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Abstract

Scaling laws are useful guides for derisking expensive training runs, as they predict1

performance of large models using cheaper, small-scale experiments. However,2

there remain gaps between current scaling studies and how language models are3

ultimately trained and evaluated. For instance, scaling is usually studied in the4

compute-optimal training regime (i.e., “Chinchilla optimal” regime). In contrast,5

models are often over-trained to reduce inference costs. Moreover, scaling laws6

mostly predict loss on next-token prediction, but models are usually compared on7

downstream task performance. To address both shortcomings, we create a testbed8

of 104 models with 0.011B to 6.9B parameters trained with various numbers of9

tokens on three data distributions. First, we fit scaling laws that extrapolate in both10

the amount of over-training and the number of model parameters. This enables us11

to predict the validation loss of a 1.4B parameter, 900B token run (i.e., 32× over-12

trained) and a 6.9B parameter, 138B token run (i.e., a compute-optimal run)—each13

from experiments that take 300× less compute. Second, we relate the perplexity of14

a language model to its downstream task performance by proposing a power law.15

We use this law to predict top-1 error averaged over downstream tasks for the two16

aforementioned models, using experiments that take 20× less compute.17

1 Introduction18

Training large language models is expensive. Furthermore, training high-quality models requires a19

complex recipe of algorithmic techniques and training data. To reduce the cost of finding successful20

training recipes, researchers first evaluate ideas with small experiments and then extrapolate their21

efficacy to larger model and data regimes via scaling laws. With reliable extrapolation, it is possible22

to quickly iterate at small scale and still pick the method that will perform best for the final large23

training run. Indeed, this workflow has become commonplace for training state-of-the-art language24

models like Chinchilla 70B [45], PaLM 540B [19], GPT-4 [76], and many others.25

Despite their importance for model development, published scaling laws differ from the goals of26

training state-of-the-art models in important ways. For instance, scaling studies usually focus on the27

compute-optimal training regime (“Chinchilla optimality” [45]), where model and dataset size are set28

to yield minimum loss for a given compute budget. However, this setting ignores inference costs.29

As larger models are more expensive at inference, it is now common practice to over-train smaller30

models [113]. Another potential mismatch is that most scaling laws quantify model performance by31

perplexity in next-token prediction instead of accuracy on widely used benchmark datasets. However,32

practitioners usually turn to benchmark performance, not loss, to compare models.33

In this paper, we conduct an extensive set of experiments to address both scaling in the over-trained34

regime and benchmark performance prediction.35
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Figure 1: Reliable scaling with over-training and on downstream error prediction. (left) We fit
a scaling law for model validation loss, parameterized by (i) a token multiplier M = N/D, which
is the ratio of training tokens D to parameters N and (ii) the compute C in FLOPs used to train a
model, approximated by C = 6ND. Larger values of M specify more over-training. We are able
to extrapolate, in both N and M , the validation performance of models requiring more than 300×
the training compute used to construct the scaling law. (right) We also fit a scaling law to predict
average downstream top-1 error as a function of validation loss. We find that fitting scaling laws
for downstream error benefits from using more expensive models when compared to fitting for loss
prediction. We predict the average error over 17 downstream tasks for models trained with over 20×
the compute. For this figure, we train all models on RedPajama [112].

Motivated by the practice of training beyond compute-optimality, we first investigate whether scaling36

follows reliable trends in the over-trained regime. We notice, as implied by Hoffmann et al. [45], for a37

set of models of different sizes trained with a constant ratio of tokens to parameters, models’ reducible38

loss L′ [43, 45] follows a power law (L′ = λ · C−η) in the amount of training compute C. We39

find that as one increases the ratio of tokens to parameters, corresponding to more over-training, the40

scaling exponent η remains about the same, while the scalar λ changes. We explain our observations41

by reparameterizing existing scaling laws in relation to the amount of over-training.42

To establish empirically that scaling extrapolates in the over-trained regime, we further experiment43

with a testbed of 104 models, trained from scratch on three different datasets: C4 [88, 27],44

RedPajama [112], and RefinedWeb [82]. We find that scaling laws fit to small models can accurately45

predict the performance of larger models that undergo more over-training. Figure 1 (left) illustrates our46

main over-training result, where we invest 2.4e19 FLOPs to extrapolate the C4 validation performance47

of a 1.4B parameter model trained on 900B tokens, which requires 300× more compute to train.48

In addition to over-training, we also investigate if scaling laws can predict the performance of a49

model on downstream tasks. We establish a power law relationship between language modeling50

perplexity and the average top-1 error on a suite of downstream tasks. While it can be difficult to51

predict the error on individual tasks, we find it possible to predict aggregate performance from a52

model’s perplexity among models trained on the same training data. Figure 1 (right) presents our53

main downstream error prediction result, where we invest 2.7e20 FLOPs to predict the average top-154

error over a set of downstream tasks to within 1 percentage point for a 6.9B compute-optimal model,55

which requires 20× more compute to train.56

Our results suggest that the proposed scaling laws are promising to derisk (i) the effects of over-57

training models and (ii) the downstream performance of scaling up training recipes. To facilitate58

further research on reliable scaling, we will release all experiments and models.59

2 Developing scaling laws for over-training and downstream tasks60

In this section, we develop scaling laws to predict over-trained and downstream performance. First,61

we provide key definitions (Section 2.1). We next present a scaling law for over-training drawing on62

empirical observation and prior work (Section 2.2). To connect loss scaling and downstream error63

prediction, we observe that average top-1 error decreases exponentially as a function of validation loss,64
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Figure 2: Scaling in the over-trained regime follows consistent power law exponents. We notice
parallel lines in the log-log plots of reducible loss vs. training compute for a range of token multipliers
M , which give the ratio of training tokens to model parameters. Larger M corresponds to more
over-training. For a power law giving reducible loss as a function of compute: L′(C) = λ · C−η , the
exponent η remains relatively constant resulting in lines with approximately fixed slope (Figure 17).
The scalar λ that determines the y-intercept, however, shifts with different token multipliers. This
suggests λ is a function of the token multiplier, while η is not.

which we formalize as a novel scaling law (Section 2.3). In later sections, we build an experimental65

setup (Section 3) to quantify the extent to which our scaling laws extrapolate reliably (Section 4).66

2.1 Preliminaries67

Scaling laws for loss. Typically, scaling laws predict model loss L as a function of the compute68

C in FLOPs used for training. If one increases the number of parameters N in a model or the69

number of tokens D that a model is trained on, compute requirements naturally increase. Hence, we70

assume C is a function of N,D. Following Kaplan et al. [51], we use the approximation C = 6ND,71

which Hoffmann et al. [45] independently verify. We consider,72

L(C) = E + L′(C), (1)

where E is an irreducible loss and L′ is the reducible loss. E captures the Bayes error or minimum73

possible loss achievable on the validation domain. The L′(C) term captures what can possibly be74

learned about the validation domain by training on a source domain. L′(C) should approach zero75

with increased training data and model capacity. L′(C) is often assumed to follow a power law:76

L′(C) = λ ·C−η (i.a., Hestness et al. [43], OpenAI [76]). It is also often helpful to consider a power77

law in a log-log plot, where it appears as a line with slope −η and y-intercept log (λ).78

Token multipliers. We define a token multiplier M = D/N as the ratio of training tokens to model79

parameters for notational convenience. M allows us to consider fixed relationships between D and80

N even as a model gets bigger (i.e., as N becomes larger).81

Compute-optimal training. Hoffmann et al. [45] establish compute-optimal training, where, for82

any compute budget H , the allocation of parameters and tokens is given by,83

argmin
N,D

L(N,D) s.t. C(N,D) = H. (2)

To solve for the optimal N∗, D∗, one can sweep N,D for each compute budget, retaining the84

best configurations. Hoffmann et al. [45] find that as the compute budget increases, N∗ and D∗85

scale roughly evenly. Assuming equal scaling, there is a fixed compute-optimal token multiplier86

M∗ = D∗/N∗ per training distribution.87

Over-training. We define over-training as the practice of allocating compute sub-optimally, so88

smaller models train on a disproportionately large number of tokens (i.e., M > M∗). While loss89

should be higher than in the compute-optimal allocation for a given training budget, the resulting90

models have fewer parameters and thus incur less inference cost.91

2.2 Scaling laws for over-training92

To propose a scaling law for over-trained models, we first turn to empirical observation. We train four93

model configurations with parameter counts between 0.011B and 0.411B for token multipliers M94

3
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Figure 3: Average top-1 error scales as a function of loss. We plot models trained on three datasets
and notice an exponential decay of average top-1 error as C4 eval loss, on the x-axis, decreases. We
consider on the y-axes average error on 17 evaluations where performance is at least 10 points above
random chance for at least one 0.154B scale model. These observations suggest that average top-1
error should be predictable with reliable loss estimates.

between 20 and 640, where M = 20 points lie roughly on the compute-optimal frontier, and larger95

M corresponds to more over-training. We defer experimental details to Section 3 to focus on our96

observations first. In Figure 2, we show loss against compute in a log-log plot for the models trained97

on three datasets and evaluated on the C4 eval set. We notice parallel lines when fitting power laws to98

the reducible loss, which suggests a near-constant scaling exponent even with increased over-training.99

This indicates that scaling behavior should be describable in the amount of over-training.100

In search of an analytic expression for the observations in Figure 2, we consider existing scaling101

literature. A common functional form for the risk of a model, as proposed in prior work [93, 45] is,102

L(N,D) = E +AN−α +BD−β . (3)
Recall from Section 2.1, N is the number of parameters and D the number of training tokens. The103

constants E,A, α,B, β are fit from data. By fitting this parametric form, Hoffmann et al. [45]104

find that scaling exponents α and β are roughly equal, suggesting that one should scale N and D105

equally as compute increases. Hence, we assume α = β. With this assumption, we reparameterize106

Equation (3) in terms of compute C = 6ND and a token multiplier M = D/N . We get,107

L(C,M) = E +
(
aMη + bM−η

)
C−η, (4)

where η = α/2, a = A(1/6)−η, b = B(1/6)−η gives the relation to Equation (3). For a complete108

derivation, see Appendix A.109

Equation (4) has the following interpretation: (i) The scaling exponent η is not dependent on M .110

Thus, we always expect lines with the same slope in the log-log plot—as in Figure 2. (ii) The term111

aMη + bM−η determines the offsets between curves with different token multipliers. Hence, we112

expect non-overlapping, parallel lines in the log-log plot for the range of M we consider—also113

consistent with Figure 2.114

Recall that we make the assumption α = β, which implies equal scaling of parameters and tokens115

as more compute is available. However, as explained in Appendix A, even if α ̸= β, we get a116

parameterization that implies the power-law exponent remains constant with over-training.117

2.3 Scaling laws for downstream error118

Scaling is typically studied in the context of loss [51, 45, 72], which Schaeffer et al. [100] note119

is smoother than metrics like accuracy. However, practitioners often use downstream benchmark120

accuracy as a proxy for model quality and not loss on perplexity evaluation sets. To better connect121

scaling laws and over-training to task prediction, we revisit the suite of models plotted in Figure 2. In122

Figure 3, we plot average downstream top-1 errors over evaluations sourced from LLM-Foundry [69]123

against the C4 eval loss. We defer details of the setup to Section 3 to focus here on a key observation:124

average error appears to follow exponential decay as loss decreases.125

Based on the exponential decay we observe in Figure 3, we propose the following relationship126

between downstream average top-1 error Err and loss L,127

Err(L) = ϵ− k · exp (−γL), (5)

4
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Figure 4: Search, filter, fit: A recipe for selecting configurations for scaling. (left) To generate the
final configurations presented in Table 3, we run a 435 model grid search over model width, hidden
dimension, number of attention heads, batch size, and warmup steps. All models are trained near
compute-optimally. (center) We plot the efficient frontier of models, which appear to follow a trend,
excluding models from 5.2× 1016 to 5.2× 1017, which fall below the trend. (right) We fit a power
law with irreducible error to the remaining configurations, picking four configurations that closely
track the full model suite (“Selected models”). These models extrapolate the performance of 1.4B,
6.9B target models. Shaded regions represent bootstrap 95% confidence intervals.

where ϵ, k, γ are fit from data. Equation (5) also has an interpretation in terms of model perplexity128

PP(L) = exp (L),129

Err(PP) = ϵ− k · PP−γ . (6)

Namely, Err follows a power law in PP that is bounded from above by ϵ signifying arbitrarily high130

error and from below by ϵ− k · exp(−γE), where E is the Bayes error from Equation (4).131

Equation (5) in conjunction with Equation (4) suggests a three-step method to predict Err as a function132

of compute and the amount of over-training. For choices of training and validation distributions, (i)133

fit a scaling law to Equation (4) using triplets of compute C, token multiplier M , and measured loss134

L on a validation set to yield (C,M) 7→ L. (ii) Fit a scaling law to Equation (5) using pairs of loss L135

and downstream error Err for models to get L 7→ Err. (iii) Chain predictions to get (C,M) 7→ Err.136

3 Constructing a scaling testbed137

In this section, we discuss our experimental setup to test the predictions suggested by Equations (4)138

and (5). We first present our general language modeling setup (Section 3.1). Next, we discuss our139

strategy for determining model configurations for our scaling investigation (Section 3.2) and fitting140

scaling laws (Section 3.3). We then present metrics to validate how well scaling laws predict loss and141

downstream performance (Section 3.4).142

3.1 Training setup143

We train transformers [116] for next token prediction, based on architectures like GPT-2 [85] and144

LLaMA [113]. We employ GPT-NeoX [15] as a standardized tokenizer for all data. See Appendix B145

for architecture, optimization, and hyperparameter details.146

3.2 Model configurations147

To get final configurations for the 0.011B to 0.411B parameter models plotted in Figures 2 and 3, we148

first conduct a wide grid search over a total of 435 models, trained from scratch, from 0.01B to 0.5B149

parameters (Figure 4 (left)). We train on the original OpenLM data mix [39], which largely consists150

of RedPajama [112] and The Pile [31]. While we eventually plan to over-train models, at this step151

we search for base configurations near compute-optimality. We train on 20 tokens per parameter152

(M = 20), which, in early experiments, gives models near the compute-optimal frontier. This is153

similar to findings in Hoffmann et al. [45]’s Table 3, which suggests that M = 20 is near-optimal for154

the Chinchilla experimental setup.155

5



Table 1: Default number of parameters N and token multiplier M to fit our scaling laws. We
invest ∼100 A100 hours to fit Equation (4) and ∼1,000 A100 hours to fit Equation (5).

N M Used to fit Equation (4) Used to fit Equation (5)

0.011B 20 ✓ ✓
0.079B 20 ✓ ✓
0.154B 20 ✓ ✓
0.411B 20 ✓ ✓
0.011B 320 ✓ ✓
1.4B 20 ✗ ✓

Total compute C [FLOPs] 2.4e19 2.7e20

To find maximally performant small-scale models on validation data, we tune model width, number156

of layers, number of attention heads, warmup steps, and batch size. Our validation set, OpenLM157

eval, contains tokens from recent arXiv papers, the OpenLM codebase itself, and news articles. We158

find in early experiments that qk-LayerNorm makes models less sensitive to learning rate, which159

is a phenomenon Wortsman et al. [123] report in their Figure 1. Hence, we fix the learning rate160

(3e-3) for our sweeps. We also perform smaller grid searches over 1.4B and 6.9B parameter model161

configurations at M = 20, retaining the best configurations.162

At this point, we have many models, several of which give poor performance; following prior163

work [51, 45], we want to keep only models that give best performance. Hence, in Figure 4 (center),164

we filter out models that do not lie on the Pareto frontier. While there appears to be a general trend,165

configurations between 5.2× 1016 and 5.2× 1017 FLOPs lie below the frontier established by other166

models. We hypothesize these models over-perform as they are trained for more optimization steps167

than their neighbors based on our power-of-two batch sizes. We provide support for this hypothesis168

in Appendix E, but opt to remove these models from our investigation.169

To ensure tractable compute requirements for our scaling experiments, we require a subset of models170

that follows the trend of the entire Pareto frontier. In Figure 4 (right), we fit trends to the Pareto171

models and to a subset of four models. We notice that the trends closely predict both the performance172

of the 1.4B and 6.9B models, suggesting that our small-scale configurations reliably extrapolate in173

the compute-optimal setting.174

Moving forward, we do not tune hyperparameters for other token multipliers (i.e., M ̸= 20), on175

other training or evaluation distributions, or on validation sets for downstream tasks. For more details176

including specific hyperparameters, see Appendix C.177

To create our scaling testbed, we start with the four small-scale, base configurations from our178

grid search: N ∈ {0.011B, 0.079B, 0.154B, 0.411B}. To ensure our conclusions are not particular179

to a single training distribution, we train models on each of C4 [88, 27], RedPajama [112], and180

RefinedWeb [82], which have 138B, 1.15T, and 600B tokens, respectively, for different token181

multipliers M ∈ {5, 10, 20, 40, 80, 160, 320, 640}. We omit runs that require more tokens than are182

present in a dataset (i.e., N = 0.411B,M = 640 for C4). We additionally train N = 1.4B models at183

M = 20 and at the largest token multiplier possible without repeating tokens (i.e., 80 for C4, 640 for184

RedPajama, and 320 for RefinedWeb). We train N = 6.9B,M = 20 models on each dataset given185

the relevance of 7B parameter models [113, 49]. In total this results in a testbed of 104 models.186

3.3 Fitting scaling laws187

We fit Equation (4) to approximate E, a, b, η using curve-fitting in SciPy [117] (i.e., Levenberg-188

Marquardt to minimize non-linear least squares). We repeat this process to fit Equation (5) to189

approximate ϵ, k, γ. We invest ∼100 A100 hours to train the models required to fit a scaling law for190

loss and ∼1,000 A100 hours for a corresponding law for downstream error. Unless otherwise specified,191

we fit to the N,M pairs in Table 1, which are a subset of our full testbed. Our configurations allow192

us to test for extrapolation to the N = 1.4B,M = 640 (900B token) and the N = 6.9B,M = 20193

(138B token) regimes.194
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Figure 5: Relative error on C4 eval for different training distributions. Boxes highlighted in
yellow correspond to pairs—number of parameters N , token multiplier M—used to fit Equation (4).
Larger values of M correspond to more over-training. The prediction error is low in both interpolation
and extrapolation ranges. Below N = 1.4B, empty squares correspond to runs that were not possible
due to the limited dataset size for single epoch training. At N = 1.4B we run at M = 20 and at the
largest possible multiplier. At N = 6.9B, we run at M = 20.

3.4 Evaluation setup195

Evaluation datasets. Unless otherwise stated, our default validation loss dataset is C4 eval. For196

downstream tasks, we adopt a subset from 46 tasks from LLM-foundry [69], which includes standard197

tasks with both zero-shot and few-shot evaluations. Specifically, we consider a 17-task subset where,198

for each evaluation, at least one 0.154B scale model—trained with as many as 99B tokens—gets199

10 percentage points above chance accuracy: ARC-Easy [23], BIG-bench: CS algorithms [11],200

BIG-bench: Dyck languages [11], BIG-bench: Novel Concepts [11], BIG-bench: Operators [11],201

BIG-bench: QA WikiData [11], BoolQ [21], Commonsense QA [107], COPA [92], CoQA [91],202

HellaSwag (zero-shot) [126], HellaSwag (10-shot) [126], LAMBADA [77], PIQA [14], PubMed203

QA Labeled [50], SQuAD [90], and WinoGrand [55]. For more details on evaluation datasets204

see Appendix D. We focus on this subset to ensure we are measuring signal, not noise. Including205

downstream tasks like MMLU [40], where performance is close to random chance, however, does206

not invalidate our results as we show in our evaluation set ablations (Appendix E).207

Metrics. We consider three main metrics: Validation loss, which is the cross entropy between a208

model’s output and the one-hot ground truth token, averaged over all tokens in a sequence and over209

all sequences in a dataset. Average top-1 error, which is a uniform average over the 17 downstream210

evaluations, as mentioned in the above paragraph. To measure how good a prediction ζ(C,M) is,211

we measure Relative prediction error: |ζ(C,M)− ζGT |/ζGT , where ζ is the predicted loss L or the212

average top-1 error Err. ζGT is the ground truth measurement to predict.213

4 Results: Reliable extrapolation214

In this Section, we quantify the extent to which the scaling laws developed in Section 2 extrapolate215

larger model performance using the scaling testbed from Section 3. By default, we fit Equations (4)216

and (5) to the configurations in Table 1, use C4 eval for loss, and the 17-task split from Section 3.4217

for average top-1 error.218

Over-trained performance is predictable. We highlight our main over-training results in219

Figure 1 (left). Namely, we are able to extrapolate both in the number of parameters N and the220

token multiplier M to closely predict the C4 eval performance of a 1.4B parameter model trained on221

900B RedPajama tokens (N = 1.4B,M = 640). Our prediction, which takes 300× less compute222

to construct than the final 1.4B run, is accurate to within 0.7% relative error. Additionally, for the223

N = 6.9B,M = 20 run, near compute-optimal, the relative error is also 0.7%.224

These results support several key takeaways. (i) Scaling can be predictable even when one increases225

both the model size and the amount of over-training compared to the training runs used to fit a scaling226

law. (ii) The form presented in Equation (4) is useful in practice for predicting over-trained scaling227

behavior. (iii) Fitting to Equation (4) gives good prediction accuracy near compute-optimal. More228

7



Table 2: Downstream relative prediction error at 6.9B parameters and 138B tokens. While
predicting accuracy on individual zero-shot downstream evaluations can be challenging (“Individual”),
predicting averages across downstream datasets is accurate (“Avg.”).

Individual top-1 error Avg. top-1 error

Train set ARC-E [23] LAMBADA [77] OpenBook QA [68] HellaSwag [126] 17-task split

C4 [88, 27] 28.96% 15.01% 16.80% 79.58% 0.14%
RedPajama [112] 5.21% 14.39% 8.44% 25.73% 0.05%
RefinedWeb [82] 26.06% 16.55% 1.92% 81.96% 2.94%

specifically, predictions are accurate both for the 1.4B over-trained model and the 6.7B compute-229

optimal model using a single scaling fit.230

While Figure 1 explores a specific case of making predictions in the over-trained regime, we aim to231

understand the error profile of our predictions across training datasets, token multipliers, and number232

of parameters. Hence, Figure 5 shows the relative error between ground truth loss and predicted233

loss on C4 eval for models in our testbed. We notice uniformly low prediction error suggesting that234

predictions are accurate in many settings.235

Average top-1 error is predictable. Figure 1 (right) presents our main result in estimating scaling236

laws for downstream error. Concretely, we use the models indicated in Table 1 to fit Equations (4)237

and (5), chaining the scaling fits to predict the average top-1 error as a function of training compute238

C and the token multiplier M . Our fits allow us to predict, using 20× less compute, the downstream239

performance of a 6.9B model trained on 138B RedPajama tokens to within 0.05% relative error and a240

1.4B model trained on RedPajama 900B tokens to within 3.6% relative error.241

Table 2 additionally shows the relative error of our downstream performance predictions for models242

trained on C4, RedPajama, and RefinedWeb, indicating that our scaling law functional forms are243

applicable on many training datasets. We note that while average accuracy is predictable, individual244

downstream task predictions are significantly more noisy. We report relative error for more model245

predictions in Figures 11 and 12. We also find that if we remove the 1.4B model for the Equation (5)246

fit, relative error jumps, for instance, from 0.05% to 10.64% on the 17-task split for the 6.9B,247

138B token RedPajama prediction. This highlights the importance of investing more compute when248

constructing scaling laws for downstream task prediction compared to loss prediction.249

Under-training, out-of-distribution scaling, and compute-reliability trade-offs. In addition to250

our main results presented above, we include additional results in Appendix E, which we summarize251

here. First, we notice that when token multipliers become too small (i.e., M = 5) scaling becomes252

unreliable and lies off the trend. Additionally, multipliers other than 20, such as 10, 40, and 80, garner253

points that are roughly on the compute optimal frontier (Figure 9). This observation suggests that the254

compute-optimal multiplier may lie in a range rather than take a single value. To probe the limits255

of reliable scaling, we attempt to break our scaling laws in out-of-distribution settings. We find that256

models trained on C4—English filtered—and evaluated on next token prediction on code domains257

have a high relative error in many cases. Perhaps surprisingly, evaluating the same models on German258

next token prediction gives reliable loss scaling (Figure 10). We additionally examine the compute259

necessary to create accurate scaling laws, finding that scaling laws can be constructed more cheaply260

for loss prediction than for downstream error prediction (Figures 15 and 16).261

5 Related work262

We review the most closely related work in this section. For additional related work, see Appendix F.263

Scaling laws. Early works on scaling artificial neural networks observe predictable power-law264

scaling in the training set size and number of model parameters [43, 44, 93]. Alabdulmohsin et al.265

[2] stress the importance of looking at the extrapolation regime of a scaling law. Yang et al. [124]266

prescribe architectural and hyperparameter changes when scaling model width to realize performant267

models; Yang et al. [125] make analogous recommendations when scaling model depth. Bi et al.268

[13] propose hyperparameter aware scaling laws. Unlike the aforementioned work, our investigation269

focuses on over-training and predicting downstream accuracy.270

Hoffmann et al. [45] investigate how the number of model parameters N and training tokens D271

should be chosen to minimize loss L given a compute budget C. Hoffmann et al. [45] find that when272

scaling up C, both N and D should be scaled equally up to a multiplicative constant (i.e., N ∝ C∼0.5273
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and D ∝ C∼0.5) to realize compute-optimality. Appendix C of the Chinchilla paper additionally274

suggests that these findings hold across three datasets. However, Hoffmann et al. [45] do not verify275

their scaling laws for training beyond compute-optimality, or for downstream error prediction—both276

of which are central to our work.277

Sardana & Frankle [98] propose modifications to the Chinchilla formulation to incorporate inference278

costs into the definition of compute-optimality and solve for various fixed inference budgets. Their279

key finding, which is critical for our work, is that when taking into account a large enough inference280

budget, it is optimal to train smaller models for longer than the original Chinchilla recommendations.281

Our work presupposes that over-training can be beneficial. Instead of solving for inference-282

optimal schemes, we support empirically a predictive theory of scaling in the over-trained regime.283

Additionally, we provide experiments across many validation and training sets.284

For predicting downstream scaling beyond loss, Isik et al. [47] relate the number of pre-training tokens285

to downstream cross-entropy and machine translation BLEU score [78] after fine-tuning. In contrast,286

we take a holistic approach to evaluation by looking at top-1 error over many natural language tasks.287

Schaeffer et al. [100] argue that emergent abilities [120] are a product of non-linear metrics and288

propose smoother alternatives. As a warmup for why non-linear metrics may be hard to predict,289

Schaeffer et al. [100] consider predicting an ℓ length sequence exactly: Err(N, ℓ) ≈ 1− PP(N)−ℓ,290

where N is the number of parameters in a model and PP is its perplexity. This is a special case of291

our Equations (5) and (6), where the number of training tokens does not appear, ϵ = 1, k = 1, and292

γ = ℓ. In contrast, we treat ϵ, k, γ as free parameters for a scaling law fit, finding that average error293

over downstream tasks can make for a predictable metric.294

Over-training in popular models. There has been a rise in over-trained models [113, 114] and295

accompanying massive datasets [112, 82, 104, 3]. For example, Chinchilla 70B [45] is trained with a296

token multiplier of 20, while LLaMA-2 7B [114] uses a token multiplier of 290. In our investigation,297

we look at token multipliers from 5 to 640 to ensure coverage of popular models and relevance for298

future models that may be trained on even more tokens.299

6 Limitations, future work, and conclusion300

Limitations and future work. We identify limitations, which provide motivation for future work.301

• Hyperparameters. While our configurations are surprisingly amenable to reliable scaling across302

many training and testing distributions without further tuning, there is a need to develop scaling303

laws that do not require extensive hyperparameter sweeps.304

• Scaling up. Validating the trends in this paper for even larger runs is a valuable direction.305

Additionally, repeating our setup for models that achieve non-trivial performance on harder306

evaluations like MMLU is left to future work.307

• Scaling down. Actualizing predictable scaling with even cheaper runs is important to make this308

area of research more accessible, especially for downstream error prediction.309

• Failure cases. While we present a preliminary analysis of when scaling is unreliable, future work310

should investigate conditions under which scaling breaks down.311

• Post-training. It is common to employ fine-tuning interventions after pre-training, which we do312

not consider. Quantifying to what degree over-training the base model provides benefits after313

post-training is an open area of research.314

• Individual downstream task prediction. While we find that averaging over many task error315

metrics can make for a predictable metric, per-task predictions are left to future work.316

• In-the-wild performance. Downstream task performance is a proxy for the in-the-wild user317

experience. Analyzing scaling trends in the context of this experience is timely.318

• Dataset curation. Our work only deals with existing training datasets. Exploring dataset curation319

for improved model scaling is another promising direction.320

Conclusion. We show that the loss of over-trained models, trained past compute-optimality, is321

predictable. Furthermore, we propose and validate a scaling law relating loss to average downstream322

task performance. We hope our work will inspire others to further examine the relationship between323

model training and downstream generalization. Our testbed will be made publicly available, and we324

hope it will make scaling research more accessible to researchers and practitioners alike.325
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A Scaling-law derivations909

We first show that reparameterizing Equation (3) in terms of the compute C and token multiplier M910

for α = β yields Equation (4). Combining C = 6ND and M = D/N yields N =
√
C/(6M) and911

D =
√
CM/6. Inserting these into Equation (3) yields,912

L(C,M) = E +A

(
C

6M

)−α
2

+B

(
CM

6

)−α
2

,

= E +

(
A

(
1

6

)−α
2

M
α
2 +B

(
1

6

)−α
2

M−α
2

)
C−α

2 .

This is equal to Equation (4), making the substitutions η = α/2, a = A(1/6)−η , b = B(1/6)−η , as913

noted in the main body.914

Relation to compute-optimal training. Recall that we made the assumption α = β, which implies915

equal scaling of parameters and tokens to realize compute-optimal models. While this assumption916

is empirically justified [45], even if α ̸= β, we get a parameterization that implies the power law917

exponent in Equation (4) remains constant with over-training, while the power law scalar changes.918

To find a compute-optimal training setting, Hoffmann et al. [45] propose to minimize the right-hand919

side of Equation (3) subject to the compute constraint C = 6ND. This yields, N∗ = γ
1

α+β (C/6)
β

α+β920

and D∗ = γ− 1
α+β (C/6)

α
α+β , where γ = αA

βB , for notational convenience. The associated risk is,921

L(N∗, D∗) = E +
(
Aγ

−α
β+α +Bγ

β
β+α

)(C

6

)− αβ
α+β

.

We now deviate from compute-optimal training by modifying the model size and tokens by922

multiplication with a constant
√
m, according to923

Nm =
1√
m
N∗, Dm =

√
mD∗. (7)

This modification keeps the compute constant (i.e., 6NmDm = 6N∗D∗). The risk, then, becomes924

L(fNm,Dm
) = E +

(
m

α
2 Aγ

−α
β+α +m− β

2 Bγ
β

β+α

)
C− αβ

α+β . (8)

We again expect the same power law exponent and changing power law scalar. Note that m in925

Equation (8) is similar to M in Equation (4). Specifically, m is a multiple of the Chinchilla-optimal926

token multiplier M∗ = D∗/N∗, which is no longer fixed as a compute budget changes for α ̸= β.927
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Table 3: Main models and hyperparameters used in our investigation. Models have number of
parameters N , with number of layers nlayers, number of attention heads nheads, model width dmodel,
and width per attention head dhead. Batch sizes are global and in units of sequences. Each sequence
has 2,048 tokens. A100 GPU hours are at M = 20, which are near compute-optimal runs. For the
1.4B scale, a batch size of 256 performs slightly better than 512.

N nlayers nheads dmodel dhead Warmup Learning rate Batch size M = 20 A100 hours

0.011B 8 4 96 24 100 3e-3 64 0.3
0.079B 8 4 512 128 400 3e-3 512 5
0.154B 24 8 576 72 400 3e-3 512 12
0.411B 24 8 1,024 128 2,000 3e-3 512 75

1.4B 24 16 2,048 128 5,000 3e-3 256 690
6.9B 32 32 4,096 128 5,000 3e-4 2,048 17,000

B Additional training details928

Architecture. As stated in the main paper, we train transformers [116], based on auto-929

regressive, decoder-only, pre-normalization architectures like GPT-2 [85] and LLaMA [113]. We930

adopt OpenLM [39] for modeling, which utilizes PyTorch [80, 6], xformers [54], triton [75],931

FlashAttention [24], FSDP [130], and bfloat16 automatic mixed precision. Like LLaMA, we omit932

bias terms, but replace RMSNorm [128] with LayerNorm [8], which has readily available fused933

implementations. Following Wortsman et al. [123], we apply qk-LayerNorm [25], which adds934

robustness to otherwise poor hyperparameter choices (e.g., learning rate). We use SwiGLU [102]935

activations and depth-scaled initialization [129]. We use a sequence length of 2,048, rotary positional936

embeddings [106], and the GPT-NeoX-20B tokenizer [15], which yields a vocabulary size of 50k.937

We do not use weight tying [84, 46]. We sample without replacement during training and employ938

sequence packing without attention masking. We separate documents in our training corpora with939

end-of-text tokens.940

Objectives and optimization. We train with a standard causal language modeling objective (i.e.,941

next token prediction) with an additive z-loss [19] (coefficient 1e-4), which mitigates output logit942

norm growth [67] instabilities. We use the AdamW optimizer [62] (PyTorch defaults except beta2 =943

0.95), with independent weight decay [123] (coefficient 1e-4). For the learning rate schedule, we use944

linear warmup and cosine decay. We cool down to a low learning rate (3e-5).945

C Additional grid search details946

Final model configurations. We present our final hyperparameters in Table 3.947

Grid search configuration selection. Recall in Section 3.3, we run a grid search over many948

configurations. We present the architectures we sweep over in Table 4.949

D Evaluation dataset details950

All 46 downstream evaluations are based on MosaicML’s LLM-foundry evaluation suite [69]. We951

specifically consider the datasets given in Table 5. Recall that we use a subset of 17 of these952

evaluations that give signal (are above random chance) for the compute range we consider. See953

Appendix E, where we ablate over the 17 subset design choice by including more and less evaluations.954

E Additional results955

Scaling law fits. We present specific coefficients for our fits in Table 6.956

Small-scale experiments can predict model rank order. We expect to be able to rank hypothetical957

models based on their predicted performance, which is useful when deciding what large-scale runs958
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Figure 6: Understanding over-performing models in our grid search. (left) Models trained with
5.2× 1016 to 5.2× 1017 FLOPs over-perform relative to their neighbors. In looking at the number
of optimization steps, we notice that the over-performing models experience more optimization steps
than their x-axis neighbors. We hypothesize that the number of optimization steps is important,
especially for smaller models, when trying to find models that lie along a trend. (right) A view of the
same phenomenon, specifically on the efficient frontier.

to train. To verify, we rank 9 testbed models with N ≥ 1.4B by ground-truth top-1 error and by959

estimated top-1 error. We find high rank correlation of 0.88 for the 17-task split.960

Over-performing grid search models experience more optimization steps. As mentioned in961

Section 3.3 and Figure 4, we notice that models between 0.011B to 0.079B (i.e., 5.2 × 1016 to962

5.2× 1017 FLOPs trained near compute-optimal) over-perform compared to the trend established by963

other models in our initial grid searches. This results in a bump in the scaling plot. While we choose964

to exclude this range of models for our scaling study, we additionally investigate this phenomenon.965

In Figure 6 we color grid search configurations by the number of optimization steps (i.e., number966

of tokens seen divided by batch size divided by sequence length). We notice that models in the967

aforementioned range experience more optimization steps than their x-axis neighbors. For context,968

Figure 1 (left) in Kaplan et al. [51] also shows a bump; however, there the performance is worse than969

the general trend instead of better as in our work. We leave understanding more fully the interactions970

between hyperparameters, scaling, and performance to future work.971

Scaling is largely predictable in-distribution (ID). Prior work focuses on understanding scaling972

using ID loss, often using training loss directly [51, 45]. Hence, we also consider Paloma [65] loss973

evaluation sets, which are designed to probe performance in specific domains. We use Paloma’s974

C4 [88, 27], RedPajama [112], and Falcon-RefinedWeb [82] splits to probe for ID loss. As seen975

in Figure 7, relative error is mostly low. Relative error is largest for the N = 1.4B,M = 640976

RedPajama run at 15.4%. Examining this case specifically, we find that the model performs better977

than the scaling law prediction. We hypothesize that as a model sees more tokens there is an increased978

likelihood of near-duplicate sequences ID, resulting in performance that is better than predicted.979

Relative error is stable across many choices of downstream evaluation suites. To understand980

how sensitive our investigation is to our choices of downstream evaluation sets, we consider several981

other options as seen in Figure 8. We find that our prediction errors are fairly (i) low and (ii) consistent982

for many choices of downstream evaluation sets including the whole suite of 46 evaluations.983

Scaling can break down when under-training. We find that when a token multiple is too small984

(i.e., under-training regime), scaling appears unreliable. In Figure 9 we see for M = 5 the scaling985

trend is different. We hypothesize that tuning hyperparameters (e.g., warmup, batch size) directly for986

smaller multipliers may help mitigate the breakdown in predictability.987
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Figure 7: In-distribution (ID) settings. Boxes highlighted in yellow correspond to data points used
to fit Equation (4). Relative error is generally low across interpolation and extrapolation regimes.
Relative error is largest for the RedPajama N = 1.4B,M = 640 prediction at 15.4%. In this case,
we find that our scaling law predicts the model should perform worse than it does in practice.
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Figure 8: Downstream evaluation set ablation for 6.9B parameter, 138B token runs. Recall that
we consider a 17 task evaluation suite created by including only test sets where any 0.154B model we
trained (for any token multiplier and training dataset) gets t = 10 percentage points above random
chance. We evaluate over this subset to make sure we are measuring signal not noise. Here, we wish
to understand how sensitive the relative prediction error is to our choice of t. (left) We see that relative
prediction error is fairly low before a threshold of t = 35 (less than 10% relative error). When too
many tasks are excluded (i.e., t ≥ 40) relative error spikes. Averaging over all 46 datasets (t = −5 as
some evals are worse than random chance) also makes for a predictable metric (less than 3% relative
error). (right) A parallel view, showing how many tasks are removed as t increases. 40 out of the 46
tasks can be removed and relative error is still fairly stable.
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Figure 10: Out-of-distribution (OOD) settings. Boxes highlighted in yellow correspond to data
points used to fit Equation (4). Recall that the C4 training set is English-filtered. Relative error can
spike, suggesting unreliable scaling, for (left) programming languages and (center) Penn Tree Bank,
which contains many frequently occurring, uncommon substrings. However, scaling is relatively
reliable when evaluating on (right) German. These results motivate future studies of OOD conditions
that affect scaling in the over-trained regime.
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Figure 11: Relative error on average top-1 predictions (46 task split). Boxes highlighted in yellow
correspond to data points used to fit Equation (5). Using our fits, we accurately predict downstream
average top-1 error across interpolation and extrapolation regimes. This result supports that (i)
chaining a scaling law and our proposed exponential decay function is a valid procedure and (ii)
average top-1 error can be highly predictable.

Scaling can be unpredictable out-of-distribution (OOD). Our main result shows reliable C4 eval988

loss predictions with models trained on RedPajama, which is an OOD evaluation setting. However,989

both C4 and RedPajama both contain tokens sourced from CommonCrawl.990

To further probe OOD performance, we measure the relative error of scaling laws fit to models trained991

on C4 and evaluated on Paloma’s 100 programming languages [65], Paloma’s Penn Tree Bank (PTB)992

split [66], and a German version of C4 [27]. Recall that the C4 training set we use has been filtered993

for English text. Hence we expect (i) the proportion of code is minimal, (ii) the “<unk>” substrings in994

PTB raw text do not appear frequently, and (iii) German is not prevalent. We notice that extrapolation995

relative error tends to be high for large M,N on programming languages and PTB (Figure 10 (left,996

center)). In contrast, for German C4, relative error is still low across the extrapolation range, with a997

maximum relative error of 7.6% at the N =1.4B, M = 80 scale (Figure 10 (right)). We hypothesize998

that further modifications to scaling laws are necessary to predict when scaling should be reliable as a999

function of the training and evaluation distributions.1000

Small-scale experiments can predict average downstream top-1 error. To verify that chaining1001

Equations (4) and (5) is effective in practice, we collect C4 eval loss and downstream error pairs for1002

the configurations in Table 1. In Figure 11, we look at relative error for our scaling predictions in the1003

context of Average top-1 error over 46 evals and in Figure 12 over the high-signal 17 eval subset. We1004

again notice reliable scaling in interpolation and extrapolation regimes, suggesting the validity of our1005

procedure to predict downstream average top-1 error.1006
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Figure 12: Relative error on average top-1 predictions (17 task split). Boxes highlighted in yellow
correspond to data points used to fit Equation (5). Using our fits, we accurately predict downstream
average top-1 error across interpolation and extrapolation regimes. This result supports that (i)
chaining a scaling law and our proposed exponential decay function is a valid procedure and (ii)
average top-1 error can be highly predictable.
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Figure 13: Correlation between average top-1 error and evaluation loss. We observe that
regardless of evaluation loss distribution (x-axis), models tend to follow Equation (5). This suggests
that there can be several reasonable choices for the validation loss distribution. Additionally, ID
models trained on C4 and evaluated on a C4 validation set, perform best in terms of loss, but these
gains don’t necessarily translate to lower error downstream (e.g., (left column)). This suggests the
need to fit Equation (5) per dataset and also suggests comparing models trained on different data
distributions with a single loss evaluation can be misleading.

Loss evaluation ablations for downstream trends. Figure 13 presents the correlation between1007

downstream error and loss evaluated on different validation sets (C4, RedPajama, and RefinedWeb).1008

Regardless of the validation set (x-axis), models follow the exponential decay relationship given1009

in Equation (5), suggesting the choice of validation loss is not critical for the appearance of this1010

phenomenon.1011

Investing more compute in a scaling law makes it more predictive. Thus far we have looked1012

at standard configurations from Table 1 to construct our scaling laws, mainly to demonstrate1013

extrapolation to larger N,M . However, for practitioners, the main constraint is often training1014
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Figure 14: Trade-offs between scaling law for loss fitting considerations and reliability.
Each red circle represents a scaling law fit to Equation (4) with as many as 29 models trained
on RedPajama. Specifically, a grid formed by N ∈ {0.011B, 0.079B, 0.154B, 0.411B},M ∈
{5, 10, 20, 40, 80, 160, 320} gives 28 models and a N = 1.4B,M = 20 run gives the last model. We
sort models by training FLOPs in increasing order and sample models uniformly from index windows
[1, 2, ..., n] for n ∈ [5, 6, .., 29] to fit Equation (4). The blue star represents the default configuration
presented in Table 1. The prediction target is a N = 1.4B,M = 640 (D = 900B) model. As the
amount of compute (left) and the number of points (right) used to fit the scaling law increases, relative
error trends downwards. Our default configuration keeps compute and number of points low, while
still providing low prediction error compared to the trend.
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Figure 15: Compute vs. relative error for the 1.4B, 900B token RedPajama run. (left) The
compute necessary to accurately predict loss is less than that needed to accurately predict (right)
average downstream error. This claim is supported by the fact that the slope of the trend for loss is
steeper than for top-1 error. These findings corroborate Figure 16.

compute. Hence, we wish to understand the trade-offs between the amount of compute invested1015

in creating a scaling law and the relative error of the resulting law in the over-trained regime. In1016

Figure 14 (left), we see that as one increases the amount of compute, it is possible to get better fits1017

with lower relative error. In Figure 14 (right), we see a similar trend as one increases the number of1018

data points used to fit a scaling law. Blue stars indicate the configurations from Table 1, which provide1019

accurate predictions relative to the general trends—hinting at their usefulness for our investigation.1020

In Figures 15 and 16 we repeat the compute analysis comparing trade-offs for loss prediction and1021

error prediction for our RedPajama 1.4B parameter, 900B token and 6.9B parameter, 138B token1022

runs respectively. We find that less compute is generally necessary to construct a loss scaling law that1023

achieves the same relative error as that of an error prediction scaling law.1024
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Figure 16: Compute vs. relative error for the 6.9B, 138B token RedPajama run. (left) The
compute necessary to accurately predict loss is less than that needed to accurately predict (right)
average downstream error. This claim is supported by the fact that the slope of the trend for loss is
steeper than for top-1 error. These findings corroborate Figure 15.
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Figure 17: Scaling exponent vs. token multiplier. In Figure 2, we notice roughly parallel lines
(i.e., roughly constant scaling exponent η) in the log-log plot of loss vs. compute, even as the token
multiplier M changes. Here we plot η vs. M directly, where the shaded region gives a 95% bootstrap
confidence interval for the trend. This view supports that η is relatively constant.

On compute-optimal token multipliers. We consider 20 tokens per parameter as close to compute-1025

optimal for our experiments. Here we investigate, using different approaches, what the compute-1026

optimal token multipliers are for each dataset—assuming one should scale number of parameter and1027

training tokens equally as Hoffmann et al. [45] suggest.1028

Turning to Figure 9, we notice that there are many multipliers, between 10 and 80 that yield models1029

close to the frontier. Hence, empirically, it appears choices within this range should be suitable for1030

the optimal token multiplier.1031

We can also compute an optimal token multiplier using the coefficients in Table 6. Based on Hoffmann1032

et al. [45]’s Equation (4) and the assumption that α = β, we write,1033

N∗(C) = G

(
C

6

) 1
2

, D∗(C) = G−1

(
C

6

) 1
2

, G =
(a
b

) 1
4η

. (9)

To compute M∗ = D∗/N∗, we then have,1034

M∗ =

(
b

a

) 1
2η

. (10)

Using the values from Table 6 and plugging into Equation (10), we find M∗
C4 = 2.87, M∗

RedPajama =1035

4.30, M∗
RefinedWeb = 3.79, where the subscript gives the dataset name. These values conflict with the1036

observation in Figure 9, which suggests M = 5 is already too small to give points on the Pareto1037

frontier. We hypothesize this mismatch arises because we fit our scaling laws using models with1038

M ≥ 20.1039
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Figure 18: Downstream top-1 error vs. C4 eval loss for each of the 46 downstream evals. Here
we plot models from our testbed for each scatter plot. We see that some individual evaluations, like
ARC-Easy, follow exponential decay. Others, like BIG-bench: CS algorithms, show step function
behavior. Still others, like MathQA, hover around random chance.

F Additional related work1040

Language modeling. Language models can be grouped into encoder-only [26, 53, 59, 96, 22],1041

encoder-decoder [56, 89], and decoder-only architectures [85, 113, 114, 110, 49, 38, 74, 7, 111,1042

28, 64, 99, 122, 4, 57, 63, 34]. Most current implementations are based on the transformer [116].1043

However, there has been a recent resurgence in scaling language models based on non-transformer1044

architectures [83, 36, 37, 35]. Further, there has been substantial work on adapting pre-trained1045

language models to better follow instructions [119, 20, 70, 61, 71, 133, 87, 29, 115, 103, 73].1046

However, following prior work [45, 72] and given their overall prevalence, we limit ourselves to1047

GPT-style, decoder-only transformers that have solely been pre-trained.1048
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Scaling laws. Kaplan et al. [51] investigate scaling trends in GPT language models. Bahri et al.1049

[9] investigate different scaling regimes theoretically, and Sharma & Kaplan [101] relate scaling1050

coefficients to data manifold dimensions. Tay et al. [108, 109] elucidate the connection between1051

model architecture and scaling trends, while Hernandez et al. [42], Tay et al. [108] develop scaling1052

laws for transfer learning. Ivgi et al. [48] also consider transfer learning scaling laws and highlight1053

the importance of hyperparameter selection in the low-compute regime. Ghorbani et al. [32], Gordon1054

et al. [33], Bansal et al. [10] develop scaling laws for neural machine translation. Caballero et al. [17]1055

propose a scaling law functional form, which they demonstrate is predictive in several domains.1056

Scaling beyond language modeling. There is a large body of work on scaling neural networks1057

beyond language modeling, for example in computer vision [60, 127, 105, 1, 2], multimodal1058

learning [41, 18, 30], and image reconstruction [52].1059

Over-training in existing models. To contextualize the extent to which we over-train, we provide1060

token multipliers for popular models in Table 8.1061

G Broader impact1062

Language models have known risks in terms harmful language, toxicity, and human automation—to1063

name a few [121, 12]. We will include the following for our public release “WARNING: These are1064

base models and not aligned with post-training. They are provided as is and intended as research1065

artifacts only.” However, even as research artifacts, we recognize that models can still be misused1066

by malicious actors or can be harmful to benevolent actors. When deciding to release our models1067

and experiments, we considered (i) the benefit to the scientific community and (ii) the benchmark1068

performance relative to other models that have already been released. For (i) we feel that our testbed1069

is of use to others in the community who want to do scaling research, but do not necessarily have the1070

means to train these model artifacts themselves. Hence, we predict (and hope) releasing all models1071

and experiments will be helpful to others wanting to participate in scaling research. For (ii), we note1072

that there are publicly available models [113, 114, 49], which outperform models from our testbed1073

and that are more likely to be widely adopted. Finally, we recognize that advancing scaling science1074

also has potential for harm. Specifically, while we are concerned with loss and downstream task1075

performance for popular evaluation settings, it is possible that nefarious actors may use scaling laws1076

to help design more harmful models.1077

H Licensing1078

In terms of licensing, we will release our code, models, and experiments under an MIT licence, which1079

is also attached to our supplementary submission.1080
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Table 4: Topologies for our grid searches. We consider 130 architectures for our grid search. After
sweeping over batch size and warmup, we get a total of 435 configurations.

nlayers nheads dmodel Number of
parameters [B]

4 4 96 0.010
4 12 96 0.010

12 12 96 0.011
12 4 96 0.011
8 4 96 0.011

16 4 96 0.011
16 12 96 0.011
8 12 96 0.011

24 4 96 0.012
24 12 96 0.012
4 4 192 0.021
4 8 192 0.021
4 12 192 0.021
8 8 192 0.023
8 4 192 0.023
8 12 192 0.023

12 4 192 0.025
12 8 192 0.025
12 12 192 0.025
16 4 192 0.026
16 8 192 0.026
16 12 192 0.026
24 8 192 0.030
24 4 192 0.030
24 12 192 0.030
4 12 288 0.033
4 4 288 0.033
8 12 288 0.037
8 4 288 0.037
4 4 320 0.038
4 8 320 0.038

12 12 288 0.041
12 4 288 0.041
8 8 320 0.043
8 4 320 0.043

16 4 288 0.045
16 12 288 0.045
12 4 320 0.049
12 8 320 0.049
24 4 288 0.053
24 12 288 0.053
16 8 320 0.055
16 4 320 0.055
4 12 488 0.062
4 4 512 0.065
4 16 512 0.065
4 8 512 0.065

24 8 320 0.066
24 4 320 0.066
4 4 576 0.074
4 8 576 0.074
4 12 576 0.074
8 12 488 0.075
8 4 512 0.079
8 8 512 0.079
8 16 512 0.079
4 4 640 0.085
4 16 640 0.085
4 8 640 0.085

12 12 488 0.087
8 4 576 0.090
8 12 576 0.090
8 8 576 0.090

12 16 512 0.093
12 8 512 0.093

nlayers nheads dmodel Number of
parameters [B]

12 4 512 0.093
16 12 488 0.100
8 16 640 0.105
8 4 640 0.105
8 8 640 0.105

12 8 576 0.106
16 16 512 0.106
4 4 768 0.106

12 12 576 0.106
16 8 512 0.106
4 8 768 0.106

12 4 576 0.106
4 16 768 0.106

16 4 512 0.106
4 12 768 0.106

16 12 576 0.122
16 4 576 0.122
16 8 576 0.122
12 4 640 0.126
24 12 488 0.126
12 16 640 0.126
12 8 640 0.126
24 8 512 0.133
24 4 512 0.133
24 16 512 0.133
8 8 768 0.134
8 16 768 0.134
8 4 768 0.134
8 12 768 0.134

16 16 640 0.146
16 8 640 0.146
16 4 640 0.146
24 8 576 0.154
24 4 576 0.154
24 12 576 0.154
4 8 1024 0.155
4 16 1024 0.155
4 4 1024 0.155

12 8 768 0.162
12 4 768 0.162
12 12 768 0.162
12 16 768 0.162
24 16 640 0.186
24 8 640 0.186
24 4 640 0.186
16 16 768 0.191
16 4 768 0.191
16 8 768 0.191
16 12 768 0.191
8 8 1024 0.206
8 4 1024 0.206
8 16 1024 0.206

24 8 768 0.247
24 12 768 0.247
24 4 768 0.247
24 16 768 0.247
12 8 1024 0.257
12 4 1024 0.257
12 16 1024 0.257
16 8 1024 0.309
16 4 1024 0.309
16 16 1024 0.309
24 16 1024 0.412
24 8 1024 0.412
24 4 1024 0.412

32



Table 5: 46 downstream tasks. All downstream tasks considered in this work, evaluated via LLM-
foundry [69]. For more information on each dataset and specifics about the LLM-foundry category
and evaluation type, please see: https://www.mosaicml.com/llm-evaluation.

Downstream task LLM-foundry category Evaluation type Shots Samples Baseline

AGIEval LSAT AR [132, 131, 118] symbolic problem solving multiple choice 3 230 0.25
AGIEval LSAT LR [132, 131, 118] reading comprehension multiple choice 3 510 0.25
AGIEval LSAT RC [132, 131, 118] reading comprehension multiple choice 3 268 0.25
AGIEval SAT English [132] reading comprehension multiple choice 3 206 0.25
ARC-Challenge [23] world knowledge multiple choice 10 2376 0.25
ARC-Easy [23] world knowledge multiple choice 10 2376 0.25
BBQ [79] safety multiple choice 3 58492 0.50
BIG-bench: CS algorithms [11] symbolic problem solving language modeling 10 1320 0.00
BIG-bench: Conceptual combinations [11] language understanding multiple choice 10 103 0.25
BIG-bench: Conlang translation [11] language understanding language modeling 0 164 0.00
BIG-bench: Dyck languages [11] symbolic problem solving language modeling 10 1000 0.00
BIG-bench: Elementary math QA [11] symbolic problem solving multiple choice 10 38160 0.25
BIG-bench: Language identification [11] language understanding multiple choice 10 10000 0.25
BIG-bench: Logical deduction [11] symbolic problem solving multiple choice 10 1500 0.25
BIG-bench: Misconceptions [11] world knowledge multiple choice 10 219 0.50
BIG-bench: Novel Concepts [11] commonsense reasoning multiple choice 10 32 0.25
BIG-bench: Operators [11] symbolic problem solving language modeling 10 210 0.00
BIG-bench: QA WikiData [11] world knowledge language modeling 10 20321 0.00
BIG-bench: Repeat copy logic [11] symbolic problem solving language modeling 10 32 0.00
BIG-bench: Strange stories [11] commonsense reasoning multiple choice 10 174 0.50
BIG-bench: Strategy QA [11] commonsense reasoning multiple choice 10 2289 0.50
BIG-bench: Understanding fables [11] reading comprehension multiple choice 10 189 0.25
BoolQ [21] reading comprehension multiple choice 10 3270 0.50
COPA [92] commonsense reasoning multiple choice 0 100 0.50
CoQA [91] reading comprehension language modeling 0 7983 0.00
Commonsense QA [107] commonsense reasoning multiple choice 10 1221 0.25
Enterprise PII classification [81] safety multiple choice 10 3395 0.50
HellaSwag (10-shot) [126] language understanding multiple choice 10 10042 0.25
HellaSwag (zero-shot) [126] language understanding multiple choice 0 10042 0.25
Jeopardy [69] world knowledge language modeling 10 2117 0.00
LAMBADA [77] language understanding language modeling 0 5153 0.00
LogiQA [58] symbolic problem solving multiple choice 10 651 0.25
MMLU (5-shot) [40] world knowledge multiple choice 5 14042 0.25
MMLU (zero-shot) [40] world knowledge multiple choice 0 14042 0.25
MathQA [5] symbolic problem solving multiple choice 10 2983 0.25
OpenBook QA [68] commonsense reasoning multiple choice 0 500 0.25
PIQA [14] commonsense reasoning multiple choice 10 1838 0.50
PubMed QA Labeled [50] reading comprehension language modeling 10 1000 0.00
SIQA [97] commonsense reasoning multiple choice 10 1954 0.50
SQuAD [90] reading comprehension language modeling 10 10570 0.00
Simple Arithmetic: NoSpaces [69] symbolic problem solving language modeling 10 1000 0.00
Simple Arithmetic: WithSpaces [69] symbolic problem solving language modeling 10 1000 0.00
WinoGender MC: Female [94] safety multiple choice 10 60 0.50
WinoGender MC: Male [94] safety multiple choice 10 60 0.50
WinoGrande [95] language understanding schema 0 1267 0.50
WinoGrand [55] language understanding schema 0 273 0.50

Table 6: Scaling law fit parameters. Here we present our scaling coefficients fit to Equations (4)
and (5) using configurations from Table 1.

Training dataset Fit for Equation (4): L(C,M) = Fit for Equation (5): Err(L) =
E + (a ·Mη + b ·M−η)Cη ϵ− k · exp (−γL)

C4 [88, 27] 1.51 +
(
114 ·M0.242 + 190 ·M−0.242

)
C−0.242 0.850− 2.08 · exp (−0.756 · L)

RedPajama [112] 1.84 +
(
166 ·M0.272 + 367 ·M−0.272

)
C−0.272 0.857− 2.21 · exp (−0.715 · L)

RefinedWeb [82] 1.73 +
(
125 ·M0.254 + 246 ·M−0.254

)
C−0.254 0.865− 2.21 · exp (−0.707 · L)
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Table 7: Downstream relative prediction error at 6.9B, 138B tokens, with and without the 1.4B
data point. Recall in Table 1, we introduce a N = 1.4B, M = 20 run to get better downstream error
predictions. Here we compare, prediction errors with and without this model for fitting the scaling
law. Note that without the model (i.e., rows with “w/o 1.4B”) average top-1 predictions, over the 17
tasks. are less accurate.

Scaling law fit Train set ARC-E LAMBADA OpenBook QA HellaSwag 17 eval
[23] [77] [68] [126]

Table 1 C4 [88, 27] 28.96% 15.01% 16.80% 79.58% 0.14%
Table 1 w/o 1.4B C4 [88, 27] 0.92% 2.04% 96.16% 61.79% 0.42%

Table 1 RedPajama [112] 5.21% 14.39% 8.44% 25.73% 0.05%
Table 1 w/o 1.4B RedPajama [112] 8.13% 11.07% 7.56% 30.98% 10.64%

Table 1 RefinedWeb [82] 26.06% 16.55% 1.92% 81.96% 2.94%
Table 1 w/o 1.4B RefinedWeb [82] 15.39% 6.26% 6.79% 6.52% 15.79%

Table 8: Token multipliers of existing models. In our work, we run experiments with token
multipliers between 5 and 640 for {GPT-2 [85], LLaMA [113]}-style decoder-only architectures.

Model family Parameters N Training tokens D Token multiplier M

T5 [89] 11B 34B 3.1
GPT-3 [16] 175B 300B 1.7
Gopher [86] 280B 300B 1.1
Chinchilla [45] 70B 1.4T 20.0
LLaMA [113] 7B 1T 140.0
LLaMA [113] 70B 1.4T 20.0
LLaMA-2 [114] 7B 2T 290.0
LLaMA-2 [114] 70B 2T 30.0
XGen [74] 7B 1.5T 210.0
MPT [110] 7B 1T 140.0
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NeurIPS Paper Checklist1081

1. Claims1082

Question: Do the main claims made in the abstract and introduction accurately reflect the1083

paper’s contributions and scope?1084

Answer: [Yes]1085

Justification: The experiment section justify the claims made in the abstract and introduction,1086

namely that the developed scaling laws for over-training and downstream task prediction are1087

predictive in practice for larger scale runs.1088

Guidelines:1089

• The answer NA means that the abstract and introduction do not include the claims1090

made in the paper.1091

• The abstract and/or introduction should clearly state the claims made, including the1092

contributions made in the paper and important assumptions and limitations. A No or1093

NA answer to this question will not be perceived well by the reviewers.1094

• The claims made should match theoretical and experimental results, and reflect how1095

much the results can be expected to generalize to other settings.1096

• It is fine to include aspirational goals as motivation as long as it is clear that these goals1097

are not attained by the paper.1098

2. Limitations1099

Question: Does the paper discuss the limitations of the work performed by the authors?1100

Answer: [Yes]1101

Justification: The final section discusses limitations, which provide motivation for future1102

work.1103

Guidelines:1104

• The answer NA means that the paper has no limitation while the answer No means that1105

the paper has limitations, but those are not discussed in the paper.1106

• The authors are encouraged to create a separate "Limitations" section in their paper.1107

• The paper should point out any strong assumptions and how robust the results are to1108

violations of these assumptions (e.g., independence assumptions, noiseless settings,1109

model well-specification, asymptotic approximations only holding locally). The authors1110

should reflect on how these assumptions might be violated in practice and what the1111

implications would be.1112

• The authors should reflect on the scope of the claims made, e.g., if the approach was1113

only tested on a few datasets or with a few runs. In general, empirical results often1114

depend on implicit assumptions, which should be articulated.1115

• The authors should reflect on the factors that influence the performance of the approach.1116

For example, a facial recognition algorithm may perform poorly when image resolution1117

is low or images are taken in low lighting. Or a speech-to-text system might not be1118

used reliably to provide closed captions for online lectures because it fails to handle1119

technical jargon.1120

• The authors should discuss the computational efficiency of the proposed algorithms1121

and how they scale with dataset size.1122

• If applicable, the authors should discuss possible limitations of their approach to1123

address problems of privacy and fairness.1124

• While the authors might fear that complete honesty about limitations might be used1125

by reviewers as grounds for rejection, a worse outcome might be that reviewers1126

discover limitations that aren’t acknowledged in the paper. The authors should use1127

their best judgment and recognize that individual actions in favor of transparency play1128

an important role in developing norms that preserve the integrity of the community.1129

Reviewers will be specifically instructed to not penalize honesty concerning limitations.1130

3. Theory Assumptions and Proofs1131

Question: For each theoretical result, does the paper provide the full set of assumptions and1132

a complete (and correct) proof?1133

35



Answer: [Yes]1134

Justification: All assumptions are clearly stated and full proofs/derivations are provided in1135

the Appendix.1136

Guidelines:1137

• The answer NA means that the paper does not include theoretical results.1138

• All the theorems, formulas, and proofs in the paper should be numbered and cross-1139

referenced.1140

• All assumptions should be clearly stated or referenced in the statement of any theorems.1141

• The proofs can either appear in the main paper or the supplemental material, but if1142

they appear in the supplemental material, the authors are encouraged to provide a short1143

proof sketch to provide intuition.1144

• Inversely, any informal proof provided in the core of the paper should be complemented1145

by formal proofs provided in appendix or supplemental material.1146

• Theorems and Lemmas that the proof relies upon should be properly referenced.1147

4. Experimental Result Reproducibility1148

Question: Does the paper fully disclose all the information needed to reproduce the1149

main experimental results of the paper to the extent that it affects the main claims and/or1150

conclusions of the paper (regardless of whether the code and data are provided or not)?1151

Answer: [Yes]1152

Justification: We point to all public datasets and open source training infrastructure. We1153

additionally specify all hyperparameters used for training.1154

Guidelines:1155

• The answer NA means that the paper does not include experiments.1156

• If the paper includes experiments, a No answer to this question will not be perceived1157

well by the reviewers: Making the paper reproducible is important, regardless of1158

whether the code and data are provided or not.1159

• If the contribution is a dataset and/or model, the authors should describe the steps taken1160

to make their results reproducible or verifiable.1161

• Depending on the contribution, reproducibility can be accomplished in various ways.1162

For example, if the contribution is a novel architecture, describing the architecture fully1163

might suffice, or if the contribution is a specific model and empirical evaluation, it may1164

be necessary to either make it possible for others to replicate the model with the same1165

dataset, or provide access to the model. In general. releasing code and data is often1166

one good way to accomplish this, but reproducibility can also be provided via detailed1167

instructions for how to replicate the results, access to a hosted model (e.g., in the case1168

of a large language model), releasing of a model checkpoint, or other means that are1169

appropriate to the research performed.1170

• While NeurIPS does not require releasing code, the conference does require all1171

submissions to provide some reasonable avenue for reproducibility, which may depend1172

on the nature of the contribution. For example1173

(a) If the contribution is primarily a new algorithm, the paper should make it clear how1174

to reproduce that algorithm.1175

(b) If the contribution is primarily a new model architecture, the paper should describe1176

the architecture clearly and fully.1177

(c) If the contribution is a new model (e.g., a large language model), then there should1178

either be a way to access this model for reproducing the results or a way to reproduce1179

the model (e.g., with an open-source dataset or instructions for how to construct1180

the dataset).1181

(d) We recognize that reproducibility may be tricky in some cases, in which case1182

authors are welcome to describe the particular way they provide for reproducibility.1183

In the case of closed-source models, it may be that access to the model is limited in1184

some way (e.g., to registered users), but it should be possible for other researchers1185

to have some path to reproducing or verifying the results.1186

5. Open access to data and code1187
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Question: Does the paper provide open access to the data and code, with sufficient1188

instructions to faithfully reproduce the main experimental results, as described in1189

supplemental material?1190

Answer: [Yes]1191

Justification: We include code and data needed to reproduce all figures in the paper. Our1192

datasets are sourced from HuggingFace and our training code utilizes OpenLM, which is1193

open-source.1194

Guidelines:1195

• The answer NA means that paper does not include experiments requiring code.1196

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/1197

public/guides/CodeSubmissionPolicy) for more details.1198

• While we encourage the release of code and data, we understand that this might not be1199

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not1200

including code, unless this is central to the contribution (e.g., for a new open-source1201

benchmark).1202

• The instructions should contain the exact command and environment needed to run to1203

reproduce the results. See the NeurIPS code and data submission guidelines (https:1204

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.1205

• The authors should provide instructions on data access and preparation, including how1206

to access the raw data, preprocessed data, intermediate data, and generated data, etc.1207

• The authors should provide scripts to reproduce all experimental results for the new1208

proposed method and baselines. If only a subset of experiments are reproducible, they1209

should state which ones are omitted from the script and why.1210

• At submission time, to preserve anonymity, the authors should release anonymized1211

versions (if applicable).1212

• Providing as much information as possible in supplemental material (appended to the1213

paper) is recommended, but including URLs to data and code is permitted.1214

6. Experimental Setting/Details1215

Question: Does the paper specify all the training and test details (e.g., data splits,1216

hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand1217

the results?1218

Answer: [Yes]1219

Justification: We explicitly have sections and appendices that detail our experimental setup1220

(training and evaluation) and title the sections and appendices to indicate this.1221

Guidelines:1222

• The answer NA means that the paper does not include experiments.1223

• The experimental setting should be presented in the core of the paper to a level of detail1224

that is necessary to appreciate the results and make sense of them.1225

• The full details can be provided either with the code, in appendix, or as supplemental1226

material.1227

7. Experiment Statistical Significance1228

Question: Does the paper report error bars suitably and correctly defined or other appropriate1229

information about the statistical significance of the experiments?1230

Answer: [Yes]1231

Justification: When appropriate we report bootstrap 95% confidence intervals (e.g., in1232

Figure 4 and Figure 17). We do not train models with many seeds, which is prohibitively1233

expensive. Given the large size of the C4 validation set, we observe that bootstrap 95%1234

confidence intervals for loss (computed over either token an sequence sampling) are close to1235

zero.1236

Guidelines:1237

• The answer NA means that the paper does not include experiments.1238
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• The authors should answer "Yes" if the results are accompanied by error bars,1239

confidence intervals, or statistical significance tests, at least for the experiments that1240

support the main claims of the paper.1241

• The factors of variability that the error bars are capturing should be clearly stated (for1242

example, train/test split, initialization, random drawing of some parameter, or overall1243

run with given experimental conditions).1244

• The method for calculating the error bars should be explained (closed form formula,1245

call to a library function, bootstrap, etc.)1246

• The assumptions made should be given (e.g., Normally distributed errors).1247

• It should be clear whether the error bar is the standard deviation or the standard error1248

of the mean.1249

• It is OK to report 1-sigma error bars, but one should state it. The authors should1250

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis1251

of Normality of errors is not verified.1252

• For asymmetric distributions, the authors should be careful not to show in tables or1253

figures symmetric error bars that would yield results that are out of range (e.g. negative1254

error rates).1255

• If error bars are reported in tables or plots, The authors should explain in the text how1256

they were calculated and reference the corresponding figures or tables in the text.1257

8. Experiments Compute Resources1258

Question: For each experiment, does the paper provide sufficient information on the1259

computer resources (type of compute workers, memory, time of execution) needed to1260

reproduce the experiments?1261

Answer: [Yes]1262

Justification: We are transparent about how many GPU hours it takes to construct our scaling1263

laws and train our models (e.g., in Table 1).1264

Guidelines:1265

• The answer NA means that the paper does not include experiments.1266

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,1267

or cloud provider, including relevant memory and storage.1268

• The paper should provide the amount of compute required for each of the individual1269

experimental runs as well as estimate the total compute.1270

• The paper should disclose whether the full research project required more compute1271

than the experiments reported in the paper (e.g., preliminary or failed experiments that1272

didn’t make it into the paper).1273

9. Code Of Ethics1274

Question: Does the research conducted in the paper conform, in every respect, with the1275

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?1276

Answer: [Yes]1277

Justification: We have reviewed the code of ethics and feel that our research abides by this1278

code in every respect.1279

Guidelines:1280

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.1281

• If the authors answer No, they should explain the special circumstances that require a1282

deviation from the Code of Ethics.1283

• The authors should make sure to preserve anonymity (e.g., if there is a special1284

consideration due to laws or regulations in their jurisdiction).1285

10. Broader Impacts1286

Question: Does the paper discuss both potential positive societal impacts and negative1287

societal impacts of the work performed?1288

Answer: [Yes]1289
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Justification: This work is related to predicting the performance of language models, before1290

they are trained. As such, it falls under the category of basic research. However, because we1291

produce generative language model artifacts as part of our paper, we recognize that these1292

pre-trained models can pose risk. We provide a discussion of risks in Appendix G.1293

Guidelines:1294

• The answer NA means that there is no societal impact of the work performed.1295

• If the authors answer NA or No, they should explain why their work has no societal1296

impact or why the paper does not address societal impact.1297

• Examples of negative societal impacts include potential malicious or unintended uses1298

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations1299

(e.g., deployment of technologies that could make decisions that unfairly impact specific1300

groups), privacy considerations, and security considerations.1301

• The conference expects that many papers will be foundational research and not tied1302

to particular applications, let alone deployments. However, if there is a direct path to1303

any negative applications, the authors should point it out. For example, it is legitimate1304

to point out that an improvement in the quality of generative models could be used to1305

generate deepfakes for disinformation. On the other hand, it is not needed to point out1306

that a generic algorithm for optimizing neural networks could enable people to train1307

models that generate Deepfakes faster.1308

• The authors should consider possible harms that could arise when the technology is1309

being used as intended and functioning correctly, harms that could arise when the1310

technology is being used as intended but gives incorrect results, and harms following1311

from (intentional or unintentional) misuse of the technology.1312

• If there are negative societal impacts, the authors could also discuss possible mitigation1313

strategies (e.g., gated release of models, providing defenses in addition to attacks,1314

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from1315

feedback over time, improving the efficiency and accessibility of ML).1316

11. Safeguards1317

Question: Does the paper describe safeguards that have been put in place for responsible1318

release of data or models that have a high risk for misuse (e.g., pretrained language models,1319

image generators, or scraped datasets)?1320

Answer: [Yes]1321

Justification: We provide discussion of responsible release in Appendix G. Specifically,1322

models in this release are know to be less capable than state-of-the-art, publicly available1323

models [113, 114, 49], and, hence, we feel the risk for misuse is low.1324

Guidelines:1325

• The answer NA means that the paper poses no such risks.1326

• Released models that have a high risk for misuse or dual-use should be released with1327

necessary safeguards to allow for controlled use of the model, for example by requiring1328

that users adhere to usage guidelines or restrictions to access the model or implementing1329

safety filters.1330

• Datasets that have been scraped from the Internet could pose safety risks. The authors1331

should describe how they avoided releasing unsafe images.1332

• We recognize that providing effective safeguards is challenging, and many papers do1333

not require this, but we encourage authors to take this into account and make a best1334

faith effort.1335

12. Licenses for existing assets1336

Question: Are the creators or original owners of assets (e.g., code, data, models), used in1337

the paper, properly credited and are the license and terms of use explicitly mentioned and1338

properly respected?1339

Answer: [Yes]1340

Justification: We utilize data-sources publicly available on the HuggingFace platform and1341

abide by the terms of use. For C4: Open Data Commons License Attribution family, for1342

RedPajama: a list of licenses (found here.), for RefinedWeb: Open Data Commons License1343
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Attribution family. We use the OpenLM repo for training and also abide by their MIT license.1344

We cite all papers and repos in the main text.1345

Guidelines:1346

• The answer NA means that the paper does not use existing assets.1347

• The authors should cite the original paper that produced the code package or dataset.1348

• The authors should state which version of the asset is used and, if possible, include a1349

URL.1350

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.1351

• For scraped data from a particular source (e.g., website), the copyright and terms of1352

service of that source should be provided.1353

• If assets are released, the license, copyright information, and terms of use in the1354

package should be provided. For popular datasets, paperswithcode.com/datasets1355

has curated licenses for some datasets. Their licensing guide can help determine the1356

license of a dataset.1357

• For existing datasets that are re-packaged, both the original license and the license of1358

the derived asset (if it has changed) should be provided.1359

• If this information is not available online, the authors are encouraged to reach out to1360

the asset’s creators.1361

13. New Assets1362

Question: Are new assets introduced in the paper well documented and is the documentation1363

provided alongside the assets?1364

Answer: [Yes]1365

Justification: Our code release documents all new model assets under the exp_db/ folder1366

and includes a MIT license. This is also specified in Appendix H.1367

Guidelines:1368

• The answer NA means that the paper does not release new assets.1369

• Researchers should communicate the details of the dataset/code/model as part of their1370

submissions via structured templates. This includes details about training, license,1371

limitations, etc.1372

• The paper should discuss whether and how consent was obtained from people whose1373

asset is used.1374

• At submission time, remember to anonymize your assets (if applicable). You can either1375

create an anonymized URL or include an anonymized zip file.1376

14. Crowdsourcing and Research with Human Subjects1377

Question: For crowdsourcing experiments and research with human subjects, does the paper1378

include the full text of instructions given to participants and screenshots, if applicable, as1379

well as details about compensation (if any)?1380

Answer: [NA]1381

Justification: This research does not involve crowdsourcing or human subjects.1382

Guidelines:1383

• The answer NA means that the paper does not involve crowdsourcing nor research with1384

human subjects.1385

• Including this information in the supplemental material is fine, but if the main1386

contribution of the paper involves human subjects, then as much detail as possible1387

should be included in the main paper.1388

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1389

or other labor should be paid at least the minimum wage in the country of the data1390

collector.1391

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human1392

Subjects1393
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Question: Does the paper describe potential risks incurred by study participants, whether1394

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1395

approvals (or an equivalent approval/review based on the requirements of your country or1396

institution) were obtained?1397

Answer: [NA]1398

Justification: This paper does not involve research with human subjects.1399

Guidelines:1400

• The answer NA means that the paper does not involve crowdsourcing nor research with1401

human subjects.1402

• Depending on the country in which research is conducted, IRB approval (or equivalent)1403

may be required for any human subjects research. If you obtained IRB approval, you1404

should clearly state this in the paper.1405

• We recognize that the procedures for this may vary significantly between institutions1406

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1407

guidelines for their institution.1408

• For initial submissions, do not include any information that would break anonymity (if1409

applicable), such as the institution conducting the review.1410
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