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ABSTRACT

Out-of-distribution (OOD) detection is an important task to ensure the reliability
and safety of deep learning and the discriminator models outperform others for
now. However, the feature extraction of the discriminator models must compress
the data and lose certain information, leaving room for bad cases and malicious
attacks. In this paper, we provide a new assumption that the discriminator models
are more sensitive to some subareas of the input space and such unfair treatment
creates bad cases and overconfidence areas. Under this assumption, we design
new detection methods and indicator scores. For detection methods, we introduce
diffusion models (DMs) into OOD detection. We find that the denoising process
(DDP) of DMs also functions as a novel form of asymmetric interpolation, which
is suitable to enhance the input and reduce the overconfidence areas. For indicator
scores, we find that the features of the discriminator models of OOD inputs occur
sharp changes under DDP and use the norm of this dynamic change as our indicator
scores. Therefore, we develop a new framework to combine the discriminator
and generation models to do OOD detection under our new assumption. The
discriminator models provide proper detection spaces and the generation models
reduce the overconfidence problem. According to our experiments on CIFAR10
and CIFAR100, our new methods successfully outperform state-of-the-art methods.
Our implementation is put in the supplementary materials.

1 INTRODUCTION

Out-of-distribution (OOD) detection is an important task for deep models that helps the models
determine their capability boundary and keep them from being fooled by OOD data. It has a strong
connection with many real-world machine-learning applications, such as cybersecurity (Xin et al.,
2018), medical diagnosis (Latif et al., 2018; Guo et al., 2020) and autopilot (Geiger et al., 2012).
The existing methods for OOD detection can be generally categorized into discriminator-based and
generation-based methods. The discriminator-based methods (Wang et al., 2022) use the logit or the
feature space to do that. The generation-based methods (An & Cho, 2015; Nalisnick et al., 2019) use
the reconstruction difference in data space or density estimation in latent space to do that.

The discriminator-based methods can extract useful features and make the detection faster and better
in most cases. However, such extraction and compression lose some information and leave room for
bad cases and malicious attacks (Goodfellow et al., 2014; Amodei et al., 2016). The generation-based
methods can capture the whole data distribution but lack effective indicator scores to compete with
the SOTA discriminator-based methods, partly because of the curse of dimensionality. Previous works
mostly concentrate on solving these challenges using only one kind of model. For discriminator-based
methods, Wang et al. (2022) combine the information from both features and logits. Sehwag et al.
(2020) use self-supervised learning to improve feature extraction. For generation-based methods,
Nalisnick et al. (2019) use the typicality set to design better indicator scores. Jiang et al. (2022) use
statistical methods in the latent space, such as the Kolmogorov-Smirnov test.

In addition to overcoming the problems of each kind of model by itself, we find that generative
and discriminative models can be combined and solve each other’s problems. We provide a new explain our moti-

vationassumption that the discriminator models are more sensitive to some subareas of the input space to
explain the existence of bad cases and overconfidence areas. To solve this problem, we get inspiration
from water quality detection in the real world. They use some fixed detectors and make the water
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flow by stirring. Then these detectors can monitor a large area of water. For OOD detection, the
discriminator models also concentrate on some fixed subareas of the whole input space. Therefore,
we also want to “stir” the input to improve detection accuracy and reduce overconfidence areas. We
find that generation models are a good choice to be the “stirring” operators. Under such operators,
the results of InD data remain normal at all times and that of OOD data expose anomalies.
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Figure 1: The pipeline of our de-
tection method.

To design suitable generation strategies that can enhance discrim-
inator models, we introduce diffusion models (DMs), which play
an important role in generation models, into OOD detection. DMs
have created many state-of-the-art generation results, including
(Vahdat et al., 2021; Ho et al., 2022). We dive into the structure
of DMs and find that the diffusion denoising process (DDP) of
DMs can be an ideal choice for the ”stirring” operator we men-
tioned above. Because it can adjust any level of feature space and
provides tools to keep the adjustment under control by using the
denoising and interpolation properties. Such an operator “stirs”
the input and needs to be resampled several times to make the
result convergent, which builds a neighborhood of input data,
called the diffusion-based neighborhood (DiffNB). According to
our above analysis, the feature of OOD data explores anomalies,
which means that the feature can change sharply. We can detect
such anomalies by simple Euclidean distance between several
different features of DiffNB. Our pipeline is in Figure 1.

We choose ten representative methods to compare with our meth-
ods on two representative datasets: CIFAR10 and CIFAR100.
According to our experiments, our new methods outperform existing models and methods in most
cases. Our work has the following contributions:

• We provide a new assumption that the discriminator models are more sensitive to some subareas
for OOD detection. We analyze why it causes the overconfidence problem and how to solve it.

• We find that the diffusion denoising process of invertible diffusion models is a novel kind of
asymmetric interpolation, which can keep the InD data relatively unchanged and provide tools to
control the direction of the denoising process.

• We develop a framework to combine the discriminator and generation models, which uses a ResNet
to extract features and the diffusion denoising process of a diffusion model to reduce overconfidence
areas. Our methods get competitive OOD detection results with SOTA methods.

2 BACKGROUND

In this section, we first introduce existing methods for OOD detection. Then, we show the develop-
ment of diffusion models related to our paper. Because of the limited space in the main paper, more
related works about diffusion models can be found in Appendix A.1.

2.1 OUT-OF-DISTRIBUTION DETECTION

OOD detection is an important task that can help neural networks to determine their capability
boundary. More specifically, let X = {x1, . . . , xn} ∼ p be a group of images from the in-distribution
(InD) p. We want to build a detector f that f(x1, . . . , xn) = 1,∀i, p(xi) ≥ σ and f(x1, . . . , xn) =
0,∀i, p(xi) ≤ σ. Here, σ controls the decision boundary. When we get another group of data
Y = {y1, . . . , yn}, we decide whether this group is from InD p or an unknown distribution q based
on the results of f . If n = 1, this is pointwise OOD detection, and if n ≥ 2, this is group OOD
detection. In general, the existing OOD detection methods can be categorized into discriminator-based
and generation-based methods.

Discriminator-based methods design indicator scores based on the output of discriminator models.
Some methods can be used without modifying the model. ODIN (Liang et al., 2018) uses temperature
scaling and the softmax results to detect OOD samples. ViM (Wang et al., 2022) combines the
information of features and logits. KNN (Sun et al., 2022) includes the kth nearest neighbor of the
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input in feature space into the detection process. Some methods try to improve the detection ability in
the training process. G-ODIN (Hsu et al., 2020) designs a new loss function. ConfGAN (Sricharan &
Srivastava, 2018) generates OOD data using GANs to help the discriminator models to determine the
boundary. PixMix (Hendrycks et al., 2022) uses data augmentation to improve the detection results.
SSD (Sehwag et al., 2020) uses self-supervised learning to improve feature extraction.

Generation-based methods use the reconstruction difference in the input space and the density
estimation in the latent space to do OOD detection. An & Cho (2015) use the reconstruction ability
of VAEs. Some methods assume that the generation models can reconstruct the in-distribution data
better. Some methods use the Distribution transformation capability of generation models and transfer
the input distribution into simple Gaussian distribution. The likelihood of the input becomes a direct
choice, but Nalisnick et al. (2018) finds that OOD data can also locate in the high-likelihood area.
Nalisnick et al. (2019) find the InD data is concentrated in the typical set instead of the high likelihood
area and design new methods using the typical set. Serrà et al. (2019) find that we can use input
complexity to correct the bias of likelihood. In addition to the likelihood, many existing statistical
methods can detect whether a distribution obeys standard Gaussian distribution. Zhang et al. (2020)
uses KL-divergence to detect OOD data. Jiang et al. (2022) use a nonparametric statistics method
called the Kolmogorov-Smirnov test.

2.2 DIFFUSION MODEL

Classical diffusion model DMs build a transformation from Gaussian distribution to image distri-
bution through a multistep denoising process. Given a data distribution x0 ∼ q(x0), the diffusion
process satisfies a Markov process as following Ho et al. (2020):

q(x1:T |x0) =

T∏
t=1

N (
√
1− βtxt−1, βtI)

q(xt|x0) = N (
√
ᾱtx0, (1− ᾱt)I).

(1)

Here, T = 1000, which is the max iteration step. βt ∈ (0, 1), which controls the speed of adding noise.
Additionally, αt = 1− βt, ᾱt =

∏t
i=1 αi, µ̄t =

√
ᾱt−1βt

1−ᾱt
x0 +

√
αt(1−ᾱt−1)

1−ᾱt
xt and β̄t =

1−ᾱt−1

1−ᾱt
βt.

The objective function is defined by:

Lt−1 = Ex0,ϵ

[
β2
t

αt(1− ᾱt)
||ϵ− ϵθ(

√
ᾱtx0 +

√
1− ᾱtϵ, t)||2

]
. (2)

Here, ϵθ is an estimate of the noise ϵ. After we get well-trained ϵθ, according to Song et al. (2021a),
the denoising process of Denoising Diffusion Probabilistic Models (DDPMs) and Denoising Diffusion
Implicit Models (DDIMs) satisfies:

xt−δ =
√
ᾱt−δ

(
xt −

√
1− ᾱtϵθ(xt, t)√

ᾱt

)
+

√
1− ᾱt−δ − σ2

t ϵθ(xt, t) + σtϵt. (3)

Here, δ is the iteration step size. If σt equals one, Equation (3) represents the denoising process of
DDPMs; if σt equals zero, this equation represents the denoising process of DDIMs. In Appendix
A.3, we will further describe how to make the iteration of the diffusion model fast and invertible.

Classifier-free guidance Ho & Salimans (2021) show a simple and effective way to generate
conditional samples called classifier-free guidance. It adds a condition embedding c into ϵθ in the
training process and changes the final estimation of noise as:

ϵ̄θ(xt, c) = (1 + ω)ϵθ(xt, t)− ωϵθ(xt). (4)

Here, ω is the guidance weight, which controls the balance between realness and diversity.

3 DIFFUSION-BASED NEIGHBORHOOD FOR OOD DETECTION

In this section, we first theoretically define our task, which is to design proper additional operators
for a fixed detector. We assume that the detector only concentrates on some subarea of the input
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space. Then we use a toy example to show how to design proper additional operators and find that
reconstruction operators are potential candidates for general cases. After that, we use invertible
diffusion models and the diffusion denoising process (DDP) to develop a new asymmetry interpolation
to satisfy the requirements of the additional operators. Then we use a new toy example to show what
will happen under DDP for more complex situations and use the norm of the dynamic change under
DDP as our detection score. Both DDP and our new score can be applied to any black box detector f
and we introduce classifier-free guidance for the multi-class condition. In the end, we provide our
general methods and visualize their actual effect when the detector is a pre-trained ResNet18.

3.1 THEORETICAL SETTING

We first transfer the OOD detection task and the idea behind water quality detection mentioned
in Section 1 into a theoretical problem. Following the definitions in Section 2.1, the detector is a
function f that can be an analytic function or a neural network. The detection problem is that given a
distribution p on a certain space U , let {x ∈ U |p(x) > σ} be W and we want to find a detector f
that satisfies f−1(1) = W exactly. The idea behind water quality detection is to use a fixed detector
and make water flow by stirring. The fixed detector means that the detector f may treat bad cases as
normal and f−1(1) is strictly bigger than W . The stirring operator means that we can add additional
operators to help the detection. Therefore, we can define a group of operators {gi}i∈Ig

1 satisfying
f ◦gi(x) = f(x) = 1 if x ∈ W and ∩i∈Ig (f ◦gi)−1(1) ⊂ f−1(1). The first condition means that all
f ◦ gi can identify the InD data correctly and the second condition means that the ∩i∈Ig (f ◦ gi)−1(1)
becomes smaller by adding more gi. Now we introduce the theoretical version of our problem:

Given a fixed subarea W ⊂ U , a single value function f satisfying W ⊂ f−1(1),
how can we design operators {gi}i∈Ig to minimize ∩i∈Ig (f ◦ gi)−1(1)?

For our task, f is a neural network and the difference between f−1(1) and W is the overconfidence
area. Here, we assume all training data belong to one class. To design proper {gi}i∈Ig , we need to
locate what causes such an overconfidence problem. We find that discriminator models are similar to
the fixed water detector and only concentrate on some subareas of the whole input space. Here, we
provide the main assumption in our paper:

For a discriminator model, different channels concentrate on different subareas
of the input space. Some subareas are more important than others.

Here, we emphasize that even in the class-related area, some subareas are more important than
others. To show why this assumption is reasonable, We dive into the structure of a discriminator
model and find that the linear operators, including the convolutional layers and the following pooling
layers, play an important role. According to the singular value decomposition, every linear operator
LA : Rn → Rm, m < n, can be transferred to a restriction operator2 LA∗ |S under proper change of
basis and S is a m-dimensional subspace. The input data is bounded in our task, so the subspace S
becomes a bounded area in the input space. Different linear kernels in a layer concentrate on different
Si and the total sensitive area of this layer is ∪i∈ISSi. Some subareas can be included by more Si,
which are more important than the remaining area.

3.2 SINGLE-LAYER MODEL

The whole input space may be covered by the support area of all kernels ∪i∈ISSi and some areas make the assump-
tion clearare covered more times than others. For simplification, we can transfer the problem to a restriction

operator. The key idea is to set a threshold N and mask the area that is covered by less than N
support areas Si. Therefore, the data pass through a layer of a neural network as if it had first passed
through a masking and some information is then ignored.

For the convenience of theoretical analysis, we choose a simple neural network as f , which only
contains one convolutional block and a full connection layer. The support area of each convolutional
kernel in the input space is Si and the total support area is ∪i∈ISSi. Here, we simplify it to a simple
restriction operator, namely, each Si is a square and all Si are disjoint with each other. Our input
space is the image space and our training set contains only one element zero (the empty image).

1Ig , IS is the index set of {gi} and {Si} respectively. They can be finite or infinite.
2A restriction operator is that ∀f , f |S(x) = f(x) if x ∈ S, else f |S(x) = 0. S is called the support area.
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Figure 2: The left side shows the detection process of our toy example and a bad case under this
setting. The right side provides three different operators to correct the result of this bad case.

Our InD is just a uniform distribution in a spherical neighborhood of zero and our target is to detect
whether a new input is InD or OOD, namely, detect whether it falls in the neighborhood of zero. We
show this toy example on the left side of Figure 2 and the third row shows a bad case under this
setting, which looks like zero after the mask operator. On the right side of Figure 2, we use three
kinds of additional operators moving, mixing and reconstruction to solve this problem.

The first two can perfectly solve the toy example in Figure 2 and can be extended to any restriction
operator support on different S. We put the proof in Appendix A.5. The key idea of these solutions is
that they move or mix information from one place to another. Then the detector f can get the whole
information from a small support area S. Such ideas can be generalized to more complex cases and
the third reconstruction operator in Figure 2 plays a central role here. We find that the reconstruction
strategy successfully contains the moving operator (the face of the cat moves to the left and down),
the mix operator (the boundary of each small box becomes unclear) and the semantic level moving
operator (the color of the cat is lighter). We can move or mix the information at both the semantic
and pixel level instead of only the pixel level now. Therefore, it provides a candidate {gi}i∈Ig with
potential advantages for real detectors f , such as a ResNet.

3.3 DIFFUSION DENOISING PROCESS

Such a reconstruction strategy can be finished with any kind of generation model. However, this
strategy also has its weakness. In Figure 2, we can detect the OOD examples more precisely using a
reconstruction operator. However, we also need to satisfy the condition W ⊂ f−1(1), namely, to
keep the pure white picture from being dirty. This challenge tells us that we need to add more control
to the reconstruction strategy. In the following, we introduce the diffusion-denoising process (DDP)
to solve this challenge. We dive into the structure of diffusion models and show that DDP is a kind
of interpolation under the invertible condition. Therefore, DDP combines the benefit of denoising
and interpolation and provides many powerful tools to control the reconstruction process. Due to
space limitations, we put the analysis of enhancing invertibility in Appendix A.3 and directly analyze
interesting applications of DDP under the invertible condition.

0        0.1      0.2      0.3       0.4      0.5       0.6      0.7      0.8       0.9        1  

asym1
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Figure 3: Different interpolation results using two fixed images.

Interpolation Many previous pa-
pers use diffusion models to inter-
polate two inputs, but our method
is different from the existing sym-
metric one using spherical linear
interpolation (Shoemake, 1985).
We combine the invertible diffu-
sion models and the diffusion de-
noising process to get a new asymmetric interpolation. Let us assume that x0 is an image and ϵ is
Gaussian noise, which is the reverse of an image x1, and we use x0 and ϵ to get xt. The diffusion-
denoising process is shown in Algorithm 1 and we define DDP as Φ(xt, t, 0). When t equals zeros,
we do not add any noise to the images, we can get the original image x0, and when t equals T , we
remove the total image x0 and only leave the noise ϵ, we will do a full denoising process to this noise.
Because this denoising process is invertible, we can get the original image x1. Therefore, the outputs
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of DDP gradually change from x0 to x1. Figure 3 shows the three different interpolation results. The
first row uses the cat as x0 and the second row uses the car as x0. We can find that x0 can be better
preserved with respect to the symmetric interpolation in the third row.

DDP is a kind of reconstruction strategy, in the meanwhile, it is also a denoising operator and
an interpolation operator. That DDP is a denoising operator means that it can keep the InD data
relatively unchanged and pull the OOD data to the high-density area of InD, which is a distribution-
sensitive property. That DDP is an interpolation operator means that even if we cannot reconstruct
the input perfectly, we can at least control the direction of change. Both these properties give us more
possibilities to control DDP and solve the above weakness. Finally, we get the following property:

The invertible diffusion-denoising process is an asymmetric distribution-sensitive interpolation.

3.4 MULTI-LAYER MODEL

In the above section, we show how to design {gi}i∈Ig and our choice is invertible DDP. Here, we make the assump-
tion clearshow the effect of DDP in a more complex example to design a proper detection score. We consider

the last convolutional layer of a multi-layer model. In this setting, we face a major change. The input
of this layer has many channels. To be more theoretical, the input feature is in Rm×m×c, the input
feature space is Rm×m and the input feature is a combination of c elements in Rm×m. Each of them
is the output of a previous convolutional kernel. Therefore, a single input becomes c points in the
feature space instead of a single point.

Feature (low) Confidence (high)

0                           t

n

0                           t

n

n

0                           t

Figure 4: The change in different
levels of feature space under the dis-
turbance of DDP.

For the convenience of theoretical analysis, we abstract the
whole input space into 2-dimensional space and the ideal fea-
ture space belonging to the input data is the light blue square.
The point in each image represents c = 6 features of a single
input and the corresponding arrow shows the movement of
these features under DDP. We use the dark blue area to show
the features used by the convolutional kernels of the last con-
volutional layer. For better visualization, the output of each
convolutional kernel is a single value, the number of points N
that fall in its sensitive area. Again, we assume that all the sen-
sitive areas form a mask. This example is just a simplification
of the process to compute confidence.

For a normal InD input (the first row), its features are uniformly
distributed in the feature area, which ensures that N maintains
a dynamic balance under the perturbation of DDP in the feature
space. For a normal OOD input (the second row), DDP pulls
them to the high-density area and N increases at the same
time. For more challenging OOD data (the third row), it is not
InD and its features are relatively sparse in the ideal feature
set. However, all these features happen to fall in the dark blue
area at the same time by coincidence or man-made, which causes the over-confidence problem. Such
imbalance breaks the dynamic balance between the dark blue area and the remaining and causes a
rapid decline of N under the perturbation of DDP. Therefore, all two kinds of OOD input can be
successfully detected by the change of confidence. These analyses can be extended to any middle
layer by replacing the single value output with a vector output.

3.5 DIFFUSION-BASED NEIGHBORHOOD

The first toy example tells us that we can use DDP to enhance the detection process and the second solve the gap
toy example tells us what will happen in feature spaces under DDP. Detecting the dynamic change of
confidence still requires the output is single-value. We can generalize this idea to detect the change in
any feature space of the model by using the norm of the change as the score. After we remove the
limitations of the form of the output, both DDP and the dynamic change score can be applied to any
black box detector f , such as a ResNet.

The final step is to take multiple categories into account and avoid category migration for InD input.
Here, we need the help of the interpolation property and there exist two choices. First, we can search
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Algorithm 1 Diffusion-denoising process

Input: Images x0, generative interval [0, T ], gen-
erative gap δ

1: for t = T, · · · , δ do
2: x0

t = 1√
ᾱt

(xt −
√
1− ᾱtϵθ(xt, t))

3: ϵ = ϵθ(xt, t)
4: xt−δ =

√
ᾱt−δx

0
t +

√
1− ᾱt−δϵ

5: end for
6: Return x0

Algorithm 2 Unconditional neighborhood

Input: Images x, timestep t
1: xknn = KNN(x, {training data})
2: ϵ = Φ(xknn, 0, T )
3: xnoise =

√
ᾱtx+

√
1− ᾱtϵ

4: xneighbor = Φ(xnoise, t, 0)
5: Return xneighbor

Algorithm 3 Conditional neighborhood

Input: Images x, timestep t
1: y = FC(ResNet(x))
2: ϵ ∼ N (0, 1)
3: xnoise =

√
ᾱtx+

√
1− ᾱtϵ

4: xneighbor = Φ(xnoise, y, t, 0)
5: Return xneighbor

Algorithm 4 OOD detection

Input: Images x, diffusion-based neighborhood
xneighbor

1: fea = ResNet(x)
2: feaneighbor = ResNet(xneighbor)
3: score =

∑
|fea − feaneighbor|

4: if score > δ then
5: Return OOD
6: end if
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Figure 5: The influence on the different levels under DDP, including the image space, the first and
the fourth feature spaces of the ResNet18. In Fig (a), the first column is the original input and the
remaining is the DiffNB of them. In Fig (b, c), the blue and green arrow is the feature change of InD
data and OOD data respectively under DDP after dimensionality reduction using PCA. Fig (b) and
(c) show the results in the first and the fourth feature spaces of a ResNet18 respectively.

the kth nearest neighbor of the input in the input space and generate the corresponding noises of them.
We interpolate these noises with the original input using DDP. Another more interesting choice is that
we can train a conditional diffusion model, and fix the class condition to the class of input3. Then all
noise are corresponding to the images in the same class. We can interpolate the input with any noise,
instead of searching for it first. What’s more, we can choose several noises for each input and all the
results of DDP become a neighborhood of the input. We call this neighborhood the diffusion-based
neighborhood (DiffNB). Then we use a discriminator model to the dynamic change in the feature
spaces and determine the OOD samples based on that. We put our algorithm in Algorithm 4.

In Figure 5, we show the DiffNB of different inputs using DDP and the influence of DDP on the
different feature spaces of a pre-trained ResNet18. The DiffNB has a more obvious semantic change
for OOD input. For example, a rickshaw becomes a horse in Fig 5a. On the other hand, the semantic
information of DiffNB of the InD data is relatively unchanged. Correspondingly, We can find that the
change in low-level features (the first feature space, in Fig 5b) is similar but the change in high-level
semantic features (the fourth feature space, in Fig 5c) becomes small when the input is InD and
relatively big when the input is OOD.

4 EXPERIMENT

In this section, we first show the detailed setting of our experiments. Then we offer our OOD detection
results, including our method and existing representative methods. After that, we provide ablation
study results to show the contributions of each item and hyperparameter in our new scores.

3When the label is unavailable, we use the discriminator model to generate a pseudo label.
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Table 1: The AUROC results of different methods. We train the models on the training data for 160k
epochs and test the results on the test data. We use the conditional version method and the guidance
weight is 2. We set the disturbance degree t = 300, the repeat size r = 4 and use the logic space as
our detection space. The higher results are better and the bold results are the best in each case.

InD cifar10 cifar100
OOD cifar100 tin svhn texture place cifar10 tin svhn texture place avg

ODIN 77.76 79.65 73.41 80.76 82.61 78.1 81.33 70.97 79.31 79.76 78.37
EBO 86.19 88.61 88.42 86.88 89.62 79.07 82.46 77.81 77.84 80.16 83.71
ReAct 86.37 88.91 89.52 88.19 90.1 73.48 79.63 84.45 83.58 76.94 84.12
MLS 86.14 88.53 88.47 86.89 89.5 79.18 82.59 77.68 77.94 80.29 83.72
VIM 87.19 88.86 97.28 96.03 90.03 71.54 78.34 81.15 87.41 75.77 85.36
KNN 89.62 91.48 95.07 92.84 91.86 76.48 83.33 82.09 83.69 79.03 86.55

G-ODIN 88.75 90.7 98.05 95.45 91.86 72.79 81.38 89.85 89.41 77.44 87.57
CSI 87.36 89.64 94.52 89.82 88.44 69.43 72.83 77.14 59.38 69.1 79.77
CutMix 85.72 87.99 90.14 86.51 90.28 78.6 82.43 84.05 77.26 78.53 84.15
PixMix 90.62 92.6 97.33 95.8 92.23 75.77 81.86 93.79 84.36 78.88 88.32

Diff (ours) 90.53 92.85 95.09 93.66 92.65 76.43 84.23 84.96 80.64 78.7 86.97

4.1 SETUP

We evaluate our methods on the most recent OOD detection benchmarks, OpenOOD benchmarks
(Yang et al., 2022). We use images from six different datasets, which are filtered to ensure that the
in-distribution and the OOD do not have overlapping data. We use the CIFAR10 (Krizhevsky et al.,
2009) and CIFAR100 as InD samples. For the CIFAR10 dataset, we use CIFAR100, TinyImagenet
(Krizhevsky et al., 2017), SVHN (Netzer et al., 2011), Texture and Places365 (Zhou et al., 2017)
as OOD data. For the CIFAR100 dataset, the OOD datasets are the same, except for swapping
CIFAR100 for CIFAR10 as the OOD dataset. For a fair comparison, we first train discriminator
and generation models using the training set. we evaluate the results by calculating the area under
the receiver operating characteristic curve (AUROC) Fawcett (2006) between the test set of the InD
dataset and the test set of others, to avoid the influence of model overfitting. All images from different
datasets are resized into 32×32. The discriminator models are pre-trained ResNet18 from OpenOOD.
The diffusion model used in this paper is just the classical model from DDPMs. We use pre-trained
unconditional models and train the conditional version by ourselves.

4.2 OUT-OF-DISTRIBUTION DETECTION

We put the results in Table 1. We choose ten representative baselines. The first seven methods do not
adjust the discriminator model similar to our method. ODIN (Liang et al., 2018) uses temperature
scaling and gradient-based input perturbation. EBO (Liu et al., 2020) uses an energy-based function.
ReAct (Sun et al., 2021) uses rectified activation. MLS (Hendrycks et al., 2019) uses maximum
logit scores. VIM (Wang et al., 2022) combines the information of feature space and logic space.
KNN (Sun et al., 2022) uses the nearest neighbor in the feature space. All these methods are
post-hoc methods and we outperform them in all cases of CIFAR10 and two cases of CIFAR100.
We also compare our methods with four methods with additional training on the discriminator
model. G-ODIN (Hsu et al., 2020) decomposes the posterior to model the probability of InD.
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Figure 6: The bad denois-
ing cases for DDP.

CSI (Tack et al., 2020) explores the effectiveness of contractive learning
objectives. CutMix (Yun et al., 2019) and PixMix (Hendrycks et al.,
2022) are two new kinds of data augmentation to improve the capability of
models. Our method outperforms them in three cases and gets competitive
results in the others.

Our method performs worse than the SOTA methods when the test dataset
is SVHN. A performance bottleneck is that, in addition to density esti-
mation, DDP also has a lazy strategy in the denoising process. It tends to
keep the smooth area unchanged. In Figure 6, we show this phenomenon
using a simple case. We resize an InD image to r × r and then resize it
back, which pulls the InD data away. However, the reconstruction error
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Figure 8: The AUROC results under different guidance weights, training steps, disturbance degrees
and resampling sizes.

decrease instead of increase under this operator. This phenomenon also occurs when the input is the
relatively simple SVHN dataset.

4.3 ABLATION STUDY

Here, we show the influence of each item and hyperparameter on our scores. And all the setting is the
same as the main experiments in Table 1 except for the ablation object.
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Figure 7: The results using
different detection spaces.

Detection space In Figure 7, we compare the results when we use
different detection spaces, including the input image space, the different
level feature spaces, and the logit space. We get the best results when we
use the high-level feature or the logit. Here, the logit has 10 dimensions
and is much smaller than the high-level feature space (512 dimensions).
This shows that DDP can reduce information loss successfully. The
low-level features and the image space get relatively bad results, the
main reason is the information is still redundant at these levels.

Condition In Figure 8a, we compare our the unconditional and conditional methods. The main
problem is that CIFAR100 has much more classes, which makes separating the feature space become
more difficult and unconditional diffusion models cannot keep the interpolation in a single class. We
also test different class weights ω, we find that a higher class weight can get relatively better results.
This shows that realness is more important than diversity in the OOD detection task. In addition, we
also find that the conditional version improves the detection results on CIFAR100 more obviously,
which means the conditional control is important especially when the number of classes is big.

Training In Figure 8b, we find that although the training process of diffusion models is relatively
computation-cost to achieve the best FID results, the OOD detection does not need the models to be
100 percent well-trained (200k steps). After 40k step training, we can get relatively good results and
the improvement of FID does not help the OOD detection after that.

Timestep In Figure 8c, we determine how to choose the best t in DDP. We find that the best choice is
t = 300 and this is consistent with our examples in Figure 4. When t ≤ 300, the difference caused
by DDP is still not obvious enough. When t ≥ 300, the information start to lose because the noise
item accounts for a larger and larger proportion, which limits the OOD detection results.

Resampling In Figure 8d, we determine the influence of the repeated sampling size. According to
our analysis, the consistent detection results are maintained by dynamic balance, therefore, we need
to resample several times to remove the random error in DDP. We find that more is better and 4 times
resampling is good enough.

5 DISCUSSION

In this paper, we start with an assumption to explain the overconfidence problem. Then we combine
discriminator and generation models to solve it. Under the setting of the first toy example, such a
strategy can perfectly solve the OOD detection problem. Although we cannot say the general cases
can also be perfectly solved, we show how to use this idea in the abstract feature space and get
competitive results on CIFAR10 and CIFAR100 using the combination of a ResNet and a diffusion
model. Our approach has good interpretability and a solid theoretical background. We believe that
this strategy opens a new door to developing more powerful OOD detection methods and has the
potential to be applied to OOD generalization and other related tasks.

9
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REPRODUCIBILITY STATEMENT

Our implementation is put in the supplementary materials. We will publicize our method on GitHub
once our paper is accepted.
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A APPENDIX

A.1 RELATED WORK

Diffusion Model Denoising Diffusion Probabilistic Models (DDPMs) Ho et al. (2020) successfully
generate high-quality images and make DMs become popular. For now, DMs can not only generate
unconditional high-quality images but also are applied to many different fields. For the conditional
generation task, DMs can do interpolation, manipulation, image-editing, style transformation and
text-conditional generation Ramesh et al. (2021; 2022). For different data types, DMs can do text
Austin et al. (2021), audio Kong et al. (2020); Lam et al. (2021) and video generation.

The main challenge for DMs is that they require hundreds to thousands of iterations to produce high-
quality results, which limits the application of DMs. After DDPMs, many works try to make DMs
faster and better. Some of them focus on the denoising equations of DMs. Nichol & Dhariwal (2021)
design a better time schedule for the denoising process. Liu et al. (2022) provide new numerical
methods for the denoising process. Bao et al. (2022) find analytic results for the variance of the
denoising process. Some of them try to design new training strategies and new models. Salimans &
Ho (2022) use distillation to accelerate DMs. Dhariwal & Nichol (2021) change the model structure
from Unet to GAN to make each iteration step more powerful. What’s more, Song et al. (2021b) first
shows that DMs can be rewritten as two neural differential equations Chen et al. (2018); Dupont et al.
(2019). Therefore, the numerical methods used to accelerate neural differential equations can also be
used here.

A.2 SIMILARITY AND DIFFERENCE

Several baselines are similar to ours in some ways. The first one is KNN (Sun et al., 2022), which
does a KNN search in the feature space. However, KNN ignores the possibility that an OOD input
may have a similar feature as an InD data, and all methods that only use the final feature have this
problem, too. In addition, using KNN in the input space directly is also invalid, because of data
sparsity and irrelevant information interference.

Another similar approach is data generation and augmentation. These methods retrain the discrim-
inator, but our generation and discriminator models are trained separately. What’s more, existing
methods use generation models to generate OOD data (Marek et al., 2021) to help the discriminator
models to know the capability boundary. Our methods use the generation models to do interpolation
between the new input data and the training data, which do not need to carefully classify the training
data and design new loss functions. Some methods use data augmentation to help the training process
of discriminator models. Although classical data augmentation can enhance the richness of data and
keep the data realistic, some new methods start to add complex and unreal augmentation (Hendrycks
et al., 2022), which increases the burden on the models and lacks clear motivation.

Many methods combine a generation model and a discriminator model to do OOD detection, such more papers using
generation and dis-
criminator models

as Ge et al. (2017); Neal et al. (2018); Lee et al. (2017); Du et al. (2022). However, we find these
papers all try to use generation models to generate OOD data, which needs to design new object
functions and combine the training process of the generation and discriminator models. Our method
use diffusion models to do interpolation and detect the dynamic change under DDP, which is simple
and effective.

A.3 INVERTIBLE DIFFUSION MODEL

Here, we introduce more details of the diffusion model used in this paper. In addition, we analyze
how to make the iteration of diffusion models more invertible.

Score-based generation model Song et al. (2021b) show that the diffusion-denoising process can
also be treated as two differential equations:

dx = (
√
1− β(t)− 1)x(t)dt+

√
β(t)dw

dx =

(
(
√

1− β(t)− 1)x(t)− 1

2
β(t)sθ(x(t), t)

)
dt.

(5)
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This is called probability flows (PFs). The noise ϵθ of DMs and the gradient of logic likelihood sθ
are equivalent Bao et al. (2022). More specifically, we have that sθ(x, t) = − 1

1−ᾱt
ϵθ(x, t).

Pseudo numerical method Liu et al. (2022) provide pseudo numerical methods for diffusion
models (PNDMs) to accelerate DDIMs. PNDMs define Equation (3) with σt = 0 as transfer function:

ϕ(xt, ϵt, t, t− δ) =

√
ᾱt−δ√
ᾱt

xt −
(ᾱt−δ − ᾱt)√

ᾱt(
√

(1− ᾱt−δ)ᾱt +
√

(1− ᾱt)ᾱt−δ)
ϵt. (6)

PNDMs combine this transfer function with the noise estimated by classical numerical methods, like
the linear multistep method, to get the new denoising equations:{

ϵ′t =
1
24 (55ϵt − 59ϵt+δ + 37ϵt+2δ − 9ϵt+3δ)

xt−δ = ϕ(xt, ϵ
′
t, t, t− δ).

(7)

Here, ϵt = ϵθ(xt, t). Both PFs and PNDMs accelerate the denoising process without loss of quality.
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Figure 9: The reconstruction er-
ror under different iteration inter-
val [0, t] and fixed step size 20.

Invertibility We show the test results in Figure 9. For DDIMs,
the error occurs at the beginning, and the error accumulates with
the increase of the total generation step. For PFs, the initial error
is not huge, but the cumulative error occurs when the number of
the total generation steps is bigger than 500. DDIMs are first-
order methods, and other methods are high-order methods. We
can say higher convergent order can increase the invertibility. PFs
use numerical methods of adaptive step size, and PNDMs use
methods of fixed step size. Therefore, we think that fixed step
size can also benefit invertibility. To verify this, we replace the
methods of adaptive step size used by PFs with the methods of
fixed step size and call it probability flows plus (PFs+). We find
that the errors decrease immediately. The reason is that fixed step
size maintains consistency between the sampling locations of the forward and reverse processes,
which benefits the invertibility. Combining the above analysis, we have the following property:

High convergent order and fixed iteration step size can improve
the invertibility of DMs under fixed total iteration steps.

A.4 INTERPOLATION

In Algorithm 5 and 6, we introduce two types of interpolation using diffusion models. The positions
of x0 and x1 are symmetric in the original interpolation and asymmetric for the asymmetric one.
According to our experiment, x0 is more important in asymmetric interpolation. The visualization of
these interpolations can be found in Fig 3.

Algorithm 5 Symmetric interpolation

Input: Images x1
0, x

2
0, generative gap δ, interpo-

lation rate σ
1: x1

T , x
2
T = Φ(x1

0, 0, T, δ),Φ(x
2
0, 0, T, δ)

2: xinter
T = Slerp(x1

T , x
2
T , σ)

3: xinter
0 = Φ(xinter

T , T, 0, δ)
4: return xinter

0

Algorithm 6 Asymmetric interpolation

Input: Images x1
0, x

2
0, generative gap δ, interpo-

lation timestep t
1: x2

T = Φ(x2
0, 0, T, δ)

2: xinter
t =

√
ᾱtx

1
0 +

√
1− ᾱtx

2
T

3: xinter
0 = Φ(xinter

t , t, 0, δ)
4: return xinter

0

A.5 THE PROOF OF TOY EXAMPLE

To make this claim strict, we need to make some definitions. Each image can be represented as a
function r on [0, 1]2 and the value of r(x, y) is the RGB value at position (x, y). And the images are
continuous in most positions. Therefore, we simplify the input space to C([0, 1]2) the continuous
function on [0, 1]2 and then to one-dimensional C([0, 1]) for simplicity. The mask operator is a
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restriction operator ϕS(r) = r|S=[0,0.25]∪[0.5,0.75] here. The InD is just {r ∈ C([0, 1]) | |r| ≤ σ}
and |r| is the max absolute value of r on [0, 1]. The bad cases form a set that satisfies Aσ(ϕS) =
{r|ϕS(r) = ϕS(0) = 0, |r| > σ}. We can prove that Aσ(ϕS) = ∅ when we choose proper {gi}.

A straightforward solution is that for each r ∈ C(R), let {g(x)i = r(x+ i)|i ∈ {0,±0.25}}, which
represents the moving operator. The proof is that we can use g0|S to get the information about r on
S and use g±0.25|S to get the remaining on [0, 1]/S. Then r mush satisfies |r(x)| < σ, ∀x ∈ [0, 1].
There also exist other kinds of solutions. For example, let {g(x)a,b ≡ 1

b−a

∫ b

a
r(x)dx|a, b ∈ [0, 1]},

which represents the mixing operator. In addition, the mask operator is not necessary and we can
extend it to any restriction operator.

Here we prove that {g(x)i = f(x+i)|i ∈ {0,±0.25}} and {g(x)a,b ≡ 1
b−a

∫ b

a
f(x)dx|a, b ∈ [0, 1]}

can solve the problem:

Given the input space C([0, 1]), the restriction operator ϕS and a fixed δ, how can we
design additional operator set {gi} to minimize the annihilator set Aδ({gi|S})?

For {g(x)i = f(x + i)|i ∈ {0,±0.25}}, g0|S = f |S and it equals to zero means that f is zero on
S. And then we also know that g0.25|S = f |S−0.25 and g−0.25|S = f |S+0.25 equals zero, which
means that f is zero on S − 0.25 ∪ S + 0.25 = [0, 1]/S. Then the only choice of f is zero and the
annihilator set is empty.

For {g(x)a,b ≡ 1
b−a

∫ b

a
f(x)dx|a, b ∈ [0, 1]}. If ∃x0 ∈ [0, 1], f(x0) > δ, then ∃ϵ s.t. ∀x ∈ [x0 −

ϵ, x0+ϵ], f(x) > δ because f is continuous. Then we have that g(x)x0−ϵ,x0+ϵ ≡ 1
b−a

∫ b

a
f(x)dx > δ

and g(x)x0−ϵ,x0+ϵ|S > δ, too. This does not satisfy our condition, so the annihilator set is empty.

A.6 OOD DETECTION RESULT

We add experiments about adversarial OOD examples in 2. We use 5000 images of CIFAR10 to
generate 5000 adversarial OOD examples. We use PGD and OnePixel methods, which use L∞ and
L0 norms, respectively. We use an open library Harry24k/adversarial-attacks-pytorch to generate the
adversarial examples. For PGD, we use eps=8/255, alpha=2/255 and steps=10. For Onepixel, we use
pixels=10, steps=10, popsize=10 and inf batch=128. We find that our method can perform pretty
well on the adversarial OOD examples.

We also test the computation cost of our method. We record the total time to compute the detection
scores of 5000 images using an RTX3090. We use about 0.06s to process an image. To be honest,
it is much slower compared to existing methods. However, just like the success story of diffusion
model acceleration, we believe that our new method can be faster in the future.

Table 2: The AUROC results of different methods. We train the models on the training data for 160k
epochs and test the results on the test data. We use the conditional version method and the guidance
weight is 2. We set the disturbance degree t = 300, the repeat size r = 4 and use the logic space as
our detection space. The higher results are better and the bold results are the best in each case.

cifar100 tin pgd onepixel avg time

ODIN 77.76 79.65 34.52 65.23 64.29 0.22
EBO 86.19 88.61 33.13 71.52 69.8625 0.05
ReAct 86.37 88.91 57.92 73.28 76.62 0.04
MLS 86.14 88.53 33.56 71.55 69.945 0.03
VIM 87.19 88.86 91.96 78.98 86.7475 0.09
KNN 89.62 91.48 87.39 80.09 87.145 0.25

G-ODIN 88.75 90.7 97.79 80.99 89.5575 2.31
CSI 87.36 89.64 83.54 80.38 85.23 28.1
CutMix 85.72 87.99 82.92 73.17 82.45 2.05
PixMix 90.62 92.6 93.77 57.87 83.715 2.51

Diff (ours) 90.53 92.85 93.92 82.21 89.8775 340
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