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Abstract

Computer Adaptive Testing (CAT) aims to accurately estimate an individual’s ability using
only a subset of an Item Response Theory (IRT) instrument. A secondary goal is to ensure
diverse item exposure across di�erent testing sessions, preventing any single item from being
over or underutilized. In CAT, items are selected sequentially based on a running estimate
of a respondent’s ability. Prior methods almost universally see item selection through an
optimization lens, motivating greedy item selection procedures. While e�cient, these meth-
ods tend to have poor item exposure. Existing stochastic methods for item selection are
ad-hoc, where item sampling weights lack theoretical justification. In this manuscript, we
formulate CAT as a Bayesian model averaging problem. At each step, we sample the next
item in a manner where the Frequentist item sampling statistics correspond to Bayesian
model averaging in the space of next-item ability estimates. This view of the CAT item
selection problem also defines the natural criterion of the ability discrepancy: the KL di-
vergence between the unknown next-item ability estimate and the unknown true full item
bank ability estimate. We tested our new method on the eight independent IRT models that
comprise the Work Disability Functional Assessment Battery, comparing it to prior art. We
found that our stochastic methodology had superior item exposure while not compromising
in terms of test accuracy and e�ciency.

1 Introduction

The combination of Item Response Theory (IRT) and Computer Adaptive Testing (CAT) forms the dominant
methodology backing the use of exams for ability assessment. High profile examples of this pairing include the
Graduate Management Admission Test (GMAT) (Kingston et al., 1985; Rudner, 2010), the nursing National
Council Licensure Examination (NCLEX) (Woo & Dragan, 2012), the National Registry of Emergency
Medical Technicians (NREMT) (Ventura et al., 2021), and the Armed Services Vocational Aptitude Battery
(ASVAB) (Segall & Moreno, 1999). IRT/CAT also features in many healthcare contexts because of its
adaptation in Patient Reported Outcomes Measurement Information System (PROMIS) instruments (Cella
et al., 2007; 2010; Segawa et al., 2020) that are widely used in FDA-regulated trials.

1.1 Item Response Theory (IRT)

IRT, a generative latent-variable modeling framework, models how a respondent of a given ability might
respond to to each item in a testing bank. In IRT, an ability (canonically denoted ◊) is a theoretically
continuous valued parameter (Bock et al., 1997; Immekus et al., 2019; Böckenholt & Meiser, 2017). The
initial step for developing an IRT model involves creating a large pool of items that are topically grounded in a
construct being measured. These items are then administered to a sizable and diverse sample of respondents,
producing a dataset of item responses for model calibration. In the process of fitting an IRT model to the
set of item responses, each item’s specific parameters are determined (Kieftenbeld & Natesan, 2012; Luo &
Jiao, 2018; Bürkner, 2021; Lord, 1983; Natesan, 2011; Natesan et al., 2016). Self-consistently, the ability for
each of the respondents is also determined. Due to this coupling, the ability statistics for the calibration
sample encode into the item-specific parameters, a fact made explicit by their relationship between IRT

1



Under review as submission to TMLR

and probabilistic autoencoders (Converse et al., 2019; Chang et al., 2019; 2023). Fundamentally, IRT maps
each respondent’s set of discrete item responses to a lower (usually single) dimensional latent space. In this
manner, IRT models, like autoencoders, are nonlinear factorization models (Chang et al., 2021).

The goal of IRT is to apply such pre-trained models to new respondents, ranking them relative to the
respondents used in model calibration. To do so, item parameters from calibration are held fixed and new
responses for a given respondent are scored by solving an associated inverse problem for the ability parameter.

The possibly large item bank developed for the IRT model ideally has content coverage throughout the entire
range of possible abilities. Administering a large item bank is burdensome for all parties involved. In the
vicinity of any fixed ability parameter, however, the number of items is relatively small. CAT exploits this
fact.

1.2 Computer Adaptive Testing (CAT)

The goal of computer adaptive testing (CAT) is to e�ciently and accurately estimate a respondent’s ability
by using only the most relevant questions from a possibly large item battery. This selection is performed
sequentially based on a running estimate of the respondent’s ability. Selection methods mainly di�er on
the specific statistical objective being optimized. Generally, individual items are judged based on some
measure of the degree to which they may improve the fidelity of the respondent’s ability estimate. Most
commonly, items are chosen greedily – while e�cient, this type of selection procedure has the pitfall of poor
item exposure.

Item exposure refers to the rate at which individual items in a testing bank are presented across multiple
administrations. When exposure is poor, the e�ective instrument administered by the CAT is a limited
subset of the items in the original bank. In unison with commonly-used improper scoring rules, this condition
biases the resulting ability estimates. Having a small number of e�ective items also implies stereotypical
item trajectories, making such instruments easier to game.

CAT methodologies select items based on a running estimate of a test-taker’s ability. However, this estimate
is unreliable at the beginning of the test, which in turn makes the statistical measures used to compare items
noisy. For this reason, simply choosing the item that appears statistically best (a "greedy" approach) may
not be ideal. A more e�ective strategy may be to hedge, selecting items that are useful across a wider range
of potential ability levels.

In this manuscript we provide a methodology for hedging that is based on viewing item selection as a model
selection problem. Each item implies a di�erent model for the respondent’s ability at the next step of the
test. As a consequence of viewing the problem through these lens, we both motivate a new item selection
criterion based on the information theoretic ability model discrepancy, and a stochastic selection procedure
where the Frequentist statistics of item probabilities correspond to Bayesian model averaging statistics of
the item-wise implied ability estimates.

1.3 Work Disability Functional Assessment Battery (WD-FAB)

As concrete tests of our methodology we used the eight independent IRT models, and their associated item
banks, present in the WD-FAB (Meterko et al., 2015; Marfeo et al., 2016; 2019; Chang et al., 2022; Marfeo
et al., 2018; Jette et al., 2019; Porcino et al., 2018). The WD-FAB characterizes whole body and mental
function across four physical instruments and four mental instruments. The item banks consist of questions
that ask about a range of everyday activities, such as emptying a dishwasher, walking a block, turning a
door knob, speaking to someone on the phone, and managing under stress. Accepted responses were graded
on either four or five option ordinal Likert scales.

The intended use of this instrument is to provide standardized and reliable information about an individual’s
functional abilities to help inform SSA’s disability adjudication process. The WD-FAB provides eight scores
across two domains of physical and mental function that are relevant to a person’s ability to work.

As an application where item exposure is important, the eight independent models that comprise the WD-
FAB are an ideal testing ground for our methodology.
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2 Preliminaries

Suppose that one has developed a test bank consisting of Nitems items, of a given ordering, and used a set
of responses to these items in order to calibrate an IRT model. The IRT model implies that a person of
ability ◊ is expected to respond to the i-th item according to the probability mass function pi(k|◊). For
generality, we assume that the IRT model is polytomous so that there are Nlevels possible responses to each
item. If a fully Bayesian approach was used in calibration, then pi can be the marginal probability mass
found by integrating out the posterior item specific parameters. Otherwise, it is the probability mass implied
by point estimates of the item specific parameters. For a given individual, knowing all of their responses
x = (x1, x2, . . . , xNitems), one may estimate the ability of the individual by computing the statistics of the
posterior distribution

fi(◊|x) Ã fi(◊)
NitemsŸ

i=1

pi(xi|◊) (1)

where the maximum likelihood estimate corresponds to using an uniform fi(◊).

The objective of a testing session is to ascertain the ability of a new respondent, e�ciently approximating
the statistics of Eq. 1. In this sense, Eq. 1 is considered the true estimate of a person’s ability. In computer
adaptive testing (CAT), items are presented sequentially to a respondent. So, it is natural to base the choice
of the next item on a combination of the current ability estimate and the properties of the ability estimate
implied by the next item. In concrete terms, at step t of a test, the items –t = (–1, –2, . . . , –t≠1, –t) have
been answered by a respondent, from which a running ability estimate is obtained. Commonly, this estimate
is based on statistics of the distribution

fĩ(◊|xt) Ã fi(◊)
tŸ

s=1

p–s(x–s |◊), (2)

where xt = (x–1 , x–2 , . . . x–t) are the observed responses at step t. Then, the choice of item –t+1 is made
conditional on this estimate. The item selector, conditional on the ability estimate, computes a given criterion
for each of the remaining Nitems ≠ t as a basis for making a decision.

2.1 Prior art

The oldest and perhaps most-popular CAT methodology is based on the principle of reducing the asymptotic
variance of the ability estimate. This method chooses the item for step t + 1, conditional on the point ability
estimate at step t, ◊̂t (commonly the expectation of Eq. 2), that has the maximum local item-wise Fisher
information

Ii(◊̂t) = ≠ ˆ2

ˆ◊2

Nlevelsÿ

k=1

wik log pi(k|◊)

-----
◊=◊̂t

. (3)

At step t the CAT is not privy to the response to the next item so Eq. 3 requires a weighted sum over the
potential responses. Typically one resolves the weights wik self-consistently using the IRT model by setting
them to wik = pi(k|◊̂t), so that they compute an expectation (Magis, 2015), though sometimes uniform
weights wik = 1/Nlevels are used. In this manuscript we will assume that the weights correspond to the
former.

The Fisher information method while computationally expedient has several known limitations. First, the
method adjudicates items conditional on the current running ability estimate. This quantity is not well-
characterized early-on in an exam. A class of slight modifications to this criterion take ability uncertainty into
account by computing an expectation of the Fisher information over a distribution of ability values (Owen,
1975; van der Linden, 1998; van der Linden & Ren, 2020; Ueno, 2013; Choi & Swartz, 2009):

Bayesian Fisher information =
⁄

fĩ(◊|xt)Ii(◊)d◊. (4)
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Information theoretic alternatives to the Fisher information are also motivated by resolving this issue, for
example the global information method of Chang & Ying (1996),

Global information = E◊

C
ÿ

k

pi(k|◊) log pi(k|◊)
pi(k|◊̂t)

D

= Exi [D (fĩ(◊|xt, xi = k) Î fĩ(◊|xt))] + Dxi [p̃
(t)

i Î pi(k|◊̂t)], (5)

where D(q(◊) Î p(◊)) = Eq(◊) log[q(◊)/p(◊)], Dx(p(x) Î q(x)) =
q

k p(k) log(p(k)/q(k)), and xi ≥ p̃(t)

i for

p̃(t)

i (k) =
⁄

pi(k|◊)fĩ(◊|xt)d◊. (6)

Other related information criteria that involve the KL divergence between the next ability estimate and the
current ability estimate also exist (Sorrel et al., 2020; Wang & Chang, 2011; Weissman, 2007; Wang et al.,
2020).

Second, the Fisher information provides an inaccurate approximation of the estimate precision when the
number of observed items is small. Instead, one may directly compute the item-specific conditional vari-
ance (van der Linden, 1998)

Bayesian variance = Var [◊|xt, –t+1 = i] . (7)

Third, greedy item selection methods have highly stereotypical item trajectories and poor item exposure.
To address this issue, explicit and complex exposure controls exist (Georgiadou et al., 2007; Han, 2018),
including by using randomness in the selection procedure Barrada et al. (2008), sampling items according
to an ad-hoc function of the item-wise local Fisher information. Implementing these methods is challenging
because they require tuning. The stochastic method for instance also relies on adaptive dampening of the
sampling probabilities.

While various prior methods target reduction of the posterior estimate variance, they do not consider whether
the posterior ability estimate is well-calibrated. Zhuang et al. (2023) introduced a gradient-based method
where they select a subset of items that most closely matches the gradient of the likelihood function at an
estimate of the true full-bank ability estimate.

2.2 Related methodologies outside of traditional CAT

CAT can be viewed as a particular application of Bayesian Optimal Experimental Design (BOED), which is
a broad framework for choosing the next experiment or measurement for learning about a system based on
maximizing a given utility (Rainforth et al., 2023). Unsurprisingly, many of the methods common to CAT
have analogues in BOED, for instance in using Bayesian information theoretic criteria (Sebastiani & Wynn,
2000; Bernardo, 1979) or Frequentist experiment/itemwise Fisher information (Smith, 1918). The most
common criterion in modern BOED is the expected information gain (EIG), and many stochastic methods
for approximating this quantity exist (Laínez-Aguirre et al., 2015; Foster et al., 2020; Zaballa & Hui, 2023;
Goda et al., 2022). However, unlike in CAT, there is not a strong motivation to use stochastic selection in
order to improve exposure for BOED experiments.

3 Methods

Our main novel theoretical contribution is that we frame the CAT through the lens of model selection/model
averaging, rather than directly as an optimization problem. At a given step t, the choice of the next item
–t+1 is analogous to choosing among Nitems ≠ t choices for the next ability estimate fĩ(◊|xt+1). If the full
bank estimate were known then we could compute the item-specific ability model discrepancy measure

D (fi(◊|x) Î fĩ(◊|xt+1)) =
⁄

fi(◊|x) log fi(◊|x)
fĩ(◊|xt+1)d◊ (8)
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and use it as the basis for item selection. In particular, information theoretic model averaging techniques
use the negative exponential of the model discrepancy to determine model weights (Akaike, 1978; Bozdogan,
1987; Dormann et al., 2018; Wagenmakers & Farrell, 2004; Yao et al., 2018). Our aim is to perform stochastic
selection using these weights. However we first address the challenge of approximating Eq. 8, acknowledging
that both distributions in the KL divergence are unknown at time t.

3.1 Plug-in estimation of the expectation of Eq. 8

Like in all CAT methods, we need to resolve our objective (Eq. 8) under incomplete observation. We
pursue the usual strategy of computing an expectation. Computing the expectation of Eq. 8 exactly requires
specifying (Nitems ≠ t) ◊ Nlevels di�erent marginal posterior distributions, each of which is challenging to
compute. In order to make the method tractable, we develop a mean field estimate of the expectation of
Eq. 8. In this estimate, we ignore the coupling between fi(◊|x) and the response to the next item, plugging
in the expectation of fi(◊|x), the marginal posterior,

fi(◊|xt) = Eztfi(◊, zt|xt), (9)

into Eq. 8. In Eq. 9, zt are the responses that have not yet been observed at step t. Still, the expectation
in Eq. 9 is intractable. Fortunately, this expectation is amenable to Variational Bayesian Expectation
Maximization (VBEM).

VBEM (Bernardo et al., 2003) allows us to iteratively approximate Eq. 9, producing a sequence of estimates
q(0)

◊ , q(1)

◊ , q(2)

◊ , . . . that obey the descent property of the Majorization Minimization (MM) algorithm (Lange
et al., 2000; de Leeuw & Lange, 2006; Lange et al., 2021; Wu & Lange, 2010) so that D(q(m+1)

◊ Î fi(◊|xt)) Æ
D(q(m)

◊ Î fi(◊|xt)). Based on q(m)

◊ , one can easily compute a corresponding set of response probabilities for
all unobserved items. The VBEM update equations have the explicit form

log q(m+1)

zt,j (k) = const(m+1)

j +
⁄

log pj(k|◊)q(m)

◊ (◊)d◊ (10)

log q(m+1)

◊ (◊) = const(m+1) + log fi(◊) +
ÿ

jœ–t

log pj(xj |◊) +
ÿ

j ”œ–t

ÿ

k

q(m+1)

zt,j (k) log pj(k|◊). (11)

Then, after some number of EM iterations M, we can compute the plug-in criterion

�(i)
t =

ÿ

k

q(M)

zt,i (k)D
1

q(M)

◊ (◊) Î fĩ(◊|xt, xi = k)
2

, (12)

where D is the KL divergence. Technically, Eq. 9, rather than the commonly-used Eq. 2, is the best estimate
of the ability at step t, an observation that we will save for the Discussion.

3.2 Stochastic item selector

It is our desire to hedge in the choice of the next item with frequency statistics that imply Bayesian model
averaging (Hinne et al., 2020; Hoeting et al., 1999) of the corresponding per-item ability estimates. To do
so, we draw the next item i ”œ –t, according to

–t+1 ≥ Categorical(wt) w(i)
t =

exp
1

≠�(i)
t

2

ÿ

j ”œ–t

exp
1

≠�(j)

t

2 , (13)

where the categorical distribution is defined over the Nitems ≠ t items that have not yet been administered
at time step t.
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3.3 Relationship to cross validation

We can rewrite the discrepancy (Eq. 8) to remove the explicit dependence on fĩ,

D (fi(◊|x) Î fĩ(◊|xt+1)) =
⁄

fi(◊|x) log p̃(t)

i (xt+1)fi(◊|x)
pi(xt+1|◊)fĩt(◊|xt)

d◊

=
⁄

fi(◊|x) log p̃(t)

i (xt+1)
pi(xt+1|◊)d◊ + D(fi(◊|x) Î fĩ(◊|xt)) (14)

where
p̃(t)

i (k) =
⁄

pi(k|◊)fĩ(◊|xt)d◊,

and note that while the second term in the last line of Eq. 14 depends on the response for the next item, it
does not depend on the choice of the next item. We can then relate the discrepancy to leave one out (LOO)
cross validation, expanding the first term in Eq. 14

D (fi(◊|x) Î fĩ(◊|xt+1)) = D(fi(◊|x) Î fĩ(◊|xt)) +
⁄

fi(◊|x) log p̃(t)

i (xi)fi(◊|x)
fi(◊|x)pi(xi|◊)d◊

= D(fi(◊|x) Î fĩ(◊|xt)) + S[fi(◊|x)] ≠ D(fi(◊|x) Î fĩ(◊|x \ {xi})) + log p̃(t)

i (xi)
p̃LOO

i (xi)
(15)

where, fĩ(◊|x \ {xi}), the ability estimate when leaving out xi follows Bayes rule, pi(xi|◊)fĩ(◊|x \ {xi}) =
fi(◊|x)p̃LOO

i (xi) and p̃LOO

i (xi) =
s

p(xi|◊)fĩ(◊|x \ {xi})d◊ is the corresponding LOO mass function for item
i. In this representation, only the last two terms in Eq. 15 depend on the item choice. So in minimizing the
discrepancy, one is also selecting the item that if left out would yield the biggest discrepancy.

3.4 Numerical implementation

We coded two independent implementations of our methodology as applied to the Graded Response Model:
one in Python (redacted) and one in Golang (redacted). Within our implementation we approximated all
integrals using trapezoid approximations with 200 equally spaced grid points. We used M = 5 iterations to
approximate the marginal posterior distributions (Eq. 11).

4 Results

In producing the following results, for each scale, we simulated item responses for 500 respondents for each
true underlying ability of ◊ œ {≠3, ≠2.5, ≠2, . . . , 2.5, 3}. Then we put each respondent’s item responses
through each CAT item selection method, obtaining ability estimates at given test lengths. The methods
evaluated are greedy selection via the Fisher Information (Eq. 3), Bayesian Fisher information (Eq. 4), Global
information (Eq. 5), Bayesian variance (Eq. 7), ability estimate discrepancy (Eq. 12), and our stochastic
selection method (Eq. 13). Finally, we also computed ability estimates for each simulated respondent based
on all of their item responses. In the main text we report on only the four mental scales of the WD-FAB.
Please see the Supplement Results for the corresponding physical scale results.

4.1 Testing error

Figures 1, 2 and 3 provide di�erent measures of ability estimation error in the context of computer adaptive
testing. Fig. 1 displays values of the discrepancy (Eq. 8) conditional on the scale, item selection method, test
length at stopping (5, 10, 20, 30, 40 items), and true fixed ability used in simulating CAT responses. Using
the Fisher information and global information selectors, there are some situations in which the discrepancy
increases as the test length increases for an intermediate range of test lengths before dropping. On the
other hand, the Bayesian variance and the methods based on our criterion (Eq. 12) reliably decrease the
discrepancy as the test length increases. Failure to decrease this discrepancy suggests that a selection
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Figure 1: Ability estimate discrepancy D(fi(◊|x) Î fĩ(◊|xt)) (mean and middle 80% interval) conditional
on score ◊ used to generate response sets, by scale, item selection method, and test length t, for mental
function scales of the WD-FAB. Lower is better.

procedure generates item subsets that provide inaccurate ability estimates when used as whole-distribution
A/B comparisons between individuals because those estimates are ill-calibrated.
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Figure 2: Error in means (
s

◊fĩ(◊|xt)d◊ ≠
s

◊fi(◊|x)d◊) (mean and middle 80% interval) conditional on
true score ◊ by scale, item selection method, and test length t, for mental function scales of the WD-FAB.

In many CAT/IRT based instruments, the mean ability is used in order to characterize a respondent. Fig. 2
presents statistics of the mean ability error (mean and middle 80% coverage) across the di�erent simulation
configurations. In Fig. 3, we provide statistics of the absolute value of this error across simulations.

The error distributions are highly variable across these attributes. Generally, the magnitude of the error
decreased as the test length increased. For most scales, there is a region of abilities for which all item
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Figure 3: Absolute error in means (|
s

◊fĩ(◊|xt)d◊ ≠
s

◊fi(◊|x)d◊|) (mean and middle 80% interval)
conditional on true score ◊ by scale, item selection method, and test length t, for mental function scales of
the WD-FAB. Lower is better.

selectors produced small errors. No single selection method had the lowest errors in all situations, though
generally the stochastic selector performed most-consistently well.

Often, the posterior variance is used to define a cuto� for a CAT stopping rule. The standard deviation
of the posterior ability estimates is presented in Fig. 4 for the di�erent simulation configurations. In these
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Figure 4: Standard deviation of ability estimates (


Vart(◊) (mean and middle 80% percentile) condi-
tional on true score ◊ by scale and item selection method, for mental function scales of the WD-FAB. Used
as stopping criteria for CAT. Lower is better.
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simulations, it is clear that the two Fisher methods and the global information method provide the lowest
posterior ability standard deviations. However, in light of Figures 1, 2, 3, it is clear that these ability
estimates are ill-calibrated. They are terminating quicker than they should and settling on sub-optimal
ability estimates.

4.2 Item exposure
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Figure 5: Item exposure statistics (mean and middle 80% interval), for each of the given item selection
methods across a given number of CAT sessions, for mental function scales of the WD-FAB. The dashed line
represents the maximum possible exposure per scale. Higher is better.

Fig. 5 compares the di�erent item selection methods on the basis of item exposure across sessions (with 12
items presented per scale) with randomly distributed abilities. In this figure, for each simulation configura-
tion, we counted the number of unique items seen for each scale across replications of the given number of
CAT sessions. For example, for the scale “ME,” we estimate that in each set of 32 sessions approximately 22
items are exposed on average, though with wide variance. As the number of sessions increases, the number of
exposed items increases. Of the greedy methods, the Bayesian variance method has the best item exposure.
For some scales, the Bayesian variance method performed almost as well as the best selection method, the
stochastic selector based on Eq. 13. The stochastic selector successfully exposed all items for all scales in all
the scenarios tested.

5 Discussion

In this manuscript we have introduced stochastic selection for CAT where the frequency statistics of the next
item correspond to Bayesian model averaging of corresponding discrepancy weighted next item-wise ability
estimates. In formulating our method we identified the ability discrepancy (the KL divergence between the
next item ability estimate and the full bank true ability estimate) as a selection criterion. We provided a
computationally expedient plugin version of our criterion based on variational Bayesian expectation maxi-
mization. Using simulations of the new selector (and other selectors for comparison), on the WD-FAB, we
found our new stochastic selector to have both superior item exposure properties while not compromising in
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terms of accuracy. Additionally, the simulations showed that unlike the Fisher information methods, the new
selection methods (whether greedy or stochastic) are not over-confident in estimating scoring error. This
fact implies that the new methods are less likely to settle on a poor ability estimate. Beyond characterizing
a point estimate for ability, using the discrepancy as a criterion optimizes the whole-distribution ability esti-
mate, which implies more-accurate A/B tests when comparing scores between di�erent respondents. Finally,
the computationally expensive portion of our overall approach is in computing the marginal posterior ability
estimate. As we will discuss, this quantity is the true ability estimate at step t and should be computed and
used in all other selection methods. For this reason, our criterion is of similar computational complexity to
the other Bayesian criterion mentioned in this manuscript.

5.1 What should the ability estimate be at step t?

In formulating our method, we assume that one is using a scoring methodology similar to what is commonly
used in the literature – using the likelihood of the items observed up to step t. Recall that we call the
posterior ability estimate obtained by this method fĩ(◊|xt), making a distinction between this quantity and
fi(◊|xt), the marginal posterior ability at step t. The latter estimate di�ers from the former in that it also
accounts for the fact that the Nitems ≠ t unobserved items at time t will also impact the final ability estimate.
The latter is a better estimate of the ability because it is consistent with both the observed and unobserved
items being drawn from the same underlying conditional distribution. For this reason, it should also be used
in all selection methods in place of fĩ when taking expectations over unknown responses and in both the
running and final score estimates. In a follow-up to this manuscript, we will elaborate on this point.

5.2 Why ensembling?

Focusing on e�ciency, there are reasons to think why randomization in CAT would be sub-optimal. If the
objective is to optimize a given criterion, then not always choosing the exact optimal item would seem to
result in a less e�cient CAT. As we have shown for the WD-FAB, this assumption did not hold. On the
other hand, there are at least a couple a-priori explanations in support of our findings. First, in the context
of prediction, Le & Clarke (2022) has shown that model averaging is asymptotically better than model
selection. Second, each criterion requires resolving unknown future responses. Since the true ability of the
respondent is unknown, the statistics of these responses is unknown. However, our method uses the correct
item response probabilities in computing the expectation in Eq. 12.

5.3 Limitations and extensions

In using the variational Bayesian EM estimates for the marginal item probability mass functions in order
to compute the item-wise expectations of Eq. 12, we are using the optimal item probabilities provided by
the given IRT model. However, one may also be able to improve the accuracy of this expectation by using
di�erent IRT models that are more-tuned to accuracy than interpretability (Chang et al., 2019; 2023), so
long as one accounts for unobserved items.

The estimate of the criterion of Eq. 8 in the form of the the mean field plugin estimator in Eq. 12 trades
accuracy for computational e�ciency. One could more-accurately compute this expectation by developing a
version of Eq. 12 that preserves the coupling between fi(◊|x) and the response to the next item.

This work was focused on improving the assessment of the WD-FAB, a factorized multidimensional IRT
model. We found generally, across all scales (dimensions) that our model ensembling stochastic selector
outperformed the other commonly used selection methods that we tested. Your mileage my vary when
trying these methods with other instruments.

While we formulate our methodology assuming a multidimensional ability parameter ◊, it would likely take
additional work in order to adapt this method to non-factorized multidimensional instruments. Additional
controls might be needed in order to balance out the administration of the di�erent scales for instance.
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