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Abstract
Via operator theoretic methods, we formalize the concentration phenomenon for a given observ-
able ‘r’ of a discrete time Markov chain with ‘µπ’ as invariant ergodic measure, possibly having
support on an unbounded state space. The main contribution of this paper is circumventing te-
dious probabilistic methods with a study of a composition of the Markov transition operator P
followed by a multiplication operator defined by er. It turns out that even if the observable/ reward
function is unbounded, but for some for some q > 2, ∥er∥q→2 ∝ exp

(
µπ(r) +

2q
q−2

)
and P is

hyperbounded with norm control ∥P∥2→q < e
1
2 [

1
2−

1
q ], sharp non-asymptotic concentration bounds

follow. Transport-entropy inequality ensures the aforementioned upper bound on multiplication
operator for all q > 2. Also, the role of reversibility in concentration phenomenon is demystified.
These results are particularly useful for the reinforcement learning and controls communities by al-
lowing for concentration inequalities w.r.t standard unbounded obersvables/reward functions where
exact knowledge of the system is not available, let alone the reversibility of stationary measure.
Keywords: Transportation inequalities, Harris recurrent Markov chain, uniform ergodicity, Spec-
tral gaps, Hyper-boundedness/contractivity, Operator theory, Sample complexity.

1. Introduction

Motivation. Successful use of control theory in high stake applications stems from its rigorous
theoretical foundations; properties of dynamical system under consideration can be extracted from
the spectral analysis (eigenvalues/eigenvector) of an associated matrix. The last decade has seen
a tremendous surge in research activity on non-asymptotic analysis/concentration phenomenon of
system identification and reinforcement learning for random dynamical systems (e.g., Tu and Recht
(2018); Hao et al. (2020); Oymak (2019); Fazel et al. (2018); Simchowitz et al. (2018); Sarkar
et al. (2019); Zahavy et al. (2019); Ziemann and Tu (2022)); tedious probabilistic techniques are
employed making analysis intractable. If not, assumptions like boundedness of obervables, dis-
counting the cost, or discretizing the state space are employed. To address these limitations, there
is a need to bring concentration phenomenon for dynamical systems on a same theoretical footing
with controls.
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Related Literature and Outline of Paper. Whether it is a question of learning value function
corresponding to a stabilizing policy for a Markov decision process (MDP) (Tu and Recht (2018))
or system identification (e.g., Sattar and Oymak (2020); Foster et al. (2020); Simchowitz et al.
(2018)), the existing analysis techniques heavily rely on mixing arguments to conclude ‘time-distant
temporally dependent samples behave as independent identically distributed (iid)’. However, the
notion of time-distant samples being uncorrelated is equivalent to L2 spectral gap or Poincare
inequality (see e.g., Chapter 7 of Rosenblatt (2012)). Secondly, probabilistic analyses are tedious,
opaque, and leading to weak results (strong results are often limited to unrealistic assumptions).

Recognizing these limitation, we focus on non-asymptotic analysis of policy evaluation for av-
erage reward-based control on continuous state spaces, where the expected value of the reward w.r.t
the stationary distribution of an MDP is approximated by its empirical averages, with high prob-
ability. Our approach is inspired from a conjecture put forth by Simon and Høegh-Krohn (1972)
regarding spectral gaps for hyperbounded Markov semi-groups, which was recently solved by Mi-
clo (2015) for reversible case and by Glück (2020) in full generality. A remarkable advantage of
this approach is uplifting a nonlinear random dynamical system into an infinite dimensional space
where it behaves as a linear system. We then, as described in Section 2, employ direct sum decom-
position of the underlying Banach space, as in Lin (1974), to prove the uniform ergodic theorem for
the Markov transition operator. Consequently, we show how hyperboundedness leads to the desired
spectral properties (given in Luecke (1977)) for uncorellation of Poincare Inequality).

To the best of our knowledge, Kloeckner (2017, 2019) interpreted the spectral gap in Markov
transition operator into non-asymptotic concentration bounds but his analysis only works on bounded
observables. In Section 3, we introduce Feynman-Kac semi-group related to unbounded observable,
which based on spectral properties of the multiplication operator allows us to derive a sufficient
condition for sharp concentration: transport-entropy inequality; we then verify our results on linear
Gaussian systems. Wang and Wu (2020) offer an operator theoretic treatment for concentration
but pertinent functional inequalities are valid only for reversibility assumption. Finally, concluding
remarks are made in Section 4 along with discussion on future problems for consideration.

Further implications of the analysis: estimating steady state correlations via sample covari-
ance matrices. Let us assume that we are observing i.i.d samples (xi)Ni=1 from a centered distri-
bution P∞ on Rn, where n is high dimensional. For example, in finance, each xi could be return
on n stocks and N the number of trading days Bun et al. (2017). One wishes to estimate P∞ via
ΣN := 1

N

∑N−1
i=0 xix

T
i ; in order to understand most significant factors and spatial correlations be-

tween the n variables. It is well known in statistics literature that forN >> n, empirical covariance
matrix ΣN is a good approximation of P∞. Now, consider covariates (xi)

N
i=1 as realizations of a

random dynamical system in steady state; good estimate of P∞ is imperative for designing reduced
order models, after performing principal component analysis. However, samples are now tempo-
rally correlated, along with spatial correlations. Thus, one would expect sample complexity to be
worse than in the i.i.d case. Intuitively, one needs to quantify decay of temporal correlation/spectral
gaps (as we do in Section 2), and then average only over ’distant’ samples to get an accurate estima-
tion of the stationary covariance matrix. Analysis developed in this paper can be extended, as part
of future work, to estimation of correlations where the observable would be instead f(x) = xxT .

Notations. The space of probability measures on a metric space (X , d) is denoted by P(X ). E is
used to denote expectation. For a function r, we use < r >µ to denote the expectation of r w.r.t µ.
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Given µ, ν ∈ P(X ), Wasserstein metric of order p ∈ [1,∞) is defined as:

Wp
d (ν, µ) =

(
inf

(X,Y )∈Γ(ν,µ)
E dp(X,Y )

) 1
p

; (1)

here, Γ(ν, µ) ∈ P(X 2), and (X,Y ) ∈ Γ(ν, µ) denotes that random variables (X,Y ) follow some
probability distributions on P(X 2) with marginals ν and µ. Another way of comparing two proba-
bility distributions on X is via relative entropy which is defined as:

Ent(v||u) =


∫
log

(
dν
dµ

)
dν, if ν << µ,

+∞, otherwise.
(2)

1.1. Problem Statement

Under the action of some state-dependent control policy π, we consider a closed-loop random dy-
namical system of the form:

xk+1 = F
(
xk, π(xk), ϵk

)
, ϵk is iid, 1 (3)

where xk ∈ Rn for all k ∈ N and F : Rn×Rn×Rn −→ Rn. In probabilistic language, the closed-
loop dynamical system is a Harris Ergodic Markov chain. Let us assume that the Markov chain
converges to a unique ergodic invariant measure µπ. A question that is of utmost importance in
average reward reinforcement learning when exact dynamics are unknown (Zahavy et al. (2019)) is:
if we have access to empirical averages of some unbounded reward function r(x), can we estimate
the concentration from simulating a single trajectory – i.e., when, how, and why can we provide
something similar to following exponential concentrations

µN

[∣∣∣∣ 1N
N∑
i=1

r(xi)− < r >µπ

∣∣∣∣ > ϵ

]
≤ 2 exp

(
− Nϵ2

Ksys(r)

)
? (4)

Here, r can be some unbounded function (e.g., in control theoretic or (RL) framework r(x) := ∥x∥),
Ksys(r) is a constant dependent on system properties and ‘smoothness’ of r (related to Lipschitz
constant) and µN denotes the probability on N covariates of the Markov Chain (x1, . . . , xN ).

1.2. Contribution and Main Results

This paper’s fundamental contribution is reducing the concentration phenomenon for Harris Er-
godic Markov chains to a problem of bounding operator erP : L2(µπ) −→ L2(µπ), a composition
of Markov operator P and a multiplication operator er. A detailed mathematical and pedagogical
overview of Poincare/ Spectral gap inequality is provided; we show that the problem is equivalent
to temporally dependent samples having a concentration similar to iid samples. Even though multi-
plication operator er, associated with the standard reward function (observable) used in continuous
control and RL problems is unbounded, transport-entropy inequality ensures that for all q > 2,
er : Lq(µπ) −→ L2(µπ) is bounded. Combined with hyperboundedness of Markov kernel, the
concentration phenomenon is achieved.

1. For the sake of brevity, from now on, we will exclude reference to π in the state update equations as state dependent
policy imlplies there exists some function G such that F

(
xk, π(xk), ϵk

)
= G(xk, ϵk).
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2. Spectral Gaps, Ergodic Theorems and Poincare Inequality

To mathematically express the phenomenon that time-distant samples, although temporally depen-
dent, behave as iid , we will have to go to fundamentals of ergodic theory. Let us use D to denote
the unit disc in the complex plane and T represents the unit circle in the plane. Consider the Banach
space, with complex field, Lp(µπ) of p ∈ [1,∞] integrable functions; i.e., all measurable functions
f with

∫
|f(x)|pµπ(dx) < ∞. Conjugate power of p, c(p) is defined as c(p) ≥ 1 that satisfies

1
c(p) +

1
p = 1. Every g ∈ Lc(p) corresponds to a bounded linear functional on f ∈ Lp and its action

is captured by ⟨f, g⟩µπ :=
∫
f(x)g(x)dµπ(x).

We consider linearity in first argument of the inner product and the boundedness follows by
Cauchy-Schwarz: |⟨f, g⟩µπ | ≤ ∥f∥p∥g∥c(p). Markov transition operator P : Lp → Lp is defined as

∥Pf∥Lp =

(∫
|Pf(x)|pµπ(dx)

) 1
p

=

(∫
|
∫
f(y)p(x, dy)|pµπ(dx)

) 1
p

≤ ∥f∥Lp , where the last

inequality follows from Jensen inequality. Note that P acts as an identity on constant functions, i.e.,
P1 = 1, and it is positive, i.e., Pf ≥ 0 if f ≥ 0.

A Markov chain is reversible or satisfies detailed balance condition if Markov transition oper-
ator P when viewed as an operator on Hilbert space L2(µπ) is equal to its adjoint P ∗: ⟨Pf, g⟩ :=
⟨f, P ∗g⟩µπ = ⟨f, Pg⟩. A simple observation reveals that P, P ∗, PP ∗ and P ∗P are all Markov op-
erators with µπ as invariant measure. Consider a sequence (An)n∈N of bounded operators on some
Banach space, there are different topologies (uniform, strong, and weak) to study its convergence
(see e.g., Chapter 6 of Reed et al. (1980) for exact definitions). We also suggest the reader unfamil-
iar with spectral properties of operators and associated notations (particularly Hyperboundedness
and Fredholm theory) to consult Appendix 5.

2.1. Ergodic Theorems and Consequences

Definition 1 In functional analytic framework, the pair (P, µπ) is said to be ergodic if for any
f ∈ L∞(µπ) satisfies Pf = f , then f is a constant.

In probabilistic language, an ergodic Markov chain has a unique invariant stationary distribution.

Definition 2 The pair (P, µπ) is called aperiodic if for all λ ∈ T \ {1}, dim[N(λI − P )] = 0.

Theorem 3 Birkhoff Pointwise Ergodic theorem: Let (xn)n∈N, be the samples from an ergodic
Markov chain. Then, 1

N

∑N−1
n=0 f(xn) −→ µπ(f), almost every initial condition x0 = x w.r.t µπ,

and f integrable w.r.t µπ.

This is reminiscent of the strong law of large numbers for iid sampling from distribution µπ.
However, a very natural requirement for having a concentration similar to iid setting is sharp decay
of correlation – i.e., for some C <∞ and η ∈ (0, 1)

|Covµπ [f(xn), f(xn+m)]| ≤ CηmV arµπ(f), ∀f ∈ L2(µπ). (5)

Now, the first step towards formalizing the preceding phenomenon is a concept related to uni-
form ergodicity.
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Theorem 4 If the pair (P, µπ) is ergodic, let U be the orthogonal projection on {f ∈ L2(µπ) :
Pf = f}. Then,

∥ 1

N

N−1∑
n=0

Pn − U∥L2(µπ) −→ 0; (6)

i.e., the operator, 1
N

∑N−1
n=0 P

n converges to a bounded linear projection U in the uniform operator
topology.

Proof If the pair (P, µπ) is ergodic then so is the pair (P ∗, µπ). We first show that Im(I − P )
is closed using Fredholm argument – because the dimension of co-kernel is finite: dim[L2(µπ) \
Im(I − P )] = dim[N(I − P ∗)] = dim[N(I − P )] = 1. Now, consider the following decomposi-
tion:

(I − P ) : N(I − P )
⊕

N(I − P )⊥ → Im(I − P )
⊕

Im(I − P )⊥. (7)

Therefore, I − P : N(I − P )⊥ → Im(I − P ) is bijective and by inverse mapping theorem (I −
P )−1 ∈ B(Im(I−P ), N(I−P )⊥) so there exists aK <∞ such that ∥(I−P )−1∥Im(I−P )→N(I−P )⊥ ≤
K implying that the pair (P, µπ) is uniformly ergodic because: given any f ∈ Im(I − P ) there
exists a unique ĝ ∈ N(I−P )⊥ such that f = (I−P )ĝ and ∥ 1

N

∑N−1
n=0 P

nf∥ = ∥ 1
N

∑N−1
n=0 P

n(I−
P )ĝ∥ = ∥(I−PN )ĝ∥

N = ∥(I−PN )(I−P )−1f∥
N ≤ 2∥(I−P )−1f∥

N ≤ 2K
N ∥f∥. So 1

N

∑N−1
n=0 P

n converges
to 0 at a uniform rate on Im(I − P ). Notice that, when Im(I − P ) is closed: Im(I − P ) =
N(I − P )⊥, because regardless of Im(I − P ) being closed : Im(I − P ) ⊂ N(I − P ∗)⊥ and
Im(I−P )⊥ = N(I−P ∗). Therefore, Im(I−P )⊥ corresponds to N(I−P ) which by ergodicity
assumption only comprises of constant function and 1

N

∑N−1
n=0 P

n
|N(I−P )

= I .

Remark 5 The above theorem effectively provide a stronger version of the mean ergodic theorem
– i.e., ‘L2− uniform ergodicity’.

Remark 6 It is worth noting the following:

1. Under ergodicity and reversibility assumption, I − P is an Fredholm operator with index
0; effectively, it means 1 is an isolated eigenvalue of P – i.e., for some ϵ > 0, σ(P ) =
[−1, 1− ϵ] ∪ {1} and the dimension of space of eigenfunctions associated to 1, is 1 .

2. We define S := P|Im(I−P ) (when Im(I − P ) is closed), and since Im(I − P ) is invariant
under P , implying S : Im(I − P ) → Im(I − P ). Because (I − P )−1 ∈ B(Im(I − P )),
(I − S)−1 exists as well so 1 ̸∈ σ(S) and from previous bullet point as S will contain subset
of spectrum of P , indeed σ(S) ⊂ [−1, 1− ϵ].

Theorem 7 If the pair (P, µπ) is reversible, ergodic and aperiodic, then ∥Pn − U∥L2(µπ) −→ 0,
in uniform operator topology.

Proof Consider the operator I + P , as a map

I + P : N(I + P )
⊕

N(I + P )⊥ → Im(I + P )
⊕

Im(I + P )⊥. (8)

N(I+P ) = {f ∈ L2(µπ) : Pf = −f}, which corresponds to periodic behavior but by hypothesis
dim[N(I+P )] = 0 and dim[L2(µπ)\Im(I+P )] = dim[N(I+P )] = 0 (thanks to reversibility)
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so I + P is a Fredholm operator implying that −1 ̸∈ σess(P ) (see e.g., Wu (2004)). Moreover,
−1 ̸∈ σ(P ) either. Since the spectrum of a bounded operator is always closed, there exists δ > 0
such that σ(S) ⊂ [−1 + δ, 1 − ϵ]. Consequently ρ(S), the spectral radius of S, satisfies ρ(S) ≤
max(| − 1 + δ|, |1− ϵ|) < 1 and Pn = Sn

⊕
IN(I−P ), but ρ(S) < 1 implies Sn → 0, because by

Gelfand’s formula for any ρ ∈ (ρ(S), 1) there exists M(ρ) <∞ such that ∥Sn∥ ≤M(ρ)ρn.

Spectral analysis of non-reversible P is more involved as it can lies inside a unit disc and this is
where hyperboundedness comes into play.

Theorem 8 Hyperboundedness(see definition 21 in Appendix) of L2 − Lp, where p = 2 + ϵ and
ϵ > 0 implies that (a) for all λ ∈ T, dim[N(λI − P )2] < ∞ and (b) dim[N(λI − P ∗)2] < ∞.
(b) independently implies Im(λI − P )2 is closed. Consequently:

1. σ(P ) ∩ T may only comprise of a finite number of distinct eigenvalues and each distinct
eigenvalue has a finite-dimensional eigenspan.

2. σess(P ) is contained inside some closed disc of radius α < 1 in the complex plane.

3. σ(P ) is ‘gapped’ – i.e., it comprises of two disjoint sets: σ(P ) = {σ(P )∩T}∪{σ(P )∩αD}.

Proof Our proof is based on a result of Glück (2020): infinite dimensional Lp spaces are not
isomorphic for p ̸= q. If f ∈ N [λI − P ], for λ ∈ T, it must satisfy |Pf(x)| = |f(x)|. P
is L2 − Lp:=2+ϵ hyperbounded, for some ϵ > 0. Then duality implies that P ∗ is Lc(p) − L2

hyperbounded, where c(p) is the conjugate power of p. Now recall, P ∈ B(Lp) and dim[Lp \
Im(λI−P )p] = dim[N(λI−P ∗)c(p)]. If dim[N(λI−P ∗)c(p)] = ∞, strict inclusion implies there
exists a ĝ ∈ Lc(p) \ L2 such that P ∗ĝ = λĝ and |P ∗ĝ| = |ĝ| which contradicts hyperboundedness.
Therefore, dim[Lp \ Im(λI−P )p] is finite which implies Im(λI−P ) is closed in Lpand as L2 ⊊
Lc(p) we have dim[L2 \ Im(λI − P )2] = dim[N(λI − P ∗)2] < dim[N(λI − P ∗)c(p)] < ∞ and
we have that Im(λI − P ) is closed when viewed as a map in L2. Argument for dim[N(λI − P )2]
being finite follows the same hyperboundedness argument. Consequences follow from the disjoint
nature of essential and discrete spectrum (see Theorem 7.9-7.11 of Reed et al. (1980)).

Theorem 9 If the pair (P, µπ) is ergodic, L2−Lp hyperbounded for p = 3, 4 with norm condition

∥P∥L2−Lp < 2
1
2
− 1

p , then

∥Pn − U∥L2(µπ) −→ 0, in a uniform operator topology. (9)

Proof The norm condition ∥P∥L2→L4 < 2
1
2
− 1

4 or ∥P∥L2→L3 < 2
1
2
− 1

3 ensures aperiodicity (see
Theorem 5.1 and 5.3 in Cohen et al. (2022) ); only {1} ∈ σ(P )∩T and corresponds to the eigenspan
of constant functions. Following the argument of Theorem 7: Pn = Sn

⊕
IN(I−P ), where S =

P|Im(I−P ) and σ(S) ⊂ αD for some α ∈ (0, 1). Consequently, ρ(S) ≤ α, and for all ρ ∈ (α, 1)
there exists an M(ρ) <∞ such that ∥Sn∥ ≤M(ρ)ρn; and thus, the result follows.

Remark 10 A trivial corollary of ∥Pn − U∥L2(µπ) −→ 0 in uniform operator topology is that for
some ρ ∈ (0, 1), C <∞ and for all n ∈ N, it holds that

∥Pn
(
f − µπ(f)

)
∥L2 ≤ Cρn∥f − µπ(f)∥L2 , (10)

which is equivalent to sharp decay of correlation in (5).
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3. Hyperboundedness and Transport-Entropy Inequality Implies Concentration

After ensuring uncorrelation for time-distant samples, it is safe to relate to the iid setting and re-
mind ourselves that sharp concentrations heavily rely on the ability to take exponential moments of
the observable w.r.t underlying measure. An attempt to analyse the uncorrelation and exponential
integrability via a single linear operator brings us to the following discussion.

Feynman-Kac semigroup plays an integral role in the study of fluctuations of time additive quan-
tities of diffusion process in continuous time, Touchette (2018). The reader is referred to Wang and
Wu (2020) for a detailed exposition on this topic in discrete-time setting. We identify with the
observable/reward function r, a Feynman-Kac semigroup, which is a composition of the Markov
transition operator followed by an exponentiated multiplication operator w.r.t observable – i.e.,
erP : D(·) ⊆ L2(µπ) → L2(µπ), such that for all g ∈ D(·) (the domain on which semigroup
operators can be viewed as bounded operator) it holds

(erP )ng(x) := Ex[g(xN )e
∑n−1

i=0 r(xi)] ,∀n ∈ N. (11)

Assume that x0 ∼ β and β << µπ. We have the following upper bound on the deviation of the
observable:

Pβ

(
1

N

N−1∑
i=0

r(xi)− µπ(r) ≥ ϵ

)
≤

∥∥∥∥ dβdµπ
∥∥∥∥
2

inf
s>0

∥(esrP )N∥L2−L2e−sN(µπ(r)+ϵ). (12)

Thus, the task at hand is bounding the operator erP in a meaningful way to get a favorable concen-
tration result. P in itself is a positive contraction but exponentiated multiplication operator defined
by unbounded observable require a short detour into its spectral analysis and transport-entropy in-
equality.

Multiplication operator defined by er. The operator
(
er, D(er)p

)
is closed and densely defined,

see e.g., Proposition 3.10 from Chapter 1 in Engel and Nagel (2006). The essential range of er

with µπ as an underlying measure is defined as eress(µπ) :=

{
λ ∈ [1,∞) : µπ

(
|er − λ| < ϵ

)
̸=

0, ∀ ϵ > 0

}
, and the essential norm of er, ∥er∥∞ := sup{λ ∈ eress(µπ)}. Multiplication operator

er is bounded in some and hence all Lp, iff ∥er∥∞ < ∞. Consequently, D(er)(p) = Lp and
∥er∥Lp→Lp = ∥er∥∞. If the stationary measure µπ is not compactly supported and is absolutely
continuous w.r.t Lebesgue measure then ∥er∥Lp→Lp = ∞. However, not all is lost, as suggested
in the previous section that we need some notion of hyperboundedness for uncorrelation. So if for
some p > 2, P : L2 → Lp, in order to ensure erP ∈ B(L2) it is sufficient to prove er : Lp → L2.
This is where the transport-entropy inequality comes into play.

Definition 11 Consider metric space (X , d) and reference probability measure µ ∈ P(X ). Then
we say that µ satisfies Transport-Entropy(T-E) inequlaity with constant C or to be concise µ ∈
T d
1 (C) for some C > 0 if for all ν ∈ P(X ) and ν << µ, it holds that

Wd(µ, ν) ≤
√

2CEnt(ν||µ). (13)

7
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Lemma 12 (Bobkov and Götze (1999)) µ satisfies T d
1 (C) if and only if for all Lipschitz function

f with < f >µ:= Eµf , it holds that∫
eλ(f−<f>µ)dµ ≤ exp(

λ2

2
C∥f∥2L(d)), where ∥f∥L(d) := sup

x ̸=y

|f(x)− f(y)|
d(x, y)

. (14)

Theorem 13 If µπ ∈ T d
1 (Cπ) for some Cπ > 0 and r is Lipschitz w.r.t metric d then we have for

all p > 2, er : Lp −→ L2 is a bounded operator with norm:

∥er∥Lp→L2 ≤ exp

(
µπ(r) +

2pCπ∥r∥2L(d)
(p− 2)2

)
. (15)

Proof The proof is a simple application of Cauchy-Schwarz and the exponential moment inequality
for Lipschitz functions under distribution µπ satisfying the transport-entropy inequality.

Theorem 14 Without any assumption of reversibility, if the invariant measure µπ ∈ T d
1 (Cπ) for

some Cπ > 0 and r is Lipschitz w.r.t metric d and for some q > 2, P : L2(µπ) −→ Lq(µπ) is

hyperbounded with norm ∥P∥L2→Lq < e
1
2

[
1
2
− 1

q

]
. Given n ∈ Z+ and δ ∈ (0, 1) and an initial

distribution β << µπ, if N ≥ ln

(∥∥ dβ
µπ

∥∥
2

1
1−δ

)(
4n2q

(q−2)−4n2q ln ∥P∥L2→Lq

)
, we have that

Pβ

(
1

N

N−1∑
i=0

r(xi)− µπ(r) ≥
√
Cπ∥r∥L(d)

n

)
< 1− δ. (16)

Proof Since the theorem assumptions ensure erP ∈ B(L2(µπ)), we have that ∥(erP )N∥ ≤
∥erP∥N . Let ϵ(n) :=

√
Cπ∥r∥L(d)

n , where
√
Cπ∥r∥L(d) is proportional to the square root of vari-

ance of r under distribution µπ. Notice that as opposed to standard (ϵ, δ) probability arguments,
here we have scaled ϵ = ϵ(n) with a control variable n that we can increase to make ϵ arbitrarily
small. From the preceding discussion, it holds that

∥(esrP )N∥L2−L2e−sN(µπ(r)+

√
Cπ∥r∥L(d)

n
) ≤ ∥P∥N2−qe

N

((
2q
q−2

)
s2

2
Cπ∥r∥2L(d)

−s
√
Cπ

∥r∥L(d)
n

)
, (17)

and a trivial calculation reveals

inf
s>0

∥P∥N2−qe
N

((
2q
q−2

)
s2

2
Cπ∥r∥2L(d)

−s
√
Cπ

∥r∥L(d)
n

)
= e

N

(
ln∥P∥2−q− 1

2n2

[
q−2
2q

])
, (18)

which we should be able to decrease as N increase; for every n ∈ Z+, which happens to be the case

if ∥P∥L2→Lq < e
1
2

[
1
2
− 1

q

]
and all other results follow.

Remark 15 Since our norm control ∥P∥L2→Lq < e
1
2

[
1
2
− 1

q

]
is in harmony with the upper bound

for q = 3, 4 given by Cohen et al. (2022), which implies implies aperiodicity and consequently
Poincare’ L2− Spectral gap for Markov transition operator. We conjecture that for q ∈ (2, 3) our
upper bound might imply aperiodicity and hence L2− Spectral gap.
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Assuming hypercontractivity, a stronger theoretical result similar to Wang and Wu (2020) can be
directly deduced.

Corollary 16 Without any reversibility assumption on the pair (P, µπ), if the stationary distribu-
tion satisfies T-E inequality i.e., µπ ∈ T d

1 (Cπ) and for some p > 2 associated transition kernel is
hypercontractive, i.e., ∥P∥2→p ≤ 1, then for any initial distribution β << µπ and N ∈ N it holds

Pβ

(
1

N

N−1∑
i=0

r(xi)− µπ(r) ≥ ϵ

)
≤

∥∥∥∥ dβdµπ
∥∥∥∥
2

exp

(
− Nϵ2(p− 2)

4Cπ∥r∥2L(d)p

)
. (19)

Consequently, given ϵ > 0 and δ ∈ (0, 1), it holds that for all N ≥
ln

(∥∥ dβ
µπ

∥∥
2

1
1−δ

)
4Cπ∥r∥2L(d)

p

ϵ2(p−2)
the

chain satisfies Pβ

(
1
N

∑N−1
i=0 r(xi)− µπ(r) ≥ ϵ

)
≤ 1− δ.

Example 1 Let us verify these result on one dimensional linear Gaussian dynamical system with
|α| < 1:

xn+1 = αxn + wn. , wn ∼ N (0, 1) and iid. (20)

An easy check reveals stationary distribution of (20) is γ1,α := N
(
0, 1

1−α2

)
.

Theorem 17 Given α such that |α| < 1, there exitst p := p(α) > 2 such that ∥P∥2→p,γ1,α ≤ 1

(Hypercontractivity) and ∥
(
erP

)N∥ ≤ e
N

(
γ1,α(r)+

(
2p
p−2

) ∥r∥2
L(d)
2

)
.

Proof A trivial application of change of variable and Stein’s lemma results in

∥P∥2→p ≤
1

(1− α4)
1
4

1(
1− α2p

(1+α2)

) 1
2p

1

e

2
p

(
1− α2p

(1+α2)

) . (21)

It is a common knowledge (see Corollary 7.2 of Gozlan and Léonard (2010)), thatγ1,α ∈ T d
1 (1)

i.e., satisfies T-E inequality with constant 1. It follows from (21) that for all g ∈ L2
(
γ1,α

)
such that

∥g∥2 ≤ 1, there exists p > 2 such that ∥Pg∥p ≤ 1. By applying Cauchy-Schwarz to the powers p
2

and its’ conjugate number p
p−2 we get:

∥
(
erP

)
g∥2 ≤ ∥Pg∥p

(∫
e

2p
p−2

r(x)
dγ1,α(x)

) p−2
2p

≤ ∥P∥2→p

(
eγ1,α(r)e

(
2p
p−2

) ∥r∥2
L(d)
2

)
, (22)

where (22) follows from hypercontractivity of the transition operator and the fact that stationary
distribution satisfies T-E inequality with C = 1 and d is the Euclidean metric. Conclusion fol-
lows from the trivial inequality ∥

(
erP

)N∥ ≤ ∥
(
erP

)
∥N and we have a sharp concentration as in

Corollary 16.
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4. Conclusion and Future Work

In this work, we have narrowed down the concentration phenomenon for Harris ergodic Markov
chains to a study of the composition of the Markov transition operator followed by a an exponenti-
ated multiplication operator defined by the observable under consideration. Hyperboundedness and
transport-entropy inequality suffices for concentration phenomen. However, there are still unan-
swered questions that needs further exploration. For example, the impact of aperiodicity and hy-
perboundedness – we believe that via continuity of the Fredholm index we can extend the norm
control on ∥P∥L2−Lp that implies aperiodicity. Currently, only result for p = 3, 4 is available. Al-
though the transport-entropy inequality can be verified via exponential-type Lyapunov function we
introduced in the accompanying paper Naeem and Pajic (2022) easily verifiable conditions for hy-
perboundedness on the continuous state space is still an open problem (besides the linear Gaussian
case). Extending analysis to estimation of steady state correlation is also a work in progress.

5. Appendix

Spectral Decomposition

Preliminaries. Let A be a bounded operator on a Banach space X , denoted by A ∈ B(X ). λ ∈ C
is said to be in resolvent of A, denoted by λ ∈ RS(A), if λI − A : X → X is bijective. Bounded
inverse theorem implies that for λ ∈ RS(A), Rλ(A) := (λI − A)−1 ∈ B(X ) . The spectrum of
A is denoted by σ(A) := C \RS(A). Spectral radius of A is denoted by ρ(A) := sup |λ| : λ ∈ C.
Consequently, if there exists a v ∈ X and λ ∈ C such that Av = λv (i.e., λ is an eigenvalue with
the corresponding eigenfunction v) then λI−A is not injective, which implies λ ∈ σ(A). However,
the spectrum ofA is not limited to eigenvalues; for a detailed monograph of spectral theory see e.g.,
Reed et al. (1980).

Definition 18 Let A be a bounded operator on some Banach space X . It is called Fredholm if: (a)
dim[N(A)] <∞, (b) dim[X \ Im(A)] <∞, and (c) Im(A) is closed. Here, dim[N(A)] denotes
the dimension of the null space of A and Im(A) means the range of A; dim[X \ Im(A)] is often
read as the dimension of cokernel of A.

Note that the condition (c) is redundant; it follows from (b).

Definition 19 The index of a Fredholm operator A is defined as ind(A) = dim[N(A)]− dim[X \
Im(A)], and for some small perturbations ∆(A) to the operator ind(A+∆(A)) = ind(A).

Definition 20 λ ∈ σ(A) is said to be in essential spectrum ofA, (λ ∈ σess(A) ) if and only if λI−A
is not a Fredholm operator. λ ∈ σ(A) \ σess(A) is said to be in discrete spectrum, (λ ∈ σdisc(A) )
if and only if (a) λ is an isolated point of σ(A) and (b) {ψ ∈ X : Aψ = λψ} is finite dimensional.

Definition 21 Markov operator is called hyperbounded, if for some 1 ≤ p < q ≤ ∞, P is a
bounded operator from Lp(µπ) to Lq(µπ) (we will often call it Lp − Lq hyperboundedness). More
stringent requirement of hypercontractivity requires P to be hyperbounded with ∥P∥Lp→Lq ≤ 1.

Remark 22 It follows from Jensen’s inequality that for all r ≥ 1, ∥P∥Lr(µπ) ≤ 1, and Riesz-Thorin
interpolation implies that for all 1 < p < q, P is Lp − Lq hyperbounded.
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