
Published as a conference paper at ICLR 2023

TEXTGRAD: ADVANCING ROBUSTNESS EVALUATION
IN NLP BY GRADIENT-DRIVEN OPTIMIZATION

Bairu Hou1, Jinghan Jia2,∗, Yihua Zhang2,∗, Guanhua Zhang1,∗,
Yang Zhang3, Sijia Liu2,3, Shiyu Chang1
1UC Santa Barbara, 2Michigan State University, 3MIT-IBM Watson AI Lab

ABSTRACT

Robustness evaluation against adversarial examples has become increasingly im-
portant to unveil the trustworthiness of the prevailing deep models in natural lan-
guage processing (NLP). However, in contrast to the computer vision (CV) do-
main where the first-order projected gradient descent (PGD) is used as the bench-
mark approach to generate adversarial examples for robustness evaluation, there
lacks a principled first-order gradient-based robustness evaluation framework in
NLP. The emerging optimization challenges lie in 1) the discrete nature of textual
inputs together with the strong coupling between the perturbation location and the
actual content, and 2) the additional constraint that the perturbed text should be
fluent and achieve a low perplexity under a language model. These challenges
make the development of PGD-like NLP attacks difficult. To bridge the gap, we
propose TEXTGRAD, a new attack generator using gradient-driven optimization,
supporting high-accuracy and high-quality assessment of adversarial robustness
in NLP. Specifically, we address the aforementioned challenges in a unified opti-
mization framework. And we develop an effective convex relaxation method to
co-optimize the continuously-relaxed site selection and perturbation variables, and
leverage an effective sampling method to establish an accurate mapping from the
continuous optimization variables to the discrete textual perturbations. Moreover,
as a first-order attack generation method, TEXTGRAD can be baked in adversarial
training to further improve the robustness of NLP models. Extensive experiments
are provided to demonstrate the effectiveness of TEXTGRAD not only in attack
generation for robustness evaluation but also in adversarial defense. From the at-
tack perspective, we show that TEXTGRAD achieves remarkable improvements
in both the attack success rate and the perplexity score over five state-of-the-art
baselines. From the defense perspective, TEXTGRAD-enabled adversarial train-
ing yields the most robust NLP model against a wide spectrum of NLP attacks.

1 INTRODUCTION

The assessment of adversarial robustness of machine learning (ML) models has received increasing
research attention because of their vulnerability to adversarial input perturbations (known as adver-
sarial attacks) (Goodfellow et al., 2014; Carlini & Wagner, 2017; Papernot et al., 2016). Among
a variety of robustness evaluation methods, gradient-based adversarial attack generation makes a
tremendous success in the computer vision (CV) domain (Croce & Hein, 2020; Dong et al., 2020).
For example, the projected gradient descent (PGD)-based methods have been widely used to bench-
mark the adversarial robustness of CV models (Madry et al., 2018; Zhang et al., 2019b; Shafahi
et al., 2019; Wong et al., 2020; Zhang et al., 2019a; Athalye et al., 2018). However, in the natural
language processing (NLP) area, the predominant robustness evaluation tool belongs to query-based
attack generation methods (Li et al., 2020; Jin et al., 2020; Ren et al., 2019; Garg & Ramakrishnan,
2020; Li et al., 2019), which do not make the full use of gradient information.

Yet, the (query-based) mainstream of NLP robustness evaluation suffers several limitations. First,
these query-based attack methods could be prone to generating ambiguous or invalid adversarial
textual inputs (Wang et al., 2021), most of which change the original semantics and could even

*Contributed equally.

1

Published as a conference paper at ICLR 2023

Table 1: Effectiveness of TEXTGRAD at-a-glance on the SST-2 dataset (Socher et al., 2013) against 5 NLP
attack baselines. Each attack method is categorized by the attack principle (gradient-based vs. query-based),
and is evaluated at three aspects: attack success rate (ASR), adversarial texts quality (in terms of language
model perplexity), and runtime efficiency (averaged runtime for attack generation in seconds). Two types of
victim models are considered, i.e., realizations of BERT achieved by standard training (ST) and adversarial
training (AT), respectively. Here AT integrates TEXTFOOLER (Jin et al., 2020) with standard training. Across
models, higher ASR, lower perplexity, and lower runtime indicate stronger attack. The best performance is
highlighted in bold per metric.

Attack Venue Principle Attack Success Rate Perplexity Runtime
Efficiency (s)Gradient Query ST AT ST AT

Jin et al. (2020) AAAI • 82.8% 43.6% 431.4 495.7 1.03
Li et al. (2020) EMNLP • 86.4% 76.4% 410.7 357.8 1.69

Garg & Ramakrishnan (2020) EMNLP • 86.6% 77.5% 286.6 302.9 1.15
Guo et al. (2021) EMNLP • 85.7% 79.7% 314.0 381.7 11.44
Lee et al. (2022) ICML • 86.0% 65.8% 421.0 554.9 9.41

TEXTGRAD (ours) - • 93.5% 81.8% 266.4 285.3 3.65

mislead human annotators. Second, the query-based methods could be hardly integrated with the
first-order optimization-based model training recipe, and thus makes it difficult to develop adversar-
ial training-based defenses (Madry et al., 2018; Athalye et al., 2018). Even though some first-order
optimization-based NLP attack generation methods were developed in the literature, they often come
with poor attack effectiveness (Ebrahimi et al., 2018) or high computational cost (Guo et al., 2021),
leaving the question of whether the best optimization framework for NLP attack generation is found.
The most relevant work to ours is GBDA attack (Guo et al., 2021), which perturbs each token in the
input by sampling substitutes from the whole vocabulary of victim model. The sample distribution is
optimized using gradients to generate adversarial examples, but yields low computational efficiency
and high memory cost. Inspired by above, we ask: How to develop a principled gradient-based
attack framework in NLP, like PGD in CV?

The main challenges for leveraging gradients to generate adversarial attacks in NLP lie in two as-
pects. First, the discrete nature of texts makes it difficult to directly employ the gradient information
on the inputs. Different from perturbing pixels in imagery data, adversarial perturbations in an
textual input need to optimize over the discrete space of words and tokens. Second, the fluency
requirement of texts imposes another constraint for optimization. In contrast to ℓp-norm constrained
attacks in CV, adversarial examples in NLP are required to keep a low perplexity score. The above
two obstacles make the design of gradient-based attack generation method in NLP highly non-trivial.

To bridge the adversarial learning gap between CV and NLP, we develop a novel adversarial attack
method, termed TEXTGRAD, by peering into gradient-driven optimization principles needed for ef-
fective attack generation in NLP. Specifically, we propose a convex relaxation method to co-optimize
the perturbation position selection and token modification. To overcome the discrete optimization
difficulty, we propose an effective sampling strategy to enable an accurate mapping from the continu-
ous optimization space to the discrete textual perturbations. We further leverage a perplexity-driven
loss to optimize the fluency of the generated adversarial examples. In Table 1, we highlight the
attack improvement brought by TEXTGRAD over some widely-used NLP attack baselines. More
thorough experiment results will be provided in Sec. 5.

Our contribution. ❶ We propose TEXTGRAD, a novel first-order gradient-driven adversarial at-
tack method, which takes a firm step to fill the vacancy of a principled PGD-based robustness eval-
uation framework in NLP. ❷ We identify a few missing optimization principles to boost the power
of gradient-based NLP attacks, such as convex relaxation, sampling-based continuous-to-discrete
mapping, and site-token co-optimization. ❸ We also show that TEXTGRAD is easily integrated with
adversarial training and enables effective defenses against adversarial attacks in NLP. ❹ Lastly, we
conduct thorough experiments to demonstrate the superiority of TEXTGRAD to existing baselines in
both adversarial attack generation and adversarial defense.

2 BACKGROUND AND RELATED WORK

Adversarial attacks in CV. Gradient information has played an important role in generating ad-
versarial examples, i.e., human-imperceptible perturbed inputs that can mislead models, in the CV

2

Published as a conference paper at ICLR 2023

area (Goodfellow et al., 2014; Carlini & Wagner, 2017; Croce & Hein, 2020; Madry et al., 2018;
Zhang et al., 2019b; Kurakin et al., 2016; Xu et al., 2019a;c). PGD attack is one of the most popular
adversarial attack methods (Madry et al., 2018; Croce & Hein, 2020), which makes use of the first-
order gradient to generate perturbations on the inputs and has achieved great success in attacking CV
models with a low computational cost. Besides, PGD is also a powerful method to generate transfer
attacks against unseen victim models (Szegedy et al., 2013; Liu et al., 2016; Moosavi-Dezfooli et al.,
2017). Even in the black-box scenario (i.e., without having access to model parameters), PGD is
a principled framework to generate black-box attacks by leveraging function query-based gradient
estimates (Cheng et al., 2018) or gradients of surrogate models (Cheng et al., 2019; Dong et al.,
2018; Xie et al., 2019; Zou et al., 2020; Dong et al., 2019).

Adversarial attacks in NLP. Different from attacks against CV models, gradient-based attack
generation methods are less popular in the NLP domain. HOTFLIP (Ebrahimi et al., 2018) is one
of the most representative gradient-based attack methods by leveraging gradients to estimate the
impact of character and/or word-level substitutions on NLP models. However, HOTFLIP neglects
the optimality of site selection in the discrete character/token space and ignores the constraint on
the post-attacking text fluency (to preserve readability) (Ren et al., 2019). By contrast, this work co-
optimizes the selections of perturbation sites and tokens, and leverages a perplexity-guided loss to
maintain the fluency of adversarial texts. Another attack method GBDA (Guo et al., 2021) models
the token replacement operation as a probability distribution which is optimized using gradients.
However, acquiring this probability distribution is accompanied with high computation and memory
costs. By contrast, our work can achieve comparable or better performance with higher efficiency.

The mainstream of robustness evaluation in NLP in fact belongs to query-based methods (Li et al.,
2020; Jin et al., 2020; Ren et al., 2019; Garg & Ramakrishnan, 2020; Li et al., 2019; Wang et al.,
2021; Li et al., 2021b). Many current word-level query-based attack methods adopt a two-phase
framework (Zang et al., 2020) including (1) generating candidate substitutions for each word in the
input sentence and (2) replacing original words with the found candidates for attack generation.

Phase (1) aims at generating semantically-preserving candidate substitutions for each word in the
original sentence. Genetic Attack (GA) (Alzantot et al., 2018) uses the word embedding distance
to select the candidate substitutes and filter out the candidates with an extra language model. Such
strategy is also adopted in many other attack methods like Jin et al. (2020) and Ebrahimi et al. (2018).
PWWS (Ren et al., 2019) adopts WordNet (Miller, 1995) for candidate substitution generation.
Similarly, PSO Attack (Zang et al., 2020) employs a knowledge base known as HowNet (Qi et al.,
2019) to craft the candidate substitutions. Along with the development of the large pre-trained
language models, Garg & Ramakrishnan (2020) and Li et al. (2020) propose to utilize mask language
models such as BERT (Devlin et al., 2019) to predict the candidate substitutions. In TEXTGRAD,
we also adopt the pre-trained language models to generate candidate substitutions.

Phase (2) requires the adversary to find a substitution combination from the candidates obtained in
phase (1) to fool the victim model. A widely-used searching strategy is greedy search (Li et al.,
2020; Jin et al., 2020; Ren et al., 2019; Garg & Ramakrishnan, 2020; Li et al., 2019), where each
candidate is first ranked based on its impact on model prediction, and then the top candidate for each
word is selected as the substitution. Another popular searching strategy is leveraging population-
based methods, such as genetic algorithms and particle swarm optimization algorithms (Kennedy
& Eberhart, 1995), to determine substitutions (Zang et al., 2020; Alzantot et al., 2018). Despite
effectiveness, these query-based attack are prone to generating invalid or ambiguous adversarial
examples (Wang et al., 2021) which change the original semantics and could even mislead humans.
To overcome these problems, we propose TEXTGRAD, which leverages gradient information to
co-optimize the perturbation position and token selection subject to a sentence-fluency constraint.
We will empirically show that TEXTGRAD yields a better attack success rate with lower sentence
perplexity compared to the state-of-the-art query-based attack methods.

Adversarial training. Adversarial training (AT) (Goodfellow et al., 2014; Madry et al., 2018)
has been shown as an effective solution to improving robustness of deep models against adversarial
attacks (Athalye et al., 2018). AT, built upon min-max optimization, has also inspired a large number
of robust training approaches, ranging from supervised learning (Wong et al., 2020; Zhang et al.,
submitted to NeurIPS, 2021) to semi-supervised learning (Zhang et al., 2019b; Carmon et al., 2019),
and further to self-supervised learning (Chen et al., 2020). Yet, the aforementioned literature focuses
on AT for vision applications. Despite some explorations, AT for NLP models is generally under-

3

Published as a conference paper at ICLR 2023

explored. In (Jin et al., 2020; Zang et al., 2020; Alzantot et al., 2018; Zhang et al., 2019c; Meng &
Wattenhofer, 2020; Li et al., 2021a), adversarial data are generated offline and then integrated with
the vanilla model training. In Li et al. (2021b); Zhu et al. (2019); Dong et al. (2021); Wang et al.
(2020), the min-max based AT is adopted, but the adversarial attack generation step (i.e., the inner
maximization step) is conducted on the embedding space rather than the input space. As a result,
both methods are not effective to defend against strong NLP attacks like TEXTGRAD.

3 MATHEMATICAL FORMULATION OF NLP ATTACKS

In this section, we start with a formal setup of NLP attack generation by considering two opti-
mization tasks simultaneously: (a) (token-wise) attack site selection, and (b) textual perturbation
via token replacement. Based on this setup, we will then propose a generic discrete optimization
framework that allows for first-order gradient-based optimization.

Problem setup. Throughout the paper, we will focus on the task of text classification, where
M(x) is a victim model targeted by an adversary to perturb its input x. Let x = [x1, x2, . . . , xL] ∈
NL be the input sequence, where xi ∈ {0, 1, . . . , |V | − 1} is the index of ith token, V is the
vocabulary table, and |V | refers to the size of the vocabulary table.

From the prior knowledge perspective, we assume that an adversary has access to the victim model
(i.e., white-box attack), similar to many existing adversarial attack generation setups in both CV and
NLP domains (Carlini & Wagner, 2017; Croce & Hein, 2020; Madry et al., 2018; Szegedy et al.,
2013). Besides, the adversary has prior knowledge on a set of token candidates for substitution at
each position, denoted by si = {si1, si2, . . . , sim} at site i, where sij ∈ {0, 1, . . . , |V | − 1} denotes
the index of the jth candidate token that the adversary can be used to replace the ith token in x. Here
m is the maximum number of candidate tokens.

From the attack manipulation perspective, the adversary has two goals: determining the optimal
attack site as well as seeking out the optimal substitute for the original token. Given this, we intro-
duce site selection variables z = [z1, . . . , zL] to encode the optimized attack site, where zi ∈ {0, 1}
becomes 1 if the token site i is selected and 0 otherwise. In this regard, an attack budget is given by
the number of modified token sites, 1T z ≤ k, where k is the upper bound of the budget. We next
introduce token-wise replacement variables ui = [ui1, . . . , uim], associated with candidates in si,
where uij ∈ {0, 1}, and 1Tui = 1 if zi = 1. Then, the ith input token xi will be replaced by the
candidate expressed by ŝi(ui; si) =

∑
j(uij ·sij). Please note that there is only one candidate token

will be selected (constrained through 1Tui = 1). For ease of presentation, we will use ŝ to denote
the replacement-enabled perturbed input with the same length of x.

In a nutshell, an NLP attack can be described as the perturbed input example together with site
selection and replacement constraints (cstr):

Perturbed input: xadv(z,u;x, s) = (1− z) ◦ x+ z ◦ ŝ
Discrete variables: z ∈ {0, 1}L,ui ∈ {0, 1}m, ∀i
Site selection cstr: 1T z ≤ k, Replacement cstr: 1Tui = 1, ∀i,

(1)

where ◦ denotes the element-wise multiplication. For ease of notation, u and s are introduced
to denote the sets of {ui} and {si} respectively, and the adversarial example xadv is a function
of site selection and token replacement variables (z and u) as well as the prior knowledge on the
input example x and the inventory of candidate tokens s. Based on (1), we will next formulate the
optimization problem for generating NLP attacks.

Discrete optimization problem with convex constraints. The main difficulty of formulating the
NLP attack problem suited for efficient optimization is the presence of discrete (non-convex) con-
straints. To circumvent this difficulty, a common way is to relax discrete constraints into their convex
counterparts (Boyd et al., 2004). However, this leads to an inexact problem formulation. To close
this gap, we propose the following problem formulation with continuous convex constraints and an
attack loss built upon the discrete projection operation:

minimize
z̃,ũ

ℓatk(x
adv(B(z̃),B(ũ);x, s))

subject to C1 : z̃ ∈ [0,1], 1T z̃ ≤ k, C2 : ũ ∈ [0,1], 1T ũi = 1, ∀i,
(2)

4

Published as a conference paper at ICLR 2023

where most notations are consistent with (1), B is the projection operation that projects the continu-
ous variables onto the Boolean set, i.e., z ∈ {0, 1}L and ui ∈ {0, 1}m in (1), and we use z̃ and ũi as
the continuous relaxation of z and ui. As will be evident later, an efficient projection operation can
be achieved by randomized sampling. The graceful feature of problem (2) is that the constraint sets
C1 and C2 are convex, given by the intersection of a continuous box and affine inequality/equalities.

4 OPTIMIZATION FRAMEWORK OF NLP ATTACKS

In this section, we present the details of gradient-driven first-order optimization that can be success-
fully applied to generating NLP attacks. Similar to the attack benchmark–projected gradient descent
(PGD) attack Madry et al. (2018)–used for generating adversarial perturbations of imagery data,
we propose the PGD attack framework for NLP models. We will illustrate the design of PGD-based
NLP attack framework from four dimensions: 1) acquisition of prior knowledge on inventory of can-
didate tokens, 2) attack loss type, 3) regularization scheme to minimize the perplexity of perturbed
texts, and 4) input gradient computation.

Prior knowledge acquisition: candidate tokens for substitution. We first tackle how to generate
candidate tokens used for input perturbation. Inspired by BERT-ATTACK (Li et al., 2020) and BAE-
R (Garg & Ramakrishnan, 2020), we employ pre-trained masked language models (Devlin et al.,
2019; Liu et al., 2019; Lan et al., 2020), denoted as G, to generate the candidate substitutions.
Specifically, given the input sequence x, we first feed it into G to get the token prediction probability
at each position without masking the input. Then we take the top-m tokens at each position as the
candidates. Please note that getting the token predictions at each position does not require masking
the input. Using the original sentence as the input can make the computation more efficient (only
one forward pass to get predictions for all positions). With a similar approach, it has been shown
in (Li et al., 2020) that the generated candidates are more semantically consistent with the original
one, compared to the approach using actual “[mask]” tokens. Note that TEXTGRAD is compatible
with any other candidate tokens generating method, making it general for practical usage.

Determination of attack loss. Most existing NLP attack generation methods (Li et al., 2020;
Jin et al., 2020; Ren et al., 2019; Alzantot et al., 2018; Li et al., 2021a) use the negative cross-
entropy (CE) loss as the attack objective. However, the CE loss hardly tells whether or not the attack
succeeds. And it would hamper the optimization efficiency when the attack objective is regularized
by another textual fluency objective (which will be introduced later). Our rationale is that intuitively
a sentence with more aggressive textual perturbations typically yields a higher attack success rate
but a larger deviation from its original format. Thus, it is more likely to be less fluent.

A desirable loss for designing NLP attacks should be able to indicate the attack status (failure vs.
success) and can automatically adjust the optimization focus between the success of an attack and
the promotion of perturbed texts fluency. Spurred by the above, we choose the C&W-type attack
loss (Carlini & Wagner, 2017):

ℓatk(x
adv) = max{Zt0(x

adv)−max
i ̸=t0

Zi(x
adv), 0}, (3)

where xadv was introduced in (2), t0 denotes the predicted class of the victim model against the
original input x, and Zi denotes the prediction logit of class i. In (3), the difference Zt0(x

adv) −
maxi̸=t0 Zi(x

adv) characterizes the confidence gap between the original prediction and the incorrect
prediction induced by adversarial perturbations. The key advantages of using (3) for NLP attack
generation are two-fold. First, the success of xadv (whose prediction is distinct from the original
model prediction) is precisely reflected by its zero loss value, i.e., ℓatk(xadv) = 0. Second, the
attack loss (3) has the self-assessment ability since it will be automatically de-activated only if the
attack succeeds, i.e., Zt0(x

adv) ≤ maxi̸=t0 Zi(x
adv). Such an advantage facilitates us to strike a

graceful balance between the attack success rate and the texts perplexity rate after perturbations.

Text fluency regularization. We next propose a differentiable texts fluency regularizer to be
jointly optimized with the C&W attack loss,

ℓreg =
∑

i zi
∑

j uij(ℓmlm(sij)− ℓmlm(xi)) =
∑

i zi
∑

j uijℓmlm(sij)−
∑

i ziℓmlm(xi) , (4)

where the last equality holds since
∑

j uij = 1. ℓmlm(·) indicates the masked language modeling
loss (Devlin et al., 2019) which is widely used for measuring the contribution of a word to the sen-
tence fluency. For example, ℓmlm(sij) measures new sentence fluency after changing the ith position

5

Published as a conference paper at ICLR 2023

as its jth candidate. Smaller ℓmlm(sij) indicates better sentence fluency after the replacement. We
compute the masked language model loss ℓmlm(xi) for ith token and minimize the increment of
masked language model loss after replacement.

Input gradient calculation. The availability of the gradient of the attack objective function is
the precondition for establishing the PGD-based attack framework. However, the presence of the
Boolean operation B(·) in (2) prevents us from gradient calculation. To overcome this challenge,
we prepend a randomized sampling step to the gradient computation. The rationale is that the
continuously relaxed variables z̃ and ũ in (2) can be viewed as (element-wise) site selection and
token substitution probabilities. In this regard, given the continuous values z̃ = z̃t−1 and ũ = ũt−1

obtained at the last PGD iteration (t− 1), for the current iteration t we can achieve B(·) through the
following Monte Carlo sampling step:

[B(r)(z̃t−1)]i =

{
1 with probability z̃t−1,i

0 with probability 1− z̃t−1,i
, (5)

where [B(r)(z̃t−1)]i denotes the ith element realization of B(z̃t−1) at the r-th random trial. We use
R to denote the total number of sampling rounds. The above sampling strategy can be similarly
defined to achieve B(r)(ũt−1). It is worth noting that a large R reduces the variance of the random
realizations of B(z̃t−1) and can further help reduce the gradient variance. Our empirical experiments
show that R = 20 suffices to warrant satisfactory attack performance. Based on (5), the gradient of
the attack objective function in (2) is given by

g1,t :=
1

R

R∑
r=1

∇z̃ℓatk(x
adv(z(r),u(r);x, s)), g2,t :=

1

R

R∑
r=1

∇ũℓatk(x
adv(z(r),u(r);x, s)), (6)

where z(r) = B(r)(z̃t−1) and u(r) = B(r)(ũt−1), and g1,t and g2,t corresponds to the variables
z̃ and ũ, respectively. Our gradient estimation over the discrete space also has the spirit similar to
straight-through estimator (Bengio et al., 2013) and Gumbel Softmax method (Jang et al., 2016).

Projected gradient descent (PGD) framework. Based on the C&W attack loss (3), the texts
fluency regularization (4) and the input gradient formula (6), we are then able to develop the PGD
optimization method to solve problem (2). At the t-th iteration, PGD is given by

z̃t = ΠC1(z̃t−1 − ηzg1,t), ũt = ΠC2(ũt−1 − ηug2,t), (7)

where ΠC denotes the Euclidean projection onto the constraint set C, i.e., ΠC(a) = argminx∈C ∥x−
a∥22, and the constraint sets C1 and C2 have been defined in (2). Due to the special structures of these
constraints, the closed forms of the projection operations ΠC1

and ΠC2
are attainable and illustrated

in Proposition A.1 in the appendix. Using the optimization framework above, the empirical con-
vergence of the PGD is relatively fast. It will be shown later, 5-step PGD is sufficient to make our
algorithm outperforming all other baseline methods.

5 EXPERIMENTS

5.1 EXPERIMENT SETUP

Datasets and attack baselines. We mainly consider the following tasks1: SST-2 (Socher et al.,
2013) for sentiment analysis, MNLI (Williams et al., 2018), RTE (Wang et al., 2018), and QNLI
(Wang et al., 2018) for natural language inference and AG News (Zhang et al., 2015) for text
classification. We compare our proposed TEXTGRAD method with the following state-of-the-art
white box and black-box NLP attack baselines: TEXTFOOLER(Jin et al., 2020), BERT-ATTACK (Li
et al., 2020), BAE-R (Garg & Ramakrishnan, 2020), HOTFLIP (Ebrahimi et al., 2018), BBA (Lee
et al., 2022) and GBDA (Guo et al., 2021). We also include a greedy search-based method termed
GREEDY, which combines the candidate genration method used in ours and the Greedy-WIR search
strategy in Morris et al. (2020). In this regard, since the candidate substitute set is the same for
GREEDY and TEXTGRAD, we can better demonstrate the advantage of TEXTGRAD over baselines
that use greedy search to craft adversarial examples. We follow the benchmark attack setting in
(Wang et al., 2021; Li et al., 2021b). The attack budget is set to 25% of the total word numbers in a
sentence for baselines and TEXTGRAD to ensure the fair comparison. More details about the attack
implementations could be seen in Appendix B.

1Codes are available at https://github.com/UCSB-NLP-Chang/TextGrad

6

https://github.com/UCSB-NLP-Chang/TextGrad

Published as a conference paper at ICLR 2023

Table 2: Performance of proposed TEXTGRAD at-
tack method and baseline methods against normally
trained victim models. The performance is measured
by attack success rate (ASR) as well as perplexity
(PPL) across different datasets and model architec-
tures. A more powerful attack method is expected to
have a higher (↑) ASR and lower (↓) PPL. The best
results under each metric are highlighted in bold and
second best are underlined.

Dataset Attack Method BERT RoBERTa ALBERT
ASR PPL ASR PPL ASR PPL

SST-2

TEXTFOOLER 82.84 431.44 69.38 483.29 69.77 536.34
BERT-ATTACK 86.44 410.72 79.34 435.29 82.73 419.78

BAE-R 86.62 286.63 85.92 300.08 85.80 293.29
GREEDY 87.79 427.73 91.12 408.12 88.47 432.29
HOTFLIP 56.07 277.79 23.30 196.81 18.35 293.53

BBA 85.96 421.00 81.51 532.69 81.19 461.60
GBDA 85.70 314.00 - - - -

TEXTGRAD 93.51 266.41 96.45 274.90 93.51 313.64

MNLI-m

TEXTFOOLER 74.82 320.47 67.33 314.11 66.02 322.00
BERT-ATTACK 88.77 234.53 86.78 241.25 85.16 246.35

BAE-R 87.00 196.20 84.56 191.29 85.39 223.62
GREEDY 88.17 263.47 90.43 265.53 88.66 272.94
HOTFLIP 54.44 276.32 26.36 204.72 29.14 316.93

BBA 82.86 346.60 78.44 329.63 77.84 423.60
GBDA 93.37 290.41 - - - -

TEXTGRAD 94.08 193.42 95.44 211.58 94.44 264.07

RTE

TEXTFOOLER 59.55 402.44 62.50 319.64 74.31 344.40
BERT-ATTACK 64.61 329.30 74.57 279.86 79.17 343.69

BAE-R 65.73 239.68 71.21 221.44 81.94 317.96
GREEDY 60.67 501.40 78.81 228.03 82.52 517.97
HOTFLIP 45.51 318.13 70.25 184.47 34.97 801.32

BBA 60.67 361.30 69.16 239.41 70.62 418.07
GBDA 68.20 471.20 - - - -

TEXTGRAD 71.91 202.96 83.90 140.51 87.41 378.07

QNLI

TEXTFOOLER 53.55 399.90 48.17 398.45 58.34 451.02
BERT-ATTACK 63.86 384.28 60.11 376.25 64.31 411.93

BAE-R 62.31 324.14 60.86 309.45 62.81 324.14
GREEDY 67.95 443.61 63.74 462.42 62.71 379.64
HOTFLIP 48.07 301.35 49.91 313.47 44.27 383.42

BBA 60.31 498.74 59.12 429.77 58.74 461.55
GBDA 63.52 1473.15 - - - -

TEXTGRAD 70.48 297.59 68.00 297.16 72.43 333.24

AG News

TEXTFOOLER 59.43 486.53 60.77 427.19 64.37 475.62
BERT-ATTACK 62.41 560.90 63.08 513.24 68.42 496.92

BAE-R 67.97 519.42 68.79 527.68 72.73 374.35
GREEDY 60.35 523.64 62.35 579.84 73.25 375.42
HOTFLIP 49.27 397.60 52.08 375.46 55.41 431.36

BBA 74.70 147.22 66.03 157.49 55.61 323.71
GBDA 70.28 456.60 - - - -

TEXTGRAD 74.51 303.21 75.19 303.91 85.12 397.93

1 The official implementation of GBDA does not support attacking RoBERTa/ALBERT.
See Appendix B for detailed explanations.

Victim models. We consider two classes of vic-
tim models in experiments, namely convention-
ally trained standard models and robustly trained
models with awareness of adversarial attacks. In
the robust training paradigm, we consider Adver-
sarial Data Augmentation (ADA), Mixup-based
Adversarial Data Augmentation (MIXADA) (Si
et al., 2021), PGD-AT (Madry et al., 2018),
FREELB (Zhu et al., 2019), INFOBERT (Wang
et al., 2020), and ASCC (Dong et al., 2021).
Notably, except ADA and MIXADA, other ro-
bust training methods impose adversarial per-
turbations at the (continuous) embedding space.
Following (Li et al., 2021b), we remove the ℓ2
perturbation constraint when training with PGD-
AT and FREELB.

All the victim models are fine-tuned based on
three popular NLP encoders, i.e., BERT-base
(Devlin et al., 2019), RoBERTa-large (Liu et al.,
2019), and ALBERT-xxlargev2 (Lan et al., 2020).
When attacking these models, TEXTGRAD use
the corresponding masked language model to
generate candidate substitutes. We also follow the
best training settings in (Li et al., 2021b).

Evaluation metrics. First, attack success rate
(ASR) measures the attack effectiveness, given
by the number of examples that are successfully
attacked over the total number of attacked ex-
amples. Second, perplexity (PPL) measures the
quality of the generated adversarial texts. We
use the pre-trained GPT-XL (Radford et al., 2019)
language model for PPL evaluation.

5.2 EXPERIMENT RESULTS

Attack performance on normally-trained standard models. In Table 2, we compare the at-
tack performance (in terms of ASR and PPL) of TEXTGRAD with 7 NLP attack baselines across
5 datasets and 3 victim models that are normally trained. As we can see, TEXTGRAD yields a better
ASR than all the other baselines, leading to at least 3% improvement in nearly all settings. Except
our method, there does not exist any baseline that can win either across dataset types or across model
types. From the perspective of PPL, TEXTGRAD nearly outperforms all the baselines when attack-
ing BERT and RoBERTa. For the victim model ALBERT, TEXTGRAD yields the second or the third
best PPL, with a small performance gap to the best PPL result. Additionally, the ASR improvement
gained by TEXTGRAD remains significant in all settings when attacking ALBERT, which shows a
good adversarial robustness in several past robustness evaluations (Wang et al., 2021).

Attack performance on robustly-trained models. Table 3 demonstrates the attack effectiveness
of TEXTGRAD against robustly-trained models. To make a thorough assessment, attack methods
are compared under 6 robust BERT models obtained using 6 robust training methods on SST-2
and RTE datasets. As we can see, TEXTGRAD yields the best ASR in all settings. Among base-
lines, BBA and GBDA seem outperforming the others when attacking robust models. However,
compared to TEXTGRAD, there remains over 4% ASR gap in most of cases. From the PPL per-
spective, TEXTGRAD achieves at least the second best performance. It is worth noting that the con-
sidered test-time attacks (including TEXTGRAD and baselines) are not seen during robust training.
Therefore, all the robust models are not truly robust when facing unforeseen attacks. In particular,
TEXTGRAD can easily break these defenses on SST-2, as evidenced by achieving at least 89% ASR.

7

Published as a conference paper at ICLR 2023

Table 3: Performance of attack methods against robustly-trained victim models. Different robustified versions
of BERT are obtained using different adversarial defenses including ADA, MIXADA (Si et al., 2021), PGD-
AT (Madry et al., 2018), FREE-LB (Zhu et al., 2019), INFOBERT (Wang et al., 2020), and ASCC (Dong et al.,
2021). Two datasets including SST-2 and RTE are considered. The attack performance is measured by ASR
and PPL. The best results under each metric (corresponding to each column) are highlighted in bold and the
second best results are underlined.

Dataset Attack Method ADA MIXADA PGD-AT FREE-LB INFOBERT ASCC
ASR PPL ASR PPL ASR PPL ASR PPL ASR PPL ASR PPL

SST-2

TEXTFOOLER 81.20 550.91 81.56 531.24 74.30 481.40 71.99 474.86 80.19 440.09 83.46 554.42
BERT-ATTACK 84.77 455.21 84.47 459.72 81.38 408.57 79.45 407.13 86.52 443.85 83.33 431.65

BAE-R 85.90 324.66 86.90 291.64 83.22 288.92 79.86 341.96 86.22 324.54 83.46 296.65
GREEDY 86.20 447.78 85.30 433.93 80.79 411.48 78.57 440.61 87.40 429.34 80.52 406.83
HOTFLIP 47.11 353.28 49.26 365.85 40.87 353.18 23.84 299.68 48.79 355.40 61.55 354.29

BBA 90.00 510.83 88.37 479.33 78.94 464.86 83.61 463.33 84.86 479.11 91.69 455.72
GBDA 83.40 321.75 86.12 346.70 83.87 368.14 67.35 325.05 83.50 274.11 27.71 318.89

TEXTGRAD 93.81 316.85 93.72 324.24 89.00 271.32 92.20 272.11 93.00 270.37 92.00 255.78

RTE

TEXTFOOLER 62.42 300.29 65.62 384.39 56.22 214.87 63.40 270.23 68.36 405.06 49.41 278.88
BERT-ATTACK 68.48 296.96 71.88 264.10 60.54 287.78 64.95 313.94 72.88 365.47 55.88 313.11

BAE-R 66.67 271.80 72.50 230.12 61.62 199.79 67.53 274.13 69.49 293.98 52.35 216.94
GREEDY 63.86 378.57 73.46 432.57 58.60 392.67 68.88 463.37 71.35 372.42 55.03 435.63
HOTFLIP 30.12 479.65 25.31 379.64 29.57 405.00 46.94 368.25 28.65 345.80 33.73 290.61

BBA 69.69 340.60 70.65 418.07 62.16 271.51 66.49 419.29 66.10 358.07 52.35 237.69
GBDA 81.81 986.36 75.30 473.80 67.02 973.50 70.10 1461.07 84.18 1331.04 34.70 483.38

TEXTGRAD 80.12 219.81 87.04 254.19 71.51 223.56 78.06 302.81 82.58 204.64 67.46 226.54

(a) Dataset: SST-2 (b) Dataset: MNLI-m (c) Dataset: RTE (d) Dataset: QNLI (e) Dataset: AG News

Figure 1: ASR of TEXTGRAD with different attack iteration numbers. We attack the standard BERT model
with TEXTGRAD on different datasets. For each dataset, we show the curve of ASR of TEXTGRAD w.r.t
different iteration numbers (the orange curves) as well as the ASR of the best query-based baseline on each
corresponding dataset from Table 2 (the dashed lines). TEXTGRAD can beat the best baseline with only 5
iterations on all datasets.

Table 4: Effect of attack budget k on ASR of
TEXTGRAD. Evaluation is performed under the stan-
dard BERT model on SST. Recall that the attack budget
constraints the ratio of the words allowed to be modi-
fied in a sentence. Here k = x% is short for k = x%
of the number of words in a sentence.

Attack Method k = 5% k = 10% k = 15% k = 20% k = 25% k = 30%

TEXTFOOLER 14.56 42.69 62.79 75.41 82.84 86.67
BERT-ATTACK 19.40 43.99 72.35 84.85 86.44 92.03

BAE-R 20.11 53.60 70.46 81.31 86.62 89.03
GREEDY 18.04 49.23 68.46 80.84 87.79 90.07
HOTFLIP 9.26 27.48 39.80 49.65 56.07 59.96

BBA 17.45 48.29 68.16 79.36 85.96 89.59
TEXTGRAD 31.56 56.78 77.73 88.74 93.51 95.81

TEXTGRAD versus attack strengths. More-
over, we evaluate the attack performance of
TEXTGRAD from two different attack strength
setups: (a) the number of optimization steps for
attack generation, and (b) the maximum num-
ber of words modifications (that we call at-
tack budget), i.e., k in (2). Results associated
with above setups (a) and (b) are presented in
Figure 1 and Table 4. In both cases, we com-
pare the performance of TEXTGRAD with that
of baselines when attacking a normally trained
BERT model. As shown in Figure 1, ASR of
TEXTGRAD increases as the number of attack
iterations increases. Moreover, TEXTGRAD achieves a substantial ASR improvement over the best
baseline by merely taking a very small number of iterations (less than 8 iterations in all cases). As
shown in Table 4, ASR of TEXTGRAD increases as the attack budget (k) increases. Additionally,
even if k is small (e.g., k = 5% of the number of words), TEXTGRAD still significantly outperforms
the baselines in ASR.

Other experiment results. In Appendix C-E, we further include the attack transferability, abla-
tion study, and human evaluation. In a nutshell, we show that TEXTGRAD achieves graceful attack
transferability. The optimization techniques including random restarting and randomized sampling
help boost the attack performance. For human evaluation, TEXTGRAD outperforms BAE-R, which
performs the best in automatic quality evaluation.

8

Published as a conference paper at ICLR 2023

Table 5: Robustness evaluation of different adversarial training methods on SST-2 dataset. The performance
is measured by clean accuracy (%) and robust accuracy (%) under different attack types. We also report the
average robust accuracy (Avg RA) over different attack types.

Model Clean Accuracy Attack Method Avg RATEXTGRAD TEXTFOOLER BERT-ATTACK BAE-R AdvGLUE

ST 93.14 6.04 15.98 12.63 12.47 30.55 15.53
PGD-AT 92.31 10.15 23.72 12.52 15.49 36.80 19.73
FREE-LB 93.52 7.30 26.19 14.66 18.84 27.77 18.96

INFOBERT 92.86 6.47 18.40 9.28 12.80 28.47 15.08
ASCC 87.94 7.02 14.55 14.66 14.55 40.27 18.21

TEXTFOOLER-AT 88.16 16.03 49.70 20.81 19.82 54.86 32.24

TEXTGRAD-AT 80.40 50.58 33.94 27.62 41.13 53.47 41.34
TEXTGRAD-TRADES 81.49 55.91 35.53 32.02 39.43 51.38 42.85

6 ADVERSARIAL TRAINING WITH TEXTGRAD

In this section, we empirically show that TEXTGRAD-based AT (termed TEXTGRAD-AT) provides
an effective adversarial defense comparing to other AT baselines in NLP. We focus on robustifying
a BERT model on SST-2 dataset, and set the train-time iteration number of TEXTGRAD to 5 and
restart time to 1. During evaluation, we set TEXTGRAD with 20 attack iterations and 10 restarts.

Table 5 makes a detailed comparison between TEXTGRAD-AT with 6 baselines including ① stan-
dard training (ST), ② PGD-AT (Madry et al., 2018), ③ FREE-LB (Zhu et al., 2019), ④ IN-
FOBERT (Wang et al., 2020), ⑤ ASCC (Dong et al., 2021), and ⑥ TEXTFOOLER-AT. We re-
mark that the AT variants ②–⑤ generate adversarial perturbations against the continuous feature
representations of input texts rather than the raw inputs at the training phase. By contrast, ours and
TEXTFOOLER-AT generate adversarial examples in the discrete input space. As will be evident later,
TEXTFOOLER-AT is also the most competitive baseline to ours. Besides TEXTGRAD-AT, we also
propose TEXTGRAD-TRADES by integrating TEXTGRAD with TRADES (Zhang et al., 2019b),
which is commonly used to optimize the tradeoff between accuracy and robustness. See more
implementation details in Appendix B. At testing time, four types of NLP attacks (TEXTGRAD,
TEXTFOOLER, BERT-ATTACK, and BAE-R) are used to evaluate the robust accuracy of models
acquired by the aforementioned training methods.

Our key observations from Table 5 are summarized below. First, the models trained by TEXTGRAD-
AT and TEXTGRAD-TRADES achieve the best robust accuracy in nearly all settings. The only ex-
ception is the case of TEXTFOOLER-AT vs. the TEXTFOOLER attack, since TEXTFOOLER is an
unseen attack for our approaches but it is known for TEXTFOOLER-AT during training. By con-
trast, if non-TEXTGRAD and non-TEXTFOOLER attacks are used for robustness evaluation, then
our methods outperform TEXTFOOLER-AT by a substantial margin (e.g., robust enhancement un-
der BAE-R). Second, we evaluate the performance of different robust training methods under the
AdvGLUE (Wang et al., 2021) benchmark. We observe that TEXTGRAD-AT and TEXTGRAD-
TRADES perform better than the baselines ②-⑤, while TEXTFOOLER-AT is slightly better than
ours. However, this is predictable since AdvGlue uses TEXTFOOLER as one of the attack methods
to generate the adversarial dataset (Wang et al., 2021). As shown by the average robust accuracy in
Table 5, our methods are the only ones to defend against a wide spectrum of attack types. Third, our
methods trade off an accuracy drop for robustness improvement. However, the latter is much more
significant than the former. For example, none of baselines can defend against TEXTGRAD, while
our improvement in robust accuracy is over 35% compared to TEXTFOOLER-AT. We further show
that robust accuracy converges quickly in two epoch training in Appendix F, demonstrating that
TEXTGRAD-AT can be used to enhance the robustness of downstream tasks in an efficient manner.

7 CONCLUSION

In this paper, we propose TEXTGRAD, an effective attack method based on gradient-driven opti-
mization in NLP. TEXTGRAD not only achieves remarkable improvements in robustness evaluation
but also boosts the robustness of NLP models with adversarial training. In the future, we will
consider how to generalize TEXTGRAD to other types of perturbations, such as word insertion or
deletion, to further improve the attack performance.

9

Published as a conference paper at ICLR 2023

8 ACKNOWLEDGMENT

The work of Bairu Hou, Jinghan Jia, Yihua Zhang, Sijia Liu, and Shiyu Chang was partially sup-
ported by National Science Foundation (NSF) Grant IIS-2207052. The computing resources used in
this work were partially supported by the MIT-IBM Watson AI Lab.

REFERENCES

Moustafa Alzantot, Yash Sharma, Ahmed Elgohary, Bo-Jhang Ho, Mani Srivastava, and Kai-Wei
Chang. Generating natural language adversarial examples. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing, pp. 2890–2896, 2018.

Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false sense of
security: Circumventing defenses to adversarial examples. arXiv preprint arXiv:1802.00420,
2018.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. Convex optimization. Cambridge uni-
versity press, 2004.

Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In IEEE
Symposium on Security and Privacy (S&P), pp. 39–57. IEEE, 2017.

Yair Carmon, Aditi Raghunathan, Ludwig Schmidt, John C Duchi, and Percy S Liang. Unlabeled
data improves adversarial robustness. In Advances in Neural Information Processing Systems, pp.
11190–11201, 2019.

Tianlong Chen, Sijia Liu, Shiyu Chang, Yu Cheng, Lisa Amini, and Zhangyang Wang. Adversarial
robustness: From self-supervised pre-training to fine-tuning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 699–708, 2020.

Minhao Cheng, Thong Le, Pin-Yu Chen, Jinfeng Yi, Huan Zhang, and Cho-Jui Hsieh. Query-
efficient hard-label black-box attack: An optimization-based approach. arXiv preprint
arXiv:1807.04457, 2018.

Shuyu Cheng, Yinpeng Dong, Tianyu Pang, Hang Su, and Jun Zhu. Improving black-box adversarial
attacks with a transfer-based prior. arXiv preprint arXiv:1906.06919, 2019.

Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness with an ensemble
of diverse parameter-free attacks. In International Conference on Machine Learning, pp. 2206–
2216. PMLR, 2020.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186, 2019.

Xinshuai Dong, Anh Tuan Luu, Rongrong Ji, and Hong Liu. Towards robustness against natural
language word substitutions. In 9th International Conference on Learning Representations, ICLR
2021,. OpenReview.net, 2021.

Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun Zhu, Xiaolin Hu, and Jianguo Li. Boost-
ing adversarial attacks with momentum. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 9185–9193, 2018.

Yinpeng Dong, Tianyu Pang, Hang Su, and Jun Zhu. Evading defenses to transferable adversar-
ial examples by translation-invariant attacks. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 4312–4321, 2019.

10

Published as a conference paper at ICLR 2023

Yinpeng Dong, Qi-An Fu, Xiao Yang, Tianyu Pang, Hang Su, Zihao Xiao, and Jun Zhu. Benchmark-
ing adversarial robustness on image classification. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 321–331, 2020.

Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing Dou. Hotflip: White-box adversarial exam-
ples for text classification. In Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers), pp. 31–36, 2018.

Siddhant Garg and Goutham Ramakrishnan. Bae: Bert-based adversarial examples for text clas-
sification. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pp. 6174–6181, 2020.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014.

Chuan Guo, Alexandre Sablayrolles, Hervé Jégou, and Douwe Kiela. Gradient-based adversarial
attacks against text transformers. In Proceedings of the 2021 Conference on Empirical Methods
in Natural Language Processing, pp. 5747–5757, 2021.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. arXiv
preprint arXiv:1611.01144, 2016.

Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter Szolovits. Is bert really robust? a strong baseline
for natural language attack on text classification and entailment. In Proceedings of the AAAI
Conference on Artificial Intelligence, pp. 8018–8025, 2020.

James Kennedy and Russell Eberhart. Particle swarm optimization. In Proceedings of ICNN’95-
international conference on neural networks, volume 4, pp. 1942–1948. IEEE, 1995.

Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial examples in the physical world.
arXiv preprint arXiv:1607.02533, 2016.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu Sori-
cut. Albert: A lite bert for self-supervised learning of language representations. In International
Conference on Learning Representations, 2020.

Deokjae Lee, Seungyong Moon, Junhyeok Lee, and Hyun Oh Song. Query-efficient and scalable
black-box adversarial attacks on discrete sequential data via bayesian optimization. In Interna-
tional Conference on Machine Learning, pp. 12478–12497. PMLR, 2022.

Dianqi Li, Yizhe Zhang, Hao Peng, Liqun Chen, Chris Brockett, Ming-Ting Sun, and William B
Dolan. Contextualized perturbation for textual adversarial attack. In Proceedings of the 2021
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pp. 5053–5069, 2021a.

J Li, S Ji, T Du, B Li, and T Wang. Textbugger: Generating adversarial text against real-world
applications. In 26th Annual Network and Distributed System Security Symposium, 2019.

Linyang Li, Ruotian Ma, Qipeng Guo, Xiangyang Xue, and Xipeng Qiu. Bert-attack: Adversarial
attack against bert using bert. In Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pp. 6193–6202, 2020.

Zongyi Li, Jianhan Xu, Jiehang Zeng, Linyang Li, Xiaoqing Zheng, Qi Zhang, Kai-Wei Chang, and
Cho-Jui Hsieh. Searching for an effective defender: Benchmarking defense against adversarial
word substitution. arXiv preprint arXiv:2108.12777, 2021b.

Y. Liu, X. Chen, C. Liu, and D. Song. Delving into transferable adversarial examples and black-box
attacks. arXiv preprint arXiv:1611.02770, 2016.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

11

Published as a conference paper at ICLR 2023

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. In International Conference on
Learning Representations, 2018.

Zhao Meng and Roger Wattenhofer. A geometry-inspired attack for generating natural language
adversarial examples. In Proceedings of the 28th International Conference on Computational
Linguistics, pp. 6679–6689, 2020.

George A Miller. Wordnet: a lexical database for english. Communications of the ACM, 38(11):
39–41, 1995.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and Pascal Frossard. Universal
adversarial perturbations. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 1765–1773, 2017.

John Morris, Eli Lifland, Jin Yong Yoo, Jake Grigsby, Di Jin, and Yanjun Qi. Textattack: A frame-
work for adversarial attacks, data augmentation, and adversarial training in nlp. In Proceedings
of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demon-
strations, pp. 119–126, 2020.

Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z Berkay Celik, and Ananthram
Swami. The limitations of deep learning in adversarial settings. In IEEE European Symposium
on Security and Privacy (EuroS&P), pp. 372–387. IEEE, 2016.

Fanchao Qi, Chenghao Yang, Zhiyuan Liu, Qiang Dong, Maosong Sun, and Zhendong Dong. Open-
hownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:1901.09957, 2019.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Shuhuai Ren, Yihe Deng, Kun He, and Wanxiang Che. Generating natural language adversarial
examples through probability weighted word saliency. In ACL, 2019.

Ali Shafahi, Mahyar Najibi, Amin Ghiasi, Zheng Xu, John Dickerson, Christoph Studer, Larry S
Davis, Gavin Taylor, and Tom Goldstein. Adversarial training for free! arXiv preprint
arXiv:1904.12843, 2019.

Chenglei Si, Zhengyan Zhang, Fanchao Qi, Zhiyuan Liu, Yasheng Wang, Qun Liu, and Maosong
Sun. Better robustness by more coverage: Adversarial and mixup data augmentation for ro-
bust finetuning. In Findings of the Association for Computational Linguistics: ACL-IJCNLP
2021, pp. 1569–1576. Association for Computational Linguistics, 2021. doi: 10.18653/v1/2021.
findings-acl.137.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 conference on empirical methods in natural language pro-
cessing, pp. 1631–1642, 2013.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding. In
International Conference on Learning Representations, 2018.

Boxin Wang, Shuohang Wang, Yu Cheng, Zhe Gan, Ruoxi Jia, Bo Li, and Jingjing Liu. Infobert:
Improving robustness of language models from an information theoretic perspective. In Interna-
tional Conference on Learning Representations, 2020.

Boxin Wang, Chejian Xu, Shuohang Wang, Zhe Gan, Yu Cheng, Jianfeng Gao, Ahmed Hassan
Awadallah, and Bo Li. Adversarial glue: A multi-task benchmark for robustness evaluation of
language models. ArXiv, abs/2111.02840, 2021.

12

Published as a conference paper at ICLR 2023

Adina Williams, Nikita Nangia, and Samuel Bowman. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceedings of the 2018 Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pp. 1112–1122, 2018.

Eric Wong, Leslie Rice, and J. Zico Kolter. Fast is better than free: Revisiting adversarial training.
In International Conference on Learning Representations, 2020.

Cihang Xie, Zhishuai Zhang, Yuyin Zhou, Song Bai, Jianyu Wang, Zhou Ren, and Alan L Yuille.
Improving transferability of adversarial examples with input diversity. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2730–2739, 2019.

Han Xu, Yao Ma, Haochen Liu, Debayan Deb, Hui Liu, Jiliang Tang, and Anil Jain. Adversarial
attacks and defenses in images, graphs and text: A review. arXiv preprint arXiv:1909.08072,
2019a.

Kaidi Xu, Hongge Chen, Sijia Liu, Pin-Yu Chen, Tsui-Wei Weng, Mingyi Hong, and Xue Lin.
Topology attack and defense for graph neural networks: An optimization perspective. In Interna-
tional Joint Conference on Artificial Intelligence (IJCAI), 2019b.

Kaidi Xu, Sijia Liu, Pu Zhao, Pin-Yu Chen, Huan Zhang, Quanfu Fan, Deniz Erdogmus, Yanzhi
Wang, and Xue Lin. Structured adversarial attack: Towards general implementation and better
interpretability. In International Conference on Learning Representations, 2019c.

Yuan Zang, Fanchao Qi, Chenghao Yang, Zhiyuan Liu, Meng Zhang, Qun Liu, and Maosong Sun.
Word-level textual adversarial attacking as combinatorial optimization. In Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics, pp. 6066–6080, 2020.

Dinghuai Zhang, Tianyuan Zhang, Yiping Lu, Zhanxing Zhu, and Bin Dong. You only propagate
once: Accelerating adversarial training via maximal principle. arXiv preprint arXiv:1905.00877,
2019a.

Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric P Xing, Laurent El Ghaoui, and Michael I Jordan.
Theoretically principled trade-off between robustness and accuracy. International Conference on
Machine Learning, 2019b.

Huangzhao Zhang, Hao Zhou, Ning Miao, and Lei Li. Generating fluent adversarial examples for
natural languages. In Proceedings of the 57th Annual Meeting of the Association for Computa-
tional Linguistics, pp. 5564–5569, 2019c.

Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text clas-
sification. Advances in neural information processing systems, 28:649–657, 2015.

Yihua Zhang, Guanhua Zhang, Mingyi Hong, Shiyu Chang, and Sijia Liu. Revisiting and advancing
adversarial training through the lens of bi-level optimization, submitted to NeurIPS, 2021.

Chen Zhu, Yu Cheng, Zhe Gan, Siqi Sun, Tom Goldstein, and Jingjing Liu. Freelb: Enhanced
adversarial training for natural language understanding. In International Conference on Learning
Representations, 2019.

Junhua Zou, Zhisong Pan, Junyang Qiu, Xin Liu, Ting Rui, and Wei Li. Improving the transferability
of adversarial examples with resized-diverse-inputs, diversity-ensemble and region fitting. In
European Conference on Computer Vision, pp. 563–579. Springer, 2020.

13

Published as a conference paper at ICLR 2023

A PROJECTION OPERATIONS IN PGD FRAMEWORK

The projection operations ΠC1 and ΠC2 in Equation 4 are demonstrated below:

Proposition A.1. Given C1 = {z̃|1T z̃ ≤ k, z̃ ∈ [0, 1]L}, the project operation for a data point z̃′
with respect to C1 is

ΠC1(z̃
′) =

{
P[0,1][z̃

′] if 1TP[0,1][z̃
′] ≤ k,

P[0,1][z̃
′ − µ1] if µ > 0 and 1TP[0,1][z̃

′ − µ1] = k,
(8)

and for C2 = {ũi|1T ũi = 1, ũi ∈ [0, 1]m}, the project operation for a data point ũ′
i with respect

to C2 is:

ΠC2 [ũ
′
i] = P[0,1][ũ

′
i − υ1] (9)

where υ is the roof of 1TP[0,1][ũ
′
i − υ1] = 1, P[0,1](·) is an element-wise projection operation,

P[0,1](x) = x if x ∈ [0, 1], 0 if x < 0, and 1 if x > 1.

A similar derivation of the projection has been shown in (Xu et al., 2019b).

B IMPLEMENTATION DETAILS

In this section, we include the implementation details of victim models, hyper-parameters for base-
lines, and training details.

Training of victim models We run our experiments on the Tesla V100 GPU with 16GB memory.
We fine-tune the pre-trained BERT-base-uncased model on each dataset with a batch size of 32, a
learning rate of 2e-5 for 5 epochs. For RoBERTa-large and ALBERT-xxlargev2, we use a batch
size of 16 and learning rate of 1e-5. For the robust models, we use the implementation of (Li et al.,
2021b). Each model is trained for 10 epochs with a learning rate of 2e-5 and batch size of 32.
Specifically, for ADA and MIXADA, we perturb the whole training dataset for augmentation. For
MIXADA, we use α = 2.0 in the beta distribution and mix the hidden representations sampled
from layer {7, 9, 12}. For PGD-AT, we use step size α = 3e-2 and number of steps m = 5 for
both SST and RTE dataset. For FREE-LB, we use step size α = 1e-1 and number of steps m = 2
on SST-2 dataset and α = 3e-2,m = 3 on RTE dataset. For INFOBERT, the step size α is 4e-2
and number of steps is 3 for both two datasets. Finally, we use α = 10, β = 4 and run for 5 steps
to generate perturbation for ASCC. For datasets that the labels of testing dataset are not available
(MNLI, RTE, QNLI), we randomly sample 10% of training dataset as validation dataset and use
the original validation dataset for testing. For the AG News dataset where the validation set is not
available, we use the same way to generate the validation dataset.

Attack Implementation Regarding the hyper-parameters of TEXTGRAD, we utilize 20-step PGD
for optimization and fix the number of sampling R in each iteration to be 20. We adopt a learning
rate of 0.8 for both z̃ and ũ, and normalize the gradient g1,t and g2,t to unit norm before the
descent step. After PGD optimization, we sample 20 different z̃ and ũ pairs for a single input x. To
determine the final adversarial example of x, we select the one with the minimum PPL measured
by the GPT-2 language model (Radford et al., 2019) among all successful attacks. Although such
a post-processing approach via multiple sampling introduces additional computational overhead, it
ensures the high quality of generated attacks. If all 20 sampled attacks fail to fool the victim model,
we allow TEXTGRAD to restart the attack process with a different initialization of z̃ and ũ. Restart
with different initializations is a standard setting used in white-box PGD attacks for imagery data.
Here, we set the maximum number of restarts to 10. However, empirically we find that most of
the attacks will be successful with a single or without restart. The average number of restarts in
our experiment is around 1.6-1.8. To ensure query-based baselines approaches with a large enough
query budget, we set the maximum number of queries for them to be 2000.

Attack parameters For baselines, the attack budget is set to 25% of the total word numbers
in a sentence. Since TEXTGRAD modifies the sentence in token-level, we set the maximum to-
kens that TEXTGRAD can modify to be 25% of the total word numbers in a sentence. By doing

14

Published as a conference paper at ICLR 2023

so, TEXTGRAD uses the same or less attack budget than baselines, and ensures the fair compari-
son. We use the implementation of the TextAttack (Morris et al., 2020) library for TEXTFOOLER,
BERT-ATTACK, BAE-R and BBA. The number of candidate substitutions for each word is 50 in
TEXTFOOLER and BAE-R. For BERT-ATTACK, we set this value to 48 following the default set-
ting. For BBA we use the same candidate substitution generation method as TEXTFOOLER, which
is consistent with the original paper. We use our candidate substitute generation method in HOT-
FLIP and GREEDY and the number of candidate substitution tokens for the two baselines is also 50.
For natural language inference datasets (MNLI-m, QNLI, RTE), we restrict all the attackers to only
perturb the hypothesis.

GBDA purely rely on soft constraints during attack instead of hard attack budgets (i.e., the maxi-
mum perturbation which is 25% of the total word numbers in a sentence for all the other methods
including TEXTGRAD). Furthermore, the soft constraints in GBDA rely on an extra causal language
model (such as GPT-2 (Radford et al., 2019)) during attacking. When attacking masked language
models such as BERT, RoBERTa, and ALBERT, one needs to train a causal language model that
shares the same vocabulary with the victim model, making their method less flexible. Since the offi-
cial implementation of GBDA only provides a causal language model that has the same vocabulary
table as BERT, it only support attacking BERT and cannot be used to evaluation the robustness of
RoBERTa/ALBERT in our experiments in Table 2. Therefore, we only report the experiment results
when the victim model is BERT. We use the default hyper-parameters of GBDA in their original
paper (100 attack iterations with batch size 10 and learning rate 0.3; λperp = 1). For λsim, we follow
the paper’s setting to cross-validate it in range [20, 200]. Finally, for SST-2 and MNLI-m datasets,
we use λsim = 50; for other dataset we find the attack example quality is very low given a small
λsim. Therefore we use λsim = 200 for the other datasets.

For TEXTGRAD, we also consider more attack constraints. Firstly, we conduct part-of-speech
checking before attacking and only nouns, verbs, adjectives, and adverbs can be replaced. Sec-
ondly, after generating candidate substitutions, we use WordNet (Miller, 1995) to filter antonyms
of original words to avoid invalid substitutions. Thirdly, stop-words will not be considered during
attacking, which means we will not substitute original words that are stop-words or replace origi-
nal words with stop-words. Finally, considering the tokenization operation in pre-trained language
models, we filter out sub-words in the generated candidate substitutions before attacking to further
improve the quality of adversarial examples.

C ATTACK TRANSFERABILITY

We compare the attack transferability of various attack methods in this section. Table 6 compares the
attack transferability of various attack methods given different pairs of a source victim model used
for attack generation and a targeted model used for transfer attack evaluation, where the considered
models (BERT, RoBERTa, and ALBERT) are normally trained on SST-2. As we can see, transfer
attacks commonly lead to the ASR degradation. However, compared to baselines, TEXTGRAD
yields better transfer attack performance in nearly all the cases. It is also worth noting that there
exists a large ASR drop when NLP attacks transfer to an unseen model. Thus, it requires more
in-depth future studies to tackle the question of how to improve transferability of NLP attacks.

D ABLATION STUDIES

Table 7 demonstrates the usefulness of proposed optimization tricks: random restarting and random-
ized sampling, where the former has been commonly used in generating adversarial images (Madry
et al., 2018), and the latter is critical to calculate input gradients. As we can see, both optimization
tricks play positive roles in boosting the attack performance of TEXTGRAD. However, the use of
randomized sampling seems more vital, as evidenced by the larger ASR drop (6%-14%) when using
TEXTGRAD w/o randomized sampling.

We also study the performance of variants of baselines. Specifically, BBA can be combined with
different substitution generation methods. In our main experiments, we evaluate the attack perfor-
mance of BBA using the substitution generation method of TEXTFOOLER, which adopts the word
embedding similarity to generate substitutions. In Table 8 we test the performance of BBA when
using the substitution generation method of BAE-R.

15

Published as a conference paper at ICLR 2023

Table 6: NLP attack transferability. Attacks generated from source victim models (BERT, RoBERTa, and
ALBERT) are evaluated at the same set of models. The experiment is conducted on the SST-2 dataset and all
the models are normally trained.

Attack Method Victim Model Surrogate Model
BERT RoBERTa ALBERT

TEXTFOOLER
BERT 82.84 37.83 37.84

RoBERTa 25.47 69.38 31.07
ALBERT 20.69 23.46 69.77

BERT-ATTACK
BERT 86.44 39.38 42.78

RoBERTa 36.50 79.34 42.84
ALBERT 32.02 33.14 82.73

BAE-R
BERT 86.62 55.86 57.10

RoBERTa 55.54 85.92 57.55
ALBERT 53.36 58.15 85.80

Greedy
BERT 87.79 59.70 57.48

RoBERTa 47.52 90.43 57.77
ALBERT 44.45 55.59 88.66

TEXTGRAD
BERT 93.51 64.92 55.13

RoBERTa 54.10 96.45 57.39
ALBERT 49.68 58.10 93.51

Table 7: Sensitivity analysis of random restarts and sampling. TEXTGRAD is conducted over a normally
trained BERT model.

Attack Method SST-2 MNLI-m RTE QNLI AG News

TextGrad 93.51 94.08 71.91 70.48 74.51
w.o. restart 90.27 91.90 67.42 65.26 68.87

w.o. restart & sampling 78.30 85.44 58.99 55.05 54.23

Table 8: Performance of proposed TEXTGRAD and base-
line methods against normally trained victim models on
SST-2 and MNLI-m datasets evaluated by attack success
rate. The performance of BBA is evaluated when us-
ing substitution generation methods of TEXTFOOLER and
BAE-R respectively.

Attack Method SST-2 MNLI-m
BERT RoBERTa BERT RoBERTa

TEXTFOOLER 82.84 69.38 74.82 67.33
BBA + TEXTFOOLER 85.96 81.51 82.86 78.44

BAE-R 86.62 85.92 87.00 84.56
BBA + BAE-R 90.80 91.2 93.61 93.77

TEXTGRAD 93.51 96.45 94.08 95.44

From the experiment results, we highlight
the following conclusions. First, as a more
advanced attack method, BBA outperforms
TEXTFOOLER and BAE-R that use greedy
search during attack generation when using
the same substitution generation methods.
The substitution generation method of BAE-
R also provides more advantages for attack-
ing. Secondly, TEXTGRAD consistently out-
performs black-box baselines, indicating the
superiority of the gradient-driven optimiza-
tion method when generating adversarial ex-
amples.

E PRELIMINARY HUMAN
EVALUATION

Besides automatic evaluation, we also conduct human evaluations for justifying the validity of ad-
versarial examples. Here an adversarial example is regarded as valid when its label annotated by
a human annotator is consistent with the ground-truth label of the corresponding original example.
During the evaluation, each annotator is asked to classify the sentiment labels (positive/negative) of
the given sentences, thus requiring no domain knowledge. Note that the ground-truth label is not
provided. The following instruction is displayed to the annotator during annotation:

Please classify the sentiment of the movie review displayed above. Answer 0 if
you think the sentiment in that movie review is negative and answer 1 if positive.

Your answer (0/1) :

16

Published as a conference paper at ICLR 2023

Our method is compared with BAE, the baseline with the best attack quality according to Table 2
and 3. Specifically, We randomly sample 100 examples from the SST-2 dataset that are successfully
attacked by both TEXTGRAD and BAE-R, resulting in 200 adversarial examples in total. These
adversarial examples are randomly shuffled and annotated by four annotators. We compute the
validity ratios according to the annotations of each annotator as well as the average validity ratio.
Finally, the average validity ratios are 43.5% for TEXTGRAD and 39.75% for BAE-R, showing that
the quality of adversarial examples generated by TEXTGRAD is slightly better than the baseline. We
will also conduct more large-scale human evaluations in the next step.

F CONVERGENCE ANALYSIS

1 2 3 4 5
Training Epoch

30

40

50

60

70

80

90

Ac
cu

ra
cy

Train Clean
Train Robust

Test Clean
Test Robust

Figure 2: Clean accuracy and robust
accuracy on SST-2 train/test dataset
during adversarial training.

In Figure 2, we further show the convergence trajectory of us-
ing TEXTGRAD-AT to fine-tune a pre-trained BERT, given by
clean accuracy and robust accuracy vs. the training epoch
number. We observe that the test-time clean accuracy de-
creases as the training epoch number increases, implying the
accuracy-robustness tradeoff. We also note that the test-time
robust accuracy quickly converges in two epochs. This sug-
gests that benefiting from a large-scale pre-trained model,
TEXTGRAD-AT can be used to enhance the robustness of
downstream tasks in an efficient manner.

G LIMITATION AND SOCIETAL IMPACT

While the proposed TEXTGRAD can both improve the robustness evaluation and boost the adver-
sarial robustness of NLP models, we acknowledge that there are still some limitations that need to
improve in the future. Firstly, TEXTGRAD crafts adversarial examples by synonym substitution. It
cannot handle other perturbations such as word insertion, word deletion, and sentence-level modi-
fication. We hope to extend our convex relaxation optimization to more perturbations in the future
to further promote the performance. Secondly, how to ensemble TEXTGRAD with other types of
attacks (for example, black-box baselines) to form a more powerful attack is not explored. Given
the success of AutoAttack (Croce & Hein, 2020) in computer vision, it is also plausible to build an
ensemble attack in NLP.

With the application of large pre-trained NLP models, the vulnerability of pre-trained NLP models
also raises concerns. We admit that TEXTGRAD may be employed to design textual adversarial
examples in real life, thus resulting in security concerns and negative outcomes. However, one
can still adopt TEXTGRAD for robustness evaluation and adversarial training so as to improve the
security and trustworthiness of NLP systems.

17

	Introduction
	Background and Related Work
	Mathematical Formulation of NLP Attacks
	Optimization Framework of NLP Attacks
	Experiments
	Experiment Setup
	Experiment Results

	Adversarial Training with TextGrad
	Conclusion
	Acknowledgment
	Projection Operations in PGD framework
	Implementation Details
	Attack Transferability
	Ablation Studies
	Preliminary Human Evaluation
	Convergence Analysis
	Limitation and Societal Impact

