained ones.

One of the limitations of our method is unquestionably the
running time, particularly for residual verification. This
mostly comes down to the high number of branchings re-
quired as a result of the relative looseness of the >-CROWN
bounds on each individual subdomain. The looseness of
the bounds is likely worsened for higher-order PDEs with
similar solution networks, since the PINN residual can be
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viewed in that case as a depth-wise extension of the original
network (following Figure 1) which, as widely observed
in the network verification community, degrades the tight-
ness of the bounds for incomplete verifiers (Wang et al.,
2018) (see Appendix I). A similar argument can be made for
higher dimensionality PINNs that require larger solution
networks (unlike those, e.g., in Jin et al. (2021); Giampaolo
et al. (2022), which we omit from this work for the reasons
in Section 5.1). In these cases it is likely that one will need
(i) tighter relaxations of the nonlinearities of the networks,
and (ii) more efficient branching methods that allow us to
compensate for the tightness loss in deeper networks.

For future work, it would be interesting to further study the
connection between PINN correctness errors as per Defini-
tion 1 and solution errors, potentially connecting them for
specific classes of PDEs by expanding the work of Ryck &
Mishra (2022).
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Figure 4: Certifying with 0-CROWN: visualization of the time evolution of ug, and the residual errors as a function of the
spatial temporal domain (log-scale), | fy|, for (a) Burgers’ equation (Raissi et al., 2019a), (b) Schrodinger’s equation (Raissi
et al., 2019a), (¢) Allan-Cahn’s equation (Monaco & Apiletti, 2023), and (d) the Diffusion-Sorption equation (Takamoto
etal., 2022).

A. Reducing empirical and certified errors through Physics-Informed Adversarial Training

The goal of reducing the solution errors obtained by PINNs has been the research focus of several previous works (Kim et al.,
2021; Krishnapriyan et al., 2021; Shekarpaz et al., 2022). To observe the effects of one of these different training schemes
on the verified correctness certification of PINNs, we consider Physics-informed Adversarial Training (PIAT) (Shekarpaz
et al., 2022). The procedure consists in replacing the residual loss term from Raissi et al. (2019a) with an adversarial version
inspired by Madry et al. (2017). While this procedure leads to improvements in the example PINNs from Shekarpaz et al.
(2022) and using our own implementation in Burgers’ equation, we were unable to stably train Schrodinger’s equation using
PIAT. Since Schrodinger’s equation is not considered in Shekarpaz et al. (2022), we only show PIAT results for Burgers’
equation.

We solve the inner optimization problem using 5 PGD steps (Madry et al., 2017), and for e = 0.05 and a step size of 1.25¢.
To improve convergence, we warm start PIAT training using a standard training solution after 6,000 L-BFGS iterations. The
results in Table 3 show that as expected PIAT improves both empirical and certified residual bounds.

Table 3: PIAT on Burgers’ equation: Monte Carlo sampled maximum values (10° samples in 0.21s) and upper bounds
computed using d-CROWN with N, branchings for (1) initial conditions (t = 0, 2 € D, N}, = 5k), (2) boundary conditions
tel0,T],z=-1Vaz=1, N, =5k), and @ residual norm (¢ € [0, 7], z € D, N}, = 125k), for a PINN trained using
PIAT from Shekarpaz et al. (2022).

MC - max 9-CROWN- uy, (time [s])
D |up(0, ) — uo(z)|? 7.40-107° 8.18 - 1075 (90.9)
PIAT Burgers @ |ug (t, —1)|? 2.31-1077 3.32-1077 (49.4)
(Shekarpaz et al., 2022) lug(t,1))? 8.41-1078 1.39-1077 (48.5)
Q) |fo(x)]? 3.60-1073 2.39-107% (2.8 x 10°)

Certification convergence in PIAT vs. standard training The regularization provided by adversarial training often leads
to verification algorithms converging faster to tighter lower and upper bounds. We investigate whether this is the case with
0-CROWN’s greedy branching strategy by comparing the relative convergence (i.e., the deviation between the upper bound
and the empirical maximum, | fp|¥ — maxp | fy|) for the first 125k splits of PINNs trained in the standard and PIAT cases.
The results presented in Figure 5 show that adversarial training leads to quicker convergence, requiring a lower number of
branches to reach the same error when compared to standard. This suggests that our method, while already efficient, would
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Table 4: Failure identification using residual bounds: empirical analysis of the connection between the residual bounds
obtained by 9-CROWN and the maximum solution error computed with respect to a numerical solver, u, over a sampled
dataset D’. The range of the solution values over the samples in D’ are included for ease of comparison.

Residual 9-CROWN Max solution error Solution range (min / maxps ug)

Up (maxps |ug — ul)
Burgers 1.80 x 1072 3.78 x 1073 [-1,1]
Schrodinger 7.67 x 107* 7.05 x 107° [1.82 x 107*,15.98]
Allen-Cahn 10.76 0.86 [—1,1]
Diffusion-Sorption 21.09 0.99 [0,1]

benefit from smarter training strategies that lead to lower residual errors.

B. 0-CROWN for Failure Identification

In Section 5.2 we establish the empirical correlation be-
tween residual and solution errors for PINNs at differ-
ent training stages (Figure 2). While comparing PINN
errors for different PDEs is not easy due to residual scal-
ing factors, note from Table 1 that the errors obtained

_
S
[

= Standard
PIAT

[
en]
—

for Burgers’ and Schrodinger’s equations are orders of
magnitude lower than the ones for the Allen-Cahn and
Diffusion-Sorption equations. Even with different resid-
ual tolerances, this would suggest the maximum solution
error of the latter, harder to train PINNs should be higher. 104 105
log(Ny)

[
[e=]
=)

log(| fo|” - maxp | fol)

Table 4 presents the residual bounds obtained using
0-CROWN as well as the maximum solution error with
respect to a numerical solver for each of the four PINNs
studied, which empirically reinforces that correlation.
E.g., Burgers’ equation has a maximum solution error
of 3.78 x 1073, which is significantly lower than the trained Allen-Cahn PINN at 0.86, as expected from the residual bounds
of 1.80 x 10~2 and 10.76, respectively. This contextualizes the results of Table 1 and showcases our framework can identify
weaker models.

Figure 5: Certification Convergence: log-log plot of the
relative convergence of 9-CROWN certification for a standard
trained PINN (in blue) and PIAT (in orange).

C. Ablation on NV,

We use N, = 2M for all the PINNs evaluated in this paper. A high number of branchings is required to obtain the tight
bounds presented in Table 1. To justify that need, we have added plots of the variation of the obtained residual bound for
Burgers’ and Schrodinger’ equations in Figure 6. Generally for both these PINNs we only get closer than one order of
magnitude from the empirical estimates (considering the empirical MC sampled errors from Table 1) by using around 2M
branches.

D. Proofs of partial derivative computations

D.1. Proof of Lemma 1: computing Oy, ug

Let us now derive Oy, ug(x) for a given i € {1, ...,ng}. Starting backwards from the last layer and applying the chain rule
we obtain:

oy 9z(L=1 0z 9x
Ox,; up(x) = : Ce :
‘ 0z(L=1)  9z(L=2) Ox Oz
Given that Ox,x = e; and % = W) all that’s left to compute to obtain the full expression is %, k e

13
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= 200000

—

- 150000 <2

0-CROWN
time
O-CROWN
v
i —

0.0 0.5 1.0 15 2.0 0.0 0.5 10 15 2.0
Ny x10° N x10°
(@ (b)

Figure 6: Ablation on N,: comparison of the residual error bounds (| fs|?) and runtime performance of our framework,
0-CROWN on (a) Burgers’ equation and (b) Schrodinger’s equation.

{L —1,...,1}. Note that, for simplicity of the expressions, 2(%) = x. For every element j € {1, ...,d}} of z(*) denoted by

k
z]( ), we have:

J _
0.0—1 7

where ng) denotes the j-th row of W) and bgk) the j-th element of b. Thus, the final expression can be obtained by
stacking the columns of the previous expression to obtain the full Jacobian:

92k
9z (k—1)

(k)
Wi

[7.1]

024" k *)) v (F)
/ —1
(W00 ) Wi

— diag [U/ (W<k>z<k—1> i b(k)” W

This concludes the proof.

D.2. Proof of Lemma 2: computing 0,2 u

Given the result obtained in Appendix D.1, let us now derive d,2ug(x) for a given i € {1, ...,dp}. Starting backwards from
the last layer of Ox, up and applying the chain rule we obtain:

L L—-1 1

Oeto =5 -\ 5,00 0.69 " ox oz

Now the same can be applied to 0,22“~1), and in general to d,>2(*) to obtain:

0 9z 92z(k) 9z
(k) — e (k=1)y _ Y~ =~ (k=1) , ¥~ = (k—1)
%= = o <3z(k1) Oni2 ) B R A L L e
forming a recursion which can be taken until the first layer of Ox, ug, i.e.,:
0 (82(1) > 52z
. e/L —_—

ox  Oz,0% i

D221 =

xf 8.%‘1

With the computation of Oy, g, both d, 2(*~1) and % are known. As such, the only missing pieces in the general recur-

sion is the computation of %. Recall from the previous section that % = diag [a’ (W(k)z(kfl) + b(k))} W),
As such:

922 (k)

920201 9z, (diag [o” (W(k)z(kfl) + b(k))} W(k)> '

14
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Following the element-wise reasoning from above, we have that:

922%

i (w1 0 9 ®) (k=1) | 1)) k)
Go =0 (Wi ) S (WD 4 b ) Wi
(k=1)
_ o (W -1 4 (k)92 (k)
= o (Wi )+b3><W%8m)“%

Stacking as in the previous case, we obtain:

92 (k)

D) diag [o‘” (W(k)z(k—l) + b(k)) (W(k)axiz(k_l))} W,

completing the derivation of O,2ug(x).

D.3. Theorem 1: Formal Statement and Proof

Theorem 1 (0-CROWN: linear lower and upper bounding O, ug). For every j € {1,...,dL} there exist two functions
8xiugj and 8xiu§_j such that, Vx € C it holds that axiug’j < Ox,up,; < Ox, ugj, with:

do
Fustly = 0031+ 2Py xH 08
8qu077 = ¢O ) + Z (bll) v X+ ¢21) v

where for p € {0, 1,2}, <bp] . and qbélj)f are functions of W) (k)L (k).U - A(R)L - A(R)U q(k).L - gnd aR)U | and

can be computed using a recursive closed-form expression in O(L) time.

Proof: Assume that through the computation of the previous bounds on ug, the pre-activation layer outputs of ug, y(¥), are
lower and upper bounded by linear functions defined as A (%):Lx 4+ ak)-L < ¢(B) < AR)Ux 4 a().U and (k)L < (k) <
y®1U for x € C.

Take the upper and lower bound functions for Ox,ug as dx,uy and Oy, ul, respectively, and the upper and lower bound
functions for Oy, 2(¥) as Dy, ¥V and 9y, 2(*)-L, respectively. For the sake of simplicity of notation, we define B(*):+ =
I(B® >0) ®@B® and B®-— =1(B® < 0) @ B®.

Working backwards from Oy, ug, we apply the same idea from CROWN (Zhang et al., 2018):

Ol = WDy L-DU L =g (L-1).L

Dl = WD, (=1L L Wb)—g (L-1).U (7

We continue to apply this backwards propagation to dy,z(*~1) to obtain Oy,2zL~1:U and 0y .z(L*U L. Recall
that Oy, 2 = 0,0-120 0y, 2=V that is, for j € {1,...,dr} we have Oy % (k) _ O, 1)z a Z(k 1) —
ZZ’;I 0, i- 1)z 8xlz£k 2

We resolve the bilinear dependencies of each Ox z(k) by relaxing it using a convex combination of the upper and lower
bounds obtamed by the McCormlck envelopes of the product. Assuming that 0, 1>z( < 0,k 1>z( < 0,k 4)2( U
and Oy, zn g 8,“ n S Ox; f,,k b, U, we have that:

di—1
axizj(-k) < Ox, j Z aojnﬁxlz,(f b —|—0¢§ o 1)2( )—&-agf])n

s (3)
O, 2! k) > ax7ZJ(k)L Z Bék) D, 201 +B§k}naz(k N Z]sz +5§’2m

n=1
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for:
o) = 100 + (1= 1) B2
a§’f}n _ (k)axzznk DL (1 (k)) By, 2= DU
agfj)n = nj(g@Z(k 1>z( )Uaxlz(k 1.L (1 - 17](- 72) 0, 1)z 8x1zr(f n.U
9, = 002+ (1= () Do
Y,Cj),n — C(k)ﬁx,znk DL (1 _ C(‘kn) By, 2k~
Bélfj),n = —Cj, 00— 1>z s M R (1 — C](’;)) (k=) 24 (k).U g, 2 k=10
where 775, ) and Cim () are convex coefficients that can be set as hyperparameters, or optimized for as in «-CROWN (Xu et al.,
2020b).

To continue the backward propagation, we now need to bound the components of d,.-1)2(¥). Recall from Lemma 1 that
8 (k—1) 2 (k) = dlag [ ( (k— 1))} W(k), and az(k—l)Z;)ks) =o' <y](<k_1)) ngﬂ) fOI'j S {1, . .,dk}.

Since y( )L < (k) <y (k) U, we can obtain a linear upper and lower bound relaxation for o (y;k)), such that
»y](k) - ( \ ) ( (k)) < A/J( »u (yj(k) + 5§k)’U>. With this, we can proceed to bound Bzwfl)zj(f) as:
W8 (k)
o o ©)
(k) (k),Lyx7(k),+ (k) Unar(k),—Y , (k) (k)L ¢(k),Lyx7(k),+ (k),U 5(k),Uxpr(k),—
D Al > (A FWE T g WUWET) B (50 E 0w o (050U ()
A A

At this point, one could continue the back-substitution process using the bounds from CROWN (Zhang et al., 2018).
However, for the sake of efficiency, we use instead the pre-computed inequalities from propagating bounds through w:
AR Ux 4 R U < y(k) < ALy 4 alk).L Substituting this in Equation 9, we obtain:

Ouorn s = (A 4 A o s )

O,j, 1,],:
o) ). 10
Doy 2§ = (Aé’fj;ﬁAﬁ?’L + AT AN U) x + A Al g AF a0 M)
NGB 25,
(k).L (k).U

In practice, we can use Equation 10 to compute the required 0,1 2; ;" and 9,1 2; ., for the McCormick relaxation
that leads to Equation 8. By back-substituting the result of Equation 10 in Equation 8, we obtain an expression for the upper

and lower bounds on 9y, 2\ ) that only depends on 8xiz(k*1) and x:

x; < j
di—1
8xiz§k)’U Zaojnaxlz(k b ) x—l—aflkj)n
n=1 (11)
. 1), 40 (k)
8xizj = ZﬁOJTl Xz’SL )+6 Jnx+ﬁ4j,n7
where:
k) (k),+ (k) k)= (k k) (k),+ (k) (k),— (k) k)
ai(’),jn O[1])n éjn+a§jn)‘é])n’ aé(Ljn alj)n 3jn+a1])n>\§’)jn+ag,j7n
k + k (k), k k
Bd,jn_ﬂ§])n éj)n+ﬁlj)n 2])71’ 64]n_61jn +61jn gj)n+aé,j?,n

16



Efficient Error Certification for Physics-Informed Neural Networks

Given Equation 11, we now have a recursive expression for each of the blocks that compose the computation of Ox, ug,
which allows us to obtain a closed form expression for Oy, u§ and Ox,ul by applying recursive back-substitution starting
with Equation 7. Let us begin by performing back-substitution to the result in Equation 11 for layer L — 1:

dr—2
O,z Y = 3 a0 A Vx ol (12)
n=1
dr—2 dr—3
=3 agh [ D0 o0k A+l x| 4 ol P x el (13)
n=1 r=1
dr_2 dr_3 dr_3
L—1 L—-2 — L—1 L—2 L—-2 L—-1 L—-1
= Z aé,j,n ) Z p’é,n,r)axi 27(”L %) + a((),j,n ) lu’é;n,r)x + /j‘é(l,mr) + ai(},j,n )X + aé(l,j.,n )
n=1 r=1 r=1
(14)
dr_3 [dp_»2
- ol s | B2+ (15)
r=1 n=1
& (@ N, L (e, @
L—-1 L—-2 L—1 L—1
+ ZaO (/J’Bnrx—i_/j’gln,r)—i_f_g(a?)JnX+a4,j,n) (16)
n=1
dr—3 dr,—2 1
L-2 L—1 L—-2 L—1
=2 P O | 3 el e 4 e | e (17)
r=1 n=1 -
dr 1 1
L—1 L—2 L—1
+ Z a((),j,n )Ngl,n,r) + rai,j,7l) (18)
n=1 L-3
dr—3
L—2 L—2 L—-2
=D g O o x g (19)
r=1
where:
dr_2
(L-2) _ (L-1) (L-2)
Pojr = Z Qg jn Hon,r
n=1
1o _ oo A« L -y
L—2 L—-1 L—2) L—-1
pl,j’l‘ Z aOJ’I’L 3.n,r + dL72a3,j,n
dr 2 1
L—2 L—1) (L—2 L—1
b = D Al s+ —aly))
n=1 dL_2
and:

(L) (D)
(L—2) _ Japn:  ifog," > c10.3.4
Hip,n,: { ;fn7:2) lfa(()Lj g ,p€{0,3,4}

As in CROWN (Zhang et al., 2018), given we have put Equation 19 in the same form as Equation 12, we can now apply this
argument recursively using the p(*) and ;1(¥) coefficients to obtain:

L-1 U 1
axz]( » O]Z+Zp1ij+pé3T7
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where:
Gon ol ifk=L
0,7,7 dp— k k—1 .
- anzll pé,},nlu(g,n,r) ifk € {27 cee ’L - 1}
k .
ooy ol ifk=1L
1,5,r — dr_1 (k k—1 k .
! an=1 pé,_]?,nlug,n,r) + d,jﬁz pg,]?,n if k € {27 R L— 1}
k .
p(kfl) B ai)}w ifk=1L
jr dj— k k—1 k . 5
2 S o) D+ ) ifke{2,..., L1}
and:

(k=1) .o (k)
<k—1>:{0‘1””* Toin =0 peq0,3,4)

Hpom,: k—1) .. (K
ST P (T

And following the same recursive argument:

Xi%y 2351

do
P Z(_Lfl),L _ T(g,lj),i + 237_1(?1]_)77”X + 7_2(1)
r=1

where:

(k—l)_{/B((){Cj),r ifk=L

O AT A Wl ke o)

ey [BY. itk=1L

X I

) ﬂf},r ifk=1L

_{z;ik;réfz%nwi’fn,i)u:;éf?,n ke . L=1)
and:

(k=1) .o (k)

(k=1) _ ) Bpm: if7g 7, >0

Wy = ,pe{0,3,4
Py, {Oégfn,l) lfT(k) p { }

With these expressions, we can compute the required Ok, zr(lkfl)’L and Ox, z,(lkfl)’U which we assumed to be known to derive
Equation 8.

Finally, by back-propagating the bounds starting from Equation 7, we get:

dr -1 dr—2
L)+ L-1 L—2 L-1 L-1

Oy =D WEIT 37 a0zl o Vx a4

n=1 r=1

dr,—2

+WE ST B Vo257 + 8 Ux+ Y
r=1

dr—2 f[dr-1

L)+ (L—1 L),— o(L—1 L—2
=3 | Do Wi agh WA | dxzy T+

,n 0,n,r
r=1 n=1
R Dt (L-1) (D o RN ) )
L)+ (L—1 L),— o(L—1) (L)+ (L—1 (L),— o(L—1
+ | D Wi ey W kb | YD WL aln ) e W
n=1 n=1
dr_»2

L-1),U — L-1),U L-1),U
= Z ¢é,j,7' ) axi’zf(’LL i + ¢§,j,7' ) X+ (bé,j,’r ) )
r=1
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where:

From this, using the same back-propagation logic as in the derivations of Jx, zn,

where:

(k—1), U
0,7,7

(k=1),U _
15,7

(k=1),U _
2,5,

and:

And similarly for the lower bound:

where:
Doir
o
¢ng r1
and:

dr—1
L-1),U _ (L), + (L—1 L),— o(L—1
= S Wl W
dL—l
o = Wit all ol - Wiy
n=1
dr 1
L (L L—1 (L—1
(bg,jr ZW )+ Z(Lnr)—’_w B4nr)~
(k=1), and8 Zn
1),U 1),U 1,U
Dse, 531 +Z¢§jr (QJ)T
d k), + (k-1 k),— o(k—1) .
S Wi Tl )+ WA itk =L
k k .
S U ke (2, L1}
S0 W W gD i L

d k), U (k-1 k),
Zk 1¢((Jj)n 3nr>+ﬁ¢§,j’n

de 1W(’€)+ (k—1)

4nr

St ool D b ol ke {2, L

(k—1) (k)U
_ Qpn,:’ i@y, >
Uiglf 1){ ?k 1) if ?I%J)U 7p€{07374}
D1, ¢0]n
1),L 1),L 1),L
O, = 6. +Z¢§},,-X+¢>§,}-,,.,
S WA D Wl D itk =1
St ol itk e {2,...,L -1}
de 1W(k)+ ékn Tl) —i—W(k) Z(’)kr:,i) ifk =L
Sl gD g ke (2,
de 1W(k)+ Z(Lkn Tl) +W( )= Elkr:,i) ifk =L
Sl gD gl ifke {2, L
(k—1)
(B0 = T w20 ,pe {0,3,4}.
Xp,’m {aél,cml) lf¢0k])£, p { 39y }

(k),—
Wi

19

(F=1) i = I

4,n,r

U'ifke{2,...,L

_1}

_1}

_1}

-1}

(k—1),U

, We can obtain:

(20)
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D.4. Theorem 2 Formal Statement and Proof

Theorem 2 (9-CROWN: linear lower and upper bounding 0. 2Ug). Assume that through a previous computation of bounds
on Ox,ug, the components of that network required for O. 22U, L.e., Ox z(k D and 9, ¢e—1y 2 ), are lower and upper bounded
by linear functions. In particular, Ch)rLx k)L < g z (k—1) < C(k) Usx+c®)U and D(k)’Lx+d(k)’L < 8Z<k_1>z(k) <
D®Ux 4 qk)U

For every j € {1 .,dr} there exist two functions 8,(1; ug ; and 8,(12 ug ; such that, Vx € C it holds that OX? ug_’ i <
10) 2 ug,j < 10) 2“0 Thesefunctlons can be written as:

(1),U (1),U
) 2“93 — ¥0,j,1 + Zdjl,] T 27ij

(1),L (1),L (1)7L
2ty ; = Vg, ) +Z¢1ar Vo jir

where for p € {0,1,2}, w(l) Y and w ’r are functions of W) y(F).L o (k).U - A(R).L - A(R)U (k)L 5(k),U - C(k).L
Ck)LU (k)L (k). U Dk ) D( »U d(k) Cand d®)Y | and can be computed using a recursive closed-form expression in
O(L) time.

Proof- Assume that through the computation of the previous bounds on ug, the pre-activation layer outputs of ug, y(¥), are
lower and upper bounded by linear functions defined as AFR)Lx 4 g(k),L < y(k) < AR Ux 4+ 2kl and y(k)vL < y(k) <
y*)-U for x € C. Additionally, we consider also that through a previous computation of bounds on dy, 14, the components
of that network required for 8xlzu9, ie., Oy, 2*=1) and 9, .-1)2(¥) are lower and upper bounded by linear functions. In

particular, C*)-Lx + c(®).L < 9, (k1) < CR)Ux 4 ¢(F)U and D®)Lx 4+ dF)E < 9,y 2F) < DFWUx 4 dF)U

Take the upper and lower bound functions for O,2ug as Oy ueU and Oy ug, respectively, and the upper and lower bound
functions for 0,2 2(F) as 9,2 2(*):V and 0,2 2(F)L, respectively. For the sake of simplicity of notation, we define B(¥):+ =
I(B® >0) ®B® and B®:— =T (B® < 0) @ BY).

Note that, unless explicitly mentioned otherwise, the non-network variables (denoted by Greek letters, as well as
bold, capital and lowercase letters) used here have no relation to the ones from Appendix D.3.

Starting backwards from 8, 2(*), we have that:

di—1
QZ( )* Zax 2(k— 1)2( )8 Zk 1)+8z(k 1)Z( )8 2Zk 1)

Given the transitive property of the sum operator, we can bound 0,2 zﬁk) by using a McCormick envelope around each
of the multiplications. Assuming that for all j € {1...,dp},n € {1... ,dp_1}: Oy, .cx- 1)2( )L < Oy, 2l 1)2( )
Bx,z(kfl)Zj(viz’U, 8xiz7(lk71)’L < axl.z,(f*” < axiz,(ffl) Y o (ki 1)2( ) < 0, 71)2( < 0,k- 1)2( ) anda z(k 1) 1 <

j,n? =
k—1 k—1),U .
Oy2 27(1 ) < Oy zﬁb ) , We obtain:

IN

di—1

022 <0227 =3 all) 0k 2TV o) 0, o2l +all) 002 4ol 0.0 2l +all)
n=t (22)
dp—1

k k),L k k k k k
8x1g2](- ) > ((9,(?2’](- ) Z ﬁé ) nOx; ,(Lk 1 + ﬁ§ 8x S (k— 1)Z —|— ,35 ) 8 (k 2 + Béyj?,naz(kfl)zj(-’,f + ﬂﬁ(l,j),n
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for:
ozék;n —17]( 738,( Lk 1)252 vy (1 775 )) Oy 1 (h— 1>z(k) - a(k? =n; n8x7z(k DLy (1 77;]2) 8x7z(k DU
aék])n _ (k)az(k 1>Z(k) Uy ( ](73) e 1)Z(k) L Oéékj)n _ 7]k)a z (k=1),L | (1 75’13) axfzr()/kfl),U
R (R ) L W N
— ’y( )6z(k 1 z](ki Uaxﬂiz,(f—l)’L — (1 - fy]( 72) 0, (k- 1)2]( Ti Laxmz;’“‘”"’
((){cj)’ C(k)ax e 1)21(12 L ( C(k))  Gem 1)z](’2 U fj), C(k)a Ge=1),L ( C(k)) .2 L(k=1U
;fﬁj)’n 6](’282< e Z(k) L (1 _ 6](’2) 9. 1)2](12 U ék])n _ S(kgaxgzﬁf_l)’L + (1 _ 5](kn)) 3xgzr(f_1)’U
fj),n == J(,kn)ax (K —1)2]( LGy, 2D (1 - C(ﬁZ) O, ok —1>Z(k) Yo, 2V ¢
8 e (k) Ly 2ZT(LICA),L . (1 )8 o 71)2( )Uaxzzflkﬂ),U’
where 77]( Tz, Yin C j.n and 5 (k) », are convex coefficients that can be set as hyperparameters, or optimized for as in «-CROWN

(Xu et al., 2020b).

(k=1) s Ox, and 0,k 1>z(k) S0 as to

(k)
2= 2§ i

For the next step of the back-propagation process, we now need to bound 0Ox, 2, in

(k) -1)

eventually be able to write ax? z; " as a function of simply 8,(;; zn and x. As per our assumptlons at the beginning of this

iy (k )

section, for the sake of computational efficiency we take Ox, z,(L and 0k 2, ,, from the computation of the bounds of

Ox, g, j, and thus assume we have a linear upper and lower bound function of x. ThlS leaves us with 8,(1,2(;@71) Z](rz to bound
as a linear function of x.

Note that, as per Lemma 2, O, - 1>z(k) = o” (yﬁk)> (W(-k)a .z(kfl)) W(k,z Since (Wﬁ)axiz(k*l)) =

J.n

Zd’“ ! W(k)ﬁ z (k= 1), and C,, k) YUx ¢ c(k) v < 8,(125[“71) < C, k) Ty 4 c(k) L (from the assumptions above), we
can write:

di—1
Wil < (Wit olt s wi e e (X Wi et wi et
n=1 n=1
Efjk),U e;k),U
dk,1 dk 1
W 0,270 > WEFCWE L Wl | x4 [ 3T Wit Felhk 4w el
n=1 n=1
B L ek
We define G(k)’U = maXxec Egk) Ux + e(k) Y and 9§.k)’L = minyec E;k) x + egk) L As with the first derivative

()L

case, since y; <y (-k) < y§k)’U, we can obtain a linear upper and lower bound relaxation for o (yﬁk)) , such that
)\gk)’L ( (k) +u(k) L) <o (yﬁk)) < )\gk)’U ( (k) —l—/i<k) U) as well as the values L( )L < g (y](k)) < L§k)’U. By

considering the assumption that A;ki)’U

o (y](k)) < (Agk),U,JrA;ﬁ),U + )\§k),U,—A§ﬁ),L) X + </\§k),U,+a§k),U + )\;k),U,—agk),L + A;k),Uﬂ;k),U)

k),L

x + ag.k)’ <y < A;yz)’ x + ag- , we can obtain:

H®U h;k),U

o (y](k)) > (A§k),L,+A§_ﬁ),L 4 )\;k:),L,fA;fc:)}U) x + (/\Ek),L,Jra;k:),L 4 )\;k:),L,fa;k:),U 4 )\;k),LM;k),L) .
H(.M"L h(.k)’l‘

J J
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This allows us to relax o’ (yj(-k)) (Wﬁ)axiz(k_l)) using McCormick envelopes:

( <k>) (Wﬁff)ﬁxiz““ 1)) < v (Wﬁ)asz(kfl)) + Vg (ygk)) + Y

o (o) (W10 200 3 o0 (Wil 200 1 B0t () 4 00

J’ 5']
for:
k),U k) (k),U k k),L k),U k) p(k),L k k),U
(’j) —p; )L§ Wy (1_p§ )) L§ ) V§,g‘),n =p§ )aj( ML (1—p§~ )) é )
k),U k) (k),U p(k),L k k),L 5(k),U
Véj) =—p§-)b§-) 9](_) —(1—p§-))b§)9§-)
WP = OO 4 (12 0) 00 LWLy (10 g0
Vé? L_ _Tj(k)Lgk),L9§k),L _ (1 _ T;k)) L;k),Uag'k),U’
where pgk) and T](k) are convex coefficients that can be set as hyperparameters, or optimized for as in -CROWN (Xu et al.,

2020b). By replacing this multiplication in the expression from Lemma 2, we bound 0y, ,(:-1) z](kyz as:

Oy, (k- 1>z( ) < U (W(k Ox z(k 1)) (k) U o (y](k)> +v£k) v

0,7,n
8xiz(k—1)zj(,73 2 Uék;),rf (W(k)6 Z (k— 1)) (k) L ” (yj(k)> + Ué,;7L7
for:
(k) U _ (k)aU (k),+ (k),Lxx7(k),— (k),L (K),Lxx7(k),+ (k),Uxxr(k),— .
Vigm = Vij Win tvig Wit v = v W e Wi i €{0,1,2}.

By replacing the lower and upper bounds for ¢ (y](k)) and (ng)8x1 2k *1)> in the previous inequality, we obtain the

expression:
Oy, (h— 1)23(72 <M( U X—l—m(k)U
ax z (k= 1)ZJ( 73 = M% LX + m(k) L7
for:
M;krz,U_ (()kJ)TTLJ+E(k) +U(()k) U,— E(k) n §kj)£]+H(k)U+ §j)n H(k)
U _ (.U (k),U k k k), U4 (k k), U,— k), U
1Y <o G OO
k), L+ (k),L L,— 1 (k k), L,+yy(k),L L,—yy(k),U
M BB B0 L I
k)L (k) Lot (R),L k),L,— (k k), L+ (k),L k),L,—4 (k),U k),L
néﬁ - &jn () + é;n ej) + g;n h() + g}n h() éjn'
(k)

Finally in the derivation of 0, 2z, asa function of x and 0, 2 2(#=1) we just have to replace all the quantities in Equation
22 (recalling from the assumptlons that CW-Ux 4+ U < Ox z(k D < CWilx 4 ¢kl and DF)Ux 4 dRU <
D -1 zF) < DELx 4 d*):Ly to obtain:

dk—1
e D DL
23)
di_1
k k).L k _ k k
Oz} 2 Doz = 37 Bt B X B
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where:
ékj)n _ ék]):fc(k)U (k),—c(k),L (k),+M(k),U (k),n Mgkg,LjL (k),+D(k),U aék])n— ;kg,L
ékj)n _ OZ(()kj):c(k) U —|—04(k)’ ( ),L +a(’fj): (k ) +0‘§?7n (k) Ly :(m);rd( RY :())kj)n d(k) L flkj)n
55%“ _ ﬁ(()k])rjc(k) L +60,j,n Cglk),U +ﬁljn 12 +ﬁ§k])’n ﬂz +ﬁdk) -+ (k) L +553n (12
5(%),11 _ ﬁ(()kj);r ;k) L B(()Z_)gc;k),U ﬂ(k) -+ L +ﬁ1 gU B?()kj ;rd +ﬂ3 +ﬁ4
This forms a recursion of exactly the same form as Equation 11 from Appendix D.3, where only the coefficients of 0, 2 zgk b

and x are different (a((f;m in this case is referred by agkj) "o aé j) » Dy agk}n, and 044(112,71 by Ofé?,n» and similarly for the 3
values). This yields:
L-1), 1 ,U 1),U
where:
pH=DU afh, ifk=1L
0,5,r - d k), U (k—1),U .
J anllp(jnugm) ifke{2,. .., L—1}
k
(k—1),U __ aé’r)LT‘ ifk =
Lir = d kU (k=1),U kU .
! anllp((]j)nugn7) +dk12p§j)n lkaE{Q,,L—l}
k .
e ol ifk=L
o A1 (K)U (k=1),U kU . )
2,7, anzl pg)j)nlu’énr) +dk12 (2,])n lfk€{2vaL_1}
and:
(k—1) (k),U
(k— 1) v_ Japn: ifpy >
Fp.n, .p€{2,5,6}.
" { G0 il <o
And following the same argument:
L-1), (1)L ),L
axizj( _pO’JZ +Zp ) 2JT’
where:
(k=1),L _ 52,” iftk=1L
SO oV ke {2, L1}
(k—1).L _ 55,” ifk=L
d k)L (k—1),L k)L .
b anllp(()j)n/‘l’gnr) +dk12 g,])n lfk€{2va_1}
k .
p(lcfl),L - e(i,r)L,r ifk=1L
jor di_1 (k),L (k—1),L k)L . )
2.7, Py p(,}nﬂém) + 75 QPé,j)n ifke{2...,L -1}
and:
(k—1),L )i p
5Ty 0,j,n = ,pE 2,5,6
N Pl g’?n<0 P (25,6}
With these expressions, we can compute the required O, z,(f_l)’L and 0. zz,(zk DU which we assumed to be known to

derive Equation 22.
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Finally, with the exact same argument as in Appendix D.3, we obtain:

1 U 1),U
Ox, > +Z¢( +1/’§,},r’
where:
(b-1).0 de 1 W(k?) + ékn i) + W;ﬁz;_ éi:i) ifk=1L
0,7, =
" St Uy DU ek e {2, L - 1)
P de 1 W(k) + ékn 7{) + W;{Qa— élfn—’i) k=1L
1,57 = de_1 (k) U ,(k=1),U U .
an—ll ((),j)n énr) =+ dk72¢§7})n if k € {2,,L— 1}
— de 1 W(k) + ékn i) + ngza_ éi:i) ifk =T
2,4,r d (k) U _, (k=1),U kU . )
Z = ¢07J‘)an ((37"77“) + ﬁ é,]),n ifk e {27 L 7L - 1}
and:

(k—1) .
Qpom.: 1f1/) >0
Pl = 04m = pe{2,5,6).
e 1(7{6"71) lf’(/}O]n

And similarly for the lower bound:

L l)L
axiue,j O]z +§ d) 2]r7

where:
d (k) + g(k—1) (k),— (k=1) .o, _
w(k 0,L anllw ome T W, oy, ifk=1L
0,7,7 -
’ Sl P EpEDE ik e {2, L -1}
(k—1),L Zik:_f Wﬁ"iﬂ +ﬁék D+ W(k)’ Oéékn i) ifk=1L
¢1 - d k7L k—1),L )L
Syt byt LB if e {2, L1}
di— k),+ p(k—1 k),— (k—=1) .
(k—1),L _ Z }L ' ngfz ﬁé’nﬂ“) + Wg,fz a((i n, r) iftk=1L
2,4, - d k),L ,(k—1),L k)L . R
Sl el ke {2, L1}
and:
(k—=1) fﬂ}(k)L
r(/)(kn—:l)Jl = Py1st 0, ,n = ,pE {2,5,6}
m aigk" 2 if wO] n

D.5. Formulation and proof of closed-form global bounds on O, ug

Lemma 3 (Closed-form global bounds on Oy, ug). For every j € {1,...,dL} there exist two values kY € R and k¥ € R,
such that ¥x € C = {x € R% : xI < x < xY} it holds that H]l-’ < Ox,up; < /zg-], with:

V=BYxY + BV x! + QSO ; + Z 5

2,5,

L=Blrxt + Bl xY + wélj)l + Z wéar,

r=1

where BU = 3% ¢t") B =%"% 4 and B+ =I(B > 0)©B and B>~ =I(B' < 0) ®B-.
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Proof. Take a function f : R% — R defined as f(x) = v'x + ¢ for v € R% and ¢ € R, as well as a domain
C = {x € R% : xI < x < xY}. Given the perpendicularity of the constraints in C, by separating each component of f we
obtain:

meaé(f(x) = v XY+ (v7)TxF +¢, melélf(x) =(vHTxE+(v) %Y +¢,
where vt =I(v>0)ovandv =I1(v<0)Ov. O

E. On the Complexity of Bounding using 0-CROWN

The complexity M of bounding fy (or any function of the partial derivatives of up) is contingent on the type of PDE we are
bounding.

For simplicity, assume the solution network, ug, has L fully connected hidden layers each with d output neurons, and that the
relaxation of the activation functions and their derivatives, i.e., o, ¢/, ..., can be computed in O(1). Using CROWN we can
bound the output of layer [ € {1,..., L} in O(Id?), yielding the complexity of bounding the output of ug as O(L?d?). With
our hybrid scheme of backward propagation within the bounding component (Ox ;ug or Ox2 ;ug) and forward substitution
for elements from other components (e.g., y*) in the bounding of dy ;ug, see Equation 10 in Appendix D.3), the complexity
of bounding the output of each of these components remains O(L?d?). Following the McCormick envelope bounding
described in Section 4.2, to estimate the final complexity we must now assume that the particular structure of fy will be
linear lower and upper bounded as a function of R partial derivative components (of first or second order). For example, in
the case of Burgers’ equation, R = 3. The final complexity of bounding fj can then be written as O( RL?d?).

F. Correctness Certification for PINNs with tanh activations

0-CROWN allows one to compute lower and upper bounds on the outputs of Ox, ug, Ox2ug and fy as long as we can obtain
linear bounds for ug’s activations, o, Ox, ug’s activations, o’, and O,2ug’s activations, ¢”/, assuming previously computed
bounds on the input of those activations. In this section we explore how to compute those bounds when uy has tanh
activations.

Throughout, we assume the activation’s input (y) is lower bounded by [, and upper bounded by u;, (i.e., I, <y < up), and
define the upper bound line as hY (y) = Y (y + BY), and the lower bound line as h’ (y) = aX(y + BL). For the sake of
brevity, we define for a function 4 : R — R, and points p, d € R the function 7(h, p, d) = (h(P)=h(d)/(p—d) — h'(d). This is
useful as for a given h and p, if there exists a d € [d;, d,,], such that 74, 4, (h,p,d) = 0, then 1/(d) is the slope of a tangent
line to h that passes through p and d.

Bounding o(y) = tanh(y) We follow the bounds provided in CROWN (Zhang et al., 2018), by observing that tanh is a
convex function for y < 0 and concave for y > 0. For [, < u;, < 0 we let AV be the line that connects I, and wy, and for an
arbitrary d € [I, up] we let h” be the tangent line at that point. Similarly, for 0 < I;, < u; we let b be the line that connects
Iy, and up, and for an arbitrary d € [Ip, up] we let hY be the tangent line at that point. For the last case where [, < 0 < uy,
we let hV be the tangent line at d; > 0 that passes through (I, o(1;)), and h” be the tangent line at dy < 0 that passes
through (up, o (up)). Given these bounds were given in Zhang et al. (2018), we omit visual representations of them.

Bounding ¢’ (y) = 1 — tanh®(y) The derivative of tanh(y), 1 — tanh?(y), is a more complicated function. By inspecting
it’s derivative, o’ (y) = —2tanh(y)(1 — tanh?(y)), we conclude that there are two inflection points at y; = max 0" (y)
and y2 = min o’/ (y), leading to three different regions: y €] — 0o, y1] (R, the first convex region), y €]y1, y2] (Ra, the
concave region), and y €]y, +00[ (R3, the second convex region). As a result, there are 6 combinations for the location of
{p and up which must be resolved.

The first two cases are the straightforward: if [, € Ry and u;, € Ry or [, € R3 and u, € Rs, i.e., if both ends are in the
same convex region, then we use the same relaxation as in the bounding of tanh in the convex region - hY is the line that
connects I, and up, while h” is a tangent line at a point d € [y, up). Similarly for the case where I, € R and up € R2, we
take the solution from the tanh concave side and use hZ to be the line that connects I, and uy, and hU to be the tangent line
at a point d € [lp, up). The next case is [, € Rq and up € Rao, Le., I in the first convex region and uy, in the concave one. In
this case we use the same bounding as in the tanh case when l;, < 0 < uy: hY is the tangent line at d; > y; that passes
through (I, o’ (1)), and h' is the tangent line at dy < y; that passes through (uy,, o’ (u)). In a similar fashion, for the case
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Table 5: Relaxing o’ (yy) = 1 — tanh?(y): linear upper and lower bounds for a given [, and .

L w oV BgY oL 2
gl 21 (o (up) =0 (1)) (uy 1) o(lp)fa¥ — I o' (d), d € [lp, us) (Dol —d
3 3
R2  Ra U/(d)v de [lbv ub] U(d)/O‘U —d (U(uh)_a(lb))/(ubflb) U(lb)/ozL — 1y
o' (dy), a(lp)/oU o' (d2), o(up) /ol
Rl R2 Ty1,up (0/7 lb7d1) =0 ( b)/ﬂt B lb Tly,y1 (Ulv Up, d2) =0 ( b>/04 T
o' (dv), o(uy)/ U o'(d2), i)/l
R2 R3 Tly,y2 (O—lvulhdl) =0 < b>/01 Ty Tya,uy, (0/7 lb7 d2) =0 ( l’>/0< B lb
o'(ds), —lp >u
ao'(d1) + (1 — a)o’(d2), apf + (1 —a)py, {U/Edsg B lb < ub , o (up)
Ri Rs 7iy,0(07, 1, d1) =0, BY = oW)fo' (@) — Iy, 4( ', bd ) b 0 7 —up, —lp 2 up
T0,u (U,Ub,d2):0 U:g(ub)oldf — U Ty, y1 \O , Ub,a3) = U, ‘7/ b _l,—l <u
b 62 / (d2) b Tyz,ub(0,7lb,d4) =0 o’ (dg) b b b
1.0 //\ — 1.0
e
— h[
0.5 05
0.0 = 1 - 0.0 = —
—4 -2 0 2 4 —4 ) 0 ‘ 2 4 —4 -2 0 2 4
y Yy y
(a)lp € R1and up € Ra (b)ly € R2 and up € R3 ©)lp € Riand up € R3

Figure 7: Relaxing o/ (y) = 1 — tanh?(y): examples of the linear relaxations of o’ for different sets of I, and .

in which [, € R9 and u;, € Rs, i.e., [ in the concave region and u; in the second convex region, we take the opposite
approach: hV is the tangent line at d; < y5 that passes through (uy, o’ (up)), and h' is the tangent line at dy > 75 that
passes through (15, 0’ (1)). These two cases are plotted in Figures 7a and 7b.

Finally, we tackle the case where [, € R and u;, € Rg, i.e., where [}, is in the first convex region and wy is in the second
convex region. Given there is a concave region in between them, two valid upper bounds would be the ones considered
previously for [, € Ry and uj, € R, and [, € Rs and up € R3. To obtain these bounds, we shift the upper bound in the
first case to 0, and the lower bound in the second case to 0 (see AV in Figure 7c). As our bounding requires a single hY,
we take a convex combination of the two bounds obtained, hV>. For the lower bound, we use a line that passes by either
(up, 0’ (up)), if =l > up, or by (Ip, 0’ (lp)), otherwise, as well as by a tangent point ds € Ry, if —I > up, or by dy € R,
otherwise. See the line h¥"* in Figure 7c for a visual representation.

Bounding ¢”(y) = —2tanh(y) (1 — tanh(y)?) By inspecting the derivative of 0", ¢”/(y) = —2 + 8tanh®(y) —
6 tanh*(y), we conclude there are three inflection points for this function, one at yy; = arg max, <o 0’ (y), another at y» = 0,
and finally at y3 = —y;. Take also, for the sake of bounding, Ymax = argmax, ;0" (y) and Ymin = argmin, -, 0" (y).

This leads to four different regions of o”’: y €] — 00, y1] (R1, the first convex region), ¥ €]y1, y2] (Ro, the first concave
region), y €y, y3] (Rs, the second convex region), and y €]ys, +00[ (R4, the second concave region). This leads to 10
combinations for the location of [, and uy.

The first four are straightforward: if [, € R; and u, € R; fori € {1,...,4}, then we use exactly the same approximations
as for o and ¢”, varying only based on the convexity of R;. Similarly, if [, € R; and u, € R;41 fori € {1,2,3}, then we
are also in the same situation as the adjacent regions of different convexity from o’, so we use exactly the same relaxation.

We are left with three cases where [; and u;, are in non-adjacent regions. For [, € Rq and u, € R3, we are in the same
scenario as in the bounding of ¢’, since R and R3 are convex regions separated by a concave one. In that case we follow
the bounding procedure outlined before for ¢’ - see Figure 8a for an example of it applied in this setting. For the case where
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Table 6: Relaxing 0" (y) = —2tanh(y) (1 — tanh? (y)): linear upper and lower bounds for a given [, and uy.

Iy  wp a¥ BY oL 3L
R Ra (" (up) =" (1)) / (upy— 1) o (15)/al — 1, o"(d), d € [ly, wp] o (@)t —d
Rs Rs
Rz Ra o' (d), d € Iy, up] o(d)foV —d (0" (ub) =" (16))/ (uy — 1) o (W) Jal — I
Ra Ra
UIH(dl)’ a(l U U/ll(dg), o' (u L
Rl RQ Tyr up (0_//7 lb, dl) =0 ( b)/a — lb Ty (O'”,Ub, dz) =0 ( b)/a — Up
O'/”(d1), g " U///(dg), e -
RS R4 Tysup (0’”, lb, dl) =0 ( b)/a — lb Ty s (O'N,ub, dz) =0 ( b)/a — Up
O'/”(dl), e " U/l/(dg), o -
RQ R3 Ty ys (U//,Ub,d1) =0 ( b)/a — Up Tyg,ub(U/l7lb7d2) =0 ( b)/a — lb
aO’NI(dl)‘i‘(l_a)U”/(dQ)v Oéﬁ? + (1 - a)ﬂg’ O_///(d )
Ri Rs Tly,ymax (O'Na ly, dl) =0, /85] = U/l(lb)/am(dl) — Iy, T (o"sl; dS) =0 U”(lb)/ocL — Uy
Tymax,Up (0’”7 Up, d2) =0 /@g — G”(ub)/o"”(dg) — up Y1,up s by
" (dv) ac”(dz2)+(1—a)o" (ds),  oft + (1 —a)By,
Ra Ra Tiy s (07 1u; di)=0 o )fal — up Ty ymin (0 lb, d2) = 0, Bl =" W)o" (ay) — .,
e TYmin b (U y Ub, d3) =0 ﬁQL = ””(”b)/a”'(dz.) — Up
ac’(d1)+(1—a)o" (d2), aBy + (1 — )by, ac’(d3)+(1—a)o" (d4), aft + (1 —a)ps,
Ri Ra Tl Ymax (U”’ lp,d1) =0, B{J = G”(lb)/"’/”(dl) — Uy, Tly,Ymin (0'”7 ly,ds) =0, BlL = Gu(lb)/"’/”(d:s) —lp,

” ”
TYmax,up (U » Ubs d2) =0 Bg = U”(ub)/f’w(dz) — Up TYmin,ub (U » Ub,s d4) =0 BQL = U”(ub)/am(dU — Up

(a)lp € R1iand up € R3

(b)ly € Ry and up € Ry (©)lp € R1iand up € Ry

Figure 8: Relaxing ¢”'(y) = —2tanh(y) (1 — tanh? (y)): examples of the linear relaxations of ¢’ for different sets of /s
and uy.

ly € Ro and up € Ry, we are in an analogous case where R5 and R, are concave regions separated by a convex one. As
such, we consider the two valid lower bounds computed previously for [, € R5 and up, € R3, and [, € R3 and up, € Ry.
To obtain these bounds, we shift the upper bound in the
first case to arg min o’/ (y), and the lower bound in the
same case to the same value (see h” in Figure 8b). As
our bounding requires a single h”, we take a convex
combination of the two bounds, h™*“. For the upper
bound, we simply assume I/, is in a concave region while
up 1s in a convex region, and take the tangent at d for
argmax o’ (y) > d < 0 (see hY in Figure 8b). Finally,
we are left with the case where [, € R, and u, € R4.
In that case, we take the upper bound lines from the case
where [, € Ry and u, € R3, and the lower bound ones
from where [, € Ro and u;, € Ry4. As before, given the
requirement of one lower and upper bound functions, we take a convex combination of both in 27 and hV-<, respectively.
See Figure 8c for a visual representation.

Table 7: Ablation on our relaxations for the derivatives of
tanh: comparison of the residual upper bounds on Burgers’
equation obtained using our relaxations in 9-CROWN vs us-
ing a simple baseline which takes the minimum area in the
convex/concave regions and a constant value elsewhere with a
time limit of 10%s.

Our relaxations uy Simple baseline u,

1.30 x 10! 4.34 x 10?

|fo(x)|*
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—— —sin(mz)
nt

— Y

—— —sin(mz)
n*

— Y

—1.0 0.5 0.0 0.5 1.0 —1.0 05 0.0 0.5 1.0
@l <O0andup <0 ®)ly >0and up > 0 © Il <0andup >0

Figure 9: Relaxing — sin(7wz): examples of the linear relaxations for different sets of {;, and wuy.

. ,  E—— P—
2.0 —— 2sech(z) 20— 2sech(z) 2.0 —— 2sech(z)
15 Kk 15 hE 15 =
? — i R ? —
1.0 1.0 1.0 T e
0.5 05 0.5 k
0.0 : 0.0 = 0.0 = = =
2 4 —4 ) 0 2 1 -4 -2 0 2 4
T X T
(@)ly <O0andup <0 ®)lpy >0andup >0 ©)ly<O0andup >0

Figure 10: Relaxing 2sech(z): examples of the linear relaxations for different sets of I, and wy.

F.1. Ablation on ¢’ and ¢” relaxations for tanh

To understand the effectiveness of proposed the proposed relaxations for ¢’ and ¢ for the case of tanh, we compare the
performance of 9-CROWN in bounding the residual of Burgers’ equation (with the fixed time limit of 10*s from Section 5.3),
using Our relaxations for ¢’ and ¢/, as well as a Simple baseline which takes the minimum area in the convex/concave
sections and a constant elsewhere. For tanh, both use the same relaxation from Zhang et al. (2018). The comparison results
are presented in the Table 7. The tightness difference showcases the efficacy of our proposed nonlinearity relaxations for o’
and ¢ for tanh activations.

G. Linear lower and upper bounding nonlinear functions

Throughout, we assume the function’s input (x) is lower bounded by [;, and upper bounded by u;, (i.e., [, < x < uy), and
define the upper bound line as hY (z) = oV (z + BY), and the lower bound line as h* (x) = o (x + B%). For the sake of
brevity, we define for a function i : R — R, and points p, d € R the function 7(h, p, d) = (h(P)=h(d))/(p—d) — h'(d). This is
useful as for a given h and p, if there exists a d € [dy, d,,], such that 74, 4, (h, p, d) = 0, then 1/(d) is the slope of a tangent
line to A that passes through p and d.

G.1. Case study: —sin(7rz) for z € [—1,1]

As in Appendix F, we observe the convexity of the function — sin(7z) for 2 € [—1, 1], noticing that the function is convex
for < 0 and concave for z > 0. For I, < u, < 0 we let hY be the line that connects I, and wy, and for an arbitrary
d € [lp, up] we let h™ be the tangent line at that point. Similarly, for 0 < I;, < u;, we let h” be the line that connects [;, and
up, and for an arbitrary d € (I, up] we let hY be the tangent line at that point. For the last case where I;, < 0 < uy,, we let
hY be the tangent line at d; > 0 that passes through (I, o(l3)), and h” be the tangent line at do < 0 that passes through
(up, o(up)). Given the similarity of to the tanh bounds from Zhang et al. (2018), we omit a summary table, but present 3
examples of the possible cases in Figure 9.

28



Efficient Error Certification for Physics-Informed Neural Networks

G.2. Case study: 2sech(x) for = € [-5, 5]

We start by observing that the function 2sech(x) is similar to the derivative of tanh, whose relaxation we presented in
Appendix F. By inspecting it’s derivative, f'(z) = 2sech(z) tanh(z), we conclude that there are two inflection points
at x1 = max f’(z) and x2 = min f'(x), leading to three different regions: = €] — 0o, x1] (R1, the first convex region),
x €]xy, 2] (Ra, the concave region), and = €]z, +00[ (R3, the second convex region). As a result, there are 6 combinations
for the location of [, and u; which must be resolved. This is exactly the same case as the first derivative of tanh, simply
with 21 and x5 instead of y; and y,. Due to the similarities, we can use exactly the same relaxations as presented in Table 5.
We present visual examples of 3 cases of this relaxation in Figure 10.

H. Further details on Greedy Input Branching

In Section 4.3 we motivated and described at a high-level greedy input branching. In the following we provide a step-by-step
analysis of Algorithm 1.

We start by initializing a lower and upper bound list of pairs B (line 3) as well as a list for storing the maximum error
between the empirical and certified bounds Ba (line 4). To initialize them (line 7 and 8), we first compute the empirical
lower and upper bounds across the domain by sampling N, points within the full domain C using SAMPLE(C, N,) and
evaluating the function h there (line 5) yielding hu, and hyp, as well as the first version of the certified lower and upper
bounds using 3-CROWN on A (line 6) yielding hp, hyp. Next, we pop from 55 and Ba as C; the interval which has the
maximum error between the empirical and certified bounds (line 10), which we then proceed to split into Ny parts following
a policy defined by DOMAINSPLIT (line 11). Importantly, DOMAINSPLIT must be complete, i.e., it must be that C; = U C".
For each of those split subdomains C’ we compute new bounds using 9-CROWN (line 12) and add this subdomain along
with its bounds and error to the empirical estimates to 13 and B, respectively (line 13 and 14). This process is repeated
using the updated lists until the branching budget is spent, at which point the global lower bound is the minimum of all of
lower bounds in 5 (defined as the list 3), and the global upper bound is the maximum of all upper bounds in B (defined
as the list By). These are computed in line 17. This algorithm is greedy as increasing the branching budget is expected to
improve the bounds, since 9-CROWN ’s bounds are guaranteed to monotonically decrease with smaller input domains.

I. On Extending 0-CROWN to higher-order PDEs

In this section we explore the potential of applying 9-CROWN to higher-order PDEs. We divide the analysis into the theory
and experimental challenges, and how these could be mitigated.

Theory. For the purposes of this paper, we only derive first and second partial derivative bounds, yet there is nothing
that theoretically limits our method to second-order PDEs. The extension of the theory to third-order PDEs is relatively
straightforward, consisting of applying the chain rule to Lemma 2, and following the same backward-forward mechanism
in the proof of Theorem 2 (Appendix D.4). We acknowledge that extending it to higher order PDEs leads to a growing
computational graph, which can be more difficult to derive.

Experiments. It is likely that the obtained bounds with extensions of 9-CROWN to higher-order PDEs will be looser due
to the growth of the computational graph. However, it is possible to mitigate these issues by designing (i) tighter nonlinearity
relaxations and (ii) more efficient branching methods than our greedy branching one.

We perform a qualitative analysis of the greedy branching strategy in Section 5.4, and present in Table 8 the -CROWN
uy, difference between using a simple uniform strategy and our greedy input branching in Burgers’ equation given a fixed
number number of branchings that leads to approximately the same runtime for both methods (10*s). This highlights the
importance of input branching in achieving tight bounds in second-order PINNs. With more efficient branching strategies,
such as asymmetrical branching using sampling or through learning following a similar idea to Balcan et al. (2018), these
could be significantly improved and applied to higher-order PINNs.
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Table 8: Efficiency of Greedy Input Branching: comparing greedy input branching to uniform branching in Burgers’
equation given an approximate runtime limit of 10*s in both cases.

Uniform branching (N, = 1.6 x 10°)  Greedy input branching (N, = 1.3 x 10°)

|fo(z,t)|? 1.51 x 102 1.30 x 10*
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