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Abstract

Active inference is a unifying theory for perception and action resting upon the
idea that the brain maintains an internal model of the world by minimizing free
energy. From a behavioral perspective, active inference agents can be seen as self-
evidencing beings that act to fulfill their optimistic predictions, namely preferred
outcomes or goals. In contrast, reinforcement learning requires human-designed re-
wards to accomplish any desired outcome. Although active inference could provide
a more natural self-supervised objective for control, its applicability has been lim-
ited because of the shortcomings in scaling the approach to complex environments.
In this work, we propose a contrastive objective for active inference that strongly
reduces the computational burden in learning the agent’s generative model and
planning future actions. Our method performs notably better than likelihood-based
active inference in image-based tasks, while also being computationally cheaper
and easier to train. We compare to reinforcement learning agents that have access to
human-designed reward functions, showing that our approach closely matches their
performance. Finally, we also show that contrastive methods perform significantly
better in the case of distractors in the environment and that our method is able to
generalize goals to variations in the background.

1 Introduction

Deep Reinforcement Learning (RL) has led to successful results in several domains, such as robotics,
video games and board games [42, 36, 2]. From a neuroscience perspective, the reward prediction
error signal that drives learning in deep RL closely relates to the neural activity of dopamine neurons
for reward-based learning [44, 3]. However, the reward functions used in deep RL typically require
domain and task-specific design from humans, spoiling the generalization capabilities of RL agents.
Furthermore, the possibility of faulty reward functions makes the application of deep RL risky in
real-world contexts, given the possible unexpected behaviors that may derive from it [10, 29, 38].

Active Inference (AIF) has recently emerged as a unifying framework for learning perception and
action. In AIF, agents operate according to one absolute imperative: minimize their free energy [15].
With respect to past experience, this encourages to update an internal model of the world to maximize
evidence with respect to sensory data. With regard to future actions, the inference process becomes
‘active’ and agents select behaviors that fulfill optimistic predictions of their model, which are
represented as preferred outcomes or goals [17]. Compared to RL, the AIF framework provides a more
natural way of encoding objectives for control. However, its applicability has been limited because of
the shortcomings in scaling the approach to complex environments, and current implementations have
focused on tasks with either low-dimensional sensory inputs and/or small sets of discrete actions [12].
Moreover, several experiments in the literature have replaced the agent’s preferred outcomes with
RL-like rewards from the environment, downplaying the AIF potential to provide self-supervised
objectives [13, 34, 49].
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One of the major shortcomings in scaling AIF to environments with high-dimensional, e.g. image-
based, environments comes from the necessity of building accurate models of the world, which try to
reconstruct every detail in the sensory data. This complexity is also reflected in the control stage,
when AIF agents compare future imaginary outcomes of potential actions with their goals, to select
the most convenient behaviors. In particular, we advocate that fulfilling goals in image space can be
poorly informative to build an objective for control.

In this work, we propose Contrastive Active Inference, a framework for AIF that aims to both
reduce the complexity of the agent’s internal model and to propose a more suitable objective to
fulfill preferred outcomes, by exploiting contrastive learning. Our method provides a self-supervised
objective that constantly informs the agent about the distance from its goal, without needing to
reconstruct the outputs of potential actions in high-dimensional image space.

The contributions of our work can be summarised as follows: (i) we propose a framework for AIF
that drastically reduces the computational power required both for learning the model and planning
future actions, (ii) we combine our method with value iteration methods for planning, inspired
by the RL literature, to amortize the cost of planning in AIF, (iii) we compare our framework to
state-of-the-art RL techniques and to a non-contrastive AIF formulation, showing that our method
compares well with reward-based systems and outperforms non-contrastive AIF, (iv) we show that
contrastive methods work better than reconstruction-based methods in presence of distractors in the
environment, (v) we found that our contrastive objective for control allows matching desired goals,
despite differences in the backgrounds. The latter finding could have important consequences for
deploying AIF in real-world settings, such as robotics, where perfectly reconstructing observations
from the environment and matching them with high-dimensional preferences is practically unfeasible.

2 Background
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Figure 1: POMDP Graphical Model

The control setting can be formalized as a Partially Observable
Markov Decision Process (POMDP), which is denoted with
the tupleM = {S,A, T,Ω,O, γ}, where S is the set of un-
observed states,A is the set of actions, T is the state transition
function, also referred to as the dynamics of the environment,
Ω is the set observations, O is a set of conditional observation
probabilities, and γ is a discount factor (Figure 1). We use the
terms observations and outcomes interchangeably throughout
the work. In RL, the agent has also access to a reward function
R, mapping state-action pairs to rewards.

Active Inference. In AIF, the goal of the agent is to minimize (a variational bound on) the surprisal
over observations, − log p(o). With respect to past observations, the upper bound leads to the
variational free energy F , which for timestep t is:

F = Eq(st) [log q(st)− log p(ot, st)] ≥ − log p(ot) (1)

where q(st) represents an approximate posterior.

The agent hence builds a generative model over states, actions and observations, by defining a
state transition function p(st|st−1, at−1) and a likelihood mapping p(ot|st), while the posterior
distribution over states is approximated by the variational distribution q(st|ot). The free energy can
then be decomposed as:

FAIF = DKL [q(st|ot)||p(st|st−1, at−1)]︸ ︷︷ ︸
complexity

−Eq(st|ot)[log p(ot|st)]︸ ︷︷ ︸
accuracy

. (2)

This implies that minimizing variational free energy, on the one hand, maximizes the likelihood of
observations under the likelihood mapping (i.e. maximizing accuracy), whilst minimizing the KL
divergence between the approximate posterior and prior (i.e. complexity). Note that for the past we
assume that outcomes and actions are observed, hence only inferences are made about the state st.
Also note that the variational free energy is defined as the negative evidence lower bound as known
from the variational autoencoder framework [39, 27].

For future timesteps, the agent has to make inferences about both future states and actions q(st, at) =
q(at|st)q(st), while taking into account expectations over future observations. Crucially, in active
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inference the agent has a prior distribution p̃(ot) on preferred outcomes it expects to obtain. Action
selection is then cast as an inference problem, i.e. inferring actions that will yield preferred outcomes,
or more formally that minimize the expected free energy G:

G = Eq(ot,st,at) [log q(st, at)− log p̃(ot, st, at)] , (3)

where p̃(ot, st, at) = p(at)p(st|ot)p̃(ot) is the agent’s biased generative model, and the expectation
is over predicted observations, states and actions q(ot, st, at) = p(ot|st)q(st, at).

If we assume the variational posterior over states is a good approximation of the true posterior, i.e.
q(st|ot) ≈ p(st|ot), and we also consider a uniform prior p(at) over actions [35], the expected free
energy can be formulated as:

GAIF = −Eq(ot)[DKL [q(st|ot)||q(st)]]︸ ︷︷ ︸
intrinsic value

−Eq(ot)[log p̃(ot)︸ ︷︷ ︸
extrinsic value

]− Eq(st)[H(q(at|st))]︸ ︷︷ ︸
action entropy

. (4)

Intuitively, this means that the agent will infer actions for which observations have a high information
gain about the states (i.e. intrinsic value), which will yield preferred outcomes (i.e. extrinsic value),
while also keeping its possible actions as varied as possible (i.e. action entropy).

Full derivations of the equations in this section are provided in the Appendix.

Reinforcement Learning. In RL, the objective of the agent is to maximize the discounted sum
of rewards, or return, over time

∑∞
t γtrt. Deep RL can also be cast as probabilistic inference,

by introducing an optimality variable Ot which denotes whether the time step t is optimal [30].
The distribution over the optimality variable is defined in terms of rewards as p(Ot = 1|st, at) =
exp(r(st, at)). Inference is then obtained by optimizing the following variational lower bound

− log p(Ot) ≤ Eq(st,at) [log q(st, at)− log p(Ot, st, at)]
= −Eq(st,at)[r(st, at)]− Eq(st)[H(q(at|st))],

(5)

where the reward-maximizing RL objective is augmented with an action entropy term, as in maximum
entropy control [20]. As also highlighted in [35], if we assume log p̃(ot|st) = log p(Ot|st), we can
see that RL works alike AIF, but encoding optimality value in the likelihood rather than in the prior.

In order to improve sample-efficiency of RL, model-based approaches (MBRL), where the agent
relies on an internal model of the environment to plan high-rewarding actions, have been studied.

Contrastive Learning. Contrastive representations, which aim to organize the data distinguishing
similar and dissimilar pairs, can be learned through Noise Contrastive Estimation (NCE) [19].
Following [37], an NCE loss can be defined as a lower bound on the mutual information between two
variables. Given two random variables X and Y , the NCE lower bound is:

I(X;Y ) ≥ INCE(X;Y ) , E

[
1

K

K∑
i=1

log
ef(xi,yi)

1
K

∑K
j=1 e

f(xi,yj)

]
, (6)

where the expectation is over K independent samples from the joint distribution:
∏
j p(xj , yj) and

f(x, y) is a function, called critic, that approximates the log density ratio log p(x|y)
p(x) . Crucially, the

critic can be unbounded, as in [50], where the authors showed that an inner product of transformated
samples from X and Y, namely f(x, y) = h(x)T g(y), with h and g functions, works well as a critic.

3 Contrastive Active Inference

In this section, we present the Contrastive Active Inference framework, which reformulates the
problem of optimizing the free energy of the past F and the expected free energy of the future G as
contrastive learning problems.

3.1 Contrastive Free Energy of the Past

In order to learn a generative model of the environment following AIF, an agent could minimize the
variational free energy FAIF from Equation 2. For high-dimensional signals, such as pixel-based
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images, the model works similarly to a Variational AutoEncoder (VAE) [27], with the informa-
tion encoded in the latent state st being used to produce reconstructions of the high-dimensional
observations ot through the likelihood model.

However, reconstructing images at pixel level has several shortfalls: (a) it requires models with high
capacity, (b) it can be quite computationally expensive, and (c) there is the risk that most of the
representation capacity is wasted on complex details of the images that are irrelevant for the task.

We can avoid predicting observations, by using an NCE loss. Optimizing the mutual information
between states and observations, it becomes possible to infer st from ot, without having to compute a
reconstruction. In order to turn the variational free energy loss into a contrastive loss, we add the
constant marginal log-probability of the data log p(ot) to F , obtaining:

F +
= DKL [q(st|ot)||p(st)]− Eq(st|ot)[log p(ot|st)− log p(ot)]

= DKL [q(st|ot)||p(st)]− I(St;Ot).
(7)

As for Equation 6, we can apply a lower bound on the mutual information I(St;Ot). We can define
the contrastive free energy of the past as:
FNCE = DKL [q(st|ot)||p(st)]− INCE(St;Ot)

= DKL [q(st|ot)||p(st)]− Eq(st|ot)p(ot)[f(ot, st)] + Eq(st|ot)p(o′)[log 1
K

∑K
j=1 e

f(oj ,st)],

(8)

where the dynamics p(st) is modelled as p(st|st−1, at−1), and the K samples from the distribution
p(o′) represent observations that do not match with the state st, catalyzing the contrastive mechanism.
Given the inequality INCE ≤ I , this contrastive utility provides an upper bound on the variational free
energy, F ≤ FNCE, and thus on suprisal.

3.2 Contrastive Free Energy of the Future

Performing active inference for action selection means inferring actions that realize preferred out-
comes, by minimizing the expected free energy G. In order to assess how likely expected future
outcomes are to fulfill the agent’s preferences, in Equation 4, the agent uses its generative model to
predict future observations.

Reconstructing imaginary observations in the future can be computationally expensive. Furthermore,
matching imagined outcomes with the agent’s preferences in pixel space can be poorly informative,
as pixels are not supposed to capture any semantics about observations. Also, observations that are
“far” in pixel space aren’t necessarily far in transition space. For example, when the goal is behind a
door, standing before the door is “far” in pixel space but only one action away (i.e. opening the door).

When the agent learns a contrastive model of the world, following Equation 8, it can exploit its
ability to match observations with states without reconstructions, in order to search for the states that
correspond with its preferences. Hence, we formulate the expectation in the expected free energy G
in terms of the preferred outcomes, so that we can add the constant marginal p̃(ot), obtaining:

G +
= Ep̃(ot)q(st,at) [log q(st, at)− log p̃(ot, st, at) + log p̃(ot)]

= DKL [q(st)||p(st)]− I(St; Õt)− Eq(st)[H(q(at|st))].
(9)

With abuse of notation, the mutual information between St and Õt quantifies the amount of informa-
tion shared between future imaginary states and preferred outcomes.

We further assume DKL [q(st)||p(st)] = 0, which constrains the agent to only modify its actions,
preventing it to change the dynamics of the world to accomplish its goal, as pointed out in [30]. This
leads to the following objective for the contrastive free energy of the future:

GNCE = −INCE(St; Õt)− Eq(st)[H(q(at|st))]

= −Eq(st)p̃(o)[f(õ, st)] + Eq(st)p(o′)[log 1
K

∑K
j=1 e

f(oj ,st)]− Eq(st)[H(q(at|st))].
(10)

Similar as in the FNCE, the K samples from p(o′) foster the contrastive mechanism, ensuring that
the state st corresponds to the preferred outcomes, while also being as distinguishable as possible
from other observations. This component implies a similar process as to the ambiguity minimization
aspect typically associated with the AIF framework [16].
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4 Model and Algorithm

The AIF framework entails perception and action, in a unified view. In practice, this is translated
into learning a world model, to capture the underlying dynamics of the environment, minimizing
the free energy of the past, and learning a behavior model, which proposes actions to accomplish
the agent’s preferences, minimizing the free energy of the future. In this work, we exploit the high
expressiveness of deep neural networks to learn the world and the behavior models.

The world model is composed by the following components:

Prior network:
Posterior network:
Representation model:

pφ(st|st−1, at−1)

qφ(st|st−1, at−1, ot)
fφ(o, s)

For the prior network, we use a GRU [9] while the posterior network combines a GRU with a
CNN to process observations. Both the prior and the posterior outputs are used to parameterize
Gaussian multivariate distributions, which represent a stochastic state, from which we sample using
the reparameterization trick [27]. This setup is inspired upon the models presented in [21, 54, 4].
For the representation model, we utilize a network that first processes ot and st with MLPs and then
computes the dot-product between the outputs, obtaining fφ(o, s) = hφ(o)T gφ(s), analogously to
[50]. We indicate the unified world model loss with: Jφ =

∑
t FNCE(st, ot).

In order to amortize the cost of long-term planning for behavior learning, we use an expected utility
function g(st) to estimate the expected free energy in the future for the state st, similarly to [34]. The
behavior model is then composed by the following components:

Action network:
Expected utility network:

qθ(at|st)
gψ(st)

where the action and expected utility networks are both MLPs that are concurrently trained as in
actor-critic architectures for RL [28, 20]. The action model aims to minimize the expected utility,
which is an estimate of the expected free energy of the future over a potentially infinite horizon,
while the utility network aims to predict a good estimate of the expected free energy of the future
that is obtainable by following the actions of the action network. We indicate the action network loss
with Jθ =

∑
t GNCE(st) and the utility network loss with Jψ =

∑
t(gψ(st) −

∑∞
k=T GNCE(st))

2,
where the sum from the current time step to an infinite horizon is obtained by using a TD(λ)
exponentially-weighted estimator that trades off bias and variance [43] (details in Appendix).

The training routine, which alternates updates to the models with data collection, is shown in
Algorithm 1. At each training iteration of the model, we sample B trajectories of length L from
the replay buffer D. Negative samples for the contrastive functionals are selected, for each state,
by taking L − 1 intra-episode negatives, corresponding to temporally different observations, and
(B − 1) ∗ L extra-episode negatives, corresponding to observations from different episodes.

Most of the above choices, along with the training routine itself, are deliberately inspired to current
state-of-the-art approaches for MBRL [23, 22, 11]. The motivation behind this is twofold: on the one
hand, we want to show that approaches that have been used to scale RL for complex planning can
also straightforwardly be applied for scaling AIF. On the other hand, in the next section, we offer a
direct comparison to current state-of-the-art techniques for RL that, being unbiased with respect to
the models’ architecture and the training routine, can focus on the relevant contributions of this paper,
which concerns the contrastive functionals for perception and action.

Relevant parameterization for the experiments can be found in the next section, while hyperparameters
and a detailed description of each network are left to the Appendix.

5 Experiments

In this section, we compare the contrastive AIF method to likelihood-based AIF and MBRL in
high-dimensional image-based settings. As the experiments are based in environments originally
designed for RL, we defined ad-hoc preferred outcomes for AIF. Our experimentation aims to answer
the following questions: (i) is it possible to achieve high-dimensional goals with AIF-based methods?
(ii) what is the difference in performance between RL-based and AIF-based methods? (iii) does
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Algorithm 1: Training and Data Collection
1: Initialize world model parameters φ and behavior model parameters θ and ψ.
2: Initialize dataset D with R random-action episodes.
3: while not done do
4: for update step u=1..U do
5: Sample B trajectories of length L from D.
6: Infer states st using the world model.
7: Update the world model parameters φ on the B trajectories, minimizing Lθ.
8: Imagine I trajectories of length H from each st.
9: Update the action network parameters θ on the I trajectories, minimizing Lφ.

10: Update the expected utility network parameters ψ on the I trajectories, minimizing Lψ .
11: end
12: Reset the environment.
13: Init state st = s0 and set t = 0
14: Init new trajectory with the first observation T = {o1}
15: while environment not done do
16: Infer action at using the action network qθ(at|st).
17: Act on the environment with at, and receive observation ot+1.
18: Add transition to the buffer T = T ∪ {at, ot+1} and set t = t + 1
19: Infer state st using the world model
20: end
21: end

contrastive AIF perform better than likelihood-based AIF? (iv) in what contexts contrastive methods
are more desirable than likelihood-based methods? (v) are AIF-based methods resilient to variations
in the environment background?

We compare the following four flavors of MBRL and AIF, sharing similar model architectures and all
trained according to Algorithm 1:

• Dreamer: the agents build a world model able to reconstruct both observations and rewards
from the state. Reconstructed rewards for imagined trajectories are then used to optimize
the behavior model in an MBRL fashion [23, 22].

• Contrastive Dreamer: this method is analog to its reconstruction-based counterpart, apart
from that it uses a contrastive representation model, like our approach. Similar methods
have been studied in [23, 32].

• Likelihood-AIF: the agent minimizes the AIF functionals, using observation reconstructions.
The representation model from the previous section is replaced with an observation like-
lihood model pφ(ot|st), which we model as a transposed CNN. Similar approaches have
been presented in [13, 34].

• Contrastive-AIF (ours): the agent minimizes the contrastive free energy functionals.

In Table 1, we compare the number of parameters and of multiply-accumulate (MAC) operations
required for the two flavors of the representation model in our implementation: likelihood-based and
contrastive (ours). Using a contrastive representation makes the model 13.8 times more efficient in
terms of MAC operations and reduces the number of parameters by a factor 3.5.

In Table 2, we compare the computation speed in our experiments, measuring wall-clock time and
using Dreamer as a reference. Contrastive methods are on average 16% faster, while Likelihood-AIF,
which in addition to Dreamer reconstructs observations for behavior learning, is 224% slower.

Table 1: Computational Efficiency

MMACs # Params

Likelihood 212.2 4485.7k

Ours 15.4 1266.7k

Table 2: Computation Time

w.r.t. Dreamer

Contrastive Dreamer/AIF 0.84

Likelihood-AIF 3.24
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Figure 2: MiniGrid Experiments. (left) Empty task goal image. (right) Results: shaded areas
indicate standard deviation across several runs.

5.1 MiniGrid Navigation

We performed experiments on the Empty 6×6 and the Empty 8×8 environments from the MiniGrid
suite [8]. In these tasks, the agent, represented as a red arrow, should reach the goal green square
navigating a black grid (see Figure 3a). The agent only sees a part of the environment, corresponding
to a 7×7 grid centered on the agent (in the bottom center tile). We render observations as 64×64
pixels. For RL, a positive reward between 0 and 1 is provided to the agent as soon as the agent reaches
the goal tile: the faster the agent reaches the goal, the higher the reward. For AIF agents, we defined
the preferred outcome as the agent seeing itself on the goal green tile, as shown in Figure 2 (left).

For the 6×6 task, the world model is trained by sampling B = 50 trajectories of length L = 7,
while the behavior model is trained by imagining H = 6 steps long trajectories. For the 8×8 task,
we increased the length L to 11 and the imagination horizon H to 10. For both tasks, we first
collected R = 50 random episodes, to populate the replay buffer, and train for U = 100 steps after
collecting a new trajectory. Being the action set discrete, we optimized the action network employing
REINFORCE gradients [52] with respect to the expected utility network’s estimates.

We assess performance in terms of the rewards achieved along one trajectory, stressing that AIF
methods did not have access to the reward function but only to the goal observation, during training.
The results, displayed in Figure 2 (right), show the average sum of rewards obtained along training,
over the number of trajectories collected. We chose to compare over the number of trajectories as the
trajectories’ length depends on whether the agent completed the task or not.

In this benchmark, we see that MBRL algorithms rapidly converge to highly rewarding trajectories,
in both the 6×6 and the 8×8 tasks. Likelihood-AIF struggles to converge to trajectories that reach
the goal consistently and fast, mostly achieving a reward mean lower than 0.4. In contrast, our
method performs comparably to the MBRL methods in the 6×6 grid and reaches the goal twice
more consistently than Likelihood-AIF in the 8×8 grid, leaning towards Dreamer and Contrastive
Dreamer’s results.

Utility Function Analysis. In order to understand the differences between the utility functions we
experimented with, we analyze the values assigned to each tile in the 8×8 task by every method.

(a) Grid Task (b) Rewards (c) AIF Model (d) NCE Model (ours)

Figure 3: Utility Values MiniGrid. (b-c-d) Darker tiles correspond to higher utility values.
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(a) Reacher Easy Goal (b) Reacher Hard Goal (c) Distracting Reacher Easy

Figure 4: Continuous tasks setup. Note that the Reacher Easy Goal is also used for the Distracting
Reacher Easy task, without changing the goal’s background.

For the AIF methods, we collected all possible transitions in the environment and used the model to
compute utility values for each tile. The results are shown in Figure 3.

The reward signal for the Empty environment is very sparse and informative only once the agent
reaches the goal. In contrast, AIF methods provide denser utility values. In particular, we noticed that
the Likelihood-AIF model provides a very strong signal for the goal position, whereas other values
are less informative of the goal. Instead, the Contrastive-AIF model seems to capture some semantic
information about the environment: it assigns high values to all corners, which are conceptually
closer outcomes to the goal, while also providing the steepest signal for the green corner and its
neighbor tiles. As also supported by the results obtained in terms of rewards, our method provides a
denser and more informative signal to reach the goal in this task.

5.2 Reacher Task

We performed continuous-control experiments on the Reacher Easy and Hard tasks from the Deep-
Mind Control (DMC) Suite [48] and on Reacher Easy from the Distracting Control Suite [47]. In this
task, a two-link arm should penetrate a goal sphere with its tip in order to obtain rewards, with the
sphere being bigger in the Easy task and smaller in the Hard one. The Distracting Suite adds an extra
layer of complexity to the environment, altering the camera angle, the arm and the goal colors, and
the background. In particular, we used the ‘easy’ version of this benchmark, corresponding to smaller
changes in the camera angles and in the colors, and choosing the background from one of four videos
(example in Figure 4c).

In order to provide consistent goals for the AIF agents, we fixed the goal sphere position as shown in
Figure 4b and 4a. As there is no fixed background in the Distracting Suite task, we could not use a
goal image with the correct background, as that would have meant changing it at every trajectory. To
not introduce ‘external’ interventions into the AIF experiments, we decided to use a goal image with
the original blue background from the DMC Suite to test out the AIF capability to generalize goals to
environments having the same dynamics but different backgrounds.

For both tasks, the world model is trained by sampling B = 30 trajectories of length L = 30, while
the behavior model is trained by imagining H = 10 steps long trajectories. We first collect R = 50
random episodes, to populate the replay buffer, and train for U = 100 steps after every new trajectory.
Being the action set continuous, we optimized the action network backpropagating the expected utility
value through the dynamics, by using the reparameterization trick for sampling actions [23, 11].

The results are presented in Figure 5, evaluating agents in term of the rewards obtained per trajectory.
The length of a trajectory is fixed to 1·103 steps.

Reacher Easy/Hard. The results on the Reacher Easy and Hard tasks show that our method was
the fastest to converge to stable high rewards, with Contrastive Dreamer and Dreamer following. In
particular, Dreamer’s delay to convergence should be associated with the more complex model, that
took more epochs of training than the contrastive ones to provide good imagined trajectories for
planning, especially for the Hard task. The Likelihood-AIF failed to converge in all runs, because of
the difficulty of matching the goal state in pixel space, which only differs a small number of pixels
from any other environment observation.

Distracting Reacher Easy. On the Distracting task, we found that Dreamer failed to succeed. As
we show in Appendix, the reconstruction model’s capacity was entirely spent on reconstructing the
complex backgrounds, failing to capture relevant information for the task. Conversely, Contrastive
Dreamer was able to ignore the complexity of the observations and the distractions present in the
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Figure 5: Reacher Results. Shaded areas indicate standard deviation across several runs.

environment, eventually succeeding in the task. Surprisingly, also our Contrastive-AIF method was
able to succeed, showing generalization capabilities that are not shared by the likelihood counterpart.

We believe this result is important for two reasons: (1) it provides evidence that contrastive features
better capture semantic information in the environment, potentially ignoring complex irrelevant
details, (2) contrastive objectives for planning can be invariant to changes in the background, when
the underlying dynamics of the task stays the same.

Utility Function Analysis. To collect further insights on the different methods’ objectives, we
analyze the utility values assigned to observations with different poses in the Reacher Hard task. In
Figure 6, we show a comparison where all the values are normalized in the range [0,1], considering
the maximum and minimum values achievable by each method.

The reward signal is sparse and provided only when the arm is penetrating the goal sphere with
his orange tip. In particular, a reward of +1 is obtained only when the tip is entirely contained in
the sphere. The Likelihood-AIF utility looks very flat due to the static background, which causes
any observation to be very similar to the preferred outcome in pixel space. Even a pose that is very
different from the goal, such as the top left one, is separated only by a relatively small number of
pixels from the goal one, in the bottom right corner, and this translates into very minor differences in
utility values (i.e. 0.98 vs 1.00). For Contrastive-AIF, we see that the model provides higher utility
values for observations that look perceptually similar to the goal and lower values for more distant
states, providing a denser signal to optimize for reaching the goal. This was certainly crucial in
achieving the task in this experiment, though overly-shaped utility functions can be more difficult to
optimize [1], and future work should analyze the consequences of such dense shaping.

Figure 6: Utility Values Reacher. Normalized utility values for multiple poses in Reacher Hard.
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6 Related Work

Contrastive Learning. Contrastive learning methods have recently led to important breakthroughs
in the unsupervised learning landscape. Techniques like MoCO [7, 24] and SimCLR [5, 6] have
progressively improved performance in image recognition, by using only a few supervised labels.
Contrastive learning representations have also shown successful when employed for natural language
processing [50] and model-free RL [46].

Model-based Control. Improvements in the dynamics generative model [21], have recently allowed
model-based RL methods to reach state-of-the-art performance, both in control tasks [23] and on
video games [22, 26]. An important line of research focuses on correctly balancing real-world
experience with data generated from the internal model of the agent [25, 11].

Outcome-Driven Control. The idea of using desired outcomes to generate control objectives has
been explored in RL as well [41, 18, 40]. In [31], the authors propose a system that, given a desired
goal, can sample plans of action from a latent space and decode them to act on the environment.
DISCERN [51] maximizes mutual information to the goal, using cosine similarity between the goal
and a given observation, in the feature space of a CNN model.

Active Inference. In our work, we used active inference to derive actions, which is just one possibility
to perform AIF, as discussed in [14, 35]. In other works, the expected free energy is passively used as
the utility function to select the best behavior among potential sequences of actions [15, 16]. Methods
that combine the expressiveness of neural networks with AIF have been raising in popularity in
the last years [53]. In [13], the authors propose an amortized version of Monte Carlo Tree Search,
through an habit network, for planning. In [49], AIF is seen performing better than RL algorithms
in terms of reward maximization and exploration, on small-scale tasks. In [34], they propose an
objective to amortize planning in a value iteration fashion.

7 Discussion

We presented the Contrastive Active Inference framework, a contrastive learning approach for active
inference, that casts the free energy minimization imperatives of AIF as contrastive learning problems.
We derived the contrastive objective functionals and we corroborated their applicability through
empirical experimentation, in both continuous and discrete action settings, with high-dimensional
observations. Combining our method with models and learning routines inspired from the model-
based RL scene, we found that our approach can perform comparably to models that have access
to human-designed rewards. Our results show that contrastive features better capture relevant
information about the dynamics of the task, which can be exploited both to find conceptually similar
states to preferred outcomes and to make the agent’s preferences invariant to irrelevant changes in the
environment (e.g. background, colors, camera angle).

While the possibility to match states to outcomes in terms of similar features is rather convenient
in image-based tasks, the risk is that, if the agent never saw the desired outcome, it would converge
to the semantically closest state in the environment that it knows. This raises important concerns
about the necessity to provide good exploratory data about the environment, in order to prevent the
agent from hanging in local minima. For this reason, we aim to look into combining our agent with
exploration-driven data collection, for zero-shot goal achievement [33, 45]. Another complementary
line of research would be equipping our method with better experience replay mechanisms, such as
HER [1], to improve the generalization capabilities of the system.

Broader impact

Active inference is a biologically-plausible unifying theory for perception and action. Implementa-
tions of active inference that are both tractable and computationally cheap are important to foster
further research towards potentially better theories of the human brain. By strongly reducing the
computational requirements of our system, compared to other deep active inference implementations,
we aim to make the study of this framework more accessible. Furthermore, our successful results on
the robotic manipulator task with varying realistic backgrounds show that contrastive methods are
promising for real-world applications with complex observations and distracting elements.
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