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Abstract
Large Language Models (LLMs), despite exten-
sive pretraining on broad internet corpora, often
struggle to adapt effectively to specialized do-
mains. There is growing interest in fine-tuning
these models for such domains; however, progress
is constrained by the scarcity and limited cover-
age of high-quality, task-relevant data. To address
this, synthetic data generation methods such as
paraphrasing or knowledge extraction are com-
monly applied. Although these approaches excel
at factual recall and conceptual knowledge, they
suffer from two critical shortcomings: (i) they
provide minimal support for interpretive reason-
ing capabilities in these specialized domains, and
(ii) they often produce synthetic corpora that are
excessively large and redundant, resulting in poor
sample efficiency. To overcome these gaps, we
propose an adversarial question-generation frame-
work that produces a compact set of semantically
challenging questions. These questions are con-
structed by comparing the outputs of the model to
be adapted and a robust expert model grounded in
reference documents, using an iterative, feedback-
driven process designed to reveal and address
comprehension gaps. Evaluation on specialized
subsets of the LegalBench corpus demonstrates
that our method achieves greater accuracy with
substantially fewer synthetic samples.

1. Introduction
Large Language Models (LLMs) pretrained on exten-
sive internet-scale corpora have demonstrated remarkable
general-purpose capabilities but often struggle to efficiently
adapt to highly specialized, domain-specific knowledge con-
tained within small, focused document sets. This difficulty
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arises primarily from the models’ unfamiliarity with critical
domain-specific facts—which may appear only sparsely or
even just once within a limited corpus—making it especially
challenging to interpret and integrate these facts through
complex reasoning. Although there is growing interest in
fine-tuning LLMs for specific domains, progress has been
limited due to the scarcity of specialized data, motivating the
development of targeted synthetic augmentation approaches.

Recent approaches, such as EntiGraph (Yang et al., 2024b)
and Knowledge-Instruct (Ovadia et al., 2025), aim to close
the data-efficiency gap by generating synthetic training
data from small corpora, typically through structured entity
and fact extraction. These methods commonly leverage a
large, general-purpose model to generate new training data
grounded in the specialized domain documents, which is
then used to improve a smaller, domain-specialized model,
often via fine-tuning or distillation. While EntiGraph fo-
cuses on expanding entity-centric knowledge graphs for
continued pretraining, Knowledge-Instruct reformulates ex-
tracted knowledge into instruction-response pairs for su-
pervised fine-tuning. Although these approaches achieve
strong performance on tasks focused primarily on factual
recall, their effectiveness may diminish when faced with
broader comprehension tasks, especially those requiring nu-
anced interpretation, inference, and integration of complex
domain-specific knowledge. For example, determining in-
surance coverage for an uncommon event, such as a client
experiencing an accident while hiking abroad, requires inter-
preting rarely encountered or implicitly defined conditions
within policy clauses. Resolving such questions involves
not merely recalling explicit facts, but understanding nu-
anced language, subtle contextual implications, and layered
dependencies within domain-specific documentation.

This observation suggests that it is not just the quantity of
data that matters, but rather the quality and specificity of the
augmentation strategies employed, particularly approaches
explicitly designed to pinpoint and address specific model
deficiencies. Existing augmentation methods generally gen-
erate synthetic data indiscriminately or based on pre-defined
heuristics, without directly probing which concepts or rea-
soning tasks are most difficult for the model. This can lead to
inefficient training, as much of the augmented data might re-
inforce knowledge the model already possesses. To address
this, an adversarial approach naturally emerges as a promis-
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ing alternative: by actively generating challenging questions
tailored to expose precisely those aspects of reasoning and
comprehension where the model exhibits weaknesses. In
this manner, the model is exposed not only to questions
that require factual recall but also, and more importantly,
to those that demand interpretive and integrative reasoning.
Inspired by principles from active learning (Xu et al., 2013),
boosting (Freund & Schapire, 1997), and distributionally ro-
bust optimization (DRO) (Duchi & Namkoong, 2018; Sinha
et al., 2018)—which enhance learning by focusing on uncer-
tain, misclassified, or worst-case instances where the model
may perform poorly—we introduce an adversarial learning
framework for smaller domain-specific LLMs. This frame-
work iteratively generates questions, using feedback from a
robust expert model, to systematically uncover and address
interpretative weaknesses.

We demonstrate our adversarial feedback-driven methodol-
ogy on specialized legal documents within the LegalBench
corpus (Guha et al., 2023), showing how these targeted syn-
thetic datasets substantially improve the domain-specific rea-
soning capabilities of smaller LLMs. Our method enables
these models to achieve performance competitive with much
larger counterparts, surpassing entity-centric and instruction-
based strategies by more effectively addressing a wider
range of nuanced comprehension challenges.

2. Related Work
Transfer Learning Across Domains. A core challenge in
natural language processing is adapting language models
to new domains where direct supervision or labeled data
is scarce. Traditional approaches for cross-domain transfer
learning often involve continued pretraining on domain cor-
pora (Gururangan et al., 2020; Devlin et al., 2019), domain-
adaptive fine-tuning (Howard & Ruder, 2018; Lee et al.,
2020), or leveraging multi-task learning frameworks (Ruder,
2017). Such methods aim to bridge the gap between gen-
eral pretraining and the specific terminology, knowledge,
or reasoning patterns required in target domains. However,
their effectiveness may be constrained by the limited avail-
ability of high-quality domain-specific data, motivating the
development of more data-efficient adaptation strategies.

Model Distillation and Student-Teacher Paradigms. To
further enhance transfer across domains, model distillation
methods have been widely employed (Lin et al., 2021; Sanh
et al., 2019). In this setup, a large, general-purpose teacher
model transfers knowledge to a smaller, specialized student
model, typically by having the student mimic the outputs
or intermediary representations of the teacher. Recent work
has explored domain-adaptive distillation (Turc et al., 2019;
Jiao et al., 2020), where the teacher is either fine-tuned
or prompted for domain-specific tasks, and the resulting
guidance is used to supervise smaller models with reduced

resources. These teacher-student setups are related to our
approach, but in our case, the teacher model is grounded in
the same domain documents as the student. This ensures
the feedback is tailored to the specific context, making the
supervision more relevant and effective.

Synthetic Data Generation. Recent approaches adapt lan-
guage models to specialized domains with limited data by
generating synthetic corpora. Entity-centric methods such
as EntiGraph (Yang et al., 2024b) expand on entities and
relations via knowledge graphs, while paraphrase-based
techniques (Maini et al., 2024; Ovadia et al., 2024) diversify
training data by rewording existing texts. Instruction-driven
approaches like Knowledge-Instruct (Ovadia et al., 2025)
convert extracted domain facts into instruction–response
pairs, supporting efficient adaptation under low-resource set-
tings. By contrast, our adversarial, feedback-driven frame-
work improves sample efficiency and reasoning ability by
selectively generating questions that require not only factual
recall but also deeper context-dependent reasoning.

Alongside these developments, there is increasing interest
in using LLMs in iterative feedback loops to refine prompts
and tasks. Such feedback-driven frameworks, where the
model provides critiques or guidance, underlie our approach.

Prompt Optimization via LLM Feedback. Recent ap-
proaches optimize prompts and inputs using automated
feedback generated by large language models. In these
frameworks, prompt refinement are guided by structured
critiques or optimization signals from external LLMs. For
instance, methods such as TextGrad (Yüksekgönül et al.,
2024) implement differentiable prompting, iteratively refin-
ing queries to maximize a model-evaluated reward. Other
techniques leverage LLM feedback loops for instruction tun-
ing and robust evaluation (Yang et al., 2024a; Madaan et al.,
2023). Our adversarial question generation pipeline builds
upon this line of work, using LLM-driven feedback to pro-
vide fine-grained, diagnostic supervision in an adversarial
optimization framework.

3. Methodology
Our objective is to enhance both the domain-specific knowl-
edge—the understanding and recall of concepts, facts, and
language unique to a given specialized corpus—and the
interpretive reasoning capabilities—that is, the ability to
accurately integrate, infer, and reason over such content—
of language models, based solely on access to a domain
document C (e.g., a legal contract). As in prior work, we op-
erate solely with the domain corpus itself, without requiring
annotated datasets or downstream task supervision.

To systematically address both types of weaknesses, our
approach introduces an iterative adversarial process that
generates questions Q(t) targeting the model’s factual gaps
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and interpretative limitations. For example, some questions
may focus on domain-specific terminology, concepts, or
facts explicitly present in C (e.g., “What is the definition of
the term ‘subrogation’ in this contract?”), while others may
present challenging or hypothetical scenarios that require
reasoning, inference, or integration of multiple clauses (e.g.,
“If a client is injured while hiking abroad, would they be
covered under this insurance policy?”). A model may, for
instance, accurately define ’subrogation’ but fail when asked
to determine coverage in a scenario requiring integration of
multiple clauses; an adversarial question targeting this sce-
nario reveals such interpretive limitations. In this context,
the effectiveness of adversarial question generation may
be conceptually likened to pedagogical practices in active
learning: rather than solely requiring the passive recall of
explicitly stated definitions and isolated facts—analogous
to students memorizing material for traditional written ex-
ams—comprehensive understanding is better gauged by pos-
ing challenging, integrated, or hypothetical scenarios akin
to those one might encounter in rigorous oral examinations.

In our setting, we assume access to a large, highly capable
language model which, when provided with the full domain
corpus C as context, can function as a robust “oracle” or
expert. However, relying on such a system—in which the
model always has access to all domain documents—is often
impractical in real-world scenarios due to resource, latency,
privacy, or deployment constraints. Therefore, our aim is to
transfer domain expertise from this strong oracle model to a
more lightweight, efficient target model.

3.1. Adversarial Question Optimization

We propose an adversarial optimization framework to sys-
tematically uncover and address interpretive deficiencies
in domain-specific language models. This setup comprises
two primary agents: a robust expert model (fstrong) and a
target weaker model (fweak), both provided with access to
the same domain-specific context C. The core objective
is to generate and iteratively refine questions about C that
maximize divergence between the responses of these mod-
els, thereby identifying aspects in which the target model
exhibits limitations in either domain-specific knowledge or
interpretive reasoning. Formally, at each iteration t, we take
the domain-specific context or document C and the current
question Q

(t)
i , and obtain answers from both models:

A
(t)
i,strong = fstrong(C,Q

(t)
i ), A

(t)
i,weak = fweak(C,Q

(t)
i ).

We then evaluate the difference in their answers using a
feedback function ffb, which is typically instantiated as a
capable LLM to compare the two responses and identify dis-
crepancies along dimensions such as correctness, coverage,
and contextual reasoning alignment (see Appendix A.3.3):

L(Q(t)
i ) = ffb(A

(t)
i,strong, A

(t)
i,weak).

The key objective of this adversarial process is to generate
questions that maximize the measured disagreement, as
quantified by L(Q), which serves as a proxy loss function
indicating where the target model most strongly diverges
from the expert’s interpretive capacity. Specifically, we seek

Q∗ = argmax
Q
L(Q).

To operationalize this iterative maximization over text, we
adopt the differentiable prompting paradigm introduced
in TextGrad (Yüksekgönül et al., 2024). Notably, while
TextGrad is designed to minimize a task loss by refining
prompts, our framework inverts this direction and explicitly
maximizes interpretive disagreement in order to expose the
limitations of the target model:

Q
(t+1)
i = Q

(t)
i +∇QL(Q(t)

i ).

Each refinement step comprises two stages: (i) a guid-
ance model (fguide) generates a natural language editing in-
struction, conditioned on the output of the feedback model
(ffb): ∇QL(Q(t)

i ) = fguide(Q
(t)
i ,L(Q(t)

i )). This instruc-
tion prescribes how to revise Q

(t)
i to accentuate potential

weaknesses and failure modes in the target model (see Ap-
pendix A.3.3 for examples). (ii) a revision model (frev)
applies this instruction to update the current question, yield-
ing the next iteration, Q(t+1)

i = frev(Q
(t)
i ,∇QL(Q(t)

i )).

In practice, we instantiate the three auxiliary agents—ffb,
fguide, and frev—using the same strong LLM, each config-
ured with a distinct instruction prompt (see Appendix A.3.3).
This design preserves semantic consistency across mod-
ules while remaining implementation-lightweight. Notably,
fguide and frev correspond to the TextGrad.backward
and TextGrad.step modules, respectively.

Algorithm 1 summarizes the entire adversarial question op-
timization procedure, clearly delineating each step involved
in refining questions to systematically identify and improve
the interpretive limitations of the target model.

3.2. Synthetic Dataset Construction and Fine-Tuning

After completing the optimization procedure, we assemble a
synthetic dataset consisting of the final adversarial questions
paired with expert-provided answers:

Dsynthetic =
{(

Q
(T )
i , fstrong(C,Q

(T )
i )

)}N

i=1
.

Fine-tuning the weak model fweak on the expert-curated
Dsynthetic explicitly targets and remedies the shortcomings
uncovered by adversarial optimization. Consequently, this
focused training substantially enhances the model’s robust-
ness and accuracy on domain-specific comprehension tasks.
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Algorithm 1 Iterative Adversarial Question Generation
1: Input: Domain context C; initial question set
{Q(0)

i }Ni=1; strong model fstrong; weak model fweak;
feedback model ffb; guidance model fguide; revision
model frev; number of iterations T

2: for i = 1 to N do
3: for t = 0 to T − 1 do
4: A

(t)
i, strong ← fstrong(C,Q

(t)
i )

5: A
(t)
i, weak ← fweak(C,Q

(t)
i )

6: L(Q(t)
i )← ffb(A

(t)
i, strong, A

(t)
i, weak)

7: ∇QL(Q(t)
i )← fguide(Q

(t)
i , L(Q(t)

i ))

8: Q
(t+1)
i ← frev(Q

(t)
i , ∇QL(Q(t)

i ))
9: end for

10: end for
11: Return: {Q(T )

i }Ni=1 (Final set of optimized questions)

4. Experiments
We assess our method on a targeted subset of the Legal-
Bench benchmark (Guha et al., 2023), which originally
comprises a wide range of tasks intended to evaluate
the legal reasoning abilities of large language models.
To emphasize domain-specific abilities, we focus on the
three most frequently referenced contracts from the CUAD
dataset (Hendrycks et al., 2021) within the LegalBench suite.
These are: Cardlytics Maintenance Agreement, Buffalo Wild
Wings Franchise Agreement, and PF Hospitality Franchise
Agreement. Across these contracts, there are a total of 491
benchmark questions spanning 36 distinct tasks.

Table 1. Accuracy (%) across three contract-specific subsets and
average for LLaMA3-8b.

Method Tokens Cardl Buffa Pfhos Avg

Baselines
No Extra Data - 67.3 69.1 72.1 69.5

Ours
Ours 96k 82.7 79.6 85.7 82.7

Competitor
Paraphrase ×6 149k 68.5 70.4 77.0 71.9
Model-indep. QA 147k 75.0 74.1 78.3 75.8
Entigraph 6.7M 80.4 76.5 82.0 79.6
Knowledge Instr 159k 78.6 70.4 75.8 75.0

We compare our proposed fine-tuning approach against a
base pretrained LLM , as well as several increasingly so-
phisticated domain adaptation strategies. These include
(1) paraphrase-based fine-tuning; (2) fine-tuning on unin-
formed questions, a naive synthetic dataset generated by
prompting a strong LLM to write challenging questions for
a given contract without any iterative refinement or adver-
sarial objective; (3) EntiGraph-based augmentation (Yang
et al., 2024b); and (4) Knowledge-Instruct (Ovadia et al.,

2025). All models are evaluated using a few-shot setting
with the standard LegalBench prompt template. To isolate
the effects of fine-tuning strategies, we do not employ any
retrieval augmentation or external tools.

Our adversarial QA generation approach consistently out-
performs both paraphrase-based fine-tuning and model-
independent questions fine-tuning baselines. It achieves a
18.99% improvement over the base model and a 3.89%
gain relative to the EntiGraph competitor, while using
≈70× fewer training tokens. Whereas EntiGraph primarily
augments entity-level relational knowledge, our feedback-
driven question optimization specifically targets interpre-
tive shortcomings, leading to richer semantic coverage and
greater task accuracy.

To assess the impact of iterative adversarial refinement, we
perform a sensitivity analysis by varying the number of
optimization steps during dataset construction. For each
contract, we generate adversarial questions with different re-
finement iterations, fine-tune the target model, and evaluate
on the corresponding LegalBench tasks.
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Figure 1. Accuracy on LegalBench (top three contracts) by epoch;
performance improves with more refinement.

As shown in Figure 1, additional refinement iterations re-
sult in progressively higher accuracy, highlighting the ef-
fectiveness of iterative adversarial feedback in improving
domain-specific model performance.

5. Conclusion
We introduce an adversarial question generation framework
to enhance domain-specific LLMs by systematically iden-
tifying and addressing their interpretive weaknesses. By
adapting the TextGrad differentiable prompting method, our
approach iteratively produces targeted questions and syn-
thetic datasets aligned with model-specific shortcomings.
Empirical results demonstrate that this strategy substantially
improves the reasoning performance of smaller LLMs, even
in limited data settings, highlighting the effectiveness of
adversarial refinement for efficient domain adaptation.
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A. Appendix
A.1. Detailed Code Explanation

This appendix provides an in-depth explanation of the im-
plementation behind the adversarial question generation
pipeline described in the main text. We outline its method-
ology, specific variable roles, code examples, and the adver-
sarial optimization process.

A.2. Overall Methodology

The central goal of our approach is to iteratively generate
adversarial questions that reveal and target the interpretive
weaknesses of a smaller language model (termed the weak
model), using discrepancies with a larger, more robust expert
model (the strong model). The process relies on structured
feedback from a feedback model, which evaluates the diver-
gence between the models’ responses in context.

Algorithm explanation: Algorithm explanation:

• Inputs: A set of N independently initialized questions
(each starting from a placeholder, as described by the
question variable in the next subsection), the fixed
document context C, models fstrong, fweak, and ffb, as
well as the total number of optimization iterations T .

• Response Generation: For each question Qi at each it-
eration t, both models are queried with input (C,Q(t)

i ),
yielding responses A(t)

i,strong and A
(t)
i,weak.

• Discrepancy Evaluation: The feedback model ffb com-
pares these responses, computing both a numeric dis-
agreement score and a natural language explanation,
denoted L(Q(t)

i ).

• Gradient Computation: The guidance model fguide re-
ceives the explanation from the feedback model and
generates a natural language edit instruction, indicating
how to revise Q

(t)
i so as to further increase the answer

discrepancy.

• Question Update: The revision model frev uses the
current question and the edit instruction to generate
an updated question, thereby steering the question to
maximize divergence between the models’ outputs.

After T rounds, the final set of optimized questions
{Q(T )

i }Ni=1 together with their strong model answers are
saved for constructing the synthetic dataset.

Implementation Note:
In practice, the variable question is initialized as a
learnable object (‘requires grad=True‘) and is updated via
feedback-driven optimization. All model weights and the

context document remain fixed; only the content of the
question is iteratively revised.

A.3. Implementation Details

Our implementation uses the textgrad framework, lever-
aging a differentiable prompting paradigm and modern LLM
APIs. Below, each major component and step is described.

A.3.1. MODEL CONFIGURATION

Three key model interfaces are initialized via
LiteLLMEngine:

• Strong Model: Provides authoritative answers strictly
based on the contract. In practice, we use gpt-4o-mini.

• Weak Model: The target of improvement, typically
smaller or less domain-specialized. In practice, we use
llama3.1:8b.

• Feedback Model: Evaluates discrepancies between
strong and weak model answers to guide question opti-
mization.

A.3.2. CENTRAL ROLE OF THE OPTIMIZED QUESTION

VARIABLE

A distinctive and central aspect of our method is that the
question variable itself is the object of optimization. In-
stead of tuning model parameters, our pipeline holds both
the contract text and all model weights fixed—and itera-
tively refines the natural language content of the question
prompt.

In code, the variable is initialized as:

question = tg.Variable(
"Q: ???", # minimal placeholder
requires grad=True,
role description="A legal
question to be optimized for
maximal response divergence"
)

Conceptually, at each iteration, the current value of
question is updated to maximize measured discrepancy
between the weak and strong models. This iterative pro-
cess adaptively generates natural language questions that
are adversarial: they are optimized to be especially likely to
expose errors, misunderstanding, or blind spots in the weak
model, given a fixed contract context.

A.3.3. PROMPT TEMPLATES

Carefully crafted prompts ensure the models fulfill their
roles.
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Strong and Weak Models Prompt:

You are an expert in
interpreting contracts.
The user will provide a contract
and a question about it.
Provide the most accurate,
thorough answer based on the
contract’s text.
Stay strictly within the
contract’s details and do not
invent external laws.

Feedback Model Prompt:

You are an expert in legal
contract analysis.
Given two responses (correct vs.
potentially incorrect), identify
contradictions, omissions, or
errors in the second response.
Provide a numeric incorrectness
score (0.0 to 1.0) with detailed
explanation.

Example formatted prompt for discrepancy evaluation:

Compare the following responses:
<CONTRACT>: {contract}
<QUESTION>: {question}
<CORRECT RESPONSE>:
{response strong}
<POSSIBLY INCORRECT RESPONSE>:
{response weak}
Rate the incorrectness of the
second response (0 to 1) and
explain errors, contradictions,
or missing details.

A.3.4. OPTIMIZATION ALGORITHM

Optimization employs the TextGrad framework’s differ-
entiable prompting technique. Each iteration refines
question based on textual feedback, with code logic as
follows:

optimizer.zero grad()
divergence loss =
loss fn(contract text, question,
response strong, response weak)
divergence loss.backward()
optimizer.step()

This iterative update is conceptually analogous to a gra-
dient ascent step, since each feedback-driven edit aims to

increase (rather than decrease) the disagreement proxy—but
the updates are performed purely in the space of natural
language.

A.4. Synthetic Dataset Construction

After optimization, synthetic adversarial questions and their
authoritative answers (from the strong model) are saved to a
dataset. This dataset is constructed specifically to target and
address the interpretative weaknesses surfaced in the weak
model.

A.5. Illustrative Example: Iterative Adversarial
Refinement of Legal Questions

To concretely illustrate our feedback-driven methodology,
we present an example drawn from adversarial QA genera-
tion over a complex legal contract—the “Software License,
Customization and Maintenance Agreement” between Bank
of America and Cardlytics, Inc. At each iteration t, our algo-
rithm interacts with the document context C, refines the cur-
rent question Q(t), and leverages feedback from model dis-
agreements to systematically probe where the target model
falls short.

Initial Setup

• Document Context (C): Raw, multi-page legal con-
tract (e.g., 30+ pages covering IP, confidentiality, audit,
etc.).

• Current Question Q(t): The natural-language prompt
being optimized.

• Strong (Expert) Model: Large LLM (e.g., GPT-4o-
mini in our experiments) with robust reasoning over
C.

• Weak (Target) Model: Smaller LLM (e.g., Llama-3
8B in our experiments); less accurate on nuanced legal
reasoning.

• Feedback Model: Compares strong/weak responses,
assigns a numerical error score, and provides action-
able natural-language critique highlighting omissions,
misconceptions, or interpretive errors.

Iteration 0: Initialization Q(0): Q: ???

Strong Model’s Response: “It appears that you did not
provide a specific question regarding the contract. Please
clarify your question, and I will do my best to provide an
accurate and thorough answer based on the contract’s text.”

Weak Model’s Response: “. . . it appears that you are ask-
ing about a specific aspect. . . If I were to guess, one pos-
sible question could be: ’What are the requirements for
background checks. . . ’. . . ”
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Feedback Model Output:

• Score: 0.5 (partially incorrect/misleading)

• Critique: Weak model guesses rather than prompting
for clarification; fails to require user input.

• TextGrad Guidance: “Replace vague placeholder
with a meaningful, contextually grounded question
targeting a specific clause (e.g., confidentiality, indem-
nity). Use hypotheticals or contrast with industry stan-
dards.”

Revision → Q(1): What are the potential
risks and benefits associated with
the confidentiality provisions in this
contract, and how might these affect
both parties in terms of liability and
operational flexibility?

Iteration 1: Sharpening Scope and Depth Strong
Model: Multi-paragraph answer, citing specific sections,
discussing operational and compliance implications.

Weak Model: Discusses generic risks/benefits but omits
contract-specific definitions and scenario detail.

Feedback Model Output:

• Score: 0.6 (incomplete)

• Critique: Omits key details (e.g., definition of “confi-
dential info”, obligations on breach, liability nuances).

• TextGrad Guidance: “Expand comparative
scope—request scenario analysis, stakeholder view,
and cross-industry contrast (e.g., healthcare, GDPR).”

Revision → Q(2): Considering the entire
Agreement, what are the potential
risks and benefits associated with the
confidentiality provisions, and how
do these provisions compare to those
in other financial services contracts?
Can you provide examples or scenario
analyses for their impact on liability
and operational flexibility for both
parties and stakeholders involved?

Iteration 2: Multi-Perspective and Hypothetical Analysis
Strong Model: Expands with cross-industry contrasts (e.g.,
with HIPAA), stakeholder-specific discussion, hypothetical
adverse event scenarios.

Weak Model: Improves, but still superficial on scenario
depth and long-term effects.

Feedback Model Output:

• Score: 0.6

• Critique: Insufficient detail in long-term conse-
quences, stakeholder-specific risk perception.

• TextGrad Guidance: “Ask for best- vs. worst-case
hypotheticals, speculative future impact, and divergent
interpretations by different actors.”

Revision→ Q(3): How do the confidentiality
provisions, liability clauses, and
compliance requirements in this
agreement influence operational
flexibility and stakeholder
perspectives? How do they compare to
industry standards across healthcare,
technology, and privacy? Provide
contrasting hypothetical scenarios and
discuss possible long-term consequences
of breaches or compliance failures
(including differing stakeholder
interpretations).

Final feedback at T iteration This adversarial, iterative
loop yields a maximally challenging question, such as:

In what ways do the confidentiality
provisions, liability clauses, and
compliance requirements influence
operational flexibility and stakeholder
perspectives? How do these elements
compare with industry standards
across sectors such as healthcare
and technology? Can you provide
contrasting hypothetical scenarios
showing potential risks and benefits,
with a future-facing discussion on
how evolving laws and technologies
might force adaptation? What
differing interpretations might various
stakeholders bring to these elements?
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