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ABSTRACT

String processing, which mainly involves the analysis and manipulation of strings,
is a fundamental component of modern computing. Despite the significant ad-
vancements of large language models (LLMs) in various natural language pro-
cessing (NLP) tasks, their capability in string processing remains underexplored
and underdeveloped. To bridge this gap, we present a comprehensive study of
LLMs’ string processing capability. In particular, we first propose StringLLM,
a method to construct datasets for benchmarking string processing capability of
LLMs. We use StringLLM to build a series of datasets, referred to as String-
Bench. It encompasses a wide range of string processing tasks, allowing us to
systematically evaluate LLMs’ performance in this area. Our evaluations indicate
that LLMs struggle with accurately processing strings compared to humans. To
uncover the underlying reasons for this limitation, we conduct an in-depth anal-
ysis and subsequently propose an effective approach that significantly enhances
LLMs’ string processing capability via fine-tuning. This work provides a founda-
tion for future research to understand LLMs’ string processing capability. We will
publish our code and data upon paper acceptance.

1 INTRODUCTION

String processing is one of the most essential tasks in modern computing. It is mainly involved with
string analysis and manipulation such as accessing characters at a specific index (string indexing) or
locating a substring within a string (substring searching). For instance, search engines match user
queries to relevant documents using substring searching, with Google processing over 3.5 billion
searches per day. String processing is also crucial for searching through large databases, such as
Amazon’s over 400 million product listings. It is also vital for cleaning and normalizing messy text
data in machine learning. Additionally, string processing plays a critical role in LLM reasoning. For
instance, the chain-of-thought examples in the OpenAI o1 documentation (OpenAI, 2024b), such
as cipher and crossword problems, frequently involve string processing. Programming languages
like Python offer powerful built-in functions for string manipulation, making it easier for humans to
solve complex string-related problems.

With the advance of LLMs on natural language processing (NLP) tasks (OpenAI, 2024b;a; 2023a),
it is intuitive to assume that LLMs should also achieve great performance on string-related problems
since strings are texts. However, the reality is that LLMs often struggle with these seemingly simple
challenges. A popular example (Goodside, 2024) shows that GPT-4o (OpenAI, 2024a) frequently
fails in counting the number of “r”s in the word “strawberry”. Additionally, the use of LLMs for
string processing remains largely unstudied. Existing works (Shin & Kaneko, 2024; Tan et al.,
2024; Yehudai et al., 2024; Zhou et al., 2023) are mostly limited to case studies with only a few
string processing tasks, lacking a comprehensive evaluation of LLMs’ capabilities and limitations in
this domain. Consequently, it remains unclear how well LLMs can handle such tasks, why they fail,
and what might improve their performance.

StringLLM: In this paper, we conduct the first comprehensive study toward understanding the string
processing capability of LLMs. One core challenge is how to create large representative datasets
with a diverse set of string processing tasks, different types of strings, and guaranteed ground truth
answers. To address the challenge, we propose StringLLM, the first method to construct datasets for
benchmarking string processing capability of LLMs. StringLLM begins by manually collecting a set
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of fundamental string processing tasks called atomic tasks. Then, StringLLM combines these atomic
tasks to create more intricate ones, referred to as composite tasks. Given a task, StringLLM generates
question templates for it, which are then used to derive question inputs. Finally, StringLLM obtains
the ground truth answer for a question input by executing the Python code of the corresponding task,
generating question-answer pairs for string processing.

Crafting new datasets: We use StringLLM to construct a series of datasets, referred to as String-
Bench. These datasets include 1,511 string processing tasks spanning a broad range of applications,
and three common types of strings: hash strings, multilingual natural language strings, and random
strings. StringBench allows us to thoroughly assess the ability of LLMs to process strings across
various scenarios.

Benchmarking string processing capabilities of LLMs: Building on StringBench, we present the
first systematic evaluation of LLMs on string processing tasks, using three prompting strategies: raw
instructions, Chain of Thought (CoT) (Wei et al., 2022), and Program of Thought (PoT) (Chen et al.,
2022). Our comprehensive experimental results demonstrate that: 1) LLMs struggle with string pro-
cessing compared to human capability. In particular, they achieve a maximum of 48.89% accuracy
using raw instructions; 2) LLMs’ performance varies across datasets, revealing significant dispar-
ities in their ability to process different types of strings. Specifically, random strings are the most
challenging, with accuracy peaking at 43.94% using raw instructions; and 3) Prompt engineering
significantly improves performance. Some LLMs show over a 20% improvement when using PoT
compared to raw instructions, offering valuable insights for designing better solutions.

Understanding why LLMs struggle with string processing: We conduct the first in-depth analysis
to investigate why LLMs struggle with string processing. Our analysis reveals that: 1) Tokenization
fails to split strings into individual characters, resulting in a lack of character-level understanding
in LLMs; and 2) Token embedding lacks character-level information such as token length informa-
tion, further highlighting LLMs’ limited character-level comprehension of strings. Our analysis and
Yehudai et al. (2024) show that Transformers have limited ability in solving string processing tasks.
To address this, we propose an effective solution to enhance LLMs’ performance in string process-
ing, without altering the architecture of Transformers. Utilizing our well-constructed StringBench,
we conduct supervised fine-tuning on three different open-source LLMs. Our fine-tuned models
improve average test accuracy of our datasets by at least 38.80%, compared to the best-performing
prompt engineering technique, PoT. We then evaluate the foundational capabilities of our fine-tuned
models on three general-purpose benchmarks. The results show that the string processing capa-
bilities of our fine-tuned models are significantly enhanced without substantially degrading their
foundational capabilities. Specifically, the three fine-tuned LLMs sacrifice at most 1.35% on aver-
age across the three general-purpose benchmarks.

2 RELATED WORK

LLMs’ string processing capability is underexplored: LLMs have advanced significantly in re-
cent years, demonstrating impressive capabilities across diverse NLP tasks, such as reasoning (Wei
et al., 2022; Chen et al., 2022), coding (Roziere et al., 2023; Zhu et al., 2024), and instruction follow-
ing (Ouyang et al., 2022). However, their string processing capabilities remain understudied. Shin
& Kaneko (2024) explored LLMs’ ability to handle character-level tasks as opposed to token-level
tasks. Their study revealed that LLMs struggle with simple character-level operations (e.g., char-
acter insertion, deletion, reordering), which humans can perform with ease. In contrast, LLMs’
performance on token-level tasks (e.g., sentence retrieval, word insertion) is relatively stronger,
highlighting a discrepancy between token and character-level understanding. Zhou et al. (2023)
proposed a benchmark to evaluate the instruction-following capabilities of LLMs, including some
string processing tasks. However, the tasks are few and lack comprehensiveness, limiting their use
to case studies. Tan et al. (2024) further noted that LLMs often struggle with basic counting tasks,
such as generating a paragraph with a specific word count and then correctly identifying that num-
ber. Correspondingly, Yehudai et al. (2024) discussed strategies to address this counting problem in
Transformers. However, these works are limited to case studies focused on single or a few string
processing tasks, lacking a comprehensive evaluation. Furthermore, they do not provide an in-depth
analysis of why LLMs struggle with accurately processing strings, nor do they offer solid experi-
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Documentations

Manually Craft

LLM

ans = a[x]Code

Variables a, x

ans = a[::-1].endswith(x)Code

Variables a, x

Template Does the reverse of {a}
end with {x}?

Step 1: Constructing
Atomic Tasks

Step 2: Constructing
Composite Tasks

Step 3: Generating Question Templates

Sampling248463B6903
aA67fBbA2D
a25F2552981

ans = a[::-1].endswith(x)Code

Variables a: "248463B..."
x: "B364842"

Template Does the reverse of {a}
end with {x}?

Answer False

Final Data

Step 4: Generating Question-answer Pairs

Filter

LLM

Different Strings

Figure 1: Overview of how StringLLM builds the benchmark datasets. Code represents Python
code expression for each string processing task, Template denotes the generated question template
for each task, Variables are the placeholders within both Code and Template, and Answer refers to
the groundtruth for each sample.

mental evidence to support their conclusions. Consequently, they fail to propose effective solutions
to enhance string processing capability of LLMs.

3 CONSTRUCTING DATASETS VIA STRINGLLM

3.1 OVERVIEW

An overview of StringLLM is shown in Figure 1. We begin by creating tasks. Specifically, we
first create tasks that are fundamental and cannot be broken down further, referred to as atomic
tasks. These are either manually designed by us or sourced from public programming language
documentation. Once we have these atomic tasks, we combine multiple of them into more complex
tasks, referred to as composite tasks. Using both atomic and composite tasks, we generate natural
language question-answer pairs for LLMs, resulting in a series of datasets called StringBench. It
includes three distinct datasets, each designed to query LLMs in different ways:

• Multilingual: Queries LLMs to process multilingual natural language strings.
• Hash: Queries LLMs to process strings encoded by different hash functions.
• Random Strings: Queries LLMs to process random strings composed of printable characters.

The three datasets cover diverse usage of LLMs, including natural language tasks and code-related
tasks. The Multilingual dataset focuses on natural language tasks with special attention to multi-
ple languages. Hash strings represent a typical type of strings in code-related tasks. To cover a
wider range of characters, we also consider random strings of all printable characters. Manually
constructing datasets of this nature is extremely time-consuming and impractical. We leverage GPT-
4o (OpenAI, 2024a) to assist in the data construction process. We avoid direct use of GPT-4o for
string processing, as we will show in Section 4 that it struggles with string-related tasks. Instead,
we make use of its coding abilities, including code generation, understanding, and summarization.
We take code as a proxy to produce accurate datasets. Previous study (OpenAI, 2024a) has shown
that GPT-4o performs exceptionally well in these areas, achieving a score of 90.2% on the Hu-
manEval benchmark (Chen et al., 2021). This highlights its remarkable capabilities in code-related
applications, enabling us to use it for data construction.

3.2 CONSTRUCTING STRING PROCESSING TASKS

Atomic string processing tasks: We begin by thoroughly examining the built-in function documen-
tation 1 of Python to identify atomic string processing tasks. Specifically, we focus on distinguishing

1https://docs.python.org/3/library/stdtypes.html#string-methods
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unique functions while filtering out those that are redundant or exhibit overlapping functionalities.
For example, the splitlines() function, which is designed for splitting strings at line bound-
aries, is obviously a specialized case of the more general split() function. Therefore, we inte-
grate splitlines() into the broader split() task and exclude it from separate consideration.
Following this, a set of atomic string processing tasks is obtained. However, this initial set proves
to be insufficient for our comprehensive needs. Many common tasks are not encapsulated within
the Python built-in functions. To address this gap, we manually develop an additional set of atomic
tasks. These include fundamental tasks such as indexing, slicing, and concatenation. They are fre-
quently used but are not explicitly provided as built-in functions. Once we have determined the
complete set of atomic tasks, we proceed to formally express each task in Python code. We man-
ually create Python scripts that perform these tasks using placeholder variables. These scripts then
serve as templates for constructing composite tasks (see Table 12 in Appendix for examples).

By manually reviewing the built-in function documentation and crafting an additional set of atomic
tasks, we ensure that these atomic tasks are representative and can compose many diverse composite
tasks. Moreover, by filtering out tasks that are redundant or exhibit overlapping functionalities, we
avoid the selected atomic tasks having conflicted meanings that could form bad composite tasks.

Composite string processing tasks: Building on atomic tasks, we iteratively generate more com-
plex string processing tasks. In each iteration, we randomly shuffle and then input all atomic tasks
into GPT-4o, combining them into composite tasks. Specifically, we prompt GPT-4o to generate
Python code for composite tasks based on the code of atomic tasks. This approach fully leverages
GPT-4o’s Program of Thought (PoT) capability, instead of using it for direct string processing. As
a result, we generate a total of 1,462 composite tasks, covering a wide range of complicated string
processing scenarios commonly used in practice.

3.3 GENERATING QUESTION-ANSWER PAIRS FOR EACH TASK

Constructing question templates: After obtaining the atomic and composite tasks, we once
again use GPT-4o to generate question templates for these tasks. As illustrated in Figure 1,
a question template describes the task with placeholders. Given the Python code, GPT-4o is
prompted to create a template that asks how the task described by the code would be accomplished.
This ensures that the question templates are aligned with the tasks defined by the Python code.

Table 1: Dataset statistics.

Dataset Atomic Tasks Composite Tasks Question-answer Pairs

Multilingual 49 1,462 22,161
Hash 49 1,462 18,441

Random String 49 1,462 21,159

Thus, such templates can
effectively guide LLMs to
perform the required tasks.
This procedure leverages
GPT-4o’s capability of code
summarization, without
requiring it to process strings
directly. As with previous
steps, this approach skillfully
exploits GPT-4’s strengths while minimizing its limitations. To promote diversity, we generate three
paraphrased question templates for each task. Specifically, to ensure the quality of the templates,
we first instruct GPT-4o to generate 10 templates. Then, we have GPT-4o itself rank these generated
templates and select the top three.

Generating question-answer pairs based on the template: Once the question templates are gen-
erated, we replace the placeholders in the templates with specific strings to be processed. This
procedure transforms the templates into question inputs. To promote the diversity of our dataset, we
create three types of strings to each question template. This results in StringBench, containing three
distinct datasets:

• Multilingual: We randomly sample strings from the Flores-200 dataset (Costa-jussà et al., 2022),
which is a machine translation dataset including data in 200 languages.

• Hash: We first randomly sample strings from the Flores-200 dataset. For each string, we ran-
domly select a hash function from a set of 10 different functions to encode it. The 10 used
cryptographic hash functions are listed in Table 11 in Appendix.
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• Random String: We randomly sample strings using all printable characters in Python, including
letters, numbers, punctuation, escape characters, and other special symbols.

Finally, we execute the Python code to generate the ground truth answers for all datasets. This en-
sures a reliable and accurate reference for both training and evaluation purposes. The guaranteed
ground truth data is a significant strength of our approach. Unlike other datasets that may suffer from
inconsistencies or ambiguities in labeling, our ground truth provides a definitive reference, improv-
ing the reliability of evaluations. This rigorous standard allows us to measure LLMs’ performance
with high precision and offers a robust foundation for training LLMs to achieve better performance.
By leveraging this guaranteed ground truth, we ensure that our datasets serve as a valuable bench-
mark for both research and practical applications. Statistics of our datasets are shown in Table 1,
and randomly selected question-answer pairs from each dataset are presented in Table 2.

Table 2: Randomly selected question-answer pairs from our datasets.

Dataset Question Answer

Multilingual
Retrieve the first 29 characters from string "Felicia, rakamboita dutu
rechikamu chechina pa Sikero yeSaffir-Simpson Hurricane,
yakaneta kusvika kuderera kwetropical ichizopra neChipiri".

"Felicia,
rakamboita
dutu rech"

Hash Get the index of the first instance of "dc" in string "c11c8a595476dcde4f91a8
dce2acaba2". 12

Random String Take every 4th character from the start of string "N/5qe!wj8U*8dvsN/am’UGfN
/A=n+%$5)3HA?d#Jn&F4&,(WG-p:1Vw]" up to the 50th character.

"Ne8d/U/
+)?n&G"

3.4 POST-PROCESSING

We filter out duplicate and low-quality data after the above steps. Duplicate code and question
templates are removed in Steps 2 and 3 in Figure 1. All Python code is validated through execution,
and any code that results in execution errors is also removed.

4 BENCHMARKING LLMS’ STRING PROCESSING CAPABILITIES

4.1 EXPERIMENTAL SETUP

LLMs: We use the following LLMs for our evaluation: GPT-4-Turbo (OpenAI, 2023b), GPT-4o
(OpenAI, 2024a), GPT-3.5 (OpenAI, 2022), DeepSeek-Chat (DeepSeek-AI, 2024), Gemma-2-9b
(Google, 2024), Llama-3.1-8B (Meta, 2024), Mistral-7B-v0.3 (Mistral-AI, 2024c), Mathstral-7B-
v0.1 (Mistral-AI, 2024b), Codestral-22B-v0.1 (Mistral-AI, 2024a) and DeepSeek-Coder (Zhu et al.,
2024). Table 10 in Appendix shows more details of the models.

Training-test split of our datasets: For the test sets, we randomly split 20% of the data from
each of the three datasets—Multilingual, Hash, and Random String. We ensure that the test sets
cover the full range of 1,511 string processing tasks in our datasets. This approach guarantees
that the diversity and complexity of these tasks are well-represented in the test sets, allowing a
comprehensive evaluation of the model’s performance. The remaining 80% of our datasets is used
as the training sets for our experiments on fine-tuning LLMs in Section 6.

Prompt engineering: In our experiment, we apply three prompt engineering techniques to evaluate
the performance of LLMs. 1) Raw instructions: The questions are input directly to the LLMs
without any additional guidance, allowing LLMs to choose their own methods for processing the
strings. 2) Chain of Thought (CoT) (Wei et al., 2022): Prompts LLMs to generate step-by-step
solutions for string processing tasks. By breaking down problems into smaller steps, this technique
helps LLMs handle complex reasoning tasks more systematically. 3) Program of Thought (PoT)
(Chen et al., 2022): Prompts LLMs to generate responses mainly in programming language. This
technique structures the reasoning process of LLMs in a programmatic manner. Thus, it enables
LLMs to perform intricate string processing tasks with greater precision.

Evaluation metrics: To evaluate the performance of LLMs on string processing tasks, we use
Accuracy (Acc). It measures the correctness of LLMs’ responses to input questions. As mentioned
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Table 3: Accuracy for string processing capability of humans and different LLMs.

LLM Method Multilingual Hash Random String AVG

GPT-4o
Raw Inst. 43.09 48.89 43.94 45.31

CoT 50.05 52.01 45.63 49.23
PoT 69.19 68.00 49.06 62.08

GPT-4-Turbo
Raw Inst. 35.49 41.61 33.87 36.99

CoT 43.98 48.10 43.09 45.06
PoT 66.50 71.01 48.74 62.08

GPT-3.5
Raw Inst. 8.36 15.93 13.60 12.63

CoT 30.81 29.94 24.77 28.51
PoT 42.63 42.62 25.26 36.84

DeepSeek-Coder
Raw Inst. 17.79 21.34 13.97 17.70

CoT 22.87 29.72 22.87 25.15
PoT 54.85 57.46 29.42 47.24

DeepSeek-Chat
Raw Inst. 4.26 3.50 1.90 3.22

CoT 7.89 9.99 7.30 8.39
PoT 7.12 7.76 2.39 5.76

Gemma-2-9b
Raw Inst. 21.49 21.01 14.72 19.07

CoT 23.81 24.67 18.84 22.44
PoT 55.34 52.71 14.49 40.85

Mistral-7B-v0.3
Raw Inst. 4.54 3.83 2.67 3.68

CoT 10.56 8.77 6.02 8.45
PoT 32.54 31.57 14.07 26.06

Mathstral-7B-v0.1
Raw Inst. 4.85 5.81 2.08 4.25

CoT 13.25 15.72 10.07 13.01
PoT 21.40 25.95 12.31 19.89

Codestral-22B-v0.1
Raw Inst. 19.03 15.99 12.52 15.85

CoT 16.08 24.46 10.56 17.03
PoT 23.92 14.39 15.75 18.02

Llama-3.1-8B
Raw Inst. 11.87 16.61 10.30 12.93

CoT 19.85 22.04 17.13 19.67
PoT 39.35 42.62 21.79 34.59

Human Manual 42.27 95.74 93.55 77.19
Python 98.12 97.99 98.61 98.24

in Section 3, we execute the Python code of each task to obtain the ground truth answer. Hence, due
to the deterministic nature of these answers, correctness is determined by exact matches between the
model’s final output and the ground truth answer.

Human study: We conducted a human study to evaluate the string processing capabilities of LLMs
in comparison with humans. We ask human annotators to perform all string processing tasks in the
test set, either manually or by writing Python code.

4.2 EXPERIMENTAL RESULTS

LLMs struggle to process strings compared to humans: The experimental results in Table 3
reveal that all LLMs struggle with string processing tasks across all datasets and prompt engineering
techniques. For example, when using raw instruction prompts, even the best-performing LLMs,
GPT-4o and GPT-4-Turbo, achieve only 36.99% and 45.31% Acc on average, respectively. Other
LLMs perform significantly worse. For instance, GPT-3.5 reaches an average Acc of just 12.63%,
which is 32.68% lower than its updated version GPT-4o. LLMs with much fewer parameters exhibit
even more significant performance drops, with average Acc below 20%. Specifically, Mistral-7B-
v0.3 and DeepSeek-Chat exhibit particularly poor performance. They achieve average Acc of only
3.68% and 3.22%, respectively. In contrast, humans demonstrate near-perfect performance across
all datasets. They do struggle to process strings manually, as they cannot identify and segment
Multilingual characters. For instance, in the case of the Arabic language, non-native speakers may

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

find it challenging to process such strings due to the difficulty of identifying individual characters.
However, when using Python code to process strings, humans achieve an average Acc of 98.24%.
This highlights the limitations of LLMs compared to human capability.

Random strings are harder to process: As shown in Table 3, LLMs exhibit significant perfor-
mance variation across our datasets. In general, LLMs perform better on the Hash dataset compared
to the Random String and Multilingual datasets. For instance, with raw instruction prompts, GPT-4o
achieves 48.89% Acc on the Hash dataset. This is 5.8% higher than its performance on the Mul-
tilingual dataset and 4.95% higher than on the Random String dataset. Overall, 6 out of 10 LLMs
perform best on the Hash dataset, indicating that LLMs excel in processing hash strings. Addition-
ally, 8 out of 10 LLMs show their worst performance on the Random String dataset when using raw
instruction prompts. This finding suggests that LLMs lack expertise in processing random strings.
One possible reason is that LLMs are not trained on data containing random strings, making it an
out-of-distribution problem.

Prompt engineering improves performance: Table 3 shows that LLMs perform largely better with
PoT and CoT than with raw instructions, where all 10 LLMs exhibit their lowest average Acc. In
contrast, when prompted with PoT, LLMs consistently deliver the best results. Specifically, 9 out of
10 LLMs show their highest performance. For example, the DeepSeek-Coder achieves an average
Acc of 47.24% across the three datasets when using PoT. It is 22.09% and 29.54% higher than with
CoT and raw instructions, respectively. This is likely because, compared to CoT, PoT structures the
reasoning process more hierarchically and incorporates programming to solve problems. As a result,
it is better suited for precise character-level manipulation required in string processing. Examples
of GPT-4o solving a string processing task using different prompt engineering techniques are shown
in Figure 2 - 3 in Appendix. These examples further highlight PoT’s advantage over CoT and raw
instructions in string processing.

5 UNDERSTANDING WHY LLMS STRUGGLE WITH STRING PROCESSING

5.1 TOKENIZATION CANNOT SPLIT STRINGS INTO CHARACTERS

Tokenization is the process of breaking down texts into smaller units called tokens, which can be
words, subwords, or characters. This process is fundamental to how LLMs process and understand
text. However, LLMs lose character-level details of input, when it is tokenized. When an input
text is tokenized into subwords or words, LLMs may lose the granular character-level details of
the input. This can lead to issues for string processing tasks, which require precise character-level
manipulation or analysis. For instance, checking if a string is a palindrome (reads the same backward
as forward) can be problematic due to tokenization. Taking a simple example, the phrase "A man
a plan a canal Panama" should be recognized as a palindrome when ignoring spaces and
case differences. However, the tokenizer might split it into ["A", "man", "a", "plan",
"a", "canal", "Panama"]. As a result, LLMs may fail to perform the check correctly, since
they may treat each word as a separate token instead of considering the entire character sequence.

Table 4 shows ratios of actual length to the number of tokens for sampled strings in our datasets,
when tokenized by different LLMs. From Table 4, we can draw the following conclusion:

• For the Multilingual dataset, as shown in Table 4, all three LLMs show the highest ratio. This is
because in multilingual natural language strings, words and subwords remain indivisible during
tokenization. Consequently, tokenization does not break down the strings into finer fragments.
This could contribute to lower Acc in such scenarios.

• For the Hash dataset, tokenization breaks the string into finer fragments. As shown in Table 4,
two out of three LLMs display the lowest ratio. Furthermore, hash strings typically consist of
alphanumeric characters without spaces or other natural language patterns. They also have a fixed
length, making them relatively structured. Additionally, they generally do not contain punctuation
or escape characters, further simplifying their structure. In this context, hash strings are easier for
LLMs to process and analyze, leading to higher Acc.

• For the Random String dataset, tokenization segments the strings into smaller units as well. How-
ever, these strings often contain escape characters, punctuation, and other special characters.
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These elements add complexity to the structure of random strings, making it challenging for
LLMs to analyze and understand them accurately.

Table 4: Ratios of actual length to the number of to-
kens for sampled strings in our datasets, when tok-
enized by different LLMs.

LLM Multilingual Hash Random String

Gemma-2-9b 2.53 1.12 1.30
Mistral-7B-v0.3 1.73 1.06 1.15
Llama-3.1-8B 2.13 1.67 1.32

Correspondingly, as shown in Table 3,
LLMs perform best on the Hash dataset due
to the simpler, more structured nature of
the strings. For the Multilingual dataset,
performance is lower because tokenization
preserves the integrity of words and sub-
words. Consequently, it could be more dif-
ficult for LLMs to establish character-level
understanding of such strings. For the Ran-
dom String dataset, the added complexity
from special characters further challenges
LLMs, resulting in the lowest Acc.

5.2 TOKENIZATION MAKES LLMS LACK CHARACTER-LEVEL UNDERSTANDING

Although tokenization does not inherently split strings into individual characters, there is still insuf-
ficient evaluation to support the claim that these tokens lack character-level information. We aim to
further demonstrate that word-level or subword-level tokens, which cannot perform such splitting,
indeed lack character-level information. Table 5 shows the string processing capability of different
LLMs, where white spaces are inserted between all characters of strings. This insertion of white
spaces aims to segment every character in strings, avoiding the use of word-level or subword-level
tokens, thereby introducing potential character-level information to LLMs.

Table 5: Accuracy for string processing capability of different LLMs, where white spaces are in-
serted between all characters of strings.

LLM Method Multilingual Hash Random String AVG

Gemma-2-9b
Raw Inst. 20.48 21.23 14.31 18.67

CoT 24.22 25.16 20.07 23.15
PoT 55.69 52.73 18.98 42.47

Mistral-7B-v0.3
Raw Inst. 4.97 3.99 2.79 3.92

CoT 12.45 10.53 7.34 10.11
PoT 32.28 32.67 15.32 26.76

Llama-3.1-8B
Raw Inst. 12.83 16.56 9.76 13.05

CoT 20.64 23.21 19.20 21.02
PoT 42.01 43.30 24.74 36.68

Compared to Table 3, the performance of LLMs is improved, indicating that the word-level or
subword-level tokens make LLMs lack character-level understanding. In contrast, augmenting the
tokenizer with finer-grained character-level segmentation could be a promising direction for improv-
ing LLM performance.

5.3 LLMS’ UNDERSTANDING OF STRINGS IS LIMITED

Our experimental results have demonstrated that tokenization cannot split strings into individual
characters, and word-level or subword-level tokens do not include sufficient character-level infor-
mation. Considering the architecture of Transformers, tokenization is the starting point, and its lim-
itations can lead to further errors. Consequently, the attention mechanism and entire Transformer
architecture of LLMs cannot effectively analyze character-level information, leading to a lack of
fundamental understanding of strings.

6 IMPROVING STRING PROCESSING CAPABILITY VIA FINE-TUNING

In this section, we further explore the efficacy of fine-tuning in improving the performance of LLMs.
We use the training sets described in Section 4.1 to fine-tune three LLMs: Llama-3.1-8B (Meta,

8
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Table 6: Acc for string processing capability of different LLMs before and after fine-tuning, when
prompted with PoT.

LLM Multilingual Hash Random String Avg. Change

Gemma-2-9b Before 55.34 52.71 14.49 + 38.80After 82.49 87.98 68.46

Mistral-7B-v0.3 Before 32.54 31.57 14.07 + 56.51After 83.24 90.28 74.18

Llama-3.1-8B Before 39.35 42.62 21.79 + 42.87After 79.83 85.64 66.91

Table 7: Acc/Acc-Norm for foundational capabilities of different LLMs before and after fine-tuning.

LLM MMLU Hellaswag ARC Avg. Change

Gemma-2-9b Before 71.88 80.08 64.76 - 0.87After 70.92 80.39 62.80

Mistral-7B-v0.3 Before 59.74 82.90 58.62 - 1.35After 57.56 82.14 57.51

Llama-3.1-8B Before 67.94 79.33 55.03 + 0.51After 66.24 79.48 58.11

2024), Gemma-2-9b (Google, 2024), and Mistral-7B-v0.3 (Mistral-AI, 2024c), with the help of the
LlamaFactory framework (Zheng et al., 2024) and LoRA (Hu et al., 2022). As shown in Table 3,
PoT performs the best across our three datasets compared to raw instructions and CoT. Therefore,
we structure our questions to guide the LLMs in generating PoT solutions, using Python code from
our datasets as expected output. Additionally, we include general-purpose datasets (Alpaca-GPT-4
(Peng et al., 2023) and Dolly-15k (Conover et al., 2023)) and programming datasets (Code Alpaca
Chaudhary (2023) and OpenCoder Huang et al. (2024)) to improve the robustness of fine-tuned
models. The inclusion of general-purpose datasets in fine-tuning is inspired by state-of-the-art cod-
ing LLMs (Roziere et al., 2023; Zhu et al., 2024), which use general-purpose datasets during their
training phases. The inclusion of such datasets is a common practice to ensure the models have a
certain level of foundational capabilities. Hence, excluding general datasets would compromise the
foundational capabilities of the models, which is shown in Table 9. We continue to use the Acc as
the primary evaluation metric for our datasets. Additionally, to evaluate the foundational capabil-
ities of the LLMs, we utilize three datasets: MMLU (Hendrycks et al., 2021), Hellaswag (Zellers
et al., 2019), and ARC (AI2 Reasoning Challenge) (Clark et al., 2018). We evaluate LLMs on these
benchmarks using the LM-Evaluation-Harness framework (Gao et al., 2024), and all evaluations are
conducted in a zero-shot setting. We use Acc or Acc-Norm stated in the framework as an evaluation
metric. Specifically, for Hellaswag and ARC, we use Acc-Norm; for MMLU, we use Acc.

Table 6 shows the string processing capability of LLMs when prompted with PoT, while Table 7
shows the foundational capabilities of LLMs and Table 8 shows their performance on code genera-
tion benchmarks, both before and after fine-tuning. From these results, we can draw the following
conclusions: 1) Our fine-tuning is effective. The results in Table 6 clearly show that the perfor-
mance of all three LLMs significantly improves after fine-tuning. For instance, the Mistral-7B-v0.3
(Mistral-AI, 2024c) model’s Acc on the Random String dataset improves by 60.11%. This finding
demonstrates that our fine-tuning effectively enhances the LLMs’ capability in string processing. 2)
The fine-tuned LLMs maintain their foundational capabilities. Table 7 demonstrates that our
fine-tuning has minimal impact on the foundational capabilities of LLMs. The results show that all
evaluated LLMs exhibit an average performance degradation of less than 1.35%. In some cases,
performance even improves, likely due to the inclusion of two general-purpose datasets during fine-
tuning. This finding highlights that our fine-tuning not only enhances LLMs’ string processing
ability but also preserves their foundational capabilities. Results in Table 8 indicate that the code
generation performance of LLMs shows a slight decline (no more than 1.05% on average) before
and after fine-tuning. However, our fine-tuning method is quite naive, since it is not our primary fo-
cus. AI companies with advanced model training pipelines and substantial computational resources

9
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Table 8: Performance of various LLMs on HumanEval, HumanEval+, MBPP, and MBPP+ bench-
marks before and after fine-tuning.

LLM HumanEval HumanEval+ MBPP MBPP+ Avg. Change

Gemma-2-9b Before 67.7 59.1 73.3 63.0 - 0.78After 66.5 59.1 72.8 62.2

Mistral-7B-v0.3 Before 36.0 31.1 50.3 42.1 - 0.68After 34.8 30.5 49.2 42.3

Llama-3.1-8B Before 64.5 55.5 68.0 55.6 - 1.05After 63.4 54.3 67.5 54.2

Table 9: Acc/Acc-Norm for foundational capabilities of different LLMs before and after fine-tuning,
where LLMs are finetuned without general-purpose datasets.

LLM MMLU Hellaswag ARC Avg. Change

Gemma-2-9b Before 71.88 80.08 64.76 - 1.49After 71.41 79.76 61.09

Mistral-7B-v0.3 Before 59.74 82.90 58.62 - 1.60After 57.72 82.52 56.23

Llama-3.1-8B Before 67.94 79.33 55.03 - 0.46After 65.65 80.60 54.68

can better integrate our dataset with general and code-specific data, enabling them to maintain both
the general and coding capabilities of LLMs.

Comparing finetuning with alternative approaches operating at the tokenizer level is another inter-
esting direction. However, our primary goal is to study and highlight the limitations of current
LLMs, rather than proposing new solutions or retraining models with modified tokenizers. Explor-
ing such approaches would be an exciting avenue for future LLM developers, but it goes beyond the
scope of our work. Additionally, retraining an LLM with a new tokenizer would require significant
computational resources, which are unavailable to us.

7 CONCLUSION

In this paper, we presented the first comprehensive study on LLMs’ capability in string process-
ing. we proposed StringLLM, a method to construct datasets for benchmarking string processing
capability of LLMs. Following this, we used StringLLM to develop a series of datasets covering
a broad range of string processing tasks and different types of strings. Extensive experiments con-
ducted on these datasets indicated that current LLMs have limited capability in processing strings
compared to humans. To address this limitation, we provided a detailed analysis to uncover the
underlying reasons for LLMs’ struggle with string processing tasks. Building on these insights, we
proposed an effective solution that enhanced LLMs’ performance via fine-tuning. Our fine-tuned
models increased average test accuracy of three datasets by at least 38.80%. Interesting future work
includes 1) training more capable LLMs for string processing; 2) refining our datasets; and 3) further
analyzing the underlying limitations of LLMs in string processing.

REFERENCES

Sahil Chaudhary. Code alpaca: An instruction-following llama model for code generation. https:
//github.com/sahil280114/codealpaca, 2023. 9

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021. 3

10

https://github.com/sahil280114/codealpaca
https://github.com/sahil280114/codealpaca


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W Cohen. Program of thoughts prompt-
ing: Disentangling computation from reasoning for numerical reasoning tasks. arXiv preprint
arXiv:2211.12588, 2022. 2, 5

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv:1803.05457v1, 2018. 9

Mike Conover, Matt Hayes, Ankit Mathur, Jianwei Xie, Jun Wan, Sam Shah, Ali Ghodsi, Patrick
Wendell, Matei Zaharia, and Reynold Xin. Free dolly: Introducing the world’s first truly open
instruction-tuned llm, 2023. URL https://www.databricks.com/blog/2023/04/
12/dolly-first-open-commercially-viable-instruction-tuned-llm. 9
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Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, et al. Code llama: Open foundation models for code.
arXiv preprint arXiv:2308.12950, 2023. 2, 9

Andrew Shin and Kunitake Kaneko. Large language models lack understanding of character com-
position of words. arXiv preprint arXiv:2405.11357, 2024. 1, 2

Zhiquan Tan, Lai Wei, Jindong Wang, Xing Xie, and Weiran Huang. Can i understand what i create?
self-knowledge evaluation of large language models. arXiv preprint arXiv:2406.06140, 2024. 1,
2

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022. 2, 5

Gilad Yehudai, Haim Kaplan, Asma Ghandeharioun, Mor Geva, and Amir Globerson. When can
transformers count to n? arXiv preprint arXiv:2407.15160, 2024. 1, 2

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019. 9

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyan Luo, Zhangchi Feng, and
Yongqiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. In Pro-
ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
3: System Demonstrations), Bangkok, Thailand, 2024. Association for Computational Linguis-
tics. 9

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny
Zhou, and Le Hou. Instruction-following evaluation for large language models. arXiv preprint
arXiv:2311.07911, 2023. 1, 2

Qihao Zhu, Daya Guo, Zhihong Shao, Dejian Yang, Peiyi Wang, Runxin Xu, Y Wu, Yukun Li,
Huazuo Gao, Shirong Ma, et al. DeepSeek-Coder-V2: Breaking the barrier of closed-source
models in code intelligence. arXiv preprint arXiv:2406.11931, 2024. 2, 5, 9

12

https://openai.com/index/hello-gpt-4o/
https://openai.com/index/learning-to-reason-with-llms
https://openai.com/index/learning-to-reason-with-llms


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A APPENDIX

LLMs #Parameters Model Provider

GPT-4-Turbo Unknown OpenAI
GPT-4o Unknown OpenAI
GPT-3.5 Unknown OpenAI
DeepSeek-Coder 16B DeepSeek
DeepSeek-Chat 16B DeepSeek
Gemma-2-9b-it 9B Google
Mistral-7B-v0.3 7B Mistral AI
Mathstral-7B-v0.1 7B Mistral AI
Codestral-22B-v0.1 22B Mistral AI
Llama-3.1-8B-Instruct 8B Meta

Table 10: Number of parameters and model providers of LLMs used in our experiments.

Hash Function Length

MD5 32
SHA-1 40

SHA-256 64
BLAKE2b 128
SHA3-224 56

SHAKE-128 32
BLAKE2s 64
SHA3-512 128

SHAKE-256 64
SHA-384 96

Table 11: Hash functions used in our data construction and their output lengths (number of alphanu-
meric characters).

Code Variables Templates

ans = a + b a,b Concat string {a} and {b}.
ans = a * b a,b Repeat string {a} for {b} times.
ans = a[:y] a,y Retrieve the first {y} characters from string {a}.
ans = a[::-1] a Get the reverse of the string {a}.
ans = len(a) a Determine the number of characters in the string {a}.
ans = x in y x,y Does string {y} contain substring {x}?
ans = a.count(x) a,x Check the occurrence of {x} within string {a}.
ans = a.strip(x) a,x Remove characters in {x} from both ends of string {a}.
ans = a.startswith(x) a,x Identify if string {a} starts with {x}.
ans = a.endswith(x) a,x Determine if string {a} ends with substring {x}.

Table 12: Examples of atomic tasks.
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Table 13: Accuracy for string processing capability of different LLMs, where each character of
strings is assigned a single token ID.

LLM Method Multilingual Hash Random String AVG

Gemma-2-9b
Raw Inst. 18.46 19.69 12.34 16.83

CoT 20.55 23.59 16.23 20.12
PoT 50.86 54.35 16.95 40.72

Mistral-7B-v0.3
Raw Inst. 4.37 4.68 2.82 3.96

CoT 10.19 10.98 5.22 8.80
PoT 29.18 30.63 13.31 24.37

Llama-3.1-8B
Raw Inst. 9.62 17.09 8.11 11.61

CoT 16.76 22.32 18.14 19.07
PoT 38.20 39.06 17.74 31.67
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Use Chain-of-Thought reasoning, solve the question below step-by-step:

[Question] Retrieve string "B2F8DbCcFfA01eC8B6E891C317C8D26a523eC0A45117E9Da0
bB2817f95A0A799" with its characters in reverse order.

To solve the problem of reversing the string
B2F8DbCcFfA01eC8B6E891C317C8D26a523eC0A45117E9Da0bB2817f95A0A799 using
Chain-of-Thought reasoning, let's break down the steps:

1. Understand the Problem: We need to reverse the string, which means that the first character
of the original string should be the last character in the reversed string, the second character
should be the second last, and so on.

2. Input String: 
   
 
 B2F8DbCcFfA01eC8B6E891C317C8D26a523eC0A45117E9Da0bB2817f95A0A799
   

3. Reversing the String: To reverse a string, we take the last character and move towards the
first character, appending each character in reverse order.

   Let's break down the reversal step-by-step:

Last character: 9
Second last character: 9
Third last character: 7
Continue this process until we reach the first character: B.

4. Construct the Reversed String: By appending each character from the last to the first, we
get:

 
 997A0A59f7812Bb0aD9E71154A0Ce325a62D8C71C198E6B8C1e10AfFccDb8F2B

5. Verify the Reversed String: We can check the reversed string by reading it in reverse and
verifying if it matches the original string.

Final Answer: 

The string in reverse order is:

997A0A59f7812Bb0aD9E71154A0Ce325a62D8C71C198E6B8C1e10AfFccDb8F2B

997A0A59f7812Bb0aD9E71154A0Ce325a62D8C71C198E6B8C1e10AfFccDb8F2B

✘

Prompt

Model Output

Final Output

(a) CoT

Figure 2: Examples of GPT-4o solving a string processing task using different prompt engineering
techniques.
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Retrieve string "B2F8DbCcFfA01eC8B6E891C317C8D26a523eC0A45117E9Da0bB28
17f95A0A799" with its characters in reverse order.

The reversed order of the string B2F8DbCcFfA01eC8B6E891C317C8D26a523eC0A4
5117E9Da0bB2817f95A0A799 is:

997A0A59f7182Bb0aD9E71154A0Ce325a62D8C713C198E6B8Ce10AfFfCcDb8F2B.

997A0A59f7182Bb0aD9E71154A0Ce325a62D8C713C198E6B8Ce10AfFfCcDb8F2B

✘

Prompt

Model Output

Final Output

(a) Raw Instruction

Write Python code to solve the question below:

[Question] Retrieve string "B2F8DbCcFfA01eC8B6E891C317C8D26a523eC0A45117E9Da0b
B2817f95A0A799" with its characters in reverse order.

To solve the problem of reversing a string in Python, you can use the slicing technique. Here's the code
that will reverse the given string:

# Original string
original_string = "B2F8DbCcFfA01eC8B6E891C317C8D26a523eC0A45117E9Da0bB2817f95A0A799"

# Reversed string
reversed_string = original_string[::-1]
reversed_string

The reversed string is:
997A0A59f7182Bb0aD9E71154A0Ce325a62D8C713C198E6B8Ce10AfFcCbD8F2B.

Prompt

Model Output

997A0A59f7182Bb0aD9E71154A0Ce325a62D8C713C198E6B8Ce10AfFcCbD8F2B

Final Output ✔

(b) PoT

Figure 3: Examples of GPT-4o solving a string processing task using different prompt engineering
techniques.

16


