
Supervised Kernel Thinning

Albert Gong Kyuseong Choi Raaz Dwivedi

Cornell Tech, Cornell University

agong,kc728,dwivedi@cornell.edu

Abstract

The kernel thinning algorithm of [10] provides a better-than-i.i.d. compression of
a generic set of points. By generating high-fidelity coresets of size significantly
smaller than the input points, KT is known to speed up unsupervised tasks like
Monte Carlo integration, uncertainty quantification, and non-parametric hypothesis
testing, with minimal loss in statistical accuracy. In this work, we generalize
the KT algorithm to speed up supervised learning problems involving kernel
methods. Specifically, we combine two classical algorithms—Nadaraya-Watson
(NW) regression or kernel smoothing, and kernel ridge regression (KRR)—with
KT to provide a quadratic speed-up in both training and inference times. We show
how distribution compression with KT in each setting reduces to constructing an
appropriate kernel, and introduce the Kernel-Thinned NW and Kernel-Thinned
KRR estimators. We prove that KT-based regression estimators enjoy significantly
superior computational efficiency over the full-data estimators and improved
statistical efficiency over i.i.d. subsampling of the training data. En route, we
also provide a novel multiplicative error guarantee for compressing with KT. We
validate our design choices with both simulations and real data experiments.

1 Introduction

In supervised learning, the goal of coreset methods is to find a representative set of points on which to
perform model training and inference. On the other hand, coreset methods in unsupervised learning
have the goal of finding a representative set of points, which can then be utilized for a broad class of
downstream tasks—from integration [10, 9] to non-parametric hypothesis testing [8]. This work aims
to bridge these two research threads.

Leveraging recent advancements from compression in the unsupervised setting, we tackle the problem
of non-parametric regression (formally defined in Sec. 2). Given a dataset of n i.i.d. samples,
(xi, yi)

n
i=1, we want to learn a function f such that f(xi) ≈ yi. The set of allowable functions

is determined by the kernel function, which is a powerful building block for capturing complex,
non-linear relationships. Due to its powerful performance in practice and closed-form analysis,
non-parametric regression methods based on kernels (a.k.a “kernel methods”) have become a popular
choice for a wide range of supervised learning tasks [13, 19, 23].

There are two popular approaches to non-parametric kernel regression. First, perhaps a more classical
approach, is kernel smoothing, also referred to as Nadaraya-Watson (NW) regression. The NW
estimator at a point x is effectively a smoothing of labels yi such that xi is close to x. These weights
are computed using the kernel function (see Sec. 2 for formal definitions). Importantly, the NW
estimator takes Θ(n) pre-processing time (to simply store the data) and Θ(n) inference time for each
test point x (n kernel evaluations and n simple operations).

Another popular approach is kernel ridge regression (KRR), which solves a non-parametric least
squares subject to the regression function lying in the reproducing kernel Hilbert space (RKHS) of a

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

specified reproducing kernel function. Remarkably, KRR admits a closed-form solution via inverting
the associated kernel matrix, and takes O(n3) training time and Θ(n) inference time for each test
point x.

Our goal is to overcome the computational bottlenecks of kernel methods, while retaining their
favorable statistical properties. Previous attempts at using coreset methods include the work
of Boutsidis et al. [4], Zheng and Phillips [30], Phillips [17], which depend on a projection
type compression, having similar spirit to the celebrated Johnson–Lindenstrauss lemma, a metric
preserving projection result. So accuracy and running depend unfavorably on the desired statistical
error rate. Kpotufe [14] propose an algorithm to reduce the query time of the NW estimator to
O(log n), but the algorithm requires super-linear preprocessing time.

Other lines of work exploit the structure of kernels more directly, especially in the KRR literature.
A slew of techniques from numerical analysis have been developed, including work on Nyström
subsampling by El Alaoui and Mahoney [11], Avron et al. [1], Díaz et al. [7]. Camoriano et al. [5]
and Rudi et al. [21] combine early stopping with Nyström subsampling. Though more distant from
our approach, we also note the approach of Rahimi and Recht [20] using random features, Zhang
et al. [29] using Divide-and-Conquer, and Tu et al. [27] using block coordinate descent.

Our contributions. In this work, we show how coreset methods can be used to speed up both
training and inference in non-parametric regression for a large class of function classes/kernels. At
the heart of these algorithms is a general procedure called kernel thinning [10, 9], which provides a
worst-case bound on integration error (suited for problems in the original context of unsupervised
learning and MCMC simulations). In Sec. 3, we introduce a meta-algorithm that recovers our
two thinned non-parametric regression methods each based on NW and KRR. We introduce the
kernel-thinned Nadaraya-Watson estimator (KT-NW) and the kernel-thinned kernel ridge regression
estimator (KT-KRR).

We show that KT-NW requires O(n log3 n) time during training and O(
√
n) time at inference, while

achieving a mean square error (MSE) rate of n− β
β+d (Thm. 1)—a strict improvement over uniform

subsampling of the original input points. We show that KT-KRR requires O(n3/2) time during
training and and O(

√
n) time during inference, while achieving an near-minimax optimal rate of

m logn
n when the kernel has finite dimension (Thm. 2). We show how our KT-KRR guarantees can

also be extended to the infinite-dimension setting (Thm. 3). In Sec. 5, we apply our proposed methods
to both simulated and real-world data. In line with our theory, KT-NW and KT-KRR outperform
standard thinning baselines in terms of accuracy while retaining favorable runtimes.

2 Problem setup

We now formally describe the non-parametric regression problem. Let x1, . . . , xn be i.i.d. samples
from the data distribution P over the domain X ⊂ Rd and w1, . . . , wn be i.i.d. samples from N (0, 1).
Then define the response variables y1, . . . , yn by the follow data generating process:

yi ≜ f⋆(xi) + vi for i = 1, 2, . . . , n, (1)

where f⋆ : X → Y ⊂ R is the regression function and vi ≜ σwi for some noise level σ > 0. Our
task is to build an estimate for f⋆ given the n observed points, denoted by

Sin ≜ ((x1, y1), . . . , (xn, yn)).

Nadaraya-Watson (NW) estimator. A classical approach to estimate the function f⋆ is kernel
smoothing, where one estimates the function value at a point z using a weighted average of the
observed outcomes. The weight for outcome yi depends on how close xi is to the point z; let κ :
Rd → R denote this weighting function such that the weight for xi is proportional to κ(∥xi − z∥/h)
for some bandwidth parameter h > 0. Let k : Rd ×R → R denote a shift-invariant kernel defined as

k(x1, x2) = κ(∥x1 − x2∥/h). (2)

Then this smoothing estimator, also known as Nadaraya-Watson (NW) estimator, can be expressed as

f̂(·) ≜
∑

(x,y)∈Sin
k(·, x)y∑

x∈Sin
k(·, x)

(3)

2

whenever the denominator in the above display is non-zero. In the case the denominator in (3) is
zero, we can make a default choice, which for simplicity here we choose as zero. We refer to the
estimator (3) as FULL-NW estimator hereafter. One can easily note that FULL-NW requires O(n)
storage for the input points and O(n) kernel queries for inference at each point.

Kernel ridge regression (KRR) estimator. Another popular approach to estimate f⋆ is that of
non-parametric (regularized) least squares. The solution in this approach, often called as the kernel
ridge regression (KRR), is obtained by solving a least squares objective where the fitted function is
posited to lie in the RKHS H of a reproducing kernel k, and a regularization term is added to the
objective to avoid overfitting.1 Overall, the KRR estimate is the solution to the following regularized
least-squares objective, where λ > 0 denotes a regularization hyperparameter:

min
f∈H

LSin
+ λ∥f∥2k, where LSin

≜
1

n

∑
(x,y)∈Sin

(f(x)− y)
2
. (4)

Like NW, an advantage of KRR is the existence of a closed-form solution

f̂full,λ(·) ≜
n∑

i=1

αik(·, xi) where (5)

α ≜ (K+ nλIn)
−1

y1...
yn

 ∈ Rn and K ≜ [k(xi, xj)]
n
i,j=1 ∈ Rn×n. (6)

Notably, the estimate f̂full,λ, which we refer to as the FULL-KRR estimator, can also be seen as yet
another instance of weighted average of the observed outcomes. Notably, NW estimator imposes
that the weights across the points sum to 1 (and are also non-negative whenever k is), KRR allows
for generic weights that need not be positive (even when k is) and need not sum to 1. We note that
naïvely solving f̂full,λ requires O(n2) kernel evaluations to compute the kernel matrix, O(n3) to
compute a matrix inverse, and O(n) kernel queries for inference at each point. One of our primary
goals in this work is to tackle this high computational cost of FULL-KRR.

3 Speeding up non-parametric regression

We begin with a general approach to speed up regression by thinning the input datasets. While
computationally superior, a generic approach suffers from a loss of statistical accuracy motivating
the need for a strategic thinning approach. To that end, we briefly review kernel thinning and finally
introduced our supervised kernel thinning approach.

3.1 Thinned regression estimators: Computational and statistical tradeoffs

Our generic approach comprises two main steps. First, we compress the input data by choosing
a coreset Sout ⊂ Sin of size nout ≜ ∥Sout∥. Second, we apply our off-the-shelf non-parametric
regression methods from Sec. 2 to the compressed data. By setting nout ≪ n, we can obtain notable
speed-ups over the FULL versions of NW and KRR.

Before we introduce the thinned versions of NW and KRR, let us define the following notation. Given
an input sequence Sin and output sequence Sout, define the empirical probability measures

Pin ≜
1

n

∑
(x,y)∈Sin

δ(x,y) and Qout ≜
1

nout

∑
(x,y)∈Sout

δ(x,y). (7)

Thinned NW estimator. The thinned NW estimator is the analog of Full-NW except that Sin is
replaced by Sout in (3) so that the thinned-NW estimator is given by

f̂Sout
(·) ≜

∑
(x,y)∈Sout

k(·, x)y∑
x∈Sout

k(·, x)
=

Qout(yk)

Qoutk
(8)

1We note that while KRR approach (15) does require k to be reproducing, the NW approach (3) in full
generality is valid even when k is a not a valid reproducing kernel.

3

whenever the denominator in the display is not zero; and 0 otherwise. When compared to the
FULL-NW estimator, we can easily deduce the computational advantage of this estimator: more
efficient O(nout) storage as well as the faster O(nout) computation for inference at each point.

Thinned KRR estimator. Similarly, we can define the thinned KRR estimator as

f̂Sout,λ′(·) =
nout∑
i=1

α′
ik(·, x′

i), where (9)

α′ ≜ (K′ + noutλ
′Inout

)
−1

 y′1
...

y′nout

 ∈ Rnout and K′ ≜ [k(x′
i, x

′
j)]

nout
i,j=1 ∈ Rnout×nout

given some regularization parameter λ′ > 0. When compared to FULL-KRR, f̂Sout,λ′ has training
time O(n3

out) and prediction time O(nout).

A baseline approach is standard thinning, whereby we let Sout be an i.i.d. sample of nout =
√
n points

from Sin. For NW, let us call the resulting f̂Sout
(8) the standard-thinned Nadaraya-Watson (ST-NW)

estimator. When nout =
√
n, ST-NW achieves an excess risk rate of O(n− β

2β+d) compared to the
FULL-NW rate of O(n− 2β

2β+d). For KRR, let us call the resulting f̂Sout,λ′ (9) the standard-thinned
KRR (ST-KRR) estimator. When nout =

√
n, ST-KRR achieves an excess risk rate of O(m

nout
)

compared to the FULL-KRR rate of O(mn). Our goal is to provide good computational benefits
without trading off statistical error. Moreover, we may be able to do better by leveraging the
underlying geometry of the input points and summarize of the input distribution more succinctly than
i.i.d. sampling.

3.2 Background on kernel thinning

A subroutine central to our approach is kernel thinning (KT) from Dwivedi and Mackey [10, Alg. 1].
We use a variant called KT-COMPRESS++ from Shetty et al. [22, Ex. 6] (see full details in App. A),
which provides similar approximation quality as the original KT algorithm of Dwivedi and Mackey
[10, Alg. 1], while reducing the runtime from O(n2) to O(n log3 n).2 Given an input kernel kALG

and input points Sin, KT-COMPRESS++ outputs a coreset SKT ⊂ Sin with size nout ≜
√
n ≪ n. In

this work, we leverage two guarantees of KT-COMPRESS++. Informally, SKT satisfies (with high
probability):

(L∞ bound) ∥(Pin −Qout)kALG∥∞ ≤ C1

√
d log nout

nout
(10)

(MMD bound) sup
∥h∥kALG

≤1

|(Pin −Qout)h| ≤ C2

√
log nout · logNkALG

(B2(Rin), 1/nout)

nout
, (11)

where C1, C2 > 0 are constants that depend on the properties of the input kernel kALG and the
chosen failure probability of KT-COMPRESS++, Rin characterizes the radius of {xi}ni=1, and
NkALG

(B2(Rin), 1/nout) denotes the kernel covering number of H(kALG) over the ball B2(Rin) ⊂ Rd

at a specified tolerance (see Sec. 4.2 for formal definitions).

At its highest level, KT provides good approximation of function averages. The bound (10) (formally
stated in Lem. 1) controls the worst-case point-wise error, and is near-minimax optimal by Phillips
and Tai [18, Thm. 3.1]. In the sequel, we leverage this type of result to derive generalization bounds
for the kernel smoothing problem. The bound (11) (formally stated in Lem. 2) controls the integration
error of functions in H(kALG) and is near-minimax optimal by Tolstikhin et al. [25, Thm. 1, 6]. In
the sequel, we leverage this type of result to derive generalization bounds for the KRR problem.

2In the sequel, we use “KT” and “KT-COMPRESS++” interchangeably since the underlying algorithm (kernel
halving [10, Alg. 1a]) and associated approximation guarantees are the same up to small constant factors.

4

3.3 Supervised kernel thinning

We show how the approximation results from kernel thinning can be extended to the regression setting.
We construct two meta-kernels, the Nadaraya-Watson meta-kernel kNW and the ridge-regression
meta-kernel kRR, which take in a base kernel k (defined over X only) and return a new kernel
(defined over X × Y). When running KT, we set this new kernel as kALG.

3.3.1 Kernel-thinned Nadaraya-Watson regression (KT-NW)

A tempting choice of kernel for KT-NW is the kernel k itself. That is, we can thin the input points
using the kernel

kALG((x1, y1), (x2, y2)) ≜ k(x1, x2). (12)

This choice is sub-optimal since it ignores any information in the response variable y. For our
supervised learning set-up, perhaps another intuitive choice would be to use KT with

kALG((x1, y1), (x2, y2)) ≜ k(x1 ⊕ y1, x2 ⊕ y2), (13)

where ⊕ denotes vector concatenation (so x1 ⊕ y1, x2 ⊕ y2 ∈ Rd+1). While this helps improve
performance, there remains a better option as we illustrate next.

In fact, a simple but critical observation immediately reveals a superior choice of the kernel to be used
in KT for NW estimator. We can directly observe that the NW estimator is a ratio of the averages of
two functions:

fnumer(x, y)(·) ≜ k(x, ·)⟨y, 1⟩R
and fdenom(x, y)(·) ≜ k(x, ·),

over the empirical distribution Pin (7). Recall that KT provides a good approximation of sample means
of functions in an RKHS, so it suffices to specify a “correct” choice of the RKHS (or equivalently the
“correct” choice of the reproducing kernel). We can verify that fdenom lies in the RKHS associated
with kernel k(x1, x2) and fnumer lies in the RKHS associated with kernel k(x1, x2) · y1y2. This
motivates our definition for the Nadaraya-Watson kernel:

kNW((x1, y1), (x2, y2)) ≜ k(x1, x2) + k(x1, x2) · y1y2 (14)

since then we do have fdenom, fnumer ∈ H(kNW). Intuitively, thinning with kRR should
simultaneously provide good approximation of averages of fdenom and fnumer over Pin (see the
formal argument in Sec. 4.1). When Sout = KT-COMPRESS++(Sin,kNW, δ), we call the resulting
solution to (8) the kernel-thinned Nadaraya-Watson (KT-NW) estimator, denoted by f̂KT.

As we show in Fig. 1(a), this theoretically principled choice does provide practical benefits in MSE
performance across sample sizes.

210 214

Input sample size n

2 3

2 1

21

M
ea

n
Sq

ua
re

d
E

rr
or

k(x1, x2)
k((x1 y1), (x2 y2))
kNW((x1, y1), (x2, y2))

210 214

Input sample size n

2 2

20

M
ea

n
Sq

ua
re

d
E

rr
or

k(x1, x2)
k((x1 y1), (x2 y2))
kRR((x1, y1), (x2, y2))

(a) NW ablation with Wendland(0) base kernel (b) KRR ablation with Gaussian base kernel

Figure 1: MSE vs choice of kernels. For exact settings and further discussion see Sec. 5.1.

5

3.3.2 Kernel-thinned kernel ridge regression (KT-KRR)

While with NW estimator, the closed-form expression was a ratio of averages, the KRR estimate (5)
can not be expressed as an easy function of averages. However, notice that LSin

in (4) is an average
of the function ℓf : X × Y → R defined as

ℓf (x, y) ≜ f2(x)− 2f(x)y + y2 for f ∈ H(k).

Thus, there may be hope of deriving a KT-powered KRR estimator by thinning LSin
with the

appropriate kernel. Assuming f ∈ H(k), we can verify that f2 lies in the RKHS associated with
kernel k2(x1, x2) and that −2f(x)y lies in the RKHS associated with kernel k(x1, x2) · y1y2. We
now define the ridge regression kernel by

kRR((x1, y1), (x2, y2)) ≜ k2(x1, x2) + k(x1, x2) · y1y2 (15)

and we can verify that f2(x) − 2f(x)y lies in the RKHS H(kRR).3 When Sout ≜
KT-COMPRESS++(Sin,kRR, δ), we call the resulting solution to (9) the kernel-thinned KRR

(KT-KRR) estimator with regularization parameter λ′ > 0, denoted f̂KT,λ′ . We note that the kernel
kRR also appears in [12, Lem. 4], except our subsequent analysis comes with generalization bounds
for the KT-KRR estimator. Like for NW, in Fig. 1(b) we do a comparison for KRR-MSE across
many kernel choices and conclude that the choice (15) is indeed a superior choice compared to the
base kernel k and the concatenated kernel (13).

4 Main results

We derive generalization bounds of our two proposed estimators. In particular, we bound the mean
squared error (MSE) defined by ∥f − f⋆∥22 = EX

[
(f(X)− f⋆(X))2

]
. Our first assumption is that

of a well-behaved density on the covariate space. This assumption mainly simplifies our analysis of
Nadaraya-Watson and kernel ridge regression, but can in principle be relaxed.
Assumption 1 (Compact support). Suppose X ⊂ B2(Rin) ⊂ Rd. Thus, the points x1, . . . , xn are
drawn from a distribution with density p that satisfies 0 < pmin ≤ p(x) ≤ pmax for all x ∈ X .

4.1 KT-NW

For the analysis of the NW estimator, we define function complexity in terms of Hölder smoothness
following prior work [26].
Definition 1. For L > 0 and β ∈ (0, 2], a function f : X → R is (β, L)-Hölder if for all x1, x2 ∈ X ,

|f(x1)− f(x2)| ≤ L∥x1 − x2∥β if β ∈ (0, 1] and

|f(x1)− f(x2)− ⟨∇f(x1), x2 − x1⟩| ≤ L∥x1 − x2∥β if β ∈ (1, 2],

where f is assumed to be continuously differentiable for β ∈ (1, 2] but not for β ∈ (0, 1].

Our next assumption is that on the kernel: We require k to be reproducing kernel to allow for valid
analysis for the KT-NW estimator. While typically the NW estimator does not require a reproducing
kernel several popular choices in practice, like Gaussian kernel, Laplace kernel, Matérn, Wendland,
Sinc, and B-spline kernels, do satisfy this assumption.
Assumption 2 (Shift-invariant kernel). k is a shift-invariant (2), reproducing kernel k(x1, x2) =
κ(∥x1 − x2∥/h) such that h > 0 and κ : R → R is bounded, Lκ-Lipschitz, square-integrable, and
decreasing with rate satisfying

κ†(1/n) · h−1 = O(nα), where κ†(u) ≜ sup{r : κ(r) ≥ u} and α > 0. (16)

Note that this assumption encomposses reproducing kernels with sub-Gaussian, sub-exponential, and
poly tails. We now present our main result for the KT-NW estimator.

3One might expect the ridge regression kernel to include a term that accounts for y2. However, the
generalization bounds turn out to be essentially the same regardless of whether we include this term when
defining kRR.

6

Theorem 1 (KT-NW). Suppose Assum. 1 and 2 hold. Suppose either f⋆ ∈ Σ(β, Lf) with β ∈ (0, 1]
or f⋆ ∈ Σ(β, Lf) for β ∈ (1, 2] and p ∈ Σ(β − 1, Lp), Lp > 0 and 2β > d. Then for any fixed
δ ∈ (0, 1], the KT-NW estimator (8) with bandwidth h = n− 1

2β+2d satisfies

∥f̂KT − f⋆∥22 ≤ Cn− β
β+d log2 n, (17)

with probability at least 1− δ, for some positive constant C that does not depend on n.

See App. B for the proof.
Remark 1. When κ from Assum. 2 has compact support, the condition 2β < d is not necessary.

Tsybakov and Tsybakov [26], Belkin et al. [3] show that FULL-NW achieves a rate of O(n− 2β
2β+d),

which is minimax optimal for the (β, L)-Hölder function class. Compared to the ST-NW rate of
n− β

2β+d , KT-NW achieves strictly better rates for all β > 0 and d > 0, while retaining ST-NW’s
fast query time of O(

√
n). Note that our method KT-NW has a training time of O(n log3 n), which

is not much more than simply storing the input points.

4.2 KT-KRR

We present our main result for KT-KRR using finite-rank kernels. This class of RKHS includes
linear functions, polynomial function classes .
Theorem 2 (KT-KRR for finite-dimensional RKHS). Assume f⋆ ∈ H(k), Assum. 1 is satisfied,
and k has rank m ∈ N. Let f̂KT,λ′ denote the KT-KRR estimator with regularization parameter

λ′ = O(m lognout

n∧n2
out

). Then with probability at least 1− 2δ − 2e
− ∥f⋆∥2k

c1(∥f⋆∥2
k
+σ2) , the following holds:

∥f̂KT,λ′ − f⋆∥22 ≤ Cm · log nout

min(n, n2
out)

[∥f⋆∥k + 1]
2 (18)

for some constant C that does not depend on n or nout.

See App. C for the proof. Under the same assumptions, Wainwright [28, Ex. 13.19] showed that the
Full-KRR estimator f̂full,λ achieves the minimax optimal rate of O(m/n) in O(n3) runtime. When
nout =

√
n logc n, the KT-KRR error rates from Thm. 2 match this minimax rate in Õ(n3/2) time, a

(near) quadratic improvement over the Full-KRR. On the other hand, standard thinning-KRR with
similar-sized output achieves a quadratically poor MSE of order m√

n
.

Our method and theory also extend to the setting of infinte-dimensional kernels. To formalize this,
we first introduce the notion of kernel covering number.

Definition 2 (Covering number). For a kernel k : Z × Z → R with Bk ≜ {f ∈ H : ∥f∥H ≤ 1}, a
set A ⊂ Z and ϵ > 0, the covering number Nk(A, ϵ) is the minimum cardinality of all sets C ⊂ Bk

satisfying Bk ⊂
⋃

h∈C{g ∈ Bk : supx∈A|h(x)− g(x)| ≤ ϵ}.

We consider two general classes of kernels.
Assumption 3. For some Cd > 0, all r > 0 and ϵ ∈ (0, 1), and B2(r) =

{
x ∈ Rd : ∥x∥2 ≤ r

}
, a

kernel k is

LOGGROWTH(α, β) when logNk(B2(r), ϵ) ≤ Cd log(e/ϵ)
α(r + 1)β with α, β > 0 and

POLYGROWTH(α, β) when logNk(B2(r), ϵ) ≤ Cd(1/ϵ)
α(r + 1)β with α < 2.

We highlight that the definitions above cover several popular kernels: LOGGROWTH kernels include
finite-rank kernels and analytic kernels, like Gaussian, inverse multiquadratic (IMQ), and sinc [9,
Prop. 2], while POLYGROWTH kernels includes finitely-many continuously differentiable kernels,
like Matérn and B-spline [9, Prop. 3]. For clarity, here we present our guarantee for LOGGROWTH
kernels and defer the other case to App. E.
Theorem 3 (KT-KRR guarantee for infinite-dimensional RKHS). Suppose Assum. 1 is satisfied
and k is LOGGROWTH(α, β) (Assum. 3). Then f̂KT,λ′ with λ′ = O(1/nout) satisfies the following

7

bound with probability at least 1− 2δ − 2e
− ∥f⋆∥2k logα n

c1(∥f⋆∥2
k
+σ2) :

∥f̂KT,λ′ − f⋆∥22 ≤ C
(

logα n
n +

√
logα nout

nout

)
· [∥f⋆∥k + 1]

2
. (19)

for some constant C that does not depend on n or nout.

See App. E for the proof. When nout =
√
n, ST-KRR achieves an excess risk rate of n−1/2 logα n

for k satisfying LOGGROWTH(α, β). While KT-KRR does not achieve a strictly better excess risk
rate bound over ST-KRR, we see that in practice, KT-KRR still obtains an empirical advantage.
Obtaining a sharper error rate for the infinite-dimensional kernel setting is an exciting venue for
future work.

5 Experimental results

We now present experiments on simulated and real-world data. On real-world data, we compare our
KT-KRR estimator with several state-of-the-art KRR methods, including Nyström subsampling-based
methods and KRR pre-conditioning methods. All our experiments were run on a machine with 8
CPU cores and 100 GB RAM. Our code can be found at https://github.com/ag2435/npr.

5.1 Simulation studies

1 0 1

5

0

5

Figure 2: Simulated data.

We begin with some simulation experiments. For simplicity, let
X = R and P = Unif[−

√
3,
√
3] so that Var[X] = 1. We set

f⋆(x) = 8 sin(8πx) exp(x) and σ = 1 (20)

and follow (1) to generate {yi}ni=1 (see Fig. 2). We let the input
sample size n vary between 28, 210, 212, 214 and always set the
output coreset size to be nout =

√
n. For NW, we use the

Wendland(0) kernel defined by

k(x1, x2) ≜ (1− ∥x1−x2∥2

h)+ for h > 0. (21)

For KRR, we use the Gaussian kernel defined by

k(x1, x2) ≜ exp(−∥x1−x2∥2
2

2h2) for h > 0. (22)

We select the bandwidth h and regularization parameter λ′ (for KRR) using grid search. Specifically,
we use a held-out validation set of size 104 and run each parameter configuration 100 times to
estimate the validation MSE since KT-KRR and ST-KRR are random.

Ablation study. In Fig. 1, we compare thinning with our proposed meta-kernel kALG = kNW to
thinning with the baseline meta-kernels (12) and (13). For our particular regression function (20),
thinning with (12) outperforms thinning with (13). We hypothesize that the latter kernel is not robust
to the scaling of the response variables. By inspecting (21), we see that ∥(x1 ⊕ y1)− (x2 ⊕ y2)∥2 is
heavily determined by the yi values when they are large compared to the values of xi—as is the case
on the right side of Fig. 2 (when X > 0). Since P is a uniform distribution, thinning with (12) evenly
subsamples points along the input domain X , even though accuractely learning the left side of Fig. 2
(when X < 0) is not needed for effective prediction since it is primarily noise. Validating our theory
from Thm. 1, the best performance is obtained when thinning with kNW (14), which avoids evenly
subsampling points along the input domain and correctly exploits the dependence between X and Y .

In Fig. 1, we perform a similar ablation for KRR. Again we observe that thinning with
kALG((x1, y1), (x2, y2)) = k(x1, x2) outperforms thinning with kALG((x1, y1), (x2, y2)) = k(x1 ⊕
y1, x2 ⊕ y2), while thinning with kALG = kRR achieves the best performance.

Comparison with FULL, ST, RPCHOLESKY. In Fig. 3(a), we compare the MSE of KT-NW to
FULL-NW, ST-NW (a.k.a “Subsample”), and RPCHOLESKY-NW across four values of n. This last
method uses the pivot points from RPCHOLESKY as the output coreset Sout. At all n we evaluated,
KT-NW achieves lower MSE than ST-NW and RPCHOLESKY-NW. FULL-NW achieves the lowest

8

https://github.com/ag2435/npr

28 210 212 214

Input sample size n

2 6

2 4

2 2

20

M
ea

n
Sq

ua
re

d
E

rr
or

n 0.73

n 0.25

n 0.36

n 0.67

0.0 0.1 0.2 0.3 0.4
Train time (s)

0

1

2

3

4

5

Te
st

 ti
m

e
(s

)

n = 210

n = 214

n = 210 n = 214

Full
Subsample
RPCholesky
KT (Ours)

(a) Nadaraya-Watson estimator with Wendland(0) kernel (21).

28 210 212 214

Input sample size n

2 7

2 5

2 3

2 1

21

M
ea

n
Sq

ua
re

d
E

rr
or

n 1.24

n 0.30

n 0.37

0.001 0.03 1 32
Train time (s)

0.0

0.5

1.0

1.5

2.0

Te
st

 ti
m

e
(s

)

n = 210

n = 214
Full
Subsample
RPCholesky
KT (Ours)

(b) Kernel ridge regression estimator with Gaussian kernel (22).

Figure 3: MSE and runtime comparison on simulated data. Each point plots the mean and
standard deviation across 100 trials (after parameter grid search).

MSE across the board, but it suffers from significantly worse run times, especially at test time. Owing
to its O(n log3 n) runtime, KT-NW is significantly faster than RPCHOLESKY-NW for training and
nearly matches ST-NW in both training and testing.

In Fig. 3(b), we compare the MSE of KT-KRR to FULL-KRR, ST-KRR (a.k.a “Subsample”), and
the RPCHOLESKY-KRR method from Chen et al. [6, Sec. 4.2.2], which uses RPCHOLESKY to select
landmark points for the restricted KRR problem. We observe that KT-KRR achieves lower MSE
than ST-KRR, but higher MSE than RPCHOLESKY-KRR and FULL-KRR. In Fig. 3(b), we also
observe that KT-KRR is orders of magnitude faster than FULL-KRR across the board, with runtime
comparable to ST-KRR and RPCHOLESKY-KRR in both training and testing. We hypothesize
that RPCHOLESKY—while it provides a good low-rank approximation of the kernel matrix—is not
designed to preserve averages.

5.2 Real data experiments

We now move on to our experiments on real-world data using two popular datasets: the
California Housing regression dataset from Pace and Barry [16] (https://scikit-learn.org/1.
5/datasets/real_world.html#california-housing-dataset; BSD-3-Clause license) and
the SUSY binary classification dataset from Baldi et al. [2] (https://archive.ics.uci.edu/
dataset/279/susy; CC-BY-4.0 license).

California Housing dataset (d = 8, N = 2× 104). Tab. 1(a) compares the test MSE, train times,
and test times. We normalize the input features by subtracting the mean and dividing by the standard
deviation and use a 80-20 train-test split. For all methods, we use the Gaussian kernel (22) with
bandwidth h = 10. We use λ = λ′ = 10−3 for FULL-KRR, ST-KRR, and KT-KRR and λ = 10−5

for RPCHOLESKY-KRR. On this dataset, KT-KRR lies between ST-KRR and RPCHOLESKY-KRR
in terms of test MSE. When nout =

√
n, RPCHOLESKY pivot selection takes O(n2) time by

Chen et al. [6, Alg. 2], compared to KT-COMPRESS++, which compresses the input points in only
O(n log3 n) time. This difference in big-O runtime is reflected in our empirical results, where we see
KT-KRR take 0.0153s versus 0.3237s for RPCHOLESKY-KRR.

9

https://scikit-learn.org/1.5/datasets/real_world.html#california-housing-dataset
https://scikit-learn.org/1.5/datasets/real_world.html#california-housing-dataset
https://archive.ics.uci.edu/dataset/279/susy
https://archive.ics.uci.edu/dataset/279/susy

Method MSE (%) Training time (s) Prediction time (s)
Full 0.4137 11.1095 0.7024

ST-KRR 0.5736± 0.0018 0.0018± 0.0005 0.0092± 0.0006
RPCHOLESKY 0.3503± 0.0001 0.3237± 0.0094 0.0060± 0.0008

KT-KRR (Ours) 0.5580± 0.0015 0.0153± 0.0013 0.0083± 0.0003

(a) California Housing regression dataset.

Method Test Error (%) Training Time (s)
RPCholesky 19.99± 0.00 3.46± 0.03

FALKON 19.99± 0.00 5.06± 0.02
CG 20.35± 0.00 6.16± 0.03

ST-KRR 22.71± 0.30 0.09± 0.00
KT-KRR (Ours) 22.00± 0.21 1.79± 0.00

(b) SUSY dataset.

Table 1: Accuracy and runtime comparison on real-world data. Each cell represents mean ±
standard error across 100 trials.

SUSY dataset (d = 18, N = 5 × 106). Tab. 1(b) compares our proposed method
KT-KRR (with h = 10, λ′ = 10−1) to several large-scale kernel methods, namely
RPCholesky preconditioning [7], FALKON [21], and Conjugate Gradient (all with h =
10, λ = 10−3) in terms of test classification error and training times. For the baseline
methods, we use the Matlab implementation provided by Díaz et al. [7] (https://github.com/
eepperly/Robust-randomized-preconditioning-for-kernel-ridge-regression). In
our experiment, we use 4 × 106 points for training and the remaining 106 points for testing. As
is common practice for classification tasks, we use the Laplace kernel defined by k(x1, x2) ≜
exp(−∥x1 − x2∥2/h). All parameters are chosen with cross-validation.

We observe that KT-KRR achieves test MSE between ST-KRR and RPCHOLESKY preconditioning
with training time almost half that of RPCHOLESKY preconditioning. Notably, our Cython
implementation of KT-COMPRESS++ thinned the four million training samples in only 1.7 seconds
on a single CPU core—with further speed-ups to be gained from parallelizing on a GPU in the future.

6 Conclusions

In this work, we introduce a meta-algorithm for speeding up two estimators from non-parametric
regression, namely the Nadaraya-Watson and Kernel Ridge Regression estimators. Our method
inherits the favorable computational efficiency of the underlying Kernel Thinning algorithm and
stands to benefit from further advancements in unsupervised learning compression methods.

The KT guarantees provided in this work apply only when f⋆ ∈ H(k) for some base kernel
k. In practice, choosing a good kernel k is indeed a challenge common to all prior work. Our
framework is friendly to recent developments in kernel selection to handle this problem: Dwivedi and
Mackey [9, Cor. 1] provide integration-error guarantees for KT when f⋆ /∈ H(k). Moreover,
there are recent results on finding the best kernel (e.g., for hypothesis testing [8, Sec. 4.2]).
Radhakrishnan et al. [19] introduce the Recursive Feature Machine, which uses a parameterized
kernel kM (x1, x2) ≜ exp(−(x1 − x2)

⊤M(x1 − x2)/(2h
2)), and propose an efficient method to

learn the matrix parameter M via the average gradient outer product estimator. An exciting future
direction would be to combine these parameterized (or "learned") kernels with our proposed KT
methods for non-parametric regression.

7 Acknowledgements

AG is supported with funding from the NewYork-Presbyterian Hospital.

10

https://github.com/eepperly/Robust-randomized-preconditioning-for-kernel-ridge-regression
https://github.com/eepperly/Robust-randomized-preconditioning-for-kernel-ridge-regression

References
[1] Haim Avron, Kenneth L Clarkson, and David P Woodruff. Faster kernel ridge regression using

sketching and preconditioning. SIAM Journal on Matrix Analysis and Applications, 38(4):
1116–1138, 2017. (Cited on page 2.)

[2] Pierre Baldi, Peter Sadowski, and Daniel Whiteson. Searching for exotic particles in high-energy
physics with deep learning. Nature communications, 5(1):4308, 2014. (Cited on page 9.)

[3] Mikhail Belkin, Alexander Rakhlin, and Alexandre B Tsybakov. Does data interpolation
contradict statistical optimality? In The 22nd International Conference on Artificial Intelligence
and Statistics, pages 1611–1619. PMLR, 2019. (Cited on pages 7 and 21.)

[4] Christos Boutsidis, Petros Drineas, and Malik Magdon-Ismail. Near-optimal coresets for
least-squares regression. IEEE transactions on information theory, 59(10):6880–6892, 2013.
(Cited on page 2.)

[5] Raffaello Camoriano, Tomás Angles, Alessandro Rudi, and Lorenzo Rosasco. Nytro: When
subsampling meets early stopping. In Artificial Intelligence and Statistics, pages 1403–1411.
PMLR, 2016. (Cited on page 2.)

[6] Yifan Chen, Ethan N Epperly, Joel A Tropp, and Robert J Webber. Randomly pivoted
cholesky: Practical approximation of a kernel matrix with few entry evaluations. arXiv preprint
arXiv:2207.06503, 2022. (Cited on page 9.)

[7] Mateo Díaz, Ethan N Epperly, Zachary Frangella, Joel A Tropp, and Robert J Webber. Robust,
randomized preconditioning for kernel ridge regression. arXiv preprint arXiv:2304.12465,
2023. (Cited on pages 2 and 10.)

[8] Carles Domingo-Enrich, Raaz Dwivedi, and Lester Mackey. Compress then test: Powerful
kernel testing in near-linear time. arXiv preprint arXiv:2301.05974, 2023. (Cited on pages 1
and 10.)

[9] Raaz Dwivedi and Lester Mackey. Generalized kernel thinning. In International Conference on
Learning Representations, 2022. (Cited on pages 1, 2, 7, 10, 14, and 15.)

[10] Raaz Dwivedi and Lester Mackey. Kernel thinning. Journal of Machine Learning Research, 25
(152):1–77, 2024. (Cited on pages 1, 2, 4, 13, 14, 18, and 28.)

[11] Ahmed El Alaoui and Michael W Mahoney. Fast randomized kernel methods with statistical
guarantees. stat, 1050:2, 2014. (Cited on page 2.)

[12] Steffen Grünewälder. Compressed empirical measures (in finite dimensions). arXiv preprint
arXiv:2204.08847, 2022. (Cited on pages 6 and 41.)

[13] Ming-Yueh Huang and Shu Yang. Robust inference of conditional average treatment effects
using dimension reduction. Statistica Sinica, 32(Suppl):547, 2022. (Cited on page 1.)

[14] Samory Kpotufe. Fast, smooth and adaptive regression in metric spaces. Advances in Neural
Information Processing Systems, 22, 2009. (Cited on page 2.)

[15] Lingxiao Li, Raaz Dwivedi, and Lester Mackey. Debiased distribution compression. arXiv
preprint arXiv:2404.12290, 2024. (Cited on pages 32, 33, and 34.)

[16] R Kelley Pace and Ronald Barry. Sparse spatial autoregressions. Statistics & Probability Letters,
33(3):291–297, 1997. (Cited on page 9.)

[17] Jeff M Phillips. Coresets and sketches. In Handbook of discrete and computational geometry,
pages 1269–1288. Chapman and Hall/CRC, 2017. (Cited on page 2.)

[18] Jeff M Phillips and Wai Ming Tai. Improved coresets for kernel density estimates. In Proceedings
of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 2718–2727.
SIAM, 2018. (Cited on page 4.)

11

[19] Adityanarayanan Radhakrishnan, Daniel Beaglehole, Parthe Pandit, and Mikhail Belkin. Feature
learning in neural networks and kernel machines that recursively learn features. arXiv preprint
arXiv:2212.13881, 2022. (Cited on pages 1 and 10.)

[20] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. Advances
in neural information processing systems, 20, 2007. (Cited on page 2.)

[21] Alessandro Rudi, Luigi Carratino, and Lorenzo Rosasco. Falkon: An optimal large scale kernel
method. Advances in neural information processing systems, 30, 2017. (Cited on pages 2 and 10.)

[22] Abhishek Shetty, Raaz Dwivedi, and Lester Mackey. Distribution compression in near-linear
time. In International Conference on Learning Representations, 2022. (Cited on pages 4, 13, 14,
and 15.)

[23] Rahul Singh, Liyuan Xu, and Arthur Gretton. Sequential kernel embedding for mediated and
time-varying dose response curves. arXiv preprint arXiv:2111.03950, 2021. (Cited on page 1.)

[24] Ingo Steinwart and Simon Fischer. A closer look at covering number bounds for gaussian
kernels. Journal of Complexity, 62:101513, 2021. (Cited on page 24.)

[25] Ilya Tolstikhin, Bharath K Sriperumbudur, Krikamol Mu, et al. Minimax estimation of kernel
mean embeddings. Journal of Machine Learning Research, 18(86):1–47, 2017. (Cited on page 4.)

[26] Alexandre B Tsybakov and Alexandre B Tsybakov. Nonparametric estimators. Introduction to
Nonparametric Estimation, pages 1–76, 2009. (Cited on pages 6 and 7.)

[27] Stephen Tu, Rebecca Roelofs, Shivaram Venkataraman, and Benjamin Recht. Large scale
kernel learning using block coordinate descent. arXiv preprint arXiv:1602.05310, 2016. (Cited
on page 2.)

[28] Martin J Wainwright. High-dimensional statistics: A non-asymptotic viewpoint, volume 48.
Cambridge University Press, 2019. (Cited on pages 7, 21, 23, 28, 29, 31, 32, 36, 37, 39, 40, and 41.)

[29] Yuchen Zhang, John Duchi, and Martin Wainwright. Divide and conquer kernel ridge regression:
A distributed algorithm with minimax optimal rates. The Journal of Machine Learning Research,
16(1):3299–3340, 2015. (Cited on page 2.)

[30] Yan Zheng and Jeff M Phillips. Coresets for kernel regression. In Proceedings of the 23rd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 645–654,
2017. (Cited on page 2.)

12

A Background on KT-COMPRESS++

This section details the KT-COMPRESS++ algorithm of Shetty et al. [22, Ex. 6]. In a nutshell,
KT-COMPRESS (Alg. 2) takes as input a point sequence of size n, a compression level g, a
(reproducing) kernel functions kALG, and a failure probability δ. KT-COMPRESS++ first runs
the KT-COMPRESS(g) algorithm of Shetty et al. [22, Ex. 4] to produce an intermediate coreset of
size 2g

√
n. Next, the KT algorithm is run on the intermediate coreset to produce a final output of

size
√
n.

KT-COMPRESS proceeds by calling the recursive procedure COMPRESS, which uses KT with kernels
kALG as an intermediate halving algorithm. The KT algorithm itself consists of two subroutines:
(1) KT-SPLIT (Alg. 3a), which splits a given input point sequence into two equal halves with small
approximation error in the kALG reproducing kernel Hilbert space and (2) KT-SWAP (Alg. 3b), which
selects the best approximation amongst the KT-SPLIT coresets and a baseline coreset (that simply
selects every other point in the sequence) and then iteratively refines the selected coreset by swapping
out each element in turn for the non-coreset point that most improves MMDkALG

error. As in Shetty
et al. [22, Rem. 3], we symmetrize the output of KT by returning either the KT coreset or its
complement with equal probability.

Following Shetty et al. [22, Ex. 6], we always default to g = ⌈log2 log n+ 3.1⌉ so that
KT-COMPRESS++ has an overall runtime of O(n log3 n). For the sake of simplicity, we drop
any dependence on g in the main paper.

Algorithm 1: KT-COMPRESS++ – Identify coreset of size
√
n

Input: point sequence Sin of size n, compression level g, kernel kALG, failure probability δ
SC ← KT-COMPRESS(g,Sin, δ) // coreset of size 2g

√
n

SC++ ← KT(SC,kALG,
g

g+2g(βn+1)
δ) // coreset of size

√
n

return SC++

Algorithm 2: KT-COMPRESS – Identify coreset of size 2g
√
n

Input: point sequence Sin of size n, compression level g, kernel kALG, failure probability δ

return COMPRESS(Sin, g,kALG,
δ

n4g+1(log4 n−g)
)

function COMPRESS(S, g,kALG, δ):
if |S| = 4g then return S
Partition S into four arbitrary subsequences {Si}4i=1 each of size n/4
for i = 1, 2, 3, 4 do

S̃i ← COMPRESS(Si, g,kALG, δ) // run COMPRESS recursively to return coresets of size 2g ·
√

|S|
4

end
S̃ ← CONCATENATE(S̃1, S̃2, S̃3, S̃4) // combine the coresets to obtain a coreset of size 2 · 2g ·

√
|S|

return KT(S̃,kALG, |S̃|2δ) // halve the coreset to size 2g
√
|S| via symmetrized kernel thinning

function KT(S,kALG, δ):
// Identify kernel thinning coreset containing ⌊|S|/2⌋ input points
SKT ← KT-SWAP(kALG, KT-SPLIT(kALG,S, δ))

return SKT with probability 1
2

and the complementary coreset S \ SKT otherwise

Define the event

EKT,δ ≜ {KT-COMPRESS++ succeeds}. (23)

Dwivedi and Mackey [10, Thm. 1, Rmk. 4] show that

P(EKT,δ) ≥ 1− δ.

We restate [10, Thm. 4] in our notation:
Lemma 1 (L∞ guarantee for KT-COMPRESS++). Let Z ⊂ Rd and consider a reproducing kernel
kALG : Z × Z → R. Assume n/nout ∈ 2N. Let SKT ≜ KT-COMPRESS++(Sin, g,kALG, δ) and

13

Algorithm 3a: KT-SPLIT – Divide points into candidate coresets of size ⌊n/2⌋
Input: kernel ksplit, point sequence Sin = (xi)

n
i=1, failure probability δ

S(1),S(2) ← {} // Initialize empty coresets: S(1),S(2) have size i after round i
σ ← 0 // Initialize swapping parameter
for i = 1, 2, . . . , ⌊n/2⌋ do

// Consider two points at a time
(x, x′)← (x2i−1, x2i)

// Compute swapping threshold ai
ai, σ ←get_swap_params(σ, b, δ

n
) with b2=ksplit(x, x)+ksplit(x

′, x′)−2ksplit(x, x
′)

// Assign one point to each coreset after probabilistic swapping
θ ←

∑2i−2
j=1 (ksplit(xj , x)− ksplit(xj , x

′))− 2
∑

z∈S(1)(ksplit(z, x)− ksplit(z, x
′))

(x, x′)← (x′, x) with probability min(1, 1
2
(1− θ

ai
)+)

S(1).append(x); S(2).append(x′)
end
return (S(1),S(2)), candidate coresets of size ⌊n/2⌋

function get_swap_params(σ, b, δ):
ai ← max(bσ

√
2 log(2/δ), b2)

σ2 ← σ2+b2(1+(b2−2ai)σ2/a2i)+
return (ai, σ)

Algorithm 3b: KT-SWAP – Identify and refine the best candidate coreset

Input: kernel kALG, point sequence Sin = (xi)
n
i=1, candidate coresets (S(1),S(2))

S(0)←baseline_coreset(Sin, size=⌊n/2⌋) // Compare to baseline (e.g., standard thinning)

SKT←S(ℓ⋆) for ℓ⋆←argminℓ∈{0,1,2} MMDkALG (Sin,S
(ℓ)) // Select best coreset

// Swap out each point in SKT for best alternative in Sin while ensuring no point is repeated in SKT

for i = 1, . . . , ⌊n/2⌋ do
SKT[i]← argminz∈{SKT[i]}∪(Sin\SKT) MMDkALG (Sin,SKT with SKT[i] = z)

end
return SKT, refined coreset of size ⌊n/2⌋

define Pin ≜ 1
n

∑
z∈Sin

δz and Qout ≜ 1
nout

∑
z∈SKT

δz . Then on event EKT,δ, the following bound
holds:

∥(Pin −Qout)kALG∥∞ ≤ c
∥kALG∥∞,in

nout
MkALG

(n, nout, d, δ, R), where (24)

MkALG
(n, nout, d, δ, R) ≜

√
log

(
nout log2(n/nout)

δ

)
× (25)[√

log
(
1
δ

)
+

√
d log

(
1 +

LkALG

∥kALG∥∞
(RkALG,n +R)

)]
,

LkALG
≜ supz1,z2,z3∈Z

|kALG(z1,z2)−kALG(z1,z3)|
∥z2−z3∥2

, and (26)

RkALG,n ≜ inf

{
r : sup z1,z2∈Z

∥z1−z2∥2≥r

|kALG(z1, z2)| ≤
∥kALG∥∞

n

}
, (27)

for some universal positive constant c.

Proof. The claim follows by replacing k [10, Thm. 4] with kALG, replacing the sub-Gaussian constant
of KT with that of KT-COMPRESS++ in [22, Ex. 5], and replacing ∥kALG∥∞ with ∥kALG∥∞,in ≜
supz∈Sin

kALG(z, z) throughout.

We restate [9, Thm. 2] in our notation:

14

Lemma 2 (MMD guarantee for KT-COMPRESS++). Let Z ⊂ Rd and consider a reproducing kernel
kALG : Z ×Z → R. Assume n/nout ∈ 2N. Let SKT ≜ KT-COMPRESS++(kALG, g)(Sin) and define
Pin ≜ 1

n

∑
z∈Sin

δz and Qout ≜ 1
nout

∑
z∈SKT

δz . Then on event EKT,δ , the following bound holds:

suph∈H(kALG):
∥h∥kALG

≤1

|(Pin −Qout)h| ≤ infϵ∈(0,1)
Sin⊂A

{
2ϵ+

2∥kALG∥1/2
∞,in

nout
WkALG

(n, nout, δ,A, ϵ)

}
where

WkALG
(n, nout, δ, R, ϵ) ≜ c

√
log

(
nout log(n/nout)

δ

)
·
[
log

(
1
δ

)
+ logNkALG

(A, ϵ)
]
. (28)

for some universal postive constant c.

Proof. The claim follows from replacing k in [9, Thm. 2] with kALG and replacing the sub-Gaussian
constant of KT with that of KT-COMPRESS++ in [22, Ex. 5].

B Proof of Thm. 1: KT-NW

Our primary goal is to bound ESin
[(f̂KT(x0) − f⋆(x0))

2] for a fixed x0 ∈ X . Once we have this
bound, bounding ∥f̂KT − f⋆∥22 is as straightforward as integrating over x0 ∈ X .

Consider the following decomposition:

ESin

[(
f̂KT(x0)− f⋆(x0)

)2
]
= ESin

[(
f̂KT(x0)− f̂(x0) + f̂(x0)− f⋆(x0)

)2
]

≤ 2 ESin

[(
f̂KT(x0)− f̂(x0)

)2
]

(29)

+ 2 ESin

[(
f̂(x0)− f⋆(x0)

)2
]
. (30)

Define the random variables

ηi ≜ 1
{

∥Xi−x0∥
h ≤ 1

}
for i = 1, 2, . . . , n.

Also define the event

E ≜ {
∑n

i=1 ηi > 0}. (31)

Since Xi are i.i.d. samples from P, it follows that ηi are i.i.d. Bernoulli random variables with
parameter

p ≜ P(ηi = 1) ≥ c0pminh
d, (32)

where c0 > 0 depends only on d and κ (see Assum. 2). Denote the denominator terms in f̂ and f̂KT

by

p̂(·) ≜ 1
n

∑n
i=1 k(·, xi) and p̂KT(·) ≜ 1

nout

∑nout

j=1 k(·, x′
i), (33)

respectively, and the numerator terms in f̂ and f̂KT by

Â(·) ≜ 1
n

∑n
i=1 k(·, xi)yi and ÂKT(·) ≜ 1

nout

∑nout

j=1 k(·, x′
i)y

′
i, (34)

respectively.

We now consider two cases depending on the event E.

Case I: Suppose event Ec is satisfied. It follows from (33) that p̂(x0) = 0, in which case f̂(x0) = 0.
Since Sout ⊂ Sin, it necessarily follows that p̂KT(x0) = 0 and f̂KT(x0) = 0. Thus, we can bound
(29) and (30) by

ESin

[(
f̂KT(x0)− f̂(x0)

)2

I[Ec]

]
= 0 and

15

ESin

[(
f̂(x0)− f⋆(x0)

)2

I[Ec]

]
= ESin

[
(0− f⋆(x0))

2 I[Ec]
]

≤ (f⋆)
2
(x0)P(Ec)

≤ (f⋆)
2
(x0)(1− p)n

≤ (f⋆)
2
(x0) exp

{
−Cnhd

}
for some positive constant C that does not depend on n. Note that these are low-order terms compared
to the rest of the calculations, so we may ignore them in the final bound.

Case II: Otherwise, we may assume event E is satisfied. Let us first bound (29). On event EKT,δ
(23), we claim that

ESin

[(
f̂KT(x0)− f̂(x0)

)2

I[E]
]
≤ Cd log2 n

nh2d whenever p = ω(
√

d
n log n). (35)

We defer the proof to App. B.1.

Letting X ≜ (X1, . . . , Xn) and Y ≜ (Y1, . . . , Yn) denote the x and y components of Sin,
respectively, we can further decompose (30) by

ESin

[(
f̂(x0)− f⋆(x0)

)2

I[E]
]
= EX

[
EY |X

[(
f̂(x0)− EY |X

[
f̂(x0)

])2
]
I[E]

]
+ EX

[(
EY |X

[
f̂(x0)

]
− f⋆(x0)

)2

I[E]
]
,

where the first RHS term corresponds to the variance and the second RHS term corresponds to the
bias. We claim that

EX

[
EY |X

[(
f̂(x0)− EY |X

[
f̂(x0)

])2
]
I[E]

]
≤ σ2

ξ

(
n exp

{
−Cnhd

}
+ C

nhd

)
, (36)

EX

[(
EY |X

[
f̂(x0)

]
− f⋆(x0)

)2

I[E]
]
≤ C · L2

fh
2β (37)

for some constant C > 0 that does not depend on either n or h. We defer the proofs to App. B.2
and B.3.

Combining (35) to (37), we have

ESin

[(
f̂KT(x0)− f⋆(x0)

)2

I[E]
]
≤ Cd log2 n

nh2d︸ ︷︷ ︸
KT bound

+2σ2
ξ

(
ne−Cnhd

+ C
nhd

)
︸ ︷︷ ︸

Variance bound

+2CL2
fh

2β︸ ︷︷ ︸
Bias bound

. (38)

Note that hd ≤ 1, so the Cd log2 n
nh2d term dominates the C

nhd term. Thus, the optimal choice of
bandwidth h comes from balancing

C
nh2d ∼ 2L2

fh
2β =⇒ h = cn− 1

2β+2d . (39)

Finally, we must verify our growth rate assumption on p in (35) is satisfied. Since β > 0, we have

p
(32)
≥ c0pminh

d (39)
= c′0n

− d
2β+2d =⇒ limn→∞

p√
d
n logn

= ∞.

Plugging (39) into (38) yields the advertised bound (17).

B.1 Proof of claim (35)

We first provide a generic result for approximating the numerator and denominator terms defined in
(33) and (34).
Lemma 3 (Simultaneous L∞ bound using KT-COMPRESS++ with kNW). Suppose k satisfies
Assum. 2. Given Sin, the following bounds hold on the event EKT,δ:

∥p̂− p̂KT∥∞ ≤ cp

√
d
n (log n+ log(1/δ)) (40)

∥Â− ÂKT∥∞ ≤ cp

√
d
n (log n+ log(1/δ)), (41)

where ca, cp > 0 are constants that do not depend on d or n.

16

See App. B.1.1 for the proof. In the sequel, we will simply treat the log(1/δ) term as a constant,
meaning the log n terms dominate in the expressions.

With this lemma in hand, let us prove the claim (35). Define the following events:

A ≜ {p̂KT(x0) = 0} B ≜ {p̂KT(x0) ̸= 0} C ≜
{
p̂(x0) ≥ p

2

}
.

On event E, consider the following decomposition:

ESin

[(
f̂KT(x0)− f̂(x0)

)2

I[EKT,δ]

]
= ESin

[(
f̂KT(x0)− f̂(x0)

)2

I[EKT,δ ∩ Cc]

]
(42)

+ ESin

[(
f̂KT(x0)− f̂(x0)

)2

I[EKT,δ ∩ A ∩ C]
]

(43)

+ ESin

[(
f̂KT(x0)− f̂(x0)

)2

I[EKT,δ ∩ B ∩ C]
]
. (44)

Bounding (42). Note that almost surely, we have

|f̂(x0)| ≤ Ymax and |f̂KT(x0)| ≤ Ymax.

Thus, we have

ESin

[(
f̂KT(x0)− f̂(x0)

)2

I[Cc]

]
≤ 4Y 2

max P
(
n p̂(x0) <

np
2

)
(i)
= 4Y 2

maxP
(∑n

i=1 ηi − np < np
2 − np

)
(ii)

≤ c0 exp
{
−c1nh

d
}
,

where (i) follows from subtracting np from both sides of the probability statement and (ii) follows
from concentration of Bernoulli random variables (see App. B.2).

Bounding (43). Note that on event EKT,δ ∩ C, we have

p̂KT(x0) ≥ p̂(x0)− ∥p̂− p̂KT∥∞
(i)

≥ p
2 − cp

√
d
n log n

(35)
≥ c1p

(32)
≥ c2pminh

d > 0. (45)

where step (i) follows from applying (40) and substituting p̂ ≥ p
2 . Hence the events EKT,δ and A ∩ C

are mutually exclusive with probability 1, thereby yielding

ESin

[(
f̂KT(x0)− f̂(x0)

)2

I[EKT,δ ∩ A ∩ C]
]
= 0.

Bounding (44). On the event B ∩ C, we have f̂KT(x0) = ÂKT(x0)
p̂KT(x0)

and f̂(x0) = Â(x0)
p̂(x0)

, which
yields

f̂KT(x0)− f̂(x0) =
ÂKT

p̂KT
− Â(x0)

p̂(x0)
= ÂKT(x0)·p̂(x0)−Â(x0)·p̂KT(x0)

p̂(x0)·p̂KT(x0)

= (ÂKT(x0)−Â(x0))·p̂(x0)+Â(x0)·(p̂(x0)−p̂KT(x0))
p̂(x0)·p̂KT(x0)

≤ |ÂKT(x0)−Â(x0)|·p̂(x0)+Â(x0)·|p̂(x0)−p̂KT(x0)|
p̂(x0)·p̂KT(x0)

We can invoke (40) and (41) to bound |p̂(x0)− p̂KT(x0)| and |ÂKT(x0)− Â(x0)| respectively. Thus,
we have

ESin

[(
f̂KT(x0)− f̂(x0)

)2

I[EKT,δ ∩ B ∩ C]
]
≤

(
ca
√

d
n logn·p̂(x0)+cp

√
d
n logn·Â(x0)

p̂(x0)·p̂KT(x0)

)2

17

≤ 2d·log2 n
n

[(
ca

p̂KT(x0)

)2

+
(

Â(x0)
p̂(x0)

)2(
cp

p̂KT(x0)

)2
]

(i)

≤ 2d·log2 n
n

[
c2a+Y 2

maxc
2
p

p̂KT(x0)

]2
(ii)

≤ Cd log2 n
nh2d ,

for some positive constant C that does not depend on n, where step (i) uses the fact that Â(x0)
p̂(x0)

≤ Ymax

and step (ii) uses the lower bound on p̂KT(x0) from (45). Combining (42) to (44), we have

ESin

[(
f̂KT(x0)− f̂(x0)

)2

I[EKT,δ]

]
≤ c0 exp

{
−c1nh

d
}
+ Cd logn

nh2d .

Note that the second term dominates so that we may drop the first term with slight change to the
value of the constant C in the bound (35).

B.1.1 Proof of Lem. 3: Simultaneous L∞ bound using KT-COMPRESS++ with kNW

We first decompose kNW as

kNW((x1, y1), (x2, y2)) = k1((x1, y1), (x2, y2)) + k2((x1, y1), (x2, y2)), where

k1((x1, y1), (x2, y2)) ≜ k(x1, x2) and (46)

k2((x1, y1), (x2, y2)) ≜ k(x1, x2) · y1y2. (47)

and note that

H(kNW) = H(k1)⊕H(k2). (48)

This fact will be useful later for proving simultaneous L∞ approximation guarantees for Â and p̂.

Given that k satisfies Assum. 2, we want to show that kNW defined by (14) satisfies the Lipschitz
and tail decay properties, so that we may apply Lem. 1. Note that

∥kNW∥∞ = ∥k∥∞(1 + Y 2
max). (49)

We claim that kernel kNW satisfies

LkNW
≤ Lk + Ymax(∥k∥∞ + LkYmax) and (50)

RkNW,n ≤ Rk,n + 2Ymax (51)

By [10, Rmk. 8], we have
Lk

∥k∥∞
≤ Lκ

h and Rk,n ≤ hκ†(1/n), (52)

where κ† is defined by (16). Applying (49) and (50), we have

LkNW

∥kNW∥∞
≤ Lk+Ymax(∥k∥∞+LkYmax)

∥k∥∞(1+Y 2
max)

≤ Lk

∥k∥∞
+ 1

Ymax
+ Lk

∥k∥∞

(52)
≤ 2Lκ

h + 1
Ymax

.

Finally, we have

LkNW
RkNW,n

∥kNW∥∞
≤

(
2Lκ

h + 1
Ymax

)(
hκ†(1/n) + 2Ymax

)
= 2Lκκ

†(1/n) + 4LκYmax

h + hκ†(1/n)
Ymax

+ 2

≤ 4max{1, LκYmax} · κ†(1/n)
h

≤ 4max{1, LκYmax} · c′nα, (53)

where the last inequality follows from Assum. 2 for some universal positive constant c′.

18

Since Assum. 1 is satisfied, R is constant. Applying (53) to MkNW
(n, nout, d, δ, R) as defined by

(25), we have the bound

MkNW
(n, nout, d, δ, R) ≤ c′′

√
log

(
nout

δ

)[√
log

(
8
δ

)
+ 5

√
d log n

]
for some positive constant c′′. Substituting this into (24), we have

∥(Pin −Qout)kNW∥∞ ≤ c1
∥k∥∞(1+Y 2

max)

nout

√
log

(
nout

δ

)[√
log

(
8
δ

)
+ 5

√
d log n

]
≤ c2

∥k∥∞(1+Y 2
max)

nout

√
d(
√
log n+

√
log(1/δ))2,

for some positive constants c1, c2. By definition,

∥(Pin −Qout)kNW∥∞ = supz∈Z⟨(Pin −Qout)kNW,kNW(·, z)⟩kNW .

Define k1 and k2 by (46) and (47), respectively, and note that k1(·, z),k2(·, z) ∈ H(kNW) for all
z ∈ Z . We want to show that

supz∈Z⟨(Pin −Qout)kNW,k1(·, z)⟩kNW ≤ c2
∥k∥∞(1+Y 2

max)

nout

√
d(
√
log n+

√
log(1/δ))2 and

supz∈Z⟨(Pin −Qout)kNW,k2(·, z)⟩kNW
≤ c2

∥k∥∞(1+Y 2
max)

nout

√
d(
√
log n+

√
log(1/δ))2,

which would imply (40) and (41) (after simplifying all terms besides n, d, and δ).

The first inequality follows from replacing all occurrences of the test function kNW(·, (x, y)) in the
proof of Lem. 1 with the function k1(·, x) and noting that ⟨kNW(·, (xi, yi)),k1(·, (x, y))⟩kNW

=
⟨k1(·, xi),k1(·, x)⟩k1

from the fact that H(kNW) = H(k1)⊕H(k2) (48).

The second inequality follows from replacing all occurrences of the test function kNW(·, (x, y)) in
the proof of Lem. 1 with the function k2(·, x) and noting that ⟨kNW(·, (xi, yi)),k2(·, (x, y))⟩kNW

=
⟨k2(·, (xi, yi)),k2(·, (x, y))⟩k2

, again from the fact that H(kNW) = H(k1)⊕H(k2) (48).

Proof of claim (50). We leverage the fact that the Lipschitz constants defined by (26) satisfies the
following additivity property. Letting Z = Sin, we have

LkNW
= supz1,z2,z3∈Z

|kNW(z1,z2)−kNW(z1,z3)|
∥z2−z3∥2

≤ supz1,z2,z3∈Z
|k1(z1,z2)−k1(z1,z3)|

∥z2−z3∥2
+ supz1,z2,z3∈Z

|k2(z1,z2)−k2(z1,z3)|
∥z2−z3∥2

= Lk1 + Lk2 .

We proceed to bound Lk1 and Lk2 separately. Note that

Lk1
= Lk.

Applying the definition (26) to Lk2
, we have

Lk2
= supz1=(x1,y1)

z2=(x2,y2)
z3=(x3,y3)

|k(x1,x2)y1y2−k(x1,x3)y1y3|√
∥x2−x3∥2+∥y2−y3∥2

= supz1=(x1,y1)
z2=(x2,y2)
z3=(x3,y3)

|y1|·|k(x1,x2)y2−k(x1,x2)y3+k(x1,x2)y3−k(x1,x3)y3|√
∥x2−x3∥2+∥y2−y3∥2

= supz1=(x1,y1)
z2=(x2,y2)
z3=(x3,y3)

|y1|·|k(x1,x2)(y2−y3)+(k(x1,x2)−k(x1,x3))y3|√
∥x2−x3∥2+∥y2−y3∥2

≤ supz1=(x1,y1)
z2=(x2,y2)
z3=(x3,y3)

|y1|·|k(x1,x2)(y2−y3)|√
∥x2−x3∥2+∥y2−y3∥2

+ supz1=(x1,y1)
z2=(x2,y2)
z3=(x3,y3)

|y1|·|(k(x1,x2)−k(x1,x3))y3|√
∥x2−x3∥2+∥y2−y3∥2

≤ Ymax∥k∥∞ + LkY
2
max.

Putting together the pieces yields the claimed bound.

19

Proof of claim (51). We aim to show that RkNW,n is not much larger than Rk,n. Note that kNW

can be rewritten as

kNW((x1, y1), (x2, y2)) = (1 + y1y2)k(x1, x2).

We define the sets

Γ ≜

{
r : sup x1,x2:

∥x1−x2∥2≥r
|k(x1, x2)| ≤

∥k∥∞
n

}
and (54)

Γ⋆ ≜

{
r⋆ : sup (x1,y1),(x2,y2):

∥x1−x2∥2+∥y1−y2∥2≥(r⋆)2
|k(x1, x2) · y1y2| ≤

∥k⋆∥∞
n

}
, (55)

noting that

Rk,n = inf Γ and RkNW,n = inf Γ⋆

by definition (27).

Suppose r ∈ Γ. Then for any (x1, y1), (x2, y2) such that

∥x1 − x2∥2 + ∥y1 − y2∥2 ≥ r2 + 4Y 2
max,

it must follow that ∥x1 − x2∥2 ≥ r2 (since ∥y1 − y2∥2 ≤ 4Y 2
max by triangle inequality). Since r

satisfies (54), it must follow that

|k(x1, x2) · (y1y2 + 1)| ≤ |k(x1, x2)|(Y 2
max + 1) ≤ ∥k∥∞

n (Y 2
max + 1)

(49)
=

∥kNW∥∞
n ,

meaning
√
r2 + 4Y 2

max ∈ Γ⋆, where recall Γ⋆ is defined by (55). Thus, we have

RkNW,n ≤
√
Rk,n + 4Y 2

max ≤ Rk,n + 2Ymax

as desired.

B.2 Proof of claim (36)

Suppose event E (31) is satisfied. Define the shorthand for the variance:

σ2(x0;X) ≜ EY |X

[(
f̂(x0)− EY |X

[
f̂(x0)

])2
]
.

Conditioned on X1 = x1, X2 = x2, . . . , Xn = xn, we have

EY |X

[
f̂(x0)

]
= EY1|X1,...,Yn|Xn

[∑n
i=1 Yik(Xi,x0)∑n
i=1 k(Xi,x0)

]
=

∑n
i=1 f⋆(Xi)k(Xi,x0)∑n

i=1 k(Xi,x0)
, (56)

where we have used the fact that E[Y | X = ·] = f⋆(·) by assumption (1).

Note that on event E, we have

σ2(x0;X)
(56)
= EY |X

[(∑n
i=1 Yik(Xi,x0)∑n
i=1 k(Xi,x0)

−
∑n

i=1 f⋆(Xi)k(Xi,x0)∑n
i=1 k(Xi,x0)

)2
]

= EY |X

[(∑n
i=1 vik(Xi,x0)∑n
i=1 k(Xi,x0)

)2
]

= Var[v1] ·
∑n

i=1
k(Xi,x0)

2

(
∑n

i=1 k(Xi,x0))
2 ,

where recall v1, . . . , vn are i.i.d. random variables with Var[vi] = σ2 by (1). Taking the expectation
w.r.t. X1, . . . , Xn and leveraging symmetry, we have

EX

[
σ2(x0;X) I[E]

]
= nσ2 · σ2

X , where σ2
X ≜ EX

[
k2(X1,x0)

(
∑n

i=1 k(Xi,x0))
2

]
. (57)

σ2
X can be bounded by

σ2
X ≤ EX

[
k2(X1,x0)

(
∑n

i=1 k(Xi,x0))
2 I
[∑n

i=1 ηi ≤
np
2

]]
+
(

2
np

)2

EX

[
k2(X1, x0)

]
20

(i)

≤ P
(∑n

i=1 ηi ≤
np
2

)
+
(

2
np

)2 ∫
X k2(x1, x0)p(dx1),

where step (i) follows from the fact that k2(X1,x0)

(
∑n

i=1 k(Xi,x0))
2 ≤ 1. Using Bernstein’s inequality [28,

Prop. 2.14], the first term can be bounded by

P
(∑n

i=1 ηi ≤
np
2

)
= P

(∑n
i=1 ηi − np ≤ −np

2

)
≤ exp

{
− (np)2

2(np(1−p)+np/3)

}
≤ exp

{
−c1nh

d
}

for some universal positive constant c. Applying the fact that p is bounded by Assum. 1 and κ is
square-integrable by Assum. 2, we can bound the second term by(

2
np

)2 ∫
X k2(x1, x0)p(dx1)

(i)

≤
(

2
np

)2

pmaxh
d
∫
Rd κ

2(u)du

(ii)

≤ 4
(np)2

(
c1h

d
)
≤ c2

n2hd ,

for some positive constant c2 that does not depend on either h or n. Substituting these expressions
into (57) yields a bound on EX

[
σ2(x0;X) I[E]

]
as desired.

B.3 Proof of claim (37)

Define the following shorthand for the bias:

b(x0;X) ≜ EY |X

[
f̂(x0)

]
− f⋆(x0).

We state a more detailed version of the claim.

Lemma 4 (Bias of Nadaraya-Watson). Suppose Assum. 1 and 2 are satisfied and the event E (31)
holds.

If f⋆ ∈ Σ(β, Lf) for β ∈ (0, 1], Lf > 0, then the following statements hold true for any x0 ∈ X :

(I.a) If k is compactly supported, then b2(x0;X) ≤ L2
fh

2β .

(I.b) If k has tail decay satisfying (16), then b2(x0;X) ≤ c · L2
f (h

2β ∨ h2β−d) for some positive
constant c.

Now suppose f⋆ ∈ Σ(β, Lf) for β ∈ (1, 2], Lf > 0 and the density p of the marginal distribution
of X satisfies p ∈ Σ(β − 1, Lp), Lp > 0. Let σX be defined by (57). Then the following statements
hold for any x0 ∈ X :

(II.a) If k is compactly supported, then b2(x0;X) ≤
(
Lf + ∥∇f(x0)∥Lpp

−1
min

)
h2β + σ2

X .

(II.b) If k has tail decay satisfying (16), then b2(x0;X) ≤ c ·
(
Lf + ∥∇f(x0)∥Lpp

−1
min

)
(h2β ∨

h2β−d) + σ2
X for some positive constant c.

We proceed to prove Case I and Case II in App. B.3.1 and App. B.3.2, respectively.

B.3.1 Bias when β ∈ (0, 1]

Proof of claim (I.a). For completeness, we state the proof from Belkin et al. [3, Lem. 2]. On the
event E, we have

b(x0;X)
(56)
=

∑n
i=1(f

⋆(Xi)−f⋆(x0))k(Xi,x0)∑n
i=1 k(Xi,x0)

(i)

≤
∑n

i=1 Lf∥Xi∥βk(Xi,x0)∑n
i=1 k(Xi,x0)

(ii)

≤ Lfh
β , (58)

where step (i) follows from our assumption that f⋆ ∈ Σ(β, Lf) and step (ii) follows from our
assumption that k is compactly supported, so k(x, x0) = 0 whenever ∥x− x0∥ > h.

21

Proof of claim (I.b). Consider the following decomposition of the bias:

b(x0;X) ≤
∑n

i=1 k(Xi,x0)I[∥Xi−x0∥≤h](f⋆(Xi)−f⋆(x0))∑n
k=1 k(Xk,x0)I[∥Xi−x0∥≤h] +

∑n
i=1 k(Xi,x0)I[∥Xi−x0∥>h](f⋆(Xi)−f⋆(x0))∑n

k=1 k(Xk,x0)
.

Note that the first RHS term can be bounded using (58). To bound the second RHS term, we introduce
the following high-probability event

E ≜ {|I| = O(nhd/2)}, where I ≜ {i ∈ [n] : ∥Xi − x0∥ = O(h1/2)}.

On this event, we may apply the Lipschitz property of f⋆ again to obtain∑n
i=1 k(Xi,x0)I[∥Xi−x0∥>h](f(Xi)−f(x0))∑n

k=1 k(Xk,x0)
≤ Lf

∑n
i=1 k(Xi,x0)∥Xi−x0∥β∑

k∈I k(Xk,x0)

(i)

≤ Lf

∑n
i=1 κ(

∥Xi−x0∥
h)∥Xi−x0∥β∑

k∈I k(Xk,x0)

≤ Lfnmaxu≥0 κ(u)(uh)β∑
k∈I k(Xk,x0)

,

where step (i) follows from the fact that k is a shift-invariant kernel by Assum. 2. Note that when κ
has tail decay satisfying (16), we have

maxx≥0 κ(u)(uh)
β = c · hβ

for some positive constant c. This implies on the event E , the following bound holds

b(x0;X) ≤ Lfh
β + Lf · c · nhβ

nhd/2 = c · Lf (h
β ∨ hβ−d/2).

B.3.2 Bias when β ∈ (1, 2]

Proof of claim (II.a). For notational simplicity, let x0 = 0. We further assume the density p of X
satisfies (i) p ∈ [pℓ, pu] for some 0 < pℓ < pu < ∞ and p ∈ Σ(β − 1, Lp). Define B ≜ ∥∇f(0)∥2
and denote θ ≜ (Lp, Lf , pℓ, pu, B) to be the collection of parameters. Constants c > 0 in this proof
may differ from line to line, but depends only up to parameters in θ.

By definition,

b2(0) ≜ E
[∑n

i,j=1 GiGjI[E0]
]

where

Gi =
(f(Xi)−f(0))k(Xi)∑n

k=1 k(Xk)
.

Further define

A(Xi, Xj) ≜
k(Xi)k(Xj)

(
∑n

k=1 k(Xk))2
I[E0] ≥ 0 for i ̸= j,

and denote Ei,j to be the conditional expectation of law Xi, Xj , while fixing all other randomness
Xk, k ̸= i, k ̸= j. Under independence of Xi, i ∈ [n], it is safe to say that Ei,j is the expectation of
marginal law of Xi, Xj , while fixing other randomness as constants.

Define

R(x) = f(x)− f(0)− ⟨∇f(0), x⟩

so that by simple add-substract algebra, we have

Ei,j [GiGjI[E0]] =
∫∫

⟨∇f(0), xi⟩⟨∇f(0), xj⟩A(xi, xj)p(xi)p(xj)dxidxj

+ 2
∫∫

⟨∇f(0), xi⟩R(xj)A(xi, xj)p(xi)p(xj)dxidxj

+
∫∫

R(xi)R(xj)A(xi, xj)p(xi)p(xj)dxidxj .

Observe that A(xi, xj) are even functions for both arguments, and x 7→ ⟨∇f(0), x⟩ is an odd function.
So we can see ∫

⟨∇f(0), xi⟩A(xi, xj)p(0)dxi = 0.

22

Such observation allows us to write

Ei,j [GiGjI[E0]] =
∫∫

⟨∇f(0), xi⟩⟨∇f(0), xj⟩A(xi, xj)(p(xi)− p(0))(p(xj)− p(0))dxidxj

+ 2
∫∫

⟨∇f(0), xi⟩R(xj)A(xi, xj)(p(xi)− p(0))p(xj)dxidxj

+
∫∫

R(xi)R(xj)A(xi, xj)p(xi)p(xj)dxidxj .

From the assumptions, we see |R(xi)| ≤ Lf∥xi∥β so that we have

Ei,j [GiGjI[E0]] ≤ c
∫∫

∥xi∥β∥xj∥βA(xi, xj)dxidxj

+ c
∫∫

∥xi∥β∥xj∥βA(xi, xj)p(xi)dxidxj

+ c
∫∫

∥xi∥β∥xj∥βA(xi, xj)p(xi)p(xj)dxidxj

≤ c
∫∫

∥xi∥β∥xj∥βA(xi, xj)dxidxj .

So overall we have

E[GiGjI[E0]] ≤ cE
[
∥Zi∥β∥Zj∥βk(Zi)k(Zj)

(
∑n

k=1 k(Zk))2
I[E0]

]
,

where Zi’s are independent and uniform measures on the domain — such integration is established
by pulling out all the pu, pℓ for all p’s of Xi’s. So

b2(0) ≤ cE
[(∑n

i=1
|Zi|βk(Zi)∑n

k=1 k(Zk)

)2

I[E0]
]
.

Now let’s induce the same reasoning as done in β ∈ (0, 1] case, so that

b2(0) ≤ O(h2β) ∨O(h2β−d).

Proof of claim (II.b). The proof follows by similar logic as (II.a) combined with the truncation
argument of (I.b).

C Proof of Thm. 2: KT-KRR for finite-dimensional RKHS

We rely on the localized Gaussian/Rademacher analysis of KRR from prior work [28]. Define the
Gaussian critical radius εn > 0 to be the smallest positive solution to the inequality

Ĝn(ε;BH(3)) ≤ R
2σ ε

2, where Ĝn(ε;F) ≜ Ew

[
sup f∈F :

∥f∥n≤ε

∣∣ 1
n

∑n
i=1 wif(xi)

∣∣], (59)

BH(3) is the ∥·∥k-ball of radius 3 and wi
i.i.d.∼ N (0, 1).

Assumption 4. Assume that ∥f⋆∥k ∈ Bk(R) and f̂KT,λ′ ∈ Bk(c†R), for some constant c† > 0 .

Note that for any g ∈ Bk(c†R), we have

∥g∥∞ ≤ supx∈X ⟨g,k(·, x)⟩k
(i)

≤ supx∈X ∥g∥k∥k(·, x)∥k ≤ ∥g∥k
√

∥k∥∞ ≤ c†R
√

∥k∥∞ ≜ B,

where step (i) follows from Cauchy-Schwarz. Thus, the function class Bk(c†R) is B-uniformly
bounded. Now define the Rademacher critical radius δn > 0 to be the smallest positive solution to
the inequality

Rn(δ;H) ≤ δ2, where Rn(δ;F) ≜ Ex,ν

[
sup f∈F :

∥f∥2≤δ

∣∣ 1
n

∑n
i=1 νif(xi)

∣∣] (60)

and νi = ±1 each with probability 1/2.

Finally, we use the following shorthand to control the KT approximation error term,

ηn,k ≜ a2

nout
(2 +Wk(n, nout, δ,Rin,

a
nout

)), where (61)

Rin ≜ maxx∈Sin∥x∥2 and a ≜ ∥k∥∞,in + Y 2
max (62)

and Wk is an inflaction factor defined in (28) that scales with the covering number Nk (see Def. 2).
With these definitions in place, we are ready to state a detailed version of Thm. 2:

23

Theorem 4 (KT-KRR for finite-dimensional RKHS, detailed). Suppose the kernel operator associated
with k and P has eigenvalues µ1 ≥ . . . ≥ µm > 0 (by Mercer’s theorem). Define Cm ≜ 1/µm. Let
εn and δn denote the solutions to (60) and (59), respectively. Further assume 4

nδ2n > log(4 log(1/δn)). (63)

Let f̂KT,λ′ denote the KT-KRR estimator with regularization parameter

λ′ ≥ 2ξ2n where ξn ≜ εn ∨ δn ∨ 4
√
Cm(∥f⋆∥k + 1)ηn,k.

Then with probability at least 1− 2δ − 2e
− nδ2n

c1(b2+σ2) , we have

∥f̂KT,λ′ − f⋆∥22 ≤ c
{
ξ2n + λ′}∥f⋆∥2k + cδ2n. (64)

where recall δ is the success probability of KT-COMPRESS++ (23).

See App. D for the proof. We set λ′ = 2ξ2n, so that (64) becomes

∥f̂KT,λ′ − f⋆∥22 ≤ 3cξ2n∥f⋆∥2k + cδ2n. (65)
It remains to bound the quantities εn (59), δn (60), and ηn,k (61). We claim that

εn ≤ c0
σ
R

√
m
n (66)

δn ≤ c1b
√

m
n (67)

ηn,k ≤ c2

√
m·lognout·log(1/δ)

nout
. (68)

for some universal positive constants c0, c1, c2. Now set

R = ∥f⋆∥k δ = e−1/R4

.

Thus, we have

ξn ≤ c′(σ
∥f⋆∥k

∨ b ∨ 4
√
Cm

∥f⋆∥k
)

√
m√

n∧nout
.

for some universal positive constant c′. Substituting this into (65) leads to the advertised bound (18).

Proof of claim (66). For finite rank kernels, µ̂j = 0 for j > m. Thus, we have√
2
n

√∑n
j=1 min{ε2, µ̂j} =

√
2
n

√
mε2. From the critical radius condition (59), we want√

2
n

√
mε2 ≤ R

4σ ε
2, so we may set εn ≃ σ

R

√
m
n .

Proof of claim (67). By similar logic as above, we have
√

2
n

√∑n
j=1 min{δ2, µj} =

√
2
n

√
mδ2.

From the critical radius condition (60), we want
√

2
n

√
mδ2 ≤ 1

b δ
2, so we may set δn ≃ b

√
2
√

m
n .

Proof of claim (68). Consider the linear operator T : H → Rm that maps a function to the
coefficients in the vector space spanned by {ϕi}mi=1. Note that

∥T∥ =
∥Tf∥∞
∥f∥k

≤
√

∥k∥∞
Since the image of T has dimension m, we have rank(T) ≤ m. Moreover, ∥k∥∞ ≤ µ1 ·R2

in. Now
we can invoke [24, Eq. 14] with ϵ = a/nout to obtain

Nk(Bd
2(Rin), a/nout) ≤ N (T, a/nout) ≤ (1 + µ1R

2
innout/a)

m.

Taking the log on both sides and substituting this bound into (61), we have

ηn,k = a2

nout
(2 +Wk(n, nout, δ,Rin,

a
nout

))

≤ a2

nout
(2 +

√
log

(
nout log(n/nout)

δ

)
·
[
log

(
1
δ

)
+ logNk(Bd

2(Rin),
a

nout
)
]
)

≤ a2

nout
(2 +

√
log

(
nout log(n/nout)

δ

)
·
[
log

(
1
δ

)
+m log

(
1 + 2∥T∥nout

a

)]
)

≤ c

√
m·lognout·log(1/δ)

nout

for some positive constant c that doesn’t depend on m,nout, δ.
4Note that when k is finite-rank, this condition is automatically satisfied.

24

D Proof of Thm. 4: KT-KRR for finite-dimensional RKHS, detailed

We rescale our observation model (1) by ∥f⋆∥k, so that the noise variance is (σ/∥f⋆∥k)2 and our
new regression function satisfies ∥f⋆∥k = 1. Our final prediction error should then be multiplied by
∥f⋆∥2k to recover a result for the original problem. For simplicity, denote

σ̃ = σ/∥f⋆∥k.
For notational convenience, define an event

E =
{
∥f̂KT,λ′ − f⋆∥22 ≤ c(ξ2n + λ′)

}
,

and our goal is to show that E occurs with high-probability in terms of P, the probability regarding
all the randomness. For that end, we introduce several events that are used throughout,

Econc ≜

{
supg∈H

∣∣∥g∥n − ∥g∥2
∣∣ ≤ δn

2

}
and Elower ≜

{
∥f̂KT,λ′ − f⋆∥2 > δn

}
, (69)

where δn is defined in (60) and H is the RKHS generated by k hence star-shaped. Further, we
introduce two technical events AKT(u),BKT defined in (82) and (95) respectively, which are proven
to occur with small probability, and define a shorthand

Egood ≜ Ac
KT(ξn) ∩ Bc

KT ∩ Econc ∩ EKT,δ.

Equipped with these shorthands, observe the following inequality,
P(E) = P(E ∩ Elower) + P(E ∩ Ec

lower)

≥ P(E ∩ Elower) + P(Ec
lower) (70)

where the second inequality is because Ec
lower ⊆ Ec

lower ∩ E due to the assumption λ′ ≥ 2ξ2n ≥ 2δ2n.

If we are able to show the set inclusion {Egood ∩ Elower} ⊆ {E ∩ Elower} and that P(Ec
good) is small, we

are able refine (70) to the following
P(E) ≥ P(Egood ∩ Elower) + P(Ec

lower) ≥ 1− P(Ec
good)− P(Ec

lower) + P(Elower) = 1− P(Ec
good),

where the last quantity 1− P(Ec
good) would be large.

To complete this proof strategy, we claim the set inclusion
{Egood ∩ Elower} ⊆ {E ∩ Elower} (71)

to hold and prove it in App. D.1 and further claim

P(Ec
good) ≤ c′′

{
δ + e−c′nδ2n/(B

2
H∧σ̃2)

}
(72)

which verify in App. D.2.

Putting the pieces together, claims (71) and (72) collectively implies

P(E) ≥ 1− c′′
{
δ + e−c′nδ2n/(B

2
H∧σ̃2)

}
as desired.

D.1 Proof of claim (71)

There are several intermediary steps we take to show the set inclusion of interest (71). We introduce
the shorthand

∆̂KT ≜ f̂KT,λ′ − f⋆.

By invoking Propositions and basic inequalities to come, we successively show the following chain
of set inclusions

Egood ∩ Elower ⊆ Egood ∩ Elower ∩ {∥∆̂KT∥2nout
≤ c(ξ2n + λ′)} (73)

⊆ Egood ∩ Elower ∩ {∥∆̂KT∥2n ≤ c(ξ2n + λ′)} (74)
⊆ Egood ∩ Elower ∩ E (75)
⊆ Elower ∩ E . (76)

Note that step (76) is achieved trivially by dropping Egood. Further note that (74) is the crucial
intermediary step after which we may apply uniform concentration across n independent samples.
Proof of (74) leverages on the Proposition to come (Prop. 1) that allows ∥ · ∥n and ∥ · ∥nout

to be
exchangeable for finite rank kernels.

25

Recovering step (73) Since f̂KT,λ′ and f⋆ are optimal and feasible, respectively for the central
optimization problem of interest

minf∈H(k)
1

nout

∑nout

i=1 (y
′
i − f(x′

i))
2
+ λ′∥f∥2k,

we have the basic inequality

1
nout

∑nout

i=1

(
y′i − f̂KT,λ′(x′

i)
)2

+ λ′∥f̂KT,λ′∥2k ≤ 1
nout

∑nout

i=1 (y
′
i − f⋆(x′

i))
2
+ λ′∥f⋆∥2k, (77)

With some algebra , may refine (77) to

1
2∥∆̂KT∥2nout

≤
∣∣∣ 1
nout

∑nout

i=1 v′i∆̂KT(x
′
i)
∣∣∣+ λ

{
∥f⋆∥2k − ∥f̂KT,λ′∥2k

}
. (78)

where ∆̂KT = f̂KT,λ′ − f⋆.Suppose that ∥∆̂KT∥nout
< ξn, then we trivially recover (73) by adding

λ′ > 0. Thus, we assume that ∥∆̂KT∥nout
≥ ξn.

Under the assumption ∥∆̂KT∥nout
≥ ξn, which is without loss of generality, we utilize the basic

inequality (78) and control its stochastic component∣∣∣∣ 1
nout

∑nout

i=1 v′i∆̂KT(x
′
i)

∣∣∣∣,
with a careful case work to follow, which is technical by nature.

Case where ∥f̂KT,λ′∥k ≤ 2: Under such case, we introduce a technical event

AKT(u) ≜

{
∃g ∈ F \ B2(δn) ∩ {∥g∥nout

≥ u} such that
∣∣∣ 1
nout

∑nout

i=1 v′ig(x
′
i)
∣∣∣ ≥ 3∥g∥nout

u

}
,

for any star-shaped function class F ⊂ H. Since ∥f⋆∥k = 1, triangle inequality implies ∥∆̂KT∥k ≤
∥f̂KT,λ′∥k + ∥f⋆∥k ≤ 3. Moreover, on the event Elower (⊆ Egood), we have ∥∆̂KT∥2 > δn. Thus, we
may apply ∆̂KT to the event Ac

KT(ξn) with F = BH(3) (i.e., the H-ball of radius 3) to attain∣∣∣ 1
nout

∑nout

i=1 v′i∆̂KT(x
′
i)
∣∣∣ ≤ c0ξn∥∆̂KT∥nout

on the event Ac
KT(ξn) ∩ Elower. (79)

Upper bounding the stochastic component of the basic inequality (78) by (79) and dropping the
−∥f̂KT,λ′∥2k term in (78), we have

1
2∥∆̂KT∥2nout

≤ c0ξn∥∆̂KT∥nout
+ λ′.

As a last step under the case ∥f̂KT,λ′∥k ≤ 2, apply the quadratic formula (specifically, if a, b ≥ 0
and x2 − ax− b ≤ 0, then x ≤ a2 + b) to obtain

∥∆̂KT∥2nout
≤ 4c20ξ

2
n + 2λ′.

Case where ∥f̂KT,λ′∥k > 2: Under such case, by assumption we have ∥f̂KT,λ′∥k > 2 > 1 ≥ ∥f⋆∥k.
Thus, we may derive the following

∥f⋆∥k − ∥f̂KT,λ′∥k < 0 and ∥f⋆∥k + ∥f̂KT,λ′∥k > 1,

which further implies the following inequality

∥f⋆∥2k − ∥f̂KT,λ′∥2k = {∥f⋆∥k − ∥f̂KT,λ′∥k}{∥f⋆∥k + ∥f̂KT,λ′∥k} ≤ ∥f⋆∥k − ∥f̂KT,λ′∥k. (80)

Further writing f̂KT,λ′ = f⋆ + ∆̂KT and noting that ∥∆̂KT∥k − ∥f⋆∥k ≤ ∥f̂KT,λ′∥k holds through
triangle inequality, we may further refine (80) as

∥f⋆∥k − ∥f̂KT,λ′∥k ≤ 2∥f⋆∥k − ∥∆̂KT∥k ≤ 2− ∥∆̂KT∥k,
so that the basic inequality in (78) reduces to

1
2∥∆̂KT∥2nout

≤
∣∣∣ 1
nout

∑nout

i=1 v′i∆̂KT(x
′
i)
∣∣∣+ λ′{2− ∥∆̂KT∥k}. (81)

26

We again introduce a technical event that controls the stochastic component of (81), which is

BKT ≜

{
∃g ∈ F \ B2(δn) ∩ {∥g∥k ≥ 1} : (82)∣∣∣ 1

nout

∑nout

i=1 v′ig(x
′
i)
∣∣∣ > 4ξn∥g∥nout

+ 2ξ2n∥g∥k + 1
4∥g∥

2
nout

}
,

for a star-shaped function class F ⊂ H.

By triangle inequality, we have ∥∆̂KT∥k ≥ ∥f̂KT,λ′∥k − ∥f⋆∥k > 1, and on event Elower (⊂ Egood),
we have ∥∆̂KT∥2 > δn. Thus, we may apply g = ∆̂KT to the event Bc

KT, and the resulting refined
basic inequality is

1
2∥∆̂KT∥2nout

≤ 4ξn∥∆̂KT∥nout + (2ξ2n − λ′)∥∆̂KT∥k + 2λ′

≤ 4ξn∥∆̂KT∥nout + 2λ′ on the event Bc
KT ∩ Elower

where the second inequality is due to the assumption that λ′ ≥ 2ξ2n. We apply the quadratic formula
(specifically, if a, b ≥ 0 and x2 − ax− b ≤ 0, then x ≤ a2 + b) to obtain

∥∆̂KT∥2nout
≤ 4c20ξ

2
n + 2λ′.

Putting the pieces together, we have shown

∥∆̂KT∥2nout
≤ c(ξ2n + λ′) on the event Ac

KT(ξn) ∩ Bc
KT ∩ Elower,

which is sufficient to recover (73).

Recovering step (74) We now upgrade events

{∥∆̂KT∥2nout
≤ c(ξ2n + λ′)} =⇒ {∥∆̂KT∥2n ≤ c′(ξ2n + λ′)}

by exploiting the events Econc ∩ EKT,δ (subset of Egood) that were otherwise not used when recovering
(73). For this end, the following result is a crucial ingredient, which shows that ∥·∥nout

and ∥·∥n are
essentially exchangeable with high-probability,

Proposition 1 (Multiplicative guarantee for KT-COMPRESS++ with kRR). Let Cm ≜ 1/µm and
suppose δn satisfies (63). Then on event EKT,δ ∩ Econc, where EKT,δ and Econc are defined in (23) and
(69) respectively, we have

(1− 4Cm · ηn,k)∥g∥n ≤ ∥g∥nout
≤ (1 + 4Cm · ηn,k)∥g∥n (83)

uniformly over all g ∈ H such that ∥g∥2 > δn.

See App. D.3 for the proof.

An immediate consequence of Prop. 1 is that

{∥∆̂KT∥2nout
≤ c(ξ2n + λ′)} =⇒ {∥∆̂KT∥2n ≤ c′(ξ2n + λ′)}

on the event EKT,δ ∩ Econc ∩ Elower,, which is sufficient to recover (74).

Recovering step (75) Our last step is to show

{∥∆̂KT∥2n ≤ c′(ξ2n + λ′)} =⇒ {∥∆̂KT∥22 ≤ c′′(ξ2n + λ′)}.

Such result can be immediately shown on the event Econc by observing that ∆̂KT ∈ H, by our
assumption that f⋆ ∈ H and by the definition

f̂KT,λ′ ∈ argminf∈H(k) Lnout
(f) + λ′∥f∥2k.

27

D.2 Proof of claim (72)

It suffices to show the appropriate bounds for the following four probability terms

P(AKT(ξn)), P(BKT), P(Ec
conc), P(Ec

KT,δ).

Fix the shorthand

BH ≜ ∥k∥2∞R2 < ∞.

We know from [10] that P(Ec
KT,δ|Sin) ≤ δ and then we may apply [28, Thm. 14.1] to obtain a high

probability statement,

P(Ec
conc) ≤ e−c′nδ2n/B

2
H . (84)

Now we present two Lemmas that bound the P(· | Sin) probability of events AKT(ξn) and BKT,

Lemma 5 (Controlling bad event when ∥f̂KT,λ′∥k ≤ 2). Suppose u ≥ ξn. Then for some constant
c > 0,

P(AKT(u) | Sin) ≤ δ + e−cnδ2n/B
2
H + e−cnu2/σ̃2

(85)

where σ̃ = σ/∥f⋆∥k.

See App. D.4 for the proof. Note that by plugging in ξn into (85) results in a probability that depends
on Sin (as ξn depends on Sin). By invoking the definition of ξn, we may further refine the probability
bound of AKT(ξn) by

P(AKT(ξn) | Sin) ≤ δ + e−cnδ2n/B
2
H + e−cnδ2n/σ̃

2

(86)

Lemma 6 (Controlling bad event when ∥f̂KT,λ′∥k > 2). For some constants c, c′ > 0,

P(BKT | Sin) ≤ δ + e−cnδ2n/B
2
H + ce−nξ2n/(c

′σ̃2) (87)

where σ̃ = σ/∥f⋆∥k.

See App. D.5 for the proof. It is notable that ξn in the probability bound of (87) contains a term εn
defined in (59) that is a function of Sin. Invoking the definition of ξn, we observe the probability
upper bound (87) can be refined to

P(BKT | Sin) ≤ δ + e−cnδ2n/B
2
H + ce−nδ2n/(c

′σ̃2), (88)

which does not depend on Sin.

Putting the pieces together, we have the following probability bound for some constants c, c′ > 0,

P(Ec
good | Sin) ≤ P(AKT(ξn) | Sin) + P(BKT | Sin) + P(Ec

conc | Sin) + P(Ec
KT,δ | Sin)

(84)(86)(88)
≤ c

{
δ + e−c′nδ2n/(B

2
H∧σ̃2)

}
thereby implying P(Ec

good) ≤ c′′
{
δ + e−c′nδ2n/(B

2
H∧σ̃2)

}
for some constant c′′.

D.3 Proof of Prop. 1: Multiplicative guarantee for KT-COMPRESS++ with kRR

Fix g ∈ H. Denote ⟨g, h⟩ =
∫
g(x)h(x)dx as the inner product in the L2 sense. By Mercer’s

theorem [28, Cor. 12.26], the k-norm of g has a basis expansion ∥g∥2k =
∑m

i=1⟨g, ϕi⟩2/λi so that

∥g∥2k ≤
∑m

i=1⟨g, ϕi⟩2/λm = Cm∥g∥22 since Cm = 1/λm. (89)

The assumption ∥g∥2 ≥ δn implies that on the event Econc (69), we have
1
2δn ≤ ∥g∥2 −

1
2δn ≤ ∥g∥n (90)

Moreover, g must be a non-zero function. Note that g2 ∈ H(kRR) (see App. F.3). Thus, we may
apply Lem. 12 to f1 = f2 = g and a = 1, b = 0 to obtain∣∣∥g∥2n − ∥g∥2nout

∣∣ = ∣∣∣∣ 1n ∑n
i=1 g

2(xi)− 1
nout

∑nout

i=1 g2(x′
i)

∣∣∣∣ ≤ ∥g∥2k · ηn,k. (91)

28

The LHS can be expanded as∣∣∥g∥2n − ∥g∥2nout

∣∣ = ∣∣∥g∥n − ∥g∥nout

∣∣ · ∣∣∥g∥n + ∥g∥nout

∣∣︸ ︷︷ ︸
>0 by (90)

.

Thus, we may rearrange (91) and combine with (89) to obtain∣∣∥g∥n − ∥g∥nout

∣∣ ≤ Cm∥g∥2
2

∥g∥n+∥g∥nout
· ηn,k. (92)

On event Econc, we have

∥g∥22
(69)
≤ (12δn + ∥g∥n)2

(i)

≤ δ2n
4 + δn∥g∥n + ∥g∥2n. (93)

Thus, we have

∥g∥2
2

∥g∥n+∥g∥nout

(93)
≤ δ2n

4|∥g∥n+∥g∥nout |
+ δn∥g∥n

∥g∥n+∥g∥nout
+

∥g∥2
n

∥g∥n+∥g∥nout

(90)
≤ δ2n

2δn
+ δn + ∥g∥n · ∥g∥n

∥g∥n+∥g∥nout

≤ 3
2δn + ∥g∥n

(90)
≤ 3∥g∥n + ∥g∥n = 4∥g∥n. (94)

Using (94) to refine (92), we have on event EKT,δ ∩ Econc:∣∣∥g∥n − ∥g∥nout

∣∣ ≤ 4Cm∥g∥n · ηn,k.

With some algebra, this implies with probability at least 1− δ − exp(−c′nδ2n/B
2
F):

(1− 4Cm · ηn,k)∥g∥n ≤ ∥g∥nout
≤ (1 + 4Cm · ηn,k)∥g∥n

uniformly over all non-zero g ∈ H such that ∥g∥2 > δn.

D.4 Proof of Lem. 5: Controlling bad event when ∥f̂KT,λ′∥k ≤ 2

Recall EKT,δ and Econc defined by (23) and (69). Also recall that EKT,δ ∩ Econc combined with the
assumption ∥g∥2 ≥ δn invokes the event (83). Our aim is to show

AKT(u) ∩ EKT,δ ∩ Econc ⊆ {Zn(2u) ≥ 2u2}, where Zn(t) ≜ sup g∈F :
∥g∥n≤t

∣∣ σ̃
n

∑n
i=1 wig(xi)

∣∣
(95)

so that we have a probability bound

P(AKT(u)) ≤ P(Ec
KT,δ) + P(Ec

conc) + P(Zn(2u) ≥ 2u2).

The first RHS term can be bounded by δ (see (23)). The second RHS term can bounded by (84). The
third term can be bounded by

P(Zn(2u) ≥ 2u2) = P
(
Zn(u) ≥ u2/2 + u2/2

) (i)

≤ P
(
Zn(u) ≥ uεn/2 + u2/2

) (ii)

≤ e−
nu2

8σ̃2 ,

where (i) follows from our assumption that u ≥ εn and (ii) follows from applying generic
concentration bounds on Zn(u) (see [28, Thm. 2.26, Eq. 13.66]). Putting together the pieces
yields our desired probability bound (85).

Proof of claim (95). Consider the event AKT(u)∩EKT,δ ∩Econc. The norm equivalence established
on the event EKT,δ ∩ Econc in Prop. 1 is an important ingredient throughout.

Let g ∈ H be the function that satisfies three conditions: ∥g∥2 ≥ δn , ∥g∥nout
≥ u, and∣∣∣∣ 1

nout

∑nout

i=1 v′ig(x
′
i)

∣∣∣∣ ≥ 3∥g∥nout
u.

29

Define the normalized function

g̃ = u · g/∥g∥nout

so that it satisfies ∥g̃∥nout = u and also∣∣∣∣ 1
nout

∑nout

i=1 v′ig̃(x
′
i)

∣∣∣∣ ≥ 3u2. (96)

By triangle inequality, the LHS of (96) can be further upper bounded by∣∣∣∣ 1
nout

∑nout

i=1 v′ig̃(x
′
i)

∣∣∣∣ ≤ ∣∣∣∣ 1n ∑n
i=1 vig̃(xi)

∣∣∣∣+ u
∥g∥nout

∣∣∣ 1n ∑n
i=1 vig(xi)− 1

nout

∑nout

i=1 v′ig(x
′
i)
∣∣∣.
(97)

Recall the chosen g satisies ∥g∥nout
≥ u. Observe that

vig(xi)
(1)
= (yi − f⋆(xi))g(xi) = −f⋆(xi)g(xi) + yig(xi),

so we may apply Lem. 12 with f1 = f⋆, f2 = g and a = −1, b = 1. Thus, on the event EKT,δ ∩Econc,
we have ∣∣∣ 1n ∑n

i=1 vig(xi)− 1
nout

∑nout

i=1 v′ig(x
′
i)
∣∣∣ ≤ ∥g∥k(∥f⋆∥k + 1) · ηn,k. (98)

Thus, we may rearrange (97) and combine with (96) and (98) to obtain∣∣ 1
n

∑n
i=1 vig̃(xi)

∣∣ ≥ 3u2 − u
∥g∥nout

∥g∥k(∥f⋆∥k + 1) · ηn,k

Note that
∥g∥k

∥g∥nout
= ∥g∥k

∥g∥2
· ∥g∥2

∥g∥n
· ∥g∥n

∥g∥nout
.

We tackle each term in turn. First, ∥g∥k

∥g∥2

(89)
≤

√
Cm. Since we assume ∥g∥2 ≥ δn, we have

∥g∥2

∥g∥n
≤ δn/2+∥g∥n

∥g∥n

(90)
≤ 2 on event Econc; and ∥g∥n

∥g∥nout

(103)
≤ 2 on event Econc ∩ EKT,δ . Taken together,

∥g∥k

∥g∥nout
≤ 4

√
Cm on event Econc ∩ EKT,δ. (99)

As u ≥ ξn ≥ 4
√
Cm(∥f⋆∥k + 1)ηn,k by assumption, we have therefore found g̃ with norm

∥g̃∥nout
= u satisfying ∣∣∣∣ 1n ∑n

i=1 vig̃(xi)

∣∣∣∣ ≥ 3u2 − u2 = 2u2.

We may further show that

∥g̃∥n = u
∥g∥nout

∥g∥n ≤ u ∥g∥n

∥g∥nout
≤ u · 2 on event Econc ∩ EKT,δ,

where the last inequality follows from the fact that ∥g∥2 ≥ δn and by applying (103). So we observe

2u2 ≤
∣∣∣∣ 1n ∑n

i=1 vig̃(xi)

∣∣∣∣ ≤ sup∥g̃∥n≤2u

∣∣∣∣ 1n ∑n
i=1 vig̃(xi)

∣∣∣∣ = Zn(2u)

D.5 Proof of Lem. 6: Controlling bad event when ∥f̂KT,λ′∥k > 2

Our aim is to show for any g ∈ ∂H with ∥g∥k ≥ 1,∣∣∣∣ 1
nout

∑nout

i=1 v′ig(x
′
i)

∣∣∣∣ ≤ 2ξn∥g∥nout
+ 2ξ2n∥g∥k + 1

16∥g∥
2
nout

with high probability.

30

Note that it is sufficient to prove our aim for g ∈ ∂H with ∥g∥k = 1—by proving only for g with
∥g∥k = 1, then for any h ∈ ∂H with ∥h∥k ≥ 1, we may plug g = h/∥h∥k into∣∣∣∣ 1

nout

∑nout

i=1 v′ig(x
′
i)

∣∣∣∣ ≤ 2ξn∥g∥nout
+ 2ξ2n + 1

16∥g∥
2
nout

(100)

to recover the aim of interest. So without loss of generality, we show (100) for all g such that g ∈ ∂H
and ∥g∥k = 1.

Let BKT denote the event where (100) is violated, i.e. there exists g ∈ ∂H with ∥g∥k = 1 so that∣∣∣∣ 1
nout

∑nout

i=1 v′ig(x
′
i)

∣∣∣∣ > 3ξn∥g∥nout
+ 2ξ2n + 1

4∥g∥
2
nout

. (101)

We prove the following set inclusion,

BKT ∩ EKT,δ ∩ Econc

⊆
{
∃ g ∈ ∂H s.t. ∥g∥k = 1 and

∣∣∣∣ 1n ∑n
i=1 vig(xi)

∣∣∣∣ > 2εn∥g∥n + 2ε2n + 1
16∥g∥

2
n

}
, (102)

where we know the RHS event of (102) has probability bounded by ce−nξ2n/(c
′σ̃2) which is proven in

[28, Lem. 13.23]. So the set inclusion (102) implies a bound over the event BKT,

P(BKT) ≤ P(Ec
KT,δ) + P(Ec

conc) + ce−nξ2n/(c
′σ̃2),

where P(Ec
KT,δ) ≤ δ by (23) and P(Ec

conc) by (84).

Choose g so that ∥g∥k = 1 and (101) holds. Condition ∥g∥k = 1 as well as the condition (89)
resulting from a finite rank kernel k implies δn ≤ 1 ≤ ∥g∥k ≤

√
Cm∥g∥2. Invoke Prop. 1 for the

choice of g that satisfies ∥g∥2 ≥ δn/
√
Cm ≥ δn, so that on the event EKT,δ ∩ Econc, we have the

following norm equivalence,

1
2∥g∥n ≤ ∥g∥nout

≤ 3
2∥g∥n for any n such that Cm · ηn,k ≤ 1/18. (103)

Then we have the following chain of inequalities, which holds on event Econc ∩ EKT,δ∣∣∣∣ 1n ∑n
i=1 vig(xi)

∣∣∣∣ (i)

≥
∣∣∣∣ 1
nout

∑nout

i=1 v′ig(x
′
i)

∣∣∣∣− ∣∣∣∣ 1n ∑n
i=1 vig(xi)− 1

nout

∑nout

i=1 v′ig(x
′
i)

∣∣∣∣
(ii)

≥ 3ξn∥g∥nout + 2ξ2n + 1
4∥g∥

2
nout

− ∥g∥k(∥f⋆∥k + 1) · ηn,k
(99)
≥ 3ξn∥g∥nout + 2ξ2n + 1

4∥g∥
2
nout

− 4
√
Cm∥g∥nout(∥f⋆∥k + 1) · ηn,k

(103)
≥ (32ξn − 2

√
Cm(∥f⋆∥k + 1) · ηn,k)∥g∥n + 2ξ2n + 1

16∥g∥
2
n, (104)

where step (i) follows from triangle inequality and step (ii) follows from our assumption (101) to
bound the first term and our approximation guarantee (98) to bound the second term. By definition of
ξn, we have

3
2ξn − 2

√
Cm(∥f⋆∥k + 1) · ηn,k ≥ 2ξn.

Using this to refine (104), we have∣∣∣∣ 1n ∑n
i=1 vig(xi)

∣∣∣∣ ≥ 2ξn∥g∥n + 2ξ2n + 1
16∥g∥

2
n,

which directly implies the inclusion (102) as desired.

E Proof of Thm. 3: KT-KRR guarantee for infinite-dimensional RKHS

We state a more detailed version of the theorem:

31

Theorem 5 (KT-KRR guarantee for infinite-dimensional RKHS, detailed). Assume f⋆ ∈ H(k) and
Assum. 1 is satisfied. If k is LOGGROWTH(α, β), then for some constant c (depending on d, α, β),
f̂KT,λ′ with λ′ = O(1/nout) satisfies

∥f̂KT,λ′ − f⋆∥22 ≤ c
(

logα n
n +

√
logα nout

nout

)
· [∥f⋆∥k + 1]

2 (105)

with probability at least 1− 2δ − 2e
− nδ2n

c1(∥f⋆∥2
k
+σ2) .

If k is POLYGROWTH(α, β) with α ∈ (0, 2), then for some constant c (depending on d, α, β), f̂KT,λ′

with λ = O(n
− 2−α

2
out) satisfies

∥f̂KT,λ′ − f⋆∥22 ≤ c∥f⋆∥
2

2+α

k n− 2
2+α + [∥f⋆∥k + 1]

2
n
− 2−α

2
out log nout + c′b

4
2+αn− 2

2+α (106)

with probability at least 1− 2δ − 2e
− nδ2n

c1(∥f⋆∥2
k
+σ2) .

E.1 Generic KT-KRR guarantee

We state a generic result for infinite-dimensional RKHS that only depends on the Rademacher and
Gaussian critical radii as well as the KT approximation term, all introduced in App. C.
Theorem 6 (KT-KRR). Let f⋆ ∈ H(k) and Assum. 1 is satisfied. Let δn, εn denote the solutions
to (59), (60), respectively. Denote f̂KT,λ′ with regularization parameter λ′ ≥ 2ηn,k, where ηn,k is

defined by (61). Then with probability at least 1− 2δ − 2e
− nδ2n

c(∥f⋆∥2
k
+σ2) − c1e

−c2
n∥f⋆∥2kε2n

σ2 , we have

∥f̂KT,λ′ − f⋆∥22 ≤ Ufull + UKT, where

Ufull ≜ c
(
ε2n + λ′)[∥f⋆∥k + 1]

2
+ cδ2n and

UKT ≜ c · ηn,k [∥f⋆∥k + 1]
2
.

See App. F for the proof. The term Ufull follows from the excess risk bound of FULL-KRR f̂full,λ.
The term UKT follows from our KT approximation. Clearly, the best rates are achieved when we
choose λ = 2ηn,k.

E.2 Proof of explicit rates

The strategy for each setting is as follows:

1. Bound the Gaussian critical radius (60) using [28, Cor. 13.18], which reduces to finding
ε > 0 satisfying the inequality√

2
n

√∑n
j=1 min{ε2, µ̂j} ≤ βε2, where β ≜ ∥f⋆∥k

4σ (107)

and µ̂1 ≥ µ̂2 ≥ . . . ≥ µ̂n ≥ 0 are the eigenvalues of the normalized kernel matrix K/n,
where K is defined by (6).

2. Bound the Rademacher critical radius (59) using [28, Cor. 14.5], which reduces to solving
the inequality √

2
n

√∑∞
j=1 min{δ2, µj} ≤ δ2

b , (108)

where (µj)
∞
j=1 are the eigenvalues of the k according to Mercer’s theorem [28, Thm. 12.20]

and b is the uniform bound on the function class.
3. Bound ηn,k (61) using the covering number bound N (Bd

2(Rin), ϵ) from Assum. 3.

In the sequel, we make use of the following notation. Let

Rn ≜ 1 + supx∈Sin
∥xi∥2

(62)
= 1 +Rin and Lk(r) ≜

Cd

log 2r
β

according to [15, Eq. 6], where Cd is the constant that appears in Assum. 3.

32

E.2.1 Proof of (106)

We begin by solving (107).
Lemma 7 (Critical Gaussian radius for POLYGROWTH kernels). Suppose Assum. 1 is satisfied and k
is POLYGROWTH with α < 2 as defined by Assum. 3. Then the Gaussian critical radius satisfies

ε2n ≃
(

2c
∥f⋆∥k/4σ

) 4
2+α

(
2−αLk(Rn)(1 +

32α
2−α)

) 2
2+α · n− 2

2+α . (109)

Proof. [15, Cor. B.1] implies that

µ̂j ≤ 4
(

Lk(Rn)
j−1

) 2
α

for all j > Lk(Rn) + 1

Let k be the smallest integer such that

k > Lk(Rn) + 1 and 4
(

Lk(Rn)
k−1

) 2
α ≤ ε2.

By Assum. 1, Rn is a constant, so the first inequality is easily satisfied for large enough n

k ≥ 2−αLk(Rn)ε
−α + 1. (110)

Then

2√
n

√∑n
j=1 min{ε2, µ̂j} ≤ 2√

n

√
kε2 +

∑n
j=k+1 4

(
Lk(Rn)
j−1

) 2
α

(i)

≤ 2√
n

√
kε2 + 4Lk(Rn)2/α

2/α−1 k1−2/α

(110)
≤ 2√

n

√
2−αLk(Rn)ε2−α + 4·22−αLk(Rn)

2/α−1 ε2−α,

where step (i) follows from the approximation∑n−1
j=k 4

(
Lk(Rn)

j

) 2
α ≤ 4Lk(Rn)

2/α
∫∞
k

t−2/αdt = 4Lk(Rn)
2/α 1

2/α−1k
1− 2

α .

To solve (107), it suffices to solve

2c√
n

√
2−αLk(Rn)(1 +

16
2/α−1)ε

2−α ≤ βε2

=⇒ ε ≥
(

2c
β

) 2
2+α

(
2−αLk(Rn)(1 +

32α
2−α)

) 1
2+α · n− 1

2+α .

Since εn is the smallest such solution to (107) by definition, we have (109) as desired.

We proceed to solve (108).
Lemma 8. Suppose Assum. 1 is satisfied and k is POLYGROWTH with α < 2 as defined by Assum. 3.
Then the Rademacher critical radius satisfies

ε2n ≃ b
4

2+α

(
2−αLk(Rn)(1 +

32α
2−α)

) 2
2+α

n− 2
2+α .

Proof. Thus, we can solve the following inequality√
2
n

√∑n
j=1 min{δ2, µ̂j} ≤ 1

b δ
2,

Following the same logic as in the proof of Lem. 7 but with β = 1/b yields the desired bound.

Finally, it remains to bound (61). We have

ηn,k = a2

nout
(2 +Wk(n, nout, δ,Rin,

a
nout

))

≤ a2

nout
(2 +

√
log

(
nout log(n/nout)

δ

)
·
[
log

(
1
δ

)
+ logNk(Bd

2(Rin),
a

nout
)
]
)

33

≤ a2

nout
(2 +

√
log

(
nout log(n/nout)

δ

)
·
[
log

(
1
δ

)
+ Cd

(
nout

a

)α
(Rin + 1)β)

]
≤ a2

nout

(
2 +

√
log

(
nout log(n/nout)

δ

)
·
[√

log
(
1
δ

)
+

√
Cd

(Rin+1)β

aα n
α
2
out

])
≤ n

α
2 −1
out · a2

(
2 +

√
log

(
nout log(n/nout)

δ

)
·
√

Cd
(Rin+1)β

aα

)
for some universal positive constant c.

In summary, there exists positive constants c0, c1, c2 such that

ε2n ≤ c0

(
σ

∥f⋆∥k

) 4
2+α

n− 2
2+α δ2n ≤ c1b

4
2+αn− 2

2+α ηn,k ≤ c2a
2n

− 2−α
2

out log nout

Setting λ′ = c2a
2n

− 2−α
2

out log nout, we have

∥f̂KT,λ′ − f⋆∥22 ≤ c
(
ε2n + λ′ + ηn,k

)
· [∥f⋆∥k + 1]

2
+ c′δ2n

≤ c∥f⋆∥
2

2+α

k n− 2
2+α + [∥f⋆∥k + 1]

2
n
− 2−α

2
out log nout + c′b

4
2+αn− 2

2+α .

E.2.2 Proof of (105)

We begin by solving (107).
Lemma 9 (Critical Gaussian radius for LOGGROWTH kernels). Under Assum. 1 and LOGGROWTH
version of Assum. 3, Gaussian critical radius satisfies

ε2n ≃ σ2

∥f⋆∥2
k

log(2e· ∥f
⋆∥k
4σ

√
n)α

n · Lk(Rn)C
′′
α

for some constant C ′′
α that only depends on α. where we ignore log-log factors.

Proof. [15, Cor. B.1] implies that

µ̂j ≤ 4 exp

(
2− 2

(
j−1

Lk(Rn)

) 1
α

)
for all j > Lk(Rn) + 1

Let k be the smallest integer such that

k > Lk(Rn) + 1 and 4 exp

(
2− 2

(
j−1

Lk(Rn)

) 1
α

)
≤ ε2.

By Assum. 1, Rn is a constant, so the first inequality is easily satisfied for large enough n

k ≥ Lk(Rn) log
(
2e
ε

)α
+ 1. (111)

Thus, k = ⌈Lk(Rn) log
(
2e
ε

)α
+ 1⌉. Then

2√
n

√∑n
j=1 min{ε2, µ̂j} ≤ 2√

n

√
kε2 +

∑n
j=k+1 4 exp

(
2− 2

(
j−1

Lk(Rn)

) 1
α

)
(112)

Consider the following approximation:∑n−1
ℓ=k 4 exp

(
2− 2

(
ℓ

Lk(Rn)

) 1
α

)
≤ 4e2

∫∞
k

e
− 2t

Lk(Rn)
1/α

dt =
∫∞
k−1

ct
1/α

dt,

where c ≜ exp(−(Lk(Rn)/2)
−1/α) ∈ (0, 1). Defining m ≜ − log c > 0 and k′ ≜ k − 1, we have∫∞

k′ ct
1/α

dt ≤ Cα(k
′b−1 + bα−1m−α)e−mk′1/α

, (113)

by Li et al. [15, Eq. 50], where Cα > 0 is a constant satisfying (x + y)α ≤ Cα(x
α + yα) for any

x, y > 0 and b is a known constant depending only on α. Plugging in k′ = ⌈Lk(Rn) log
(
2e
ε

)α⌉, we
can bound the exponential by

e−mk′1/α ≤ e−mLk(Rn)
1/α log(2e

ε) =
(
2e
ε

)−mLk(Rn)
1/α

.

34

Note that we can simplify the exponent by −mLk(Rn)
1/α = −(Lk(Rn)/2)

−1/αLk(Rn)
1/α =

−21/α. Note that k′ = k − 1 ≥ L(Rn) = 2m−α. Thus, we can absorb the bα−1m−α term in (113)
into k and obtain the following bound∑n−1

ℓ=k 4 exp

(
2− 2

(
ℓ

Lk(Rn)

) 1
α

)
≤ C ′

αk
′(2e

ε

)−21/α

,

where C ′
α depends only on α. Plugging this bound into (112), we have

2√
n

√∑n
j=1 min{ε2, µ̂j} ≤ 2√

n

√
kε2 + C ′

αk
(

ε
2e

)21/α
(111)
≤ 2c√

n

√
Lk(Rn) log

(
2e
ε

)α
(ε2 + C ′

α

(
ε
2e

)21/α
)

≤ 2c√
n

√
Lk(Rn) log

(
2e
ε

)α
C ′′

αε
21/(1∨α)

for some constant C ′′
α that only depends on α and universal positive constant c. To solve (107), it

suffices to solve

2c√
n

√
Lk(Rn) log

(
2e
ε

)α
C ′′

αε
21/(1∨α) ≤ βε2,

which is implied by the looser bound

1
β2 · 4c2

n · Lk(Rn)C
′′
α ≤ ε2 log

(
2e
ε

)−α
.

The solution to (107) (up to log-log factors) is

ε ≃ log(2e·β
√
n)α/2

√
n

√
4c2

β2 · Lk(Rn)C ′′
α.

We proceed to solve (108).
Lemma 10 (Critical Gaussian radius for LOGGROWTH kernels). Under Assum. 1 and LOGGROWTH
version of Assum. 3, the Rademacher critical radius satisfies

δ2n ≃ b2
log(2e

b ·
√
n)α

n · Lk(Rn)C
′′
α.

Proof. Following the same logic as in the proof of Lem. 9 but with β = 1/b yields the desired
bound.

Finally, it remains to bound (61). We have

ηn,k = a2

nout
(2 +Wk(n, nout, δ,Rin,

a
nout

))

≤ a2

nout
(2 +

√
log

(
nout log(n/nout)

δ

)
·
[
log

(
1
δ

)
+ logNk(Bd

2(Rin),
a

nout
)
]
)

≤ a2

nout
(2 +

√
log

(
nout log(n/nout)

δ

)
·
[
log

(
1
δ

)
+ Cd log(

enout

a)α(Rin + 1)β
]
)

for some universal positive constant c.

In summary, there exists universal positive constants c0, c1, c2 such that

ε2n ≤ c0
σ2

∥f⋆∥2
k

log(2e· ∥f
⋆∥k
4σ

√
n)α

n δ2n ≤ c1b
2 log(2e

b ·
√
n)α/2

n ηn,k ≤ c2
a

nout
log(enout

a)α/2R
β/2
in .

Setting λ′ = 2c2
a

nout
log(enout

a)α/2, we have

∥f̂KT,λ′ − f⋆∥22 ≤ c
(
ε2n + λ′ + ηn,k

)
· [∥f⋆∥k + 1]

2
+ c′δ2n

≤ c
log(2e· ∥f

⋆∥k
4σ

√
n)α

n + [∥f⋆∥k + 1]
2 c
nout

log(enout

a)α/2 + c′b2
log(2e

b ·
√
n)α/2

n .

35

F Proof of Thm. 6: KT-KRR

Our first goal is to bound the in-sample prediction error. We relate ∥f̂KT,λ′ − f⋆∥2n to ∥f̂full,λ − f⋆∥2n,
where the latter quantity has well known properties from standard analyses of the KRR estimator (refer
to [28]). Note that regularization parameter λ′ of KT based estimator f̂KT,λ′ is independently chosen
from the regularization parameter λ of the estimator based on original samples f̂full,λ. For f̂full,λ, we
choose the regularization parameter

λ = 2ε2n, (114)

which is known to yield optimal L2 error rates.

Define the main event of interest,

E ≜ {∥f̂KT,λ′ − f⋆∥22 ≤ c(ε2n + δ2n + λ′ + ηn,k)[∥f⋆∥k + 1]2}.

Our goal is to show E occurs with high probability. For that end, we introduce several additional
events that are used throughout this proof.

For some constant c >, define the event of an appealing in-sample prediction error of f̂KT,λ′ ,

EKT,n(t) ≜
{
∥f̂KT,λ′ − f⋆∥2n ≤ c

[
t2 + λ′ + ηn,k

]
· (∥f⋆∥k + 1)2

}
for t ≥ εn.

where ηn,k is defined in (61). Recall EKT,δ is the event where KT-COMPRESS++ succeeds as defined
by (23).

Further as f⋆ and f̂KT,λ′ are both in {f ∈ H : ∥f∥k ≤ R}, we may deduce that all the functions
under consideration satisfies ∥f∥∞ ≤ ∥k∥∞∥f∥k ≤ ∥k∥∞R where ∥k∥∞ < ∞. Accordingly, we
define a uniform concentration event,

E ′
conc ≜ {supf∈F

∣∣∥f∥22 − ∥f∥2n
∣∣ ≤ ∥f∥22/2 + δ2n/2} where F = {f ∈ H : ∥f∥∞ ≤ 2∥k∥∞R}.

(115)

Event (115) is analogous to the event Econc previously defined in (69) when dealing with finite rank
kernels.

We first show that

EKT,n(εn ∨ δn) ∩ E ′
conc ⊆ E. (116)

Notice that almost surely we have

∥f̂KT,λ′ − f⋆∥∞ ≤ 2∥k∥∞R,

thereby implying

∥f̂KT,λ′ − f⋆∥22 ≤ 2 ∥f̂KT,λ′ − f⋆∥2n + δ2n on the event E ′
conc. (117)

Next invoking the event EKT,n(εn ∨ δn) along with (117), we have

∥f̂KT,λ′ − f⋆∥22 ≤ 2c[(εn ∨ δn)
2 + λ′ + ηn,k] · (∥f⋆∥k + 1)2 + δ2n

≤ c(ε2n + δ2n + λ′ + ηn,k)[∥f⋆∥k + 1]2.

which recovers the event of E.

The remaining task is to show E is of high-probability, which amounts to showing events EKT,n(t)
and E ′

conc are of high-probability by reflecting on (116). From [28, Thm. 14.1], we may immediately
derive

P(E ′
conc) ≥ 1− c1e

−c2
nδ2n

∥k∥2∞R2

for some constants c1, c2 > 0.

We further claim that

P(EKT,n(t) | Sin) ≥ 1− δ − e
− nt2

c0σ2 − c1e
−c2

n∥f⋆∥2kt2

σ2 (118)

36

for some constants c0, c1, c2 > 0. Proof of claim (118) is deferred to App. F.1. Plugging in t = εn∨δn
into (118), and invoking inequality εn ∨ δn ≥ δn so as to decouple the dependence on Sin, we have

P(EKT,n(εn ∨ δn) | Sin) ≥ 1− δ − e
− nδ2n

c0σ2 − c1e
−c2

∥f⋆∥2knδ2n
σ2

which further implies

P(EKT,n(εn ∨ δn)) ≥ 1− δ − e
− nδ2n

c0σ2 − c1e
−c2

∥f⋆∥2knδ2n
σ2 .

Putting the pieces together, for some constants c0, c1 > 0, we have

P(E) ≥ 1− δ − c0e
−c1

nδ2n
σ2∧(σ2/∥f⋆∥2

k
)∧(∥k∥2∞R2) . (119)

Overall, (116) and (119) collectively yields the desired result.

F.1 Proof of claim (118)

To prove claim (118), we introduce two new intermediary and technical events. For some positive
constant c0, define the event 5 when in-sample prediction error of f̂full,λ is appealing

Efull,n(t) ≜
{
∥f̂full,λ − f⋆∥2n ≤ 3c0∥f⋆∥2kt2

}
for t ≥ εn. (120)

The second intermediary event, denoted as E∆̂KT
(t), is the intersection of (128) and (129), which

we do not elaborate here due to its technical nature—event E∆̂KT
(t) plays an analogous role to

Ac
KT ∩ Bc

KT defined in (82) and (95) respectively.

Our goal here is two-folds: first is to show

{Efull,n(t) ∩ EKT,δ ∩ E∆̂KT
(t)} =⇒ EKT,n(t)

and second is to prove the following bound

P
(
Efull,n(t) ∩ EKT,δ ∩ E∆̂KT

(t) | Sin

)
≥ 1− δ − e

− nt2

c0σ2 − c1e
−c2

n∥f⋆∥2kt2

σ2 ,

from which (118) follows. Note that Wainwright [28, Thm. 13.17] show

P(Efull,n(t)) ≥ 1− c1e
−c2

n∥f⋆∥2kt2

σ2

for some constants c1, c2 > 0 and that P(EKT,δ | Sin) ≥ 1− δ. So it remains to bound the probability
of event E∆̂KT

(t), which we show below.

Given f , define the following quantities

Ln(f) ≜ 1
n

∑n
i=1(f

2(xi)− 2f(xi)yi) +
1
n

∑n
i=1 y

2
i and

Lnout
(f) ≜ 1

nout

∑nout

i=1 (f
2(x′

i)− 2f(x′
i)y

′
i) +

1
n

∑n
i=1 y

2
i .

In the sequel, we repeatedly make use of the following fact: on event EKT,δ defined in (23), we have

|Ln(f)− Lnout
(f)| ≤

(
∥f∥2k + 2

)
· ηn,k for all non-zero f ∈ H. (121)

The claim of (121) is deferred to the end of this section. Given f , we can show with some algebra that

Ln(f) =
1
n

∑n
i=1(f(xi)− yi)

2 = ∥f − f⋆∥2n − 2
n ⟨Z, ξ⟩+

1
n

∑n
i=1 ξ

2
i , (122)

where Z ≜ (f(x1)− f⋆(x1), . . . , f(xn)− f⋆(xn)) and ξ ≜ (ξ1, . . . , ξn) are vectors in Rn. Define
the shorthands

∆̂KT ≜ f̂KT,λ′ − f⋆ and ∆̂full ≜ f̂full,λ − f⋆.

5Since the input points in Sin are fixed, the randomness in f̂full,λ originates entirely from the randomness of
the noise variables ξ.

37

In the sequel, we use the following shorthands:

Zfull ≜ (∆̂full(x1), . . . , ∆̂full(xn)) and ZKT ≜ (∆̂KT(x1), . . . , ∆̂KT(xn)).

Now for the main argument to bound ∥f̂KT,λ′ − f⋆∥2n. When ∥∆̂KT∥n < t, we immediately have
∥∆̂KT∥2n < t2, which implies (118). Thus, we may assume that ∥∆̂KT∥n ≥ t. Note that

∥∆̂KT∥2n
(122)
= Ln(f̂KT,λ′) + 2

n ⟨ZKT , ξ⟩ − 1
n

∑n
i=1 ξ

2
i

= Ln(f̂full,λ) +
[
Ln(f̂KT,λ′)− Ln(f̂full,λ)

]
+ 2

n ⟨ZKT , ξ⟩ − 1
n

∑n
i=1 ξ

2
i .

Given the optimality of f̂full,λ on the objective (4), we have

Ln(f̂full,λ) ≤ 1
n

∑n
i=1 ξ

2
i + λ

{
∥f⋆∥2k − ∥f̂full,λ∥2k

}
≤ 1

n

∑n
i=1 ξ

2
i + λ∥f⋆∥2k,

where the last inequality follows trivially from dropping the −∥f̂full,λ∥2k term. Thus,

∥∆̂KT∥2n = 1
n

∑n
i=1 ξ

2
i + λ∥f⋆∥2k +

[
Ln(f̂KT,λ′)− Ln(f̂full,λ)

]
+ 2

n ⟨ZKT , ξ⟩ − 1
n

∑n
i=1 ξ

2
i

≤ 2
n ⟨ZKT , ξ⟩+ λ∥f⋆∥2k +

[
Ln(f̂KT,λ′)− Ln(f̂full,λ)

]
. (123)

Using standard arguments to bound the term 2
n ⟨ZKT , ξ⟩, we claim that on the event E∆̂KT

, we have

∥∆̂KT∥2n ≤ ct2(∥f⋆∥k + 1)2 + c′
[
Ln(f̂KT,λ′)− Ln(f̂full,λ)

]
(124)

for some positive constants c, c′, and that P(E∆̂KT
| Sin) ≥ 1− e−

nt2

2σ2 . We defer the proof of claim
(124) to the end of this section.

Now we bound the stochastic term
[
Ln(f̂KT,λ′)− Ln(f̂full,λ)

]
in (124)—first observe the following

decomposition:

Ln(f̂KT,λ′)− Ln(f̂full,λ) =
(
Ln(f̂KT,λ′)− Lnout

(f̂KT,λ′)
)
+

(
Lnout

(f̂KT,λ′)− Ln(f̂full,λ)
)
.

On the event EKT,δ (23), the first term in the display can be bounded by

Ln(f̂KT,λ′)− Lnout
(f̂KT,λ′)

(121)
≤ (∥f̂KT,λ′∥2k + 2) ηn,k.

Note that f̂KT,λ′ is the solution to the following optimization problem,

minf∈H(k) Lnout
(f) + λ′∥f∥2k,

so the second term in the display can be bounded by the following basic inequality

Lnout
(f̂KT,λ′) + λ′∥f̂KT,λ′∥2k ≤ Lnout

(f̂full,λ) + λ′∥f̂full,λ∥2k
so that Lnout

(f̂KT,λ′)− Lnout
(f̂full,λ) ≤ λ′

{
∥f̂full,λ∥2k − ∥f̂KT,λ′∥2k

}
.

Thus, on event EKT,δ , we have

Ln(f̂KT,λ′)− Ln(f̂full,λ) ≤ (∥f̂KT,λ′∥2k + 2) ηn,k + λ′
{
∥f̂full,λ∥2k − ∥f̂KT,λ′∥2k

}
= 2ηn,k + λ′∥f̂full,λ∥2k + {ηn,k − λ′} · ∥f̂KT,λ′∥2k
(i)

≤ 2ηn,k + λ′∥f̂full,λ∥2k
(ii)

≤ λ′(∥f̂full,λ∥2k + 1)

where steps (i) and (ii) both follow from the fact that λ′ ≥ 2ηn,k (see assumptions in Thm. 6). To
bound ∥f̂full,λ∥2k, we use the following lemma:

Lemma 11 (RKHS norm of f̂full,λ). On event Efull,n (120), we have the following bound

∥f̂full,λ∥2k ≤ c0(∥f⋆∥k + 1)2 (125)

for some constant c0 > 0.

38

See App. F.2 for the proof. Putting things together, we have

Ln(f̂KT,λ′)− Ln(f̂full,λ) ≤ cλ′(∥f⋆∥k + 1)2

for some constant c—substituting this bound into (124) yields

∥f̂KT,λ′ − f⋆∥2n ≤ ct2(∥f⋆∥k + 1)2 + c′λ′(∥f⋆∥k + 1)2,

for some constants c, c′, which directly implies (118), i.e. implying

{Efull,n(t) ∩ EKT,δ ∩ E∆̂KT
(t)} =⇒ EKT,n(t).

Proof of claim (121). Given f , define the function

ℓ′f : X × Y → R, where ℓ′f (x, y) ≜ f2(x)− 2y · f(x) (126)

and note that

Ln(f)− Lnout
(f) = 1

n

∑n
i=1 ℓ

′
f (xi, yi)− 1

nout

∑nout

i=1 ℓ′f (x
′
i, y

′
i).

We first prove a generic technical lemma:
Lemma 12 (KT-COMPRESS++ approximation bound using kRR). Suppose f1, f2 ∈ H(k) and
a, b ∈ R. Then the function

ℓf1,f2 : X × Y → R, where ℓf1,f2(x, y) ≜ a · f1(x)f2(x) + b · yf1(x) (127)

lies in the RKHS H(kRR). Moreover, on event EKT,δ , we have

Pinℓf1,f2 −Qoutℓf1,f2 ≤ (|a| · ∥f1∥k∥f2∥k + |b| · ∥f2∥k) · ηn,k.

uniformly for all non-zero f1, f2 ∈ H(k).

See App. F.3 for the proof. Applying the lemma with f1 ≜ f, f2 ≜ g and a = 1, b = −2, we have

Pinℓ
′
f −Qoutℓ

′
f ≤ (∥f∥2k + 2) · ηn,k,

which combined with the observation (127) yields the desired claim.

Proof of claim (124). Case I: First suppose that ∥∆̂KT∥k ≤ 1. Recall that ∥∆̂KT∥n ≥ t ≥ εn by
assumption. Thus, we may apply [28, Lem. 13.12] to obtain

1
n ⟨ZKT , ξ⟩ ≤ 2∥∆̂KT∥nt w.p. at least 1− e−

nt2

2σ2 (128)

Plugging the above bound into (123), we have with probability at least 1− e−
nt2

2σ2 :

∥∆̂KT∥2n ≤ 4∥∆̂KT∥nt+ λ∥f⋆∥2k +
[
Ln(f̂KT,λ′)− Ln(f̂full,λ)

]
.

We can solve for ∥∆̂KT∥n using the quadratic formula. Specifically, if a, b ≥ 0 and x2 − ax− b ≤ 0,

then x ≤ a+
√
b. Thus, we have with probability at least 1− e−

nε2n
2σ2 :

∥∆̂KT∥n ≤ a+
√
b, where

a ≜ 4t and

b ≜ λ∥f⋆∥2k +
[
Ln(f̂KT,λ′)− Ln(f̂full,λ)

]
.

Using the fact that (a+
√
b)2 ≤ 2a2 + 2b, we have with probability at least 1− e−

nt2

2σ2 :

∥f̂KT,λ′ − f⋆∥2n ≤ 32t2 + 2λ∥f⋆∥2k + 2
[
Ln(f̂KT,λ′)− Ln(f̂full,λ)

]
(114)
≤ ct2(∥f⋆∥k + 1)2 + 2

[
Ln(f̂KT,λ′)− Ln(f̂full,λ)

]

39

Case II: Otherwise, we may assume that ∥∆̂KT∥k > 1. Now we apply [28, Thm. 13.23] to obtain

1
n ⟨ZKT , ξ⟩ ≤ 2t∥∆̂KT∥n + 2t2∥∆̂KT∥k + 1

16∥∆̂KT∥2n w.p. at least 1− c1e
− nt2

c2σ2 , (129)

for some universal positive constants c1, c2. Plugging the above bound into (123) and collecting

terms, we have with probability at least 1− c1e
− nt2

c2σ2 :

7
8∥∆̂KT∥2n ≤ 4t∥∆̂KT∥n + 4t2∥∆̂KT∥k + λ∥f⋆∥2k +

[
Ln(f̂KT,λ′)− Ln(f̂full,λ)

]
.

Solving for ∥∆̂KT∥n using the quadratic formula, we have with probability at least 1− c1e
− nt2

c2σ2 :

∥∆̂KT∥n ≤ a+
√
b, where

a ≜ 32
7 t and

b ≜ 32
7 t2∥∆̂KT∥2k + 8

7λ∥f
⋆∥2k + 8

7

[
Ln(f̂KT,λ′)− Ln(f̂full,λ)

]
.

Using the fact that (a+
√
b)2 ≤ 2a2 + 2b, we have with probability at least 1− c1e

− nt2

c2σ2 :

∥f̂KT,λ′ − f⋆∥2n ≤ 42t2 + 10t2∥∆̂KT∥2k + 2.3λ∥f⋆∥2k + 2.3
[
Ln(f̂KT,λ′)− Ln(f̂full,λ)

]
(i)

≤ 42t2 + 10t2∥∆̂KT∥2k + 4.6t2∥f⋆∥2k + 2.3
[
Ln(f̂KT,λ′)− Ln(f̂full,λ)

]
(114),(125)

≤ c3t
2(∥f⋆∥k + 1)

2
+ c4

[
Ln(f̂KT,λ′)− Ln(f̂full,λ)

]
for some positive constants c3, c4, where step (i) follows from that fact that λ = 2ε2n by (114).

F.2 Proof of Lem. 11: RKHS norm of f̂full,λ

Given the optimality of f̂full,λ on the objective (4), we have the following basic inequality

Ln(f̂full,λ) + λ∥f̂full,λ∥2k ≤ 1
n

∑n
i=1 ξ

2
i + λ∥f⋆∥2k

=⇒ ∥f̂full,λ∥2k ≤ ∥f⋆∥2k + 1
λ

(
1
n

∑n
i=1 ξ

2
i − Ln(f̂full,λ)

)
.

Since ∥f̂full,λ − f⋆∥2n ≥ 0, we also have the trivial lower bound

Ln(f̂full,λ)
(122)
= ∥f̂full,λ − f⋆∥2n − 2

n ⟨Zfull, ξ⟩+ 1
n

∑n
i=1 ξ

2
i

≥ − 2
n ⟨Zfull, ξ⟩+ 1

n

∑n
i=1 ξ

2
i .

Thus,

∥f̂full,λ∥2k ≤ ∥f⋆∥2k + 1
λ

(
2
n ⟨Zfull, ξ⟩

)
(130)

and it remains to bound 2
n ⟨Zfull, ξ⟩.

Case I: First, suppose that ∥∆̂full∥k > 1. Then we may apply [28, Lem. 13.23] to obtain

1
n ⟨Zfull, ξ⟩ ≤ 2εn∥∆̂full∥n + 2ε2n∥∆̂full∥k + 1

16∥∆̂full∥2n w.p. at least 1− c1e
− nε2n

c2σ2 .

Combining this bound with (130), we have with probability at least 1− c1e
− nε2n

c2σ2 :

∥f̂full,λ∥2k ≤ ∥f⋆∥2k +
2ε2n
λ ∥∆̂full∥k + 2

λ

(
2εn∥∆̂full∥n + 1

16∥∆̂full∥2n
)

(i)

≤ ∥f⋆∥2k +
2ε2n
λ (∥f̂full,λ∥k + ∥f⋆∥k) + 2

λ

(
2εn∥∆̂full∥n + 1

16∥∆̂full∥2n
)

(114)
= ∥f⋆∥2k + ∥f̂full,λ∥k + ∥f⋆∥k + 2

λ

(
2εn∥∆̂full∥n + 1

16∥∆̂full∥2n
)
,

40

where step (i) follows from triangle inequality. Solving for ∥f̂full,λ∥k using the quadratic formula,
we have

∥f̂full,λ∥2k ≤ 2 + ∥f⋆∥2k + ∥f⋆∥k + 2
λ

(
2εn∥∆̂full∥n + 1

16∥∆̂full∥2n
)
.

On the event Efull,n (120), we have ∥∆̂full∥n ≤ c∥f⋆∥kεn for some positive constant c, which implies
the claimed bound (125) after some algebra.

Case II(a): Otherwise, assume ∥∆̂full∥k ≤ 1 and ∥∆̂full∥n ≤ εn. Applying [28, Thm. 2.26] to the
function sup ∥g∥k≤1

∥g∥n≤εn

∣∣ 1
n

∑n
i=1 ξig(xi)

∣∣, we have

1
n ⟨Zfull, ξ⟩ ≤ ε2n

2 w.p. at least 1− e−
nε2n
8σ2

Combining this bound with (130), we obtain

∥f̂full,λ∥2k ≤ ∥f⋆∥2k + 1
λε

2
n

(114)
= ∥f⋆∥2k + 1

2 ,

which immediately implies the claimed bound (125).

Case II(b): Finally, assume ∥∆̂full∥k ≤ 1 and ∥∆̂full∥n > εn. Applying [28, Lem. 13.12] with
u = εn, we have

1
n ⟨Zfull, ξ⟩ ≤ 2ε2 w.p. at least 1− e−

nε2n
2σ2 .

Combining this bound with (130), we obtain

∥f̂full,λ∥2k ≤ ∥f⋆∥2k + 4
λε

2
n

(114)
= ∥f⋆∥2k + 2,

which immediately implies the claimed bound (125).

F.3 Proof of Lem. 12: KT-COMPRESS++ approximation bound using kRR

By Grünewälder [12, Lem. 4], ℓf1,f2 lies in the RKHS H(kRR), which is a direct sum of two RKHS:

H(kRR) = H(k1)⊕H(k2),

where k1,k2 : Z × Z → R are the kernels defined by

k1((x1, y1), (x2, y2)) ≜ k2(x1, x2) and k2((x1, y1), (x2, y2)) ≜ k(x1, x2) · y1y2.

Applying Lem. 2 with

Z = X × Y, kALG = kRR, and ϵ⋆ =
(∥k∥1/2

∞,in+Ymax)
2

nout
,

yields the following bound on event EKT,δ (23):

suph∈H(kRR):
∥h∥kRR

≤1

|(Pin −Qout)h| ≤ 2ϵ⋆ +
∥kRR∥1/2

∞,in

nout
·WkRR(n, nout, δ,Rin, ϵ

⋆).

We claim that

∥kRR∥1/2∞,in ≤ ∥k∥∞,in + Y 2
max and (131)

logN †
kRR

(Sin, ϵ
⋆) ≤ c · logNk(Sin,

∥k∥1/2
∞,in+Ymax

nout
), (132)

for some positive constant c, where N †
kRR

is the cardinality of the cover of B†
kRR

≜{
ℓ′f/∥ℓ′f∥kRR

: f ∈ H(k)
}

for ℓ′f defined by (126). Proof of the claims (131) and (132) are deferred
to the end of this section. By definition of WkRR , we have

WkRR
(n, nout, δ,Rin, ϵ

⋆)
(28)
≤

√
c ·Wk(n, nout, δ,Rin,

∥k∥1/2
∞,in+Ymax

nout
) ≜ W′

k.

41

On event EKT,δ , we have

suph∈H(kRR):
∥h∥kRR

≤1

|(Pin −Qout)h| ≤
2(∥k∥1/2

∞,in+Ymax)
2

nout
+

∥k∥∞,in+Y 2
max

nout
·W′

k

(i)
=

∥k∥∞,in+Y 2
max

nout
· [2 +W′

k], (133)

where step (i) follows from the fact that (∥k∥1/2∞,in + Ymax)
2 ≤ 2(∥k∥∞,in + Y 2

max).

Since f1, f2 are non-zero, we have ∥ℓf1,f2∥k > 0. Thus, the function h ≜ ℓf/∥ℓf∥kRR ∈ H(kRR)
is well-defined and satisfies ∥h∥kRR

= 1. Applying (133), we obtain

|Pinh−Qouth| ≤
∥k∥∞,in+Y 2

max

nout
· (2 +W′

k) on event EKT,δ.

Multiplying both sides by ∥ℓf∥kRR
and noting that

∥ℓf,g∥2kRR
= ∥a · f1f2∥2Ĥ⊙H + ∥b · f2 ⊗ ⟨·, 1⟩R∥2H⊗R

≤ a2∥f1∥2k∥f2∥2k + b2∥f2∥2k
≤ (|a| · ∥f1∥k∥f2∥k + |b| · ∥f2∥k)2,

we have on event EKT,δ ,

Pinℓf1,f2 −Qoutℓf1,f2 ≤ (|a| · ∥f1∥k∥f2∥k + |b| · ∥f2∥k) ·
∥k∥∞,in+Y 2

max

nout
· (2 +W′

k),

which directly implies the bound (121) after applying the shorthand (61).

Proof of (131) Define Ymax ≜ supy∈(Sin)y y. We have

∥kALG∥∞,in = sup(x1,y1),(x2,y2)∈Sin

{
k(x1, x2)

2 + k(x1, x2) · y1y2 + (y1y2)
2
}

≤ supx1,x2∈(Sin)x k(x1, x2)
2 + supx1,x2∈(Sin)x k(x1, x2) · supy1,y2∈(Sin)y y1y2

+ supy1,y2∈(Sin)y (y1y2)
2

= ∥k∥2∞,in + ∥k∥∞,in · Y 2
max + Y 4

max

≤
(
∥k∥∞,in + Y 2

max

)2

.

Proof of (132) Since H(kRR) is a direct sum, we have

logN †
kRR

(Sin, ϵ
⋆) ≤ logN †

k1
(Sin, ϵ

⋆/2) + logN †
k2
(Sin, ϵ

⋆/2), (134)

where N †
k1

and logN †
k2

are the covering numbers of B†
k1

≜
{
f2/∥f2∥k1 : f ∈ H(k)

}
and B†

k2
≜

{f ⊗ ⟨·, y⟩R/∥f ⊗ ⟨·, y⟩R∥k2 : f ⊗ ⟨·, y⟩R ∈ H(k2)}, respectively.

Note that

logN †
k1
(Sin, ϵ

⋆) ≤ 2 logNk(Sin, ϵ
⋆/(2∥k∥1/2∞))

≤ 2 logNk(Sin, (1 +
Ymax

∥k∥1/2
∞,in

)
∥k∥1/2

∞,in+Ymax

2nout
)

≤ 2 logNk(Sin,
∥k∥1/2

∞,in+Ymax

2nout
).

Define a kernel on R by kR(y1, y2) ≜ y1y2. When supy∈(Sin)y |y| ≤ Ymax, we have

NkR([−Ymax, Ymax], ϵ) = O(Y 2
max/ϵ) for ϵ > 0.

Similarly, note that

logN †
k2
(Sin, ϵ

⋆) ≤ logNk(Sin, ϵ
⋆/(∥k∥1/2∞ + ∥kR∥1/2∞)) + logNkR(Sin, ϵ

⋆/(∥k∥1/2∞,in + ∥kR∥1/2∞))

42

≲ logNk(Sin,
∥k∥1/2

∞,in+Ymax

nout
) + log

(
Y 2
max(∥k∥

1/2
∞ +Ymax)

nout

)
Substituting the above two log-covering number expressions into (134) yields

logNkALG
(Sin, ϵ

⋆) ≲ 3 logNk(Sin,
∥k∥1/2

∞,in+Ymax

nout
) + log

(
Y 2
max(∥k∥

1/2
∞,in+Ymax)

nout

)
.

≤ c · logNk(Sin,
∥k∥1/2

∞,in+Ymax

nout
)

for some universal positive constant c.

43

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Abstract and introduction give clear outlines on our contributions, and we
present our contributions in the main text accordingly. We have also included pointers in the
introduction that would link to the referred main text containing specific contributions.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: In Sec. 6, we discuss limitations as well as future work to address these
limitations.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used
by reviewers as grounds for rejection, a worse outcome might be that reviewers
discover limitations that aren’t acknowledged in the paper. The authors should use
their best judgment and recognize that individual actions in favor of transparency play
an important role in developing norms that preserve the integrity of the community.
Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

44

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We have clarified the assumptions and models required for all the theorems
and corollaries provided in the main text and appendix. Also we provide a complete proof
in the appendix for all the stated results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and

cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the
main experimental results of the paper to the extent that it affects the main claims and/or
conclusions of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We describe details of the experiments in Sec. 5 and provide links to all code
and data.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all
submissions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in

45

some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient
instructions to faithfully reproduce the main experimental results, as described in
supplemental material?
Answer: [Yes]
Justification: We provide a link to our GitHub repository containing all code in Sec. 5.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits,
hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand
the results?
Answer: [Yes]
Justification: We provide train-test splits and hyperparameters in the main paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: In all figures, we plot error bars representing standard deviation across 100
trials. In all tables, we report mean +/- standard error across 100 trials.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars,

confidence intervals, or statistical significance tests, at least for the experiments that
support the main claims of the paper.

46

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the
computer resources (type of compute workers, memory, time of execution) needed to
reproduce the experiments?

Answer: [Yes]

Justification: We indicate the computer resources for running all experiments in Sec. 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics and our paper conforms with it.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special

consideration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our work reduces the computational costs of classical methods and is applied
to standard datasets. Thus, it has no outsize societal impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

47

https://neurips.cc/public/EthicsGuidelines

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not release models or data as part of this paper.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We include URL and licenses for baseline code and datasets used in Sec. 5.2.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

48

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We release our code with documentation at https://github.com/ag2435/
npr under a BSD-3 Clause license.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: We do not have any studies or results regarding crowdsourcing experiments
and human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main
contribution of the paper involves human subjects, then as much detail as possible
should be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: We do not have any studies or results including study participants.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

49

paperswithcode.com/datasets
https://github.com/ag2435/npr
https://github.com/ag2435/npr

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

50

	Introduction
	Problem setup
	Speeding up non-parametric regression
	Thinned regression estimators: Computational and statistical tradeoffs
	Background on kernel thinning
	Supervised kernel thinning
	Kernel-thinned Nadaraya-Watson regression (KT-NW)
	Kernel-thinned kernel ridge regression (KT-KRR)

	Main results
	KT-NW
	KT-KRR

	Experimental results
	Simulation studies
	Real data experiments

	Conclusions
	Acknowledgements
	Background on [app:ktcompresspp]blackKT-Compress++
	Proof of thm:nadaraya-kt: KT-NW
	Proof of claim eq:nadaraya-approximation
	Proof of lem:l-infty: Simultaneous L bound using [app:ktcompresspp]blackKT-Compress++ with kNW

	Proof of claim eq:nadaraya-variance
	Proof of claim eq:nadaraya-bias
	Bias when (0,1]
	Bias when (1, 2]

	Proof of thm:kt-krr-finite: KT-KRR for finite-dimensional RKHS
	Proof of thm:kt-krr-finite-detailed: KT-KRR for finite-dimensional RKHS, detailed
	Proof of claim eq:claimfirsting
	Proof of claim eq:claimseconding
	Proof of prop:rel-guarantee: Multiplicative guarantee for [app:ktcompresspp]blackKT-Compress++ with kRR
	Proof of lem:case-I: Controlling bad event when f"0362fKT,k 2
	Proof of lem:case-II: Controlling bad event when f"0362fKT,k > 2

	Proof of cor:krr-kt: KT-KRR guarantee for infinite-dimensional RKHS
	Generic KT-KRR guarantee
	Proof of explicit rates
	Proof of eq:krr-kt-poly
	Proof of eq:krr-kt-log

	Proof of thm:krr-kt: KT-KRR
	Proof of claim eq:Ln-claim
	Proof of lem:krr-h-norm: RKHS norm of f"0362ffull,
	Proof of lem:loss-diff: [app:ktcompresspp]blackKT-Compress++ approximation bound using kRR

