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Abstract

Artificial neural networks often struggle with catastrophic forgetting when learning1

tasks sequentially, as training on new tasks degrades the performance on earlier2

ones. Recent theoretical work tackled this issue by analysing learning curves in3

synthetic settings with predefined training protocols. However, these protocols4

were heuristic-based and lacked a solid theoretical foundation for assessing their5

optimality. We address this gap by combining exact training dynamics equations,6

derived using statistical physics, with optimal control methods. We apply this7

approach to teacher-student models of continual learning, obtaining a theory for8

task-selection protocols that optimise performance minimising forgetting. Our9

analysis offers non-trivial yet interpretable strategies, showing how optimal learning10

protocols modulate established effects, such as the influence of task similarity on11

forgetting. We validate our theoretical findings on real-world data.12

1 Introduction13

Mastering a range of problems is crucial for both artificial and biological systems. In the context of14

training a neural network on a series of tasks—a.k.a. multi-task learning [1, 2, 3, 4]—the ability to15

learn new tasks can improve leveraging knowledge from previous ones [5]. However, this process16

can lead to catastrophic forgetting, where learning new tasks degrades performance on older ones.17

This phenomenon has been observed in theoretical neuroscience [6, 7] and machine learning [8, 9],18

and occurs when the network parameters encoding older tasks are overwritten while training on19

a new task. Several mitigation strategies have been proposed [10, 11], including semi-distributed20

representations [12, 13], regularisation methods [14, 15, 16], dynamical architectures [17, 18], and21

others (see e.g. [19, 20] for thorough reviews). A common strategy, known as replay, is to present22

the network with examples from the old tasks while training on the new one to minimise forgetting23

[21, 22, 23]. Related theoretical works are discussed in Appendix A. Despite the significant interest in24

transfer learning and catastrophic forgetting, mitigation strategies considered thus far were pre-defined25

heuristics, with no guarantees of optimality. In contrast, we aim at identifying the optimal protocol to26

minimise forgetting. Specifically, we focus on replay as a prototypical mitigation strategy and employ27

control theory to find the optimal training protocol maximising performance across different tasks.28

Our contribution. In this work, we combine techniques from statistical physics [24, 25, 26] and29

Pontryagin’s maximum principle from control theory [27, 28, 29] to derive optimal task-selection30

protocols for the training dynamics of a neural network in a continual learning setting. Pontryagin’s31

principle works efficiently in low-dimensional deterministic systems, hence requiring the statistical32

physics approach to neural networks [30], where the evolution of high-dimensional stochastic33

systems are condensed to a few key order parameters governed by ordinary differential equations34

(ODEs) [24, 25, 26]. Specifically, we consider the teacher-student framework of [31]—a prototype35

continual learning setting amenable to analytic characterisation. Our main contributions are:36
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• We leverage the ODEs for the learning curves of online SGD to derive closed-form formulae37

for the optimal training protocols. In particular, we provide equations for the optimal task-38

selection protocol and the optimal learning rate schedule, as a function of the task similarity39

γ and the problem parameters. Our framework is broadly applicable beyond the specific40

context of continual learning, and we outline several potential extensions.41

• We evaluate our equations for a range of problem parameters and find highly structured42

protocols. Interestingly, we are nonetheless able to interpret these strategies a posteriori,43

formulating a criterion for “pseudo-optimal” task-selection: an initial focus phase, where44

only the new task is presented, followed by a revision phase, where old tasks are replayed.45

• We clarify the impact of task similarity on catastrophic forgetting. At variance with what ob-46

served in [32, 31, 33], forgetting is minimal at intermediate task similarity with optimal task47

selection. We give a mechanistic explanation of this phenomenon disentangling dynamical48

effects on the first-layer and readout weights.49

• We show that insights from the optimal strategy transfer to real datasets. Specifically, we50

consider a continual learning task on the Fashion-MNIST dataset, and show that the optimal51

strategy interpolates between simple heuristic strategies based on the problem’s parameters.52

2 Model-based theoretical framework53

We model supervised learning of multiple tasks. Following [31, 33], we consider a teacher-student54

framework [34] where a “student" neural network is trained on synthetic inputs x ∈ RN , drawn55

i.i.d. from a Gaussian distribution, xi ∼ N (0, 1). The labels for each task t = 1, . . . , T are generated56

by single-layer “teacher" networks: y(t) = g∗(x ·w(t)
∗ /

√
N), where W∗ = (w

(1)
∗ , . . . ,w

(T )
∗ )⊤ ∈57

RT×N denote the corresponding teacher vectors, and g∗ the activation function. The student is a58

two-layer neural network with K hidden units, first-layer weights W = (w1, . . . ,wK)
⊤ ∈ RK×N ,59

activation function g, and second-layer weights v ∈ RK , that outputs the prediction:60

ŷ (x;W ,v) =

K∑
k=1

vk g

(
x ·wk√

N

)
. (1)

Following a standard multi-headed approach to continual learning [15, 35], we allow for task-61

dependent readout weights: V = (v(1), . . . ,v(T ))⊤ ∈ RT×K . While the readout is switched during62

training according to the task under consideration, the first-layer weights are shared across tasks. A63

pictorial representation of this model is displayed in Fig. 6 of Appendix D. Training is performed64

via Stochastic Gradient Descent (SGD) on the squared loss of y(t) and ŷ(t) = ŷ(x;W ,v(t)), in the65

online regime, where at each training step the algorithmic update is computed using a new sample66

(x, y(t)). The generalisation error of the student on task t is given by67

εt (W ,V ,W∗) :=
1

2

〈(
y(t) − ŷ(t)

)2〉
=

1

2
Ex

(g∗(w
(t)
∗ · x√
N

)
− ŷ(x;W ,v(t))

)2
 , (2)

where we use the angular brackets ⟨·⟩ to denote the expectation over the input distribution for a68

given set of teacher and student weights. As shown in [31, 33], we can derive a set of dynamical69

equations for the generalisation error across training in the high-dimensional limit. We leverage70

this low-dimensional description and optimal control theory to derive optimal training protocols for71

multi-task learning. In particular, we optimise over task selection and learning rate.72

Forward training dynamics. As further discussed in Appendix B, in the limit of large input73

dimension N → ∞ with K,T ∼ ON (1), the dynamics of the generalisation error is entirely74

captured by the evolution of the readouts V and the low-dimensional matrices—a.k.a overlaps:75

Mkt :=
wk ·w(t)

∗

N
, Qkh :=

wk ·wh

N
, Stt′ :=

w
(t)
∗ ·w(t′)

∗

N
, (3)

for all k, h = 1, . . . ,K and t = 1, . . . , T . For the remainder of the paper we consider K = T ,76

to guarantee that the student network has enough capacity to learn all tasks perfectly. Teacher77

vectors are normalised, while the task similarity is tuned by a parameter γ, so that Stt′ = δt,t′ +78
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γ(1− δt,t′). For simplicity, it is useful to encode all the dynamical degrees of freedom of interest—79

the overlaps and the readout weights—in the same vector. We use the shorthand notation Q =80

(vec(Q), vec(M), vec(V ))⊤ ∈ RK2+2KT . Following [31], we write a set of ODEs81

dQ(α)

dα
= fQ (Q(α),u(α)) with α ∈ (0, αF ] , (4)

α denoting the effective training time—i.e., the ratio between training epochs and input dimension82

N , as detailed in Appendix B—and u the dynamical variables that we want to control optimally.83

In particular, we study the optimal schedules for task-selection tc(α) and learning rate η(α). Here,84

tc(α) ∈ {1 , . . . , T} indicates on which task the student is trained at time α. The specific form of85

the functions fQ is derived in Appendix B. We stress that Eq. 4 is a low-dimensional deterministic86

equation that fully captures the high-dimensional stochastic dynamics of SGD as N → ∞. This87

dimensionality reduction is crucial to apply the optimal control techniques in the next section.88

Optimal control framework and backward conjugate dynamics. Our first main contribution is89

to derive training strategies that are optimal with respect to the generalisation performance at the end90

of training and on all tasks. In practice, the goal of the optimisation process is to minimise a linear91

combination of the generalisation errors on the different tasks at the final training time αF :92

h(Q(αF )) =

T∑
t=1

ct εt(Q(αF )) with ct ≥ 0 and
T∑

t=1

ct = 1 , (5)

where the coefficients ct identify the relative importance of different tasks and εt denotes the infinite-93

dimensional limit of the average generalisation error on task t, as defined in Eq. 2. Crucially, we have94

an analytic expression for εt, derived in Appendix B. In the remainder of the paper, we assume equally95

important tasks ct = 1/T . As customary in optimal control theory [28], we adopt a variational96

approach to solve the problem. We define the cost function97

F [Q, Q̂,u] = h (Q(αF )) +

∫ αF

0

dα Q̂(α)⊤
[
−dQ(α)

dα
+ fQ (Q(α),u(α))

]
, (6)

where the conjugate order parameters Q̂ = (vec(Q̂), vec(M̂), vec(V̂ ))⊤ enforce the training98

dynamics in the training interval α ∈ [0, αF ]. Finding the optimal protocol amounts to minimising99

the cost function F with respect to Q, Q̂, and u. We defer the details to Appendix B. The minimisation100

with respect to Q provides a set of equations for the backward dynamics of the conjugate parameters101

−dQ̂(α)⊤

dα
= Q̂(α)⊤∇QfQ(Q(α),u(α)) , Q̂(αF ) = ∇Qh(QF ) =

T∑
t=1

ct∇Qεt(Q(αF )) . (7)

The optimal control curve u∗(α) is obtained as the solution of the minimisation:102

u∗(α) = argmin
u∈U

{
Q̂(α)⊤fQ(Q(α),u)

}
, (8)

where U is the set of allowed controls. For instance, for task selection we take u(α) = tc(α) and103

U = {1 , 2 . . . , T}, where we use tc(α) to indicate the task on which the student is trained at time104

α. When optimising over both task selection and learning rate schedule we take u = (tc, η) and105

U = {1 , 2 . . . , T} × R+. Crucially, the optimal control equations 4, 7, and 8 must be iterated until106

convergence, starting from an initial guess on u. Let us stress that the space U of possible controls is107

high-dimensional and hence it is not feasible to explore it via greedy search strategies.108

3 Results and applications109

3.1 Experiments on synthetic data110

We formulate the continual learning problem as follows. During a first training phase, the student111

learns perfectly task t = 1. Then, the goal is to learn a new task t = 2 without forgetting the old one112

during a second training phase of duration αF . We investigate the role of replay—i.e., using samples113

from task 1 during the second training phase—and the structure of the optimal replay strategy.114
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Figure 1: The student is trained on task 1 during the first phase (α ∈ [0, 1000]), then task 2
is introduced. During the second phase (α ∈ (1000, 1025]), task 1 may be replayed to prevent
forgetting. For better visibility, we only display the regions α ∈ [0, 20] ∪ [990, 1025]. We compare
three strategies: a) no replay, b) interleaved replay c) the optimal strategy derived in Sec. 2. Crosses
mark numerical simulations of a single trajectory at N = 20000, lines mark the solution of Eq. 4.
Colour bars represent the protocol tc. Parameters: γ = 0.3, K = T = 2, and η = 1.
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Figure 2: a) Average loss at the end of the second training phase as a function of task similarity γ.
b-e) Optimal replay strategies for different values of γ. Colour bars show the protocol tc(α).

To this end, we take the task-selection variable as our control u(α)= tc(α)∈{1, 2}, while we set115

tc=1 during the first training phase. The result of the optimisation in Eq. 8 balances training on the116

new task with replaying the old task. We do not enforce any constraints on the number of samples117

from task 1 to use in the second phase, therefore our method provides both the optimal fraction of118

replayed samples and the optimal task ordering, depending on the time window αF . Fig. 1 compares119

the learning dynamics of three different strategies, depicting the loss on task 1 (orange), task 2120

(dashed green), and their average (dotted black) as a function of the training time α. The student is121

trained exclusively on task 1 until α = 1000, when the task is perfectly learned. Then, the student is122

trained on both tasks for a training time of duration αF = 25. A colour bar above each plot illustrates123

the associated task-selection strategy tc(α). Panel a) shows that training without replay leads to124

catastrophic forgetting of task 1. Panel b) shows a heuristic “interleaved” strategy, where training125

alternates one sample from the new task to one from the old one. As observed in [33], the interleaved126

strategy already improves performance, demonstrating the relevance of replay to mitigate forgetting.127

Panel c) of Fig. 1 shows the loss dynamics for the optimal replay strategy. Notably, this strategy has a128

complex structure and displays a clear performance improvement over the other two strategies.129

The impact of task similarity. We examine the performance of the optimal strategy in relation to130

task similarity γ. Fig. 2a) depicts the average loss at the end of training as a function of γ. For the131

no-replay strategy, as noted in [31, 33], intermediate task similarity induces the highest error. [33]132

explained this non-monotonicity as a trade-off between node re-use and node activation. Indeed, for133

small γ, there is minimal interference between tasks, and one hidden neuron predominantly aligns134

with the new task, while the other retains knowledge of the old task, leading to specialisation. At135

large γ, features from task 1 are reused for task 2, avoiding forgetting. However, at intermediate γ,136
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interference is maximal, both neurons quickly align with task 2, and task 1 is forgotten. Fig. 2a)137

shows that replay reverses this trend: the minimal error occurs at intermediate γ. To explain this138

nontrivial behaviour, we must first understand the optimal replay protocol.139

Interpretation of the optimal replay structure. The optimal replay dynamics is illustrated in140

panels b-e) of Fig. 2 for different values of γ, displaying a highly structured protocol. We can interpret141

this structure a posteriori: an initial focus phase without replay is followed by a revision phase142

involving interleaved replay. The transition between these two phases corresponds approximately143

to the point at which the loss on the new task matches the loss on the old one. To investigate the144

significance of this structure, we also test an interleaved strategy, plotted in Fig. 2a), where task145

ordering in the second training phase is fully randomised but maintains the same overall replay146

fraction of the optimal strategy. This protocol has a performance gap compared to the optimal one,147

showing the importance of a properly structured replay scheme. Additionally, we test a “pseudo-148

optimal” variant, where the focus phase is retained, but the revision phase is randomised. This variant149

performs comparably to the optimal strategy, suggesting that while the specific order of the revision150

phase is largely unimportant, it is key to precede it with a training phase on the new task.151

We now examine the inverted non-monotonic behaviour of the average loss as a function of γ under152

the optimal protocol. First, as shown in Fig. 7 of Appendix D, the optimal protocol achieves a153

good level of node specialisation across all values of γ. Thus, replay prevents task interference that154

typically causes performance deterioration at intermediate γ. The non-monotonic behaviour of the155

optimal curve in Fig. 2a) arises from a different origin, involving two opposing effects related to156

the first-layer weights and the readout. The initial decrease of the loss with γ is quite intuitive, as157

only minimal knowledge can be transferred from task 1 to task 2 when γ is small. Consequently,158

the focus phase on task 2 must be longer for smaller γ, leaving less time to revise task 1, thereby159

reducing performance. The performance decrease observed in Fig. 2a) for γ > 0.3 is more subtle160

and is related to the readout layer. A detailed explanation of this result is provided in Appendix C.161
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Figure 3: Jointly-optimal task selection
and learning rate for the same parameters
as Fig. 1. The colour bar marks tc(α).

162

Optimal learning rate. Optimal learning rate dynam-163

ics have been studied with a similar approach in [36].164

Here, we consider the joint optimisation of replay proto-165

col and learning rate. Fig. 3 shows the optimal learning166

rate schedule for task similarity γ =0.3 in the second167

training phase (αF = 25). Optimal task-selection is168

again characterised by an initial focus phase, that also169

coincides with a strong annealing of the learning rate170

to achieve optimal performance. Interestingly, in the171

revision phase, the optimal learning rate schedule ex-172

hibits a highly nontrivial structure (see Fig. 3). Indeed,173

although the optimal learning rate curve is unique, we174

find that effectively it can be seen as two different curves,175

associated to the respective tasks. In practice, the op-176

timal learning rate curve “jumps” between these two177

curves according to the task selected at a given training178

time. Overall, the joint optimisation over task selection179

and learning rate provides a significant improvement in180

performance, as shown in Fig. 8 of Appendix D.181

3.2 Experiments on real data182

We consider the experimental framework established in [32, 33] for the study of task similarity in183

relation to catastrophic forgetting. We use the Fashion-MNIST dataset [37] to generate upstream and184

downstream tasks: The upstream dataset—D1 = {xxx(1)
i , y

(1)
i }i—consists in a pair of classes from the185

standard dataset, while the downstream dataset is generated by a linear interpolation of the upstream186

dataset with a second auxiliary dataset—D̃ = {x̃xxi, ỹi}i—containing a new pair of classes,187

D2 = {xxx(2)
i , y

(2)
i }i = {γxxx(1)

i + (1− γ)x̃xxi, γy
(1)
i + (1− γ)ỹi}i (9)

where the parameter γ controls the task similarity. We then train a standard two-layer feedforward188

ReLU neural network on the two datasets using online SGD on a squared error loss. We consider a189
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Figure 4: Training curves on the modified fashion MNIST task at similarity γ = 0.5. The network is
trained for 10.000 epochs on the first task before switching to the second task and being trained for
additional 10.000 epochs. The results are obtained from 100 realisations of the problem. The first
three panels show the test loss on task 1 (solid orange), task 2 (dashed green), and their average (dotted
black) for three training strategies, from left to right: no-replay, interleaved, and pseudo-optimal. The
rightmost panel shows the average loss over the entire training.
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Figure 5: Average loss comparison. The figure focuses on the average loss and shows the final
loss achieved by the three strategies as we increase the size of task 2 (from left to right: 500, 1.000,
2.000, 4.000, and 8.000 samples) while task 1 has always 10.000 samples. Individual panels show
the performance of the three strategies as we span the value of γ form 0.05 to 0.95.

dynamical architecture [17, 18] where the readout weights are changed switching from one task to190

another, but the hidden layer is shared. During training, we apply the three strategies discussed in the191

previous sections: a no-replay strategy, a strategy with interleaved replay, and a “pseudo-optimal”192

strategy. Recall that the latter is inspired by the optimal protocol derived in the previous section. It193

consists of an initial phase of training exclusively on the new task until performance on both tasks194

becomes comparable, followed by a phase of interleaved replay. Crucially, this protocol can be easily195

implemented in practice, as it only requires an estimate of the generalisation error on the two tasks,196

which can be obtained in real-world settings.197

Fig. 4 shows the training loss under the different training protocols for γ = 0.5. While the no-replay198

strategy appears to be successful for small downstream datasets (i.e., a few epochs in the online199

framework) in the longer run it leads to strong forgetting and high average loss. The interleaved is200

beneficial in the long run but largely slows down learning of the new task. Overall, the pseudo-optimal201

protocol identified in Sec. 3.1 shows a better performance over the entire trajectory.202

This result is not limited to the specific value of γ. In Fig. 5, we show snapshots of the average203

loss for different downstream task sizes while spanning over a range of γs. This figure provides204

additional support to the observation reported previously that the no-replay strategy is optimal for205

small downstream tasks, the interleaved strategy is convenient for large downstream tasks, and206

the pseudo-optimal one combines the benefits of the two leading to the best performance overall.207

In summary, the pseudo-optimal strategy derived for the synthetic model performs well on real-208

world data. Notably, despite the differences between the synthetic and real settings—such as data209

structure—the pseudo-optimal strategy remains effective and robust across problems.210
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4 Discussion211

Conclusion. In this work, we introduce a systematic approach for identifying and interpreting212

optimal task-selection strategies in synthetic learning settings. We consider a teacher-student scenario213

as a prototypical continual learning problem to achieve analytic understanding of supervised multi-214

task learning. We incorporate prior results on exact ODEs for high-dimensional online SGD dynamics215

into a control-theory framework that allows us to derive exact equations for the optimal protocols.216

Our theory reveals that optimal task-selection protocols are typically highly structured—alternating217

between focused learning and interleaved replay phases—and display a nontrivial interplay with task218

similarity. We also identify highly structured optimal learning rate schedules that synchronise with219

optimal task-selection to enhance overall performance. Finally, leveraging insights from the synthetic220

setting, we extract a pseudo-optimal strategy applicable to real tasks.221

Limitations and Perspectives. This work takes a first step toward understanding the theory behind222

optimal training protocols for neural networks. In the following, we discuss current limitations and223

outline promising directions for future research. First, Pontryagin’s maximum principle provides a224

necessary condition for optimality but does not guarantee a global optimum. Nevertheless, the strate-225

gies derived from this approach performed significantly better than previously proposed heuristics.226

Additionally, Pontryagin’s principle does not easily extend to stochastic problems. This limitation is227

overcome in the high-dimensional limit where concentration results provide deterministic dynamical228

equations. For simplicity, we focus on i.i.d. Gaussian inputs, but our analysis can be extended to more229

structured data models [38, 39, 40] to study how the input distribution affects optimal task selection.230

In particular, we do not model the relative task difficulty—an important extension that naturally231

connects to the theory of curriculum learning [41, 42, 43, 44]. Furthermore, it would be interesting to232

go beyond the study of online dynamics to understand the impact of memorisation in batch learning233

settings [45]. Existing results in the spurious correlations [46] and fairness [47] literature suggest a234

strong dependence of the classifier’s bias on the presentation order in batch learning. Our method can235

be applied to mean-field models—like [48, 49]—to theoretically investigate this phenomenon. An236

interesting extension of our work involves applying recently-developed statistical physics methods to237

the study of deeper networks and more complex architectures [50, 51, 52, 53]. Another interesting238

direction concerns finding optimal protocols for shaping, where task order significantly impacts both239

animal learning and neural networks [54, 55, 56].240
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A Related theoretical works426

On the theoretical side, [57] pioneered the research on continual learning by deriving PAC bounds.427

More recently, further performance bounds have been obtained in the context of multi-task learning,428

few-shot learning, domain adaptation, and hypothesis transfer learning [58, 59, 60]. However, these429

results focused on worst-case analysis, offering bounds that may not reflect the typical performance430

of algorithms. In contrast, [61] began investigating the typical-case scenario, providing a precise431

characterisation of transfer learning in simple neural network models. [62, 63] extended this analysis432

to more complex architectures and generative models, allowing for a better description of the relation433

between tasks. Finally, [31, 33] proposed a theoretical framework for the study of the dynamics434

of continual learning with a focus on catastrophic forgetting. Their work provided a theoretical435

explanation for the surprising empirical results of [32], which revealed a non-monotonic relation436

between forgetting and task similarity, where maximal forgetting occurs at intermediate task similarity.437

Analogously, [64] studied a Gibbs formulation of continual learning in deep linear networks, and438

demonstrated how the interplay between task similarity and network architecture influences forgetting439

and knowledge transfer.440

In recent years, several theoretical works on online learning dynamics in one-hidden-layer neural441

networks have addressed a range of machine learning problems, including over-parameterisation [65],442

algorithmic analysis [66? ], and learning strategies [31, 42, 67]. However, these studies have not443

explored the problem from an optimal control perspective.444

Early works addressed the optimality of hyperparameters in high-dimensional online learning for445

committee machines via control theory. These studies focused on optimising the learning rate [36, 68,446

69], the regularisation [70], and the learning rule [71]. However, to the best of our knowledge, the447

problem of optimal task selection has not been explored yet. [72] and [? ] applied optimal control to448
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the dynamics of connectivist models of behaviour, but their analysis was limited to low-dimensional449

settings. [73] extended the Bellman equation to high-dimensional mean-field dynamical systems,450

though without considering learning processes.451

Several other works have combined ideas from machine learning and optimal control. Notably, [74]452

interpreted deep learning as an optimal control problem on a dynamical system, where the control453

variables correspond to the network parameters. [75] formulated meta-optimization as an optimal454

control problem, but their analysis did not involve dimensionality reduction techniques nor did it455

address task selection.456

B Details on the theoretical derivations457

In this appendix, we provide detailed derivations of the equations in Sec. 2 of the main text. In the458

interest of completeness, we also report the derivation of the ODEs describing online SGD dynamics459

and the generalisation error as a function of the order parameters, first derived in [31]. We remind that460

inputs are N−dimensional vectors x ∈ RN with independent identically distributed (i.i.d.) standard461

Gaussian entries xi ∼ N (0, 1), while the labels are generated by single-layer teacher networks:462

y(t) = g∗(x · w(t)
∗ /

√
N), t = 1, . . . , T , with a different teacher for each task. The student is a463

one-hidden layer network that outputs the prediction:464

ŷ(t) =

K∑
k=1

v
(t)
k g

(
x ·wk√

N

)
. (10)

We focus on the online (on one-pass) setting, so that at each training step the student network is465

presented with a fresh example xµ, µ = 1, . . . , P , and P/N ∼ ON (1). The weights of the student466

are updated through gradient descent on 1
2 (ŷ

(t) − y(t))2 following the task-selection protocol tc:467

wµ+1
k = wµ

k − ηµ∆(tc)µ v
(tc)µ
k g′ (λµ

k)
xµ

√
N

,

v
(t)µ+1
k = v

(t)µ
k − ηµ

N
∆(t)µ g(λµ

k)δt,tc ,

∆(t)µ := ŷ(t)µ − y(t)µ =

K∑
k=1

v
(t)
k g(λµ

k)− g∗(λ
(t)µ
∗ ) ,

(11)

where ηµ denotes the (possibly time-dependent) learning rate and we have rescaled it by N in468

the dynamics of the readout weights for future convenience. We have defined the preactivations,469

a.k.a. local fields,470

λµ
k :=

xµ ·wµ
k√

N
, λ

(t)µ
∗ :=

xµ ·w(t)
∗√

N
. (12)

Notice that, due to the online-learning setup, at each training epoch the input x is independent of the471

weights. Therefore, due to the Gaussianity of the inputs, the local fields are also jointly Gaussian472

with zero mean and second moments given by the overlaps:473

Mkt := Ex

[
λkλ

(t)
∗

]
=

wk ·w(t)
∗

N
,

Qkh := Ex [λkλh] =
wk ·wh

N
,

Stt′ := Ex

[
λ
(t)
∗ λ

(t′)
∗

]
=

w
(t′)
∗ ·w(t)

∗

N
.

(13)

B.1 Generalisation error as a function of the order parameters474

We can write the generalisation error (Eq. 2 of the main text) as an average over the local fields:475

εt (W ,V ,W∗) =
1

2

∑
k,h

v
(t)
k v

(t)
h Eλ,λ∗ [g(λk)g(λh)] +

1

2
Eλ,λ∗

[
g∗(λ

(t)
∗ )2

]
−
∑
k

v
(t)
k Eλ,λ∗

[
g(λk)g∗(λ

(t)
∗ )
]
.

(14)
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where the expectation is computed over the multivariate Gaussian distribution476

P (λ,λ∗) =
1√

(2π)K+T |C|
exp

(
−1

2
(λ,λ∗)

⊤C−1(λ,λ∗)

)
,

C =

(
Q M

M⊤ S

)
.

(15)

From now on, we adopt the unified notation477

I2(β, ρ) := Eλ,λ∗ [gβ(λβ)gρ(λρ)] , (16)

where β, ρ can refer both to the indices of the student weights k, h or the tasks t, t′. We can then478

rewrite the generalisation error as479

εt (W ,V ,W∗) =
1

2

∑
k,h

v
(t)
k v

(t)
h I2(k, h) +

1

2
I2(t, t)−

∑
k

v
(t)
k I2(k, t) . (17)

In all the results presented in Sec. 3, we consider g(z) = g∗(z) = erf
(
z/

√
2
)
. In this case, there is480

an analytic expression for the integral I2 [24]:481

I2(β, ρ) =
2

π
arcsin

qβρ√
1 + qββ

√
1 + qρρ

, (18)

and we use the symbol q to denote generically an overlap from Eq. 13, according to the choice of482

indices β, ρ, e.g., qkh = Qkh, qkt = Mkt, and qttc = Sttc . In this special case, the generalisation483

error can be written explicitly as a function of the overlaps484

εt (W ,V ,W∗) =
1

2π

∑
k,h

v
(t)
k v

(t)
h arcsin

Qkh√
1 +Qkk

√
1 +Qhh

+
1

2π
arcsin

Stt

1 + Stt

− 1

π

∑
k

v
(t)
k arcsin

Mkt√
1 +Qkk

√
1 + Stt

.

(19)

B.2 Ordinary differential equations for the forward training dynamics485

Given that the generalisation error depends only on the overlaps, in order to characterise the learning486

curves we need to compute the equations of motion for the overlaps from the SGD dynamics of the487

weights given in Eq. 11. The order parameter Stt′ associated to the teachers is constant in time. We488

obtain an ODE for Mkt by multiplying both sides of the first of Eq. 11 by w
(t)
∗ and dividing by N :489

wµ+1
k ·w(t)

∗

N
−

wµ
k ·w(t)

∗

N
= −ηµ

N
∆(tc)µv

(tc)µ
k g′(λµ

k)λ
(t)µ
∗ , (20)

where we stress the difference between tc, the task selected for training at epoch µ, and t, the task490

for which we compute the overlap. We define a “training time” α = µ/N and take the infinite-491

dimensional limit N → ∞. The parameter α becomes continuous and Mkt concentrates to the492

solution of the following ODE:493

dMkt

dα
= −ηv

(tc)
k Eλ,λ∗

[
∆(tc)g′(λk)λ

(t)
∗

]
:= fM ,kt , (21)

where the expectation is computed over the distribution in Eq. 15. The ODE for Qkh is obtained494

similarly from Eq. 11:495

wµ+1
k ·wµ+1

h

N
−

wµ
k ·wµ

h

N
= −ηµ

N
∆(tc)µv

(tc)µ
k g′(λµ

k)λ
µ
h − ηµ

N
∆(tc)µv

(tc)µ
h g′(λµ

h)λ
µ
k

+ (ηµ)2
(
∆(tc)µ

)2
v
(tc)µ
k v

(tc)µ
h g′(λµ

k)g
′(λµ

h)
x · x
N

.

(22)

In the infinite-dimensional limit, we find496

dQkh

dα
= −ηv

(tc)
k Eλ,λ∗

[
∆(tc)g′(λµ

k)λ
µ
h

]
− ηv

(tc)
h Eλ,λ∗

[
∆(tc)g′(λµ

h)λ
µ
k

]
(23)

+ η2v
(tc)
k v

(tc)
h Eλ,λ∗

[(
∆(tc)

)2
g′(λk)g

′(λh)

]
:= fQ,kh . (24)
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Finally, taking the infinite dimensional limit of the second Eq. 11, we find the ODE for the readout:497

dv
(t)
k

dα
= −η Eλ,λ∗

[
∆(t)g(λk)

]
δt,tc := fV ,tk . (25)

It is useful to write this system of ODEs in a more compact form. With the shorthand notation498

Q = (vec(Q), vec(M), vec(V ))
⊤, fQ = (vec(fQ), vec(fM ), vec(fV ))

⊤, we can write499

dQ(α)

dα
= fQ (Q(α),u(α)) , α ∈ (0, αF ] . (26)

The initial condition for Q(0) is chosen to reproduce the random initialisation of the SGD algorithm.500

In particular, the initial first-layer weights and readout weights are drawn i.i.d. from a normal501

distribution with variances of 10−3 and 10−2, respectively.502

It is useful to write explicit expressions for the integrals involved in fQ [31]. First, expanding the503

terms in ∆(t), we can write504

fQ,kh = −ηv
(tc)
k

[
K∑

n=1

v(tc)n I3(n, k, h)− I3(tc, k, h)

]

− ηv
(tc)
h

[
K∑

n=1

v(tc)n I3(n, h, k)− I3(tc, h, k)

]

+ η2v
(tc)
k v

(tc)
h

[
K∑

n,m=1

v(tc)n v(tc)m I4(n,m, k, h) + I4(tc, tc, k, h)

−2

K∑
n=1

v(tc)n I4(n, tc, k, h)

]
, (27)

505

fM ,kt = −ηv
(tc)
k

K∑
n=1

v(tc)n I3(n, k, t) + ηv
(tc)
k I3(tc, k, t) , (28)

506

fV ,tk = η

[
−

K∑
n=1

v(tc)n I2(k, n) + I2(k, tc)

]
δt,tc . (29)

Similarly as in Eq. 16, we adopt the unified notation for the integrals507

I3(β, ρ, ζ) := Eλ,λ∗

[
λβg

′
ρ(λρ)g(λζ)

]
,

I4(β, ρ, ζ, τ) := Eλ,λ∗

[
gβ(λβ)gρ(λρ)g

′
ζ(λζ)g

′
τ (λτ )

]
,

(30)

where β, ρ, ζ, τ can refer both to the indices of the student weights k, h, n,m or the tasks t, tc. In the508

special case g(z) = g∗(z) = erf(z/
√
2), the integrals have explicit expressions as a function of the509

overlaps510

I3(β, ρ, ζ) =
2qρζ(1 + qββ)− 2qβρqβζ

π
√
Λ3(1 + qββ)

,

I4(β, ρ, ζ, τ) =
4

π2
√
Λ4

arcsin
Λ0√
Λ1Λ2

,

(31)

the symbol q denotes generically an overlap from Eq. 13, and511

Λ0 = Λ4 qβρ − qβτ qρτ (1 + qζζ)− qβζ qρζ (1 + qττ ) + qζτ qβζ qρτ + qζτ qρζ qβτ ,

Λ1 = Λ4 (1 + qββ)− q2βτ (1 + qζζ)− q2βζ (1 + qττ ) + 2qζτqβζ qβτ ,

Λ2 = Λ4 (1 + qρρ)− q2ρτ (1 + qζζ)− q2ρζ (1 + qττ ) + 2qζτqρζqρτ ,

Λ3 = (1 + qββ)(1 + qρρ)− q2βρ ,

Λ4 = (1 + qζζ) (1 + qττ )− q2ζτ .

(32)
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B.3 Informal derivation of Pontryagin maximum principle512

Let us consider the augmented cost function513

F [Q, Q̂,u] = h (Q(αF )) +

∫ αF

0

dα Q̂(α)⊤
[
−dQ(α)

dα
+ fQ (Q(α),u(α))

]
, (33)

where the conjugate variables Q̂(α) act as Lagrange multipliers, enforcing the dynamics at time α.514

Setting to zero variations with respect to Q̂(α) results in the forward dynamics515

δF [Q, Q̂,u]

δQ̂(α)
= 0 ⇒ dQ(α)

dα
= fQ (Q(α),u(α)) . (34)

Integrating by parts, we find516

F [Q, Q̂,u] = h (Q(αF )) +

∫ αF

0

dα Q̂(α)⊤fQ (Q(α),u(α)) +

∫ αF

0

dα
dQ̂(α)

dα

⊤

Q(α) (35)

− Q̂(αF )Q(αF ) + Q̂(0)Q(0) .

Setting to zero variations with respect to Q(α) for 0 < α < αF , we find the backward dynamics517

−dQ̂(α)⊤

dα
= Q̂(α)⊤∇QfQ (Q(α),u(α)) , (36)

while for α = αF we get the final condition518

Q̂(αF ) = ∇Qh(Q(αF )) . (37)

Note that we do not consider variations with respect to Q(0) as this quantity is fixed by the initial519

condition Q(0) = Q0. Finally, minimizing the cost function with respect to the control u, we get the520

optimality condition in Eq. 8 of the main text.521

B.4 Optimal control framework522

To determine the optimal control, we iterate Eqs. 4, 7, and 8 of the main text until convergence [?523

]. Let us consider first the case where the control is the current task tc(α), such that tc(α) = t if524

the network is trained on task t ∈ {1 , . . . , T} at training time α. For simplicity, we focus on the525

case T = 2, but the following discussion is easily generalised to any T . In particular, since here526

u(α) = tc(α) the evolution equation 4 can be written as527

dQ(α)

dα
= fQ (Q(α), tc(α)) , Q(0) = Q0 . (38)

Similarly, the backward dynamics reads528

−dQ̂(α)⊤

dα
= Q̂(α)⊤∇QfQ (Q(α), tc(α)) , (39)

with final condition529

Q̂(αF ) =
1

2
∇Qε1(Q(αF )) +

1

2
∇Qε2(Q(αF )) . (40)

The optimality equation 8 yields530

t∗c(α) = argmin
tc∈{1,2}

{
Q̂(α)⊤fQ (Q(α), tc(α) = tc)

}
. (41)

Therefore, we find the explicit formula for the optimal task protocol531

t∗c(α) =

{
1 if Q̂(α)⊤ [fQ (Q(α), tc(α) = 2)− fQ (Q(α), tc(α) = 1)] > 0

2 otherwise.
(42)

Then, we start from a guess for the control variable tc(α). We integrate Eq. 38 forward, obtaining532

the trajectory Q(α) for α ∈ (0, αF ). Then, we integrate the backward equation 39, starting from the533

final condition 40, obtaining the trajectory Q̂(α) for α ∈ (0, αF ). Then, the control variable can be534
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updated using Eq. 42 and used in the next iteration of the algorithm. These equations 38, 39, and 42535

are iterated until convergence.536

We next consider the joint optimisation of the learning rate schedule η(α) and the task protocol tc(α).537

The optimality condition 8 can be written as538

(t∗c(α), η(α)) = argmin
tc∈{1,2},η∈R+

{
Q̂(α)⊤fQ (Q(α), (tc(α), η(α)) = (tc, η))

}
. (43)

Crucially, the function Q̂⊤fQ(Q, (tc, η)) turns out to be quadratic in η. Explicitly,539

Q̂⊤fQ(Q, (tc, η)) = aη2 + bη , (44)

where540

a =

K∑
k,h=1

Q̂khv
(tc)
k v

(tc)
h

[
K∑

n,m=1

v(tc)n v(tc)m I4(n,m, k, h) + I4(tc, tc, k, h) (45)

−2

K∑
n=1

v(tc)n I4(n, tc, k, h)

]
,

and541

b = −
K∑

k,h=1

Q̂kh

{
v
(tc)
k

[
K∑

n=1

v(tc)n I3(n, k, h)− I3(tc, k, h)

]
(46)

+ v
(tc)
h

[
K∑

n=1

v(tc)n I3(n, h, k)− I3(tc, h, k)

]}

−
K∑

k=1

T∑
t=1

M̂kt

[
v
(tc)
k

K∑
n=1

v(tc)n I3(n, k, t)− v
(tc)
k I3(tc, k, t)

]

+

K∑
k=1

v̂
(tc)
k

[
−

K∑
n=1

v(tc)n I2(k, n) + I2(k, tc)

]
.

Performing the minimization over η first, we obtain542

η∗(α, tc) = − b

2a
. (47)

The minimisation over tc yields543

t∗c(α) =

{
1 if Q̂(α)⊤ [fQ (Q(α), (1, η∗(α, 1)))− fQ (Q(α), (2, η∗(α, 2)))] > 0

2 otherwise.
(48)

and hence544

η∗(α) = η∗(α, t∗c(α)) . (49)
Interestingly, we observe that the learning rate schedule has a different functional form depending on545

the current task tc. This can be seen in Fig. 3 where the learning rate switches between two different546

schedules depending on the current task tc.547

C Readout layer convergence properties548

In this appendix, we examine the asymptotic behaviour of the readout layer weights during the549

late stages of training. Once the two hidden neurons have specialised—each aligning with one550

of the teacher vectors—we expect the readout weights corresponding to the incorrect teacher to551

be suppressed. Specifically, if w1 = w
(1)
∗ and w2 = w

(2)
∗ , the learning dynamics should drive552

the readout weights v(1) = (v
(1)
1 , v

(1)
2 )⊤ and v(2) = (v

(2)
1 , v

(2)
2 )⊤ towards v(1) = (1, 0)⊤ and553

v(2) = (0, 1)⊤, representing full recovery of the teacher network. As shown in Fig. 7 of Appendix554

D, the time required to suppress the off-diagonal weights v(1)2 and v
(2)
1 increases as γ → 1. This is555
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intuitive, as higher task similarity γ reduces the distinction between tasks, slowing the suppression of556

the off-diagonal weights. In what follows, we derive analytically the convergence timescale αconv of557

the readout layer as a function of the task similarity γ and the learning rate η. As in the main text,558

we consider the case K = T = 2. From the overlap trajectories in Fig. 7 for γ > 0.3, we observe559

that the cosine similarity quickly approaches unity, i.e., |Mkt|/
√
Qkk ≈ δkt, which corresponds to560

perfect feature recovery. Therefore, the decrease in performance for γ > 0.3 seen in Fig. 2 must561

be attributed to the dynamics of the second layer. Indeed, in Fig. 7, we observe a slowdown in the562

readout dynamics as γ → 1.563

Assuming perfect convergence of the feature layer to w1 = w
(1)
∗ and w2 = w

(2)
∗ , we consider the564

dynamics of the readout layer while training on task t = 1. We expect the corresponding readout565

layer to converge to the specialised configuration v(1) = (v
(1)
1 , v

(1)
2 ) = (1, 0)⊤ and we would like to566

compute the convergence rate as a function of γ. The dynamics of the readout layer reads567

dv
(1)
1

dα
= η

[
1

3
(1− v

(1)
1 )− 2

π
arcsin

(γ
2

)
v
(1)
2

]
, (50)

dv
(1)
2

dα
= η

[
2

π
arcsin

(γ
2

)
(1− v

(1)
1 )− 1

3
v
(1)
2

]
,

which can be rewritten as568

d

dα

(
1− v

(1)
1

v
(1)
2

)
= ηA

(
1− v

(1)
1

v
(1)
2

)
, (51)

where569

A =

[
−1/3 a
a −1/3

]
, (52)

and a = 2arcsin (γ/2) /π. Note that a < 1/3 for 0 < γ < 1, hence A is negative definite, implying570

convergence to v(1) = (1, 0)⊤. The rate of convergence is determined by the smallest eigenvalue (in571

absolute value): a− 1/3. The associated convergence timescale is therefore572

αconv =
3π

η(π − 6 arcsin (γ/2))
. (53)

This timescale is a monotonically increasing function of γ and diverges as γ → 1 with αconv ≈573 √
3π/(2η(1− γ)). This result explains the performance decrease of the optimal strategy as γ → 1.574

In summary, the performance decrease for γ → 0 is due to the first-layer weights, while for γ → 1 it575

is related to the readout weights.576

D Supplementary figures577

Fig. 7 describes the dynamics of the optimal replay strategy for different values of task similarity in578

the same setting as Fig. 2 of the main text. In particular, the upper panel displays the evolution of579

the magnitude of the readout weights |v(t)k |, while the lower panel shows the trajectory of the cosine580

similarity |Mkt|/
√
Qkk.581

Fig. 8 compares the values of the loss at the end of training, averaged on both tasks, for different582

task-selection strategies. In particular, it highlights the performance gap between the four replay583

strategies at constant learning rate considered in the main text (no-replay, interleaved, optimal and584

pseudo-optimal) and the strategy that simultaneously optimise over task-selection and learning rate.585
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Figure 6: Pictorial representation of the continual learning task in the teacher-student setting.
A “student” network is trained on i.i.d. inputs from two teacher networks, defining two different
tasks (panel a). The student has sufficient capacity to learn both tasks. However, sequential training
results in catastrophic forgetting, where the performance on a previously learned task significantly
deteriorates when a new task is introduced (panel b). Parameters: K = T = 2.

| v
(t) k

|
| M

kt
|

Q
kk

  epoch / input dimensionα =  α  α  α

γ = 0.1 γ = 0.3 γ = 0.6 γ = 0.9

Figure 7: Overlap dynamics with optimal replay. We plot the absolute value of the task-dependent
readout weights |v(t)k | (upper panel) and the cosine similarity |Mkt|/

√
Qkk as a function of the

training time α. Different columns refer to different choices of task similarity γ = 0.1, 0.3, 0.6, 0.9.
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Figure 8: Adopting an optimal learning rate schedule leads to major perfomance improvement.
Average loss on both tasks at the end of the second training phase as a function of task similarity γ
under the same setting and parameters as Fig. 2 of the main text. The top four lines correspond to
different strategies at constant learning rate η = 1: no replay (purple crosses), optimal replay (red
dots), interleaved (blue squares), pseudo-optimal replay (cyan dashed line). The bottom curve (brown
plus signs) corresponds to jointly optimal replay and learning rate schedules (see Fig. 3).
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