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ABSTRACT

Identifying the underlying time-delayed latent causal processes in sequential data
is vital for grasping temporal dynamics and making downstream reasoning. While
some recent methods can robustly identify these latent causal variables, they
rely on strict assumptions about the invertible generation process from latent
variables to observed data. These assumptions are often hard to satisfy in real-world
applications containing information loss. For instance, the visual perception process
translates a 3D space into 2D images, or the phenomenon of persistence of vision
incorporates historical data into current perceptions. To address this challenge,
we establish an identifiability theory that allows for the recovery of independent
latent components even when they come from a nonlinear and non-invertible mix.
Using this theory as a foundation, we propose a principled approach, CaRiNG, to
learn the Causal Representation of Non-invertible Generative temporal data with
identifiability guarantees. Specifically, we utilize the temporal context to recover
lost latent information and employ the conditions in our theory to guide the training
process. Through experiments conducted on synthetic datasets, we validate that the
causal process is reliably identified by CaRiNG, even when the generation process
is non-invertible. Moreover, we show that our approach considerably improves
temporal understanding and reasoning in practical applications.

1 INTRODUCTION

Sequential data, including video, stock, and climate observations, are integral to our daily lives.
Gaining an understanding of the causal dynamics in such time series data has always been a crucial
challenge (Berzuini et al., 2012; Ghysels et al., 2016; Friston, 2009) and has attracted considerable
attention. The core of this task is to identify the underlying causal dynamics in the data we observe.

Towards this goal, we focus on Independent Component Analysis (ICA) (Hyvärinen & Oja, 2000),
which is a classical method for decomposing the latent signals from mixed observation. Recent
advancements in nonlinear ICA (Hyvarinen & Morioka, 2016; 2017; Hyvarinen et al., 2019; Khe-
makhem et al., 2020; Sorrenson et al., 2020; Hälvä & Hyvarinen, 2020) have yielded robust theoretical
evidence for the identifiability of latent variables, and enable the use of deep neural networks to ad-
dress complex scenarios. For example, by assuming the latent variables in the data generation process
are mutually independent, and leveraging the auxiliary side information such as time index, domain
index, or class label, Hyvarinen & Morioka (2017); Hyvarinen et al. (2019); Hälvä & Hyvarinen
(2020) have demonstrated the strong identifiability results. Hälvä et al. (2021); Klindt et al. (2020);
Yao et al. (2022b;a); Lachapelle et al. (2022) further extend this nonlinear ICA framework into the
scenarios of the time-delayed dynamical system, which allows the temporal transitions among the
latent variables.

However, these nonlinear ICA-based methods usually assume that the mixing function (the generation
process from sources to observations) is invertible, which may be difficult to satisfy in real-world
scenarios, such as the 3D to 2D projection in the visual process. As shown in Figure 1 (a) and (b), we
provide two intuitive instances of the real videos to illustrate how the non-invertibility happens. In (a),
when object occlusions occur, information from the obstructed object is lost in the generation process
of the current time step, which causes non-invertibility. In (b), the persistence of vision introduces
non-invertibility, since the the mixing process of the current time step utilizes the history information.
We further found that the violation of this inevitability assumption may cause the nonlinear ICA
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(a) Non-invertibility by occlusion

(b) Non-invertibility by vision persistence (c) Identifiablity V.S. non-invertibility
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Figure 1: Motivations of the non-invertible generation process. (a) The occlusions raise the
non-invertibility since the measured observation cannot cover the obstructed objects. (b) The
vision persistence, shown with the high-speed movement of a crashing car, describes the generation
process that jointly involves the current state and previous, and causes the non-invertibility. (c) The
identifiability of conventional methods, such as TDRL Yao et al. (2022a) (blue), drops drastically
with the increase of non-invertibility. While our method’s identifiability (orange) still holds. Here
non-invertibility = 1/3 denotes the information loss is 1/3, i.e., the observed information (the number
of observed variables) is 2/3 of the latent one (the number of latent variables).

method to obtain bad identification performance. In part (c) of Figure 1, we demonstrate that TDRL,
one of the typical nonlinear ICA-based methods making the invertibility assumption, markedly
degrades its performance in identifying the latent variables with increasing non-invertibility. It
motivates us to extend the current nonlinear ICA to consider the non-invertible mixing function.

In this paper, to tackle the challenges above, we propose to leverage the temporal context aid in
retrieving missing information caused by the non-invertible mixing function, mirroring the intuitive
mechanisms of human perception. For instance, when we encounter an object with occlusion, our
natural inclination is to draw from historical data to reconstruct the obscured portion. We demonstrate
that, even when the generation process is non-invertible, the derived latent causal representation
remains identifiable if the latent variables can be expressed as an arbitrary function combining the
current observation with its history. Built upon this identification theorem, we introduce a principled
approach, named CaRiNG, that learns the function to integrate historical data to compensate for the
latent information lost due to non-invertibility. This approach extends the Sequential Variational
Autoencoder (Sequential VAE) (Chung et al., 2015) with two distinct modifications. Firstly, it
incorporates history (or context) information directly into the encoder. Specifically, we transform
step-to-step mapping (from current observation to the current latent variable) into sequence-to-step
mapping (from current observation and temporal context to the current latent variable). Secondly, a
specialized prior module is introduced to determine the prior distribution of latent variables using
the normalizing flow (Dinh et al., 2016), ensuring the imposition of an independent noise condition.
We evaluate our method using both synthetic and real-world data. Using synthetic data, we design
datasets with a non-invertible mixing function to gauge identifiability. For real-world applications,
CaRiNG is deployed in a traffic accident reasoning task, a scenario wherein the intricate traffic
dynamics introduce considerable non-invertibility. Experimental outcomes reveal that our method
significantly outperforms other temporal representation learning methods for identifying causal
representations amid non-invertible generation processes. Furthermore, this causal representation has
proven instrumental in enhancing video reasoning tasks.

Key Insights and Contributions of our research include:

• To the best of our understanding, this paper presents the first identifiability theorem that
accommodates a non-invertible generation process, which complements the existing body
of the nonlinear ICA theory.

• We present a principled approach, CaRiNG, to learn the latent Causal Representation from
the temporal data with Non-invertible Generation processes with identifiability guarantees,
by integrating the temporal context information to recover the lost information.

• Our evaluations across synthetic and real-world datasets attest to CaRiNG’s effectiveness
for learning the identifiable latent causal representation, leading to enhancements in video
reasoning tasks.
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2 PROBLEM SETUP

2.1 NON-INVERTIBLE TEMPORAL GENERATIVE PROCESS

Consider observing n-dimensional time-series data with T discrete time steps , represented as X =
{x1,x2, . . . ,xT }. Each observation xt ∈ X ⊆ Rd is generated from a nonlinear mixing function g
that maps r + 1 adjacent latent variables zt:t−r to xt, where zt:t−r refers to {zt, zt−1, · · · , zt−r}.
We have zt ∈ Z ⊆ Rn. For every i ∈ 1, . . . , n, the variable zit of zt is derived from a stationary,
non-parametric time-delayed causal relation:

xt = g(zt:t−r)︸ ︷︷ ︸
Nonlinear mixing

, zit = fi ({zj,t−τ |zj,t−τ ∈ Pa(zit)}, ϵit)︸ ︷︷ ︸
Stationary non-parametric transition

with ϵit ∼ pϵi︸ ︷︷ ︸
Stationary noise

. (1)

Note that with non-parametric causal transitions, the noise term ϵit ∼ pϵi (where pϵi denotes the
distribution of ϵit) and the time-delayed parents Pa(zit) of zit (i.e., the set of latent factors that
directly cause zit) are interacted and transformed in an arbitrarily nonlinear way to generate zit.
τ denotes the transition time lag. The components of zt are mutually independent conditional on
history variables Pa(zt).

In this case, one cannot recover zt from xt alone due to the non-invertibility of g. Without extra
assumptions, it is definitely non-identifiable. As a result, we assume that there exists a time lag µ and
a nonlinear function m which can map a series of observations to latent variable zt, i.e.,

zt = m(xt:t−µ). (2)

Once we successfully recover the information lost due to non-invertibility from the context, the
classical nonlinear ICA algorithm can be used to solve this problem.

2.2 IDENTIFICATION OF THE LATENT CAUSAL PROCESSES

We define the identifiability of the latent causal process in Definition 1.
Definition 1 (Identifiable Latent Causal Process). Let X = {x1,x2, . . . ,xT } be a sequence
of observed variables generated by the true temporally causal latent processes specified by
(fi, p(ϵi),g) given in Eq 1. A learned generative model (f̂i, p̂(ϵi), ĝ) is observational equivalent
to (fi, p(ϵi),g) if the model distribution pf̂i,p̂ϵ,ĝ

({x1,x2, . . . ,xT }) matches the data distribution
pfi,pϵ,g({x1,x2, . . . ,xT }) for any value of xt. We say latent causal processes are identifiable if
observational equivalence can lead to a version of latent variable zt = m(xt:t−µ) up to permutation
π and component-wise invertible transformation T :

pf̂i,p̂ϵi
,ĝ({x1,x2, . . . ,xT }) = pfi,pϵi

,g({x1,x2, . . . ,xT })

⇒ m̂(xt:t−µ) = (T ◦ π ◦m)(xt:t−µ), ∀xt:t−µ ∈ X µ+1,
(3)

where X µ+1 is the observation space.

Different from the existing literature, we involve m in the above definition, since it does so implicitly
as a property of the mixing function g, although it does not explicitly participate in the generation
process. Furthermore, the identifiability of g is different. In previous nonlinear ICA methods (Yao
et al., 2022a; Hyvarinen & Morioka, 2017), the mixing function g is identifiable. However, in
our case, we cannot find the identifiable mixing function since the information loss is caused by
non-invertibility. Instead, we can obtain a component-wise transformation of a permuted version of
latent variables ẑt = m(xt:t−µ). The latent causal relations are also identifiable, up to a permutation
π and component-wise invertible transformation T , i.e., f̂ = T ◦ π ◦ f , once zt is identifiable. It
is because, in the time-delayed causally sufficient system, the conditional independence relations
fully characterize time-delayed causal relations when we assume no latent causal confounders in the
(latent) causal processes.

2.3 ILLUSTRATIONS OF THE PROBLEM SETUP

3



Under review as a conference paper at ICLR 2024

Figure 2: An intuitive illustration of a moving
ball with a visual persistence effect. The ball is
moving along a descending curve. The observation
in a particular time step is composed of multiple
residual images of the ball.

Intuitive Illustration with Visual Persistence.
Consider a rapidly moving ball on a two-
dimensional plane as described in figure 2. The
horizontal and vertical coordinates of the ball’s
position at any given moment can be represented
by the latent variable zt ∈ R2. We assume that
the ball follows a curved trajectory constrained
by the nonlinear function f as it moves.

Suppose that we observe the ball with a visual
persistence effect, where each observation xt

captures several consecutive latent variables as
xt = g(z<t). The mixing function g refers
to the weighted sum of the images obtained
through multiple exposures, which is what a
person ultimately observes as xt. In this case, the invertibility of the mapping from zt to xt is
compromised since the current frame also contains the latent information from previous frames.

Mathematical Illustration. Besides, we provide a mathematical example to demonstrate the
existence of function m in Eq 2. Following the concept of visual persistence, let the current
observation be a weakened previous observation overlaid with the current image of the object, i.e.,
xt = zt +

1
2xt−1 =

∑∞
i=1

(
1
2

)i
zt−i (Wolford, 1993). Given an extra observation, the current latent

variable can be rewritten as zt = xt − 1
2xt−1. Thereby we can easily recover latent variables that

cannot be obtained from a single observation, i.e., zt = m(xt:t−1) = xt − 1
2xt−1.

3 IDENTIFIABILITY THEORY

In this section, we demonstrate that, given certain mild conditions, the learned causal representation
zt is identifiable up to permutation and a component-wise transformation. This holds even if the
mixing function g is non-invertible. Firstly, we present the identifiability results when faced with a
non-invertible mixing function and stationary transitions. Subsequently, we address the gap between
permutation-scaling Jacobian to identifiability. Lastly, by leveraging side information such as the
domain index and label, we illustrate how identifiability can be achieved even in a non-stationary
context. The exhaustive proofs are available in Appendix A1.

3.1 IDENTIFIABILITY UNDER NON-INVERTIBLE GENERATIVE PROCESS

W.L.O.G., we first consider a simplified case with τ = r + 1 and context length µ, which infers such
process:

xt = g(zt:t−r), zit = fi (zt−1:t−r−1, ϵit) , (4)

where a function m satisfying zt = m(xt:t−µ) exists. When taking r = 0, the time delay is present
only in transitions and is absent in the generation process. Taking r > 0 yields us to a more intricate
scenario, where the mixing function encompasses not just the latent causal variables of the current
time step, but also the information of previous steps, termed the Time-delayed Mixing Process. Such
a scenario is compelling, acknowledging that the mixing process can be influenced by time-delayed
effects. To illustrate, human visual perception provides a fitting example: the phenomenon known as
the persistence of vision reveals that humans retain impressions of a visual stimulus even after its
cessation (Coltheart, 1980). The extensions for any time lag τ will be discussed in Appendix A1.2.

Theorem 1 (Identifiability under Non-invertible Generative Process). For a series of observations xt

and estimated latent variables ẑt, suppose there exists function ĝ, m̂ which subject to observational
equivalence, i.e.,

xt = ĝ(ẑt:t−r), ẑt = m̂(xt:t−µ). (5)

If assumptions

• (conditional independence) the components of ẑt are mutually independent conditional on
ẑt−1:t−r−1,
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• (sufficiency) let ηkt ≜ log p(zkt|zt−1:t−r−1), and

vk,t ≜
( ∂2ηkt
∂zk,t∂z1,t−r−1

,
∂2ηkt

∂zk,t∂z2,t−r−1
, ...,

∂2ηkt
∂zk,t∂zn,t−r−1

,0,0, · · · ,0
)⊺

v̊k,t ≜
(
0,0, · · · ,0, ∂3ηkt

∂z2k,t∂z1,t−r−1
,

∂3ηkt
∂z2k,t∂z2,t−r−1

, ...,
∂3ηkt

∂z2k,t∂zn,t−r−1

)⊺
.

, (6)

for each value of zt, v1t, v̊1t,v2t, v̊2t, ...,vnt, v̊nt ∈ R2n, as 2n vector functions in z1,t−1,
z2,t−1, ..., zn,t−1, are linearly independent,

• (continuity) the domain of ẑ is path-connected, m, m̂,g, ĝ are second-order differentiable,
and non-degeneracy condition holds for m ◦ ĝ ◦ m̂ and m̂ ◦ g ◦m,

are satisfied, then zt must be a component-wise transformation of a permuted version of ẑt with
regard to context {xj | ∀j = t, t− 1, · · · , t− µ− r}.

The proof of Theorem 1 can be found in Appendix A1.1. It is inspired from Yao et al. (2022a), which
follows the line of Hyvarinen et al. (2019).

For clarification, the condition that a function h : Rn → Rn is invertible, or equivalently the non-
vanishing of the determinant of the Jacobian matrix Hh, is called the non-degeneracy condition. We
first define the partially invertible function, and then give the non-degeneracy condition on it.

Definition 2 (Partially Invertiblility). A function z = h(ẑ, c), where z, ẑ ∈ Z ⊆ Rn and z ∈ C ⊆
Rm, is partially invertible, if and only if for any given c, the unfixed part hc : Rn → Rn is always
invertible.

Definition 3 (Non-degeneracy Condition of Partially Invertible Functions). The non-degeneracy
condition of a partially invertible function z = h(ẑ, c) is that for any given c, the determinant of the
Jacobian matrix Hhc of hc is always non-zero.

Besides, the nonstationary transition can also help to improve the identifiability of CaRiNG . As
shown in the sufficiency assumption in Theorem 1, the identifiability relies on the sufficient changes of
the conditional distribution p(zkt|zt−1:t−r−1). When the distribution of the noise term varies between
different domains, the domain index can serve as an auxiliary variable to improve this sufficiency
since both domain dynamics and history variables can provide changes. A further discussion is
provided in the Appendix A1.4.

3.2 NECESSITY OF CONTINUITY

To establish identifiability, numerous existing nonlinear ICA-based methods (Yao et al., 2022b;a;
Hyvarinen et al., 2019; Hälvä et al., 2021) utilize the Jacobian matrix, denoted by H = ∂z

∂ẑ , which
captures the relationship between ground truth and estimated latent variables. These methods propose
that the learned latent variables are identifiable if Hij ·Hik = 0 for j ̸= k (with only a single non-zero
element in each row or column). H corresponds to the Jacobian matrix of the function h ≜ m ◦ ĝ
in our scenario (or g−1 ◦ ĝ for the general scenario). However, it is crucial to highlight an often
overlooked shortcoming: this condition alone is insufficient to establish identifiability when dealing
with non-linear generation processes. While in linear ICA, given that the Jacobian remains constant,
this condition indeed equates to identifiability. Yet, in nonlinear ICA, the Jacobian matrix, being a
function of ẑ, can vary with different ẑ values, potentially rendering the mapping unpredictable. A
comprehensive discussion is available in Appendix A1.3. We are happy to find that, concurrently to
our work, Lachapelle et al. (2023) have rightfully pointed out that one has to be careful when going
from “Jacobian is a permutation-scaling matrix” to “the mapping is a permutation composed with
an element-wise transformation” when the domain of the function is not simply Rn. Please refer to
Lachapelle et al. (2023)’s discussion about "local" and "global" disentanglement.

To fill this gap, we provide two more assumptions. The domain Ẑ of ẑ should be path-connected, i.e.,
for any a,b ∈ Ẑ , there exists a continuous path connecting a and b with all points of the path in
Ẑ . In addition, function h is second-order differentiable and holds the non-degeneracy condition.
Without this condition, the map may or may not be locally invertible.
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Figure 3: The overall frame-
work of CaRiNG. It consists
of three main modules, in-
cluding the sequence-to-step
encoder, step-to-step decoder,
and the transition prior mod-
ule, which is represented as
SeqEnc, StepDec, and f̂−1

z in
a different color, respectively.
The model is trained with both
LRecon and LKLD.

Lemma 1 (Disentanglement with Continuity). For second-order differentiable invertible function h

defined on a path-connected domain Ẑ ⊆ Rn which satisfies z = h(ẑ), suppose the non-degeneracy
condition holds. If there exists at most one non-zero entry in each row of the Jacobian matrix H = ∂z

∂ẑ ,
ẑ is a disentangled version of z up to a permutation and a element-wise nonlinear operation.

Furthermore, when the Jacobian matrix is more than a function of ẑ, but also is influenced by a side
information c, the identifiability can be guaranteed as well under mild extra conditions. We leverage
Lemma 2 for the proof of Theorem 1.

Lemma 2 (Disentanglement with Continuity under Side Information). For second-order differentiable
invertible function h defined on a path-connected domain Ẑ ×C ⊆ Rn+m which satisfies z = h(ẑ, c),
suppose the non-degeneracy condition holds. If there exists at most one non-zero entry in each row
of the Jacobian matrix H(c) = ∂z

∂ẑ , ẑ is a disentangled version of z up to a permutation and a
element-wise nonlinear operation.

4 APPROACH

Given our results on identifiability, we introduce our CaRiNG approach. This aims to estimate the
latent causal dynamics presented in Eq 1, even when faced with a non-invertible mixing procedure.
To achieve this, CaRiNG builds upon the Sequential Variational Auto-Encoders (Li & Mandt, 2018)
and incorporates three primary modules: the sequence-to-step encoder (SeqEnc), the step-to-step
decoder (StepDec), and the transition prior module (f̂−1

z ). During the training phase, we integrate the
conditions from Sec. 3 as constraints and adopt two corresponding loss functions.

Overall Framework. As visualized in Figure 3, our framework starts by acquiring the latent causal
representation via a sequence-to-step encoder, whose input and output are a sequence of observations
xt:t−µ and the estimated latent variable ẑt. Formally, it denotes the inference process of q(ẑt|xt:t−µ),
which is corresponding to the function m in Eq 2. Following this, observations are generated from
the latent space through a step-to-step decoder p(x̂t|ẑt), which implies the mixing function g as
mentioned in Eq 1. To learn the independent latent variables, we apply a constraint using the KL
divergence between the posterior distribution of learned latent variables and a prior distribution
which subjects to our conditional independence assumption in Theorem 1. The estimation of the
prior distribution motivates us to utilize a normalizing flow, converting the prior distribution into
Gaussian noise, represented as ϵ̂it = f−1

i (ẑit, ẑt−1:t−τ ). Moreover, a reconstruction loss between
the ground truth and generated observations is integrated for model training. A detailed exploration
of all modules and losses is forthcoming.

Sequence-to-Step Encoder and Step-to-Step Decoder. Drawing inspiration from the capability
of the human visual system, we utilize temporal context to reclaim the information lost due to non-
invertible generation. The human visual system adeptly fills in occluded segments by recognizing
coherent motion cues (Palmer, 1999; Wertheimer, 1938; Spelke, 1990). Assuming the presence of a
function that captures all latent information from the current observation and its temporal context,
we can retrieve the latent causal process with identifiability, i.e. m exists. Various non-linear
models are suitable for estimating this function, taking a sequence of observations, xt:t−µ, with
a lag of µ as inputs, and yielding the estimated latent representation for the current time step as
output. In our experiments, we utilize both Multi-Layer Perceptron (MLP) (Werbos, 1974) and
Transformer (Vaswani et al., 2017) models, catering to different complexities. Given the estimated
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Figure 4: Qualitative comparisons between baseline methods (especially TDRL) and CaRiNG in
the setting of Non-invertible Generation. (a) MCC matrix for all 3 latent variables; (b) The scatter
plots between the estimated and ground-truth latent variables (only the aligned variables are plot); (c)
The validation MCC curves of CaRiNG and other baselines.

latent variable ẑt, a step-to-step decoder is employed to generate the current observation xt. For
practical implementation, an MLP network suffices.

Transition Prior Module. To uphold the conditional independence assumption, we propose to
minimize the KL divergence between the posterior distribution, q(ẑt|xt:t−µ), and a prior distribution
p(ẑt|ẑt−1:t−τ ). By hard-coding the prior distribution to be conditionally independent on ẑt−1:t−τ , we
expect the posterior to also be subject to the conditional independence assumption. Direct estimation
of the prior, which has an arbitrary density function, poses challenges. As a solution, we introduce a
transition prior module that facilitates the estimation of the prior using normalizing flow. Specifically,
the prior is represented through a Gaussian distribution combined with the Jacobian matrix of the
transition module.

Formally presented, the transition prior module is represented as ϵ̂it = f̂−1
i (ẑit, ẑt−1:t−τ ). Sub-

sequently, the joint distribution is decomposed as a product of the noise distribution and the de-
terminant of the Jacobian matrix, formulated as p([ẑt−1:t−τ , ẑt]) = p([ẑt−1:t−τ , ϵ̂t]) × |J|, with

J =

[
Inτ 0
0 diag( ∂ϵ̂it∂ẑit

)

]
, where [·] denotes concatenation operation. Leverage this joint distribution,

we can derive the prior as

log p(ẑt|ẑt−1:t−τ ) = log p([ẑt, ẑt−1:t−τ ])− log p(ẑt−1:t−τ )

= log p([ϵ̂t, ẑt−1:t−τ ]) + log |J| − log p(ẑt−1:t−τ )

= log p(ϵ̂t|ẑt−1:t−τ ) + log |J|
= log p(ϵ̂t) + log |J|

=
∑
i

log p(ϵ̂it) + log |J| : Conditional independence assumption

=
∑
i

(
log p(ϵ̂it) + log

∂ϵ̂it
∂ẑt,i

)
: Lower-triangular Jacobian.

(7)
The transition prior module can be efficiently executed using an MLP network, transforming the
latent variables ẑt:t−τ into ϵ̂t.

Optimization. We train CaRiNG using the Evidence Lower BOund (ELBO) objective, which is
written as follows:

ELBO ≜Eqϕ(Z|X)[log pθ(X|Z)]−DKL(qϕ(Z|X)||pθ(Z))

=Eqϕ(Z|X)

T∑
t=1

log pθ(xt|zt)︸ ︷︷ ︸
−LRecon

+Eqϕ(Z|X)

[
T∑

t=1

log pθ(zt|zt−1:t−τ )−
T∑

t=1

log qϕ(zt|xt:t−µ)

]
︸ ︷︷ ︸

−LKLD

. (8)

For the reconstruction likelihood LRecon, we utilize the mean-squared error (MSE) to measure the
discrepancy between the generated and original observations. When computing the KL divergence
LKLD, we resort to a sampling method, given that the prior distribution lacks an explicit form. To
elaborate, the posterior is produced by the encoder, while the prior is defined as in Eq 7.
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Table 1: MCC scores (with standard deviations over 4 random seeds) of CaRiNG and other
baselines on both NG and NG-TDMP settings .

Settings Method
CaRiNG TDRL LEAP SlowVAE PCL betaVAE SKD iVAE SequentialVAE

NG 0.933 ±0.010 0.627 ±0.009 0.651 ±0.019 0.362 ±0.041 0.507 ±0.091 0.551 ±0.007 0.489 ±0.077 0.391 ±0.686 0.750 ±0.035
NG-TDMP 0.921 ±0.010 0.837 ±0.068 0.704 ±0.005 0.398 ±0.037 0.489 ±0.095 0.437 ±0.021 0.381 ±0.084 0.553 ±0.097 0.847 ±0.019

5 EXPERIMENTS

We conducted the experiments in two simulated environments, utilizing the available ground truth
latent variables to evaluate identifiability. Subsequently, we assessed CaRiNG on a real-world
VideoQA task, SUTD-TrafficQA (Xu et al., 2021), to verify its capability in representing complex
and non-invertible traffic events.

5.1 SIMULATION EXPERIMENTS

Dataset and experimental settings. To evaluate whether CaRiNG can learn the causal process
and identify the latent variables under a non-invertible scenario, we design a series of simulation
experiments based on a random causal structure with a given sample size and variable size. We
provide two experimental settings, including NG and NG-TDMP, which simulate the scenarios
in Theorem 1 with r = 0 (non-invertible generation) and r > 0 (time-delayed mixing process),
respectively. In particular, for NG, we simulate the visual perception system that uses the ground-
truth dimension as 3 to represent the 3D real world and apply 2 measured variables to represent
the 2D observation, which indicates the generation is non-invertible. For NG-TDMP, we simulate
the persistence of vision that involves the previous latent variables in the current mixing process. It
denotes that even if the dimension of the observation is not reduced, the generation process is still
non-invertible due to the time-delay mixing. More details of the data generation process can be found
in the Appendix.

Evaluation metrics. We apply the standard evaluation metric in the field of ICA, Mean Correlation
Coefficient (MCC), to evaluate the identifiability of our CaRiNG. MCC measures the recovery
of latent factors by calculating the absolute values of the correlation coefficient between every
ground-truth factor against every estimated latent variable. It first calculates the Pearson correlation
coefficients to measure the relationship and then adjusts the order with an assignment algorithm. The
MCC score is a value from 0 to 1, where higher is with better identifiability.

Baseline methods. We compare CaRiNG with a series of baseline methods. BetaVAE (Higgins
et al., 2017) is the most basic baseline with no identifiability guarantee. SlowVAE (Klindt et al.,
2020), and PCL (Hyvarinen & Morioka, 2017) assume the independent sources even utilize the
temporal information. LEAP (Yao et al., 2022b) and TDRL (Yao et al., 2022a) allow for learning
causal processes but assume an invertible generation process. Besides, we also compare CaRiNG
with the disentangled representation learning methods, such as SKD (Berman et al., 2022), which
are not based on ICA and don’t have the identifiability guarantee. In addition, we compare with
iVAE (Khemakhem et al., 2020), despite iVAE not theoretically working under stationary transition.
It is important to note that iVAE requires additional domain information as input. In our experiments,
we simply used time indices as the domain label. Lastly, Sequential VAE (Chung et al., 2015) is also
compared to verify the effect of conditional independence.

Quantitative results. The performance of CaRiNG and other baseline methods in both the NG and
NG-TDMP scenarios is presented in Table 1. Initially, it’s evident that all baseline Nonlinear ICA
methods yield unsatisfactory MCC scores in both scenarios, including the strong TDRL baseline,
which previously obtained good results in invertible settings, as shown in Figure 4 (c). As shown
in Figure 4 (a), TDRL cannot recover the lost latent variables caused by non-invertible generation
(MCC=0.03 for that variable). It is also illustrated by the scatter plots in Figure 4 (b), which show the
independence between the estimated and ground truth variables on that dimension. Interestingly, we
find that the Sequential VAE method works better than other methods that don’t use the temporal
context, which also demonstrates the necessity of temporal context to solve the invertibility issue.
However, we still find that constraining the conditional independence benefits better performance,
which shows the effect of the KL part. Furthermore, CaRiNG consistently delivers robust identifiabil-
ity outcomes in both settings. This suggests that leveraging temporal context significantly enhances
identifiability when faced with non-invertible generation processes. Lastly, performance in the NG
scenario is better than that in the NG-TDMP scenario, showing the increased complexity introduced
by the time-delayed mixing process.
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Table 2: Results on SUTD-TrafficQA dataset on different question types. B: “Basic understand-
ing”, F: “Forecasting task”, R: “Reverse Reasoning”, C: “Counterfactual inference”, I: “Introspection”,
A: “Attribution”. The "ALL" column shows the weighted average of scores, based on each question
type’s population. The cross-modality matching parts of TDRL and CaRiNG are based on HCRN.

Method Year Question Type AllB A I C F R

I3D+LSTM CVPR2017 - - - - - - 33.21
HCRN CVPR2020 34.17 50.29 33.40 40.73 44.58 50.09 36.26
VQAC ICCV2021 34.02 49.43 34.44 39.74 38.55 49.73 36.00
MASN ACL2021 33.83 50.86 34.23 41.06 41.57 50.80 36.03
DualVGR TMM2021 33.91 50.57 33.40 41.39 41.57 50.62 36.07
Eclipse CVPR2021 - - - - - - 37.05
CMCIR TPAMI2023 36.10 52.59 38.38 46.03 48.80 52.21 38.58

TDRL NeurIPS2022 36.28 39.57 29.63 46.49 31.84 39.46 37.32
CaRiNG - 38.95 44.98 32.43 48.64 41.70 47.16 41.22

5.2 REAL-WORLD EXPERIMENTS

Dataset and experimental settings. The SUTD-TrafficQA dataset (Xu et al., 2021) is a compre-
hensive resource tailored for video event understanding in traffic scenarios, notably characterized by
numerous occlusions among traffic agents. It consists of 10,090 videos and provides over 62,535
human-annotated QA pairs. Among them, 56,460 QA pairs are used for training and the rest 6,075
QA pairs are used for testing. The dataset challenges models with six key reasoning tasks: “Basic
Understanding” is designed for grasping essential traffic dynamics. “Event Forecasting” and “Reverse
Reasoning” evaluate the temporal prediction ability. “Introspection”, “Attribution”, and “Counterfac-
tual Inference” require the model to understand the causal dynamic and conduct reasoning. All tasks
are formulated as multiple-choice forms (evaluation with accuracy) without limiting the number of
candidate answers, and demand a deep comprehension of traffic events and their underlying causality.

Baseline methods. The primary method we benchmark against is TDRL (Yao et al., 2022a), to evalu-
ate the representation ability of the complex and non-invertible traffic environment. Additionally, we
evaluate CaRiNG in comparison with state-of-the-art VideoQA methods, including I3D+LSTM (Car-
reira & Zisserman, 2017), HCRN (Le et al., 2020), VQAC (Kim et al., 2021), MASN (Seo et al.,
2021), DualVGR (Wang et al., 2021), Eclipse (Xu et al., 2021), and CMCIR (Liu et al., 2023). In our
approach, CaRiNG is leveraged to identify latent causal dynamics, while HCRN serves as the basic
model for question answering. Further implementation details are provided in the Appendix.

Quantitative results. Performance comparisons for the six question types on SUTD-TrafficQA
are summarized in Table 2. CaRiNG achieves a score of 41.22, which demonstrates a significant
improvement which is nearly 6.8% over the next best method. Notably, when compared to TDRL,
which lacks temporal context, CaRiNG exhibits significant advancements in representing complex,
non-invertible traffic events. When benchmarked against the HCRN baseline, which employs the
same cross-modality matching module, our approach further escalates the score by 4.96 through
causal representation learning. Though CMCIR (Liu et al., 2023) applies the Swin-Transformer-
L (Liu et al., 2021) pretrained on ImageNet-22K dataset as the frame-level appearance extractor
and employs the video Swin-B (Liu et al., 2022) pretrained on Kinetics-600 as the clip-level motion
feature extractor (more powerful than ours), CaRiNG with sample ResNet101 (He et al., 2016)
features still outperforms it with 2.64 in average.

6 CONCLUSION

In this paper, we have proposed to consider learning temporal causal representation under the non-
invertible generation process. We have established identifiability theories that allow for recovering
the latent causal process with the nonlinear and non-invertible mixing function. Furthermore, based
on this theorem, we proposed our approach, CaRiNG, to leverage the temporal context to estimate
the lost latent information. We have conducted a series of simulated experiments to verify the
identifiability results of CaRiNG under the non-invertible generations, and evaluated the learned
representation in a complex and non-invertible traffic environment with real-world VideoQA tasks.
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A1 IDENTIFIABILITY THEORY

A1.1 PROOF FOR THEOREM 1

Let us first shed light on the identifiability theory on the special case with τ = r + 1, i.e.,

xt = g(zt:t−r), zit = fi (zt−1, ϵit) , zt = m(xt:t−µ). (9)

Theorem A1 (Identifiability under Non-invertible Generative Process). For a series of observations
xt and estimated latent variables ẑt, suppose there exists function ĝ, m̂ which subject to observational
equivalence, i.e.,

xt = ĝ(ẑt:t−r), ẑt = m̂(xt:t−µ). (10)
If assumptions

• (conditional independence) the components of ẑt are mutually independent conditional on
ẑt−1:t−r−1,

• (sufficiency) let ηkt ≜ log p(zkt|zt−1:t−r−1), and

vk,t ≜
( ∂2ηkt
∂zk,t∂z1,t−r−1

,
∂2ηkt

∂zk,t∂z2,t−r−1
, ...,

∂2ηkt
∂zk,t∂zn,t−r−1

,0,0, · · · ,0
)⊺

v̊k,t ≜
(
0,0, · · · ,0, ∂3ηkt

∂z2k,t∂z1,t−r−1
,

∂3ηkt
∂z2k,t∂z2,t−r−1

, ...,
∂3ηkt

∂z2k,t∂zn,t−r−1

)⊺
, (11)

for each value of zt, v1t, v̊1t,v2t, v̊2t, ...,vnt, v̊nt ∈ R2n, as 2n vector functions in z1,t−1,
z2,t−1, ..., zn,t−1, are linearly independent,

• (continuity) the domain of ẑ is path-connected, and m, m̂,g, ĝ are second-order differen-
tiable, non-degeneracy condition holds for m ◦ ĝ ◦ m̂ and m̂ ◦ g ◦m,

are satisfied, then zt must be a component-wise transformation of a permuted version of ẑt with
regard to context {xj | ∀j = t, t− 1, · · · , t− µ− r}.

For a better understanding of the sufficiency assumption in Eq 11, we will now proceed to provide an
explanation for it. Consider the mixed derivative matrix Vt, V̊t formed by {vk,t}nk=1 , {̊vk,t}nk=1 as

Vt =


∂2η1t

∂z1,t∂z1,t−r−1

∂2η1t

∂z1,t∂z2,t−r−1
· · · ∂2η1t

∂z1,t∂zn,t−r−1

∂2η2t

∂z2,t∂z1,t−r−1

∂2η2t

∂z2,t∂z2,t−r−1
· · · ∂2η2t

∂z2,t∂zn,t−r−1

...
...

. . .
...

∂2ηnt

∂zn,t∂z1,t−r−1

∂2ηnt

∂zn,t∂z2,t−r−1
· · · ∂2ηnt

∂zn,t∂zn,t−r−1


T

(12)

and

V̊t =


∂3η1t

∂2z1,t∂z1,t−r−1

∂3η1t

∂2z1,t∂z2,t−r−1
· · · ∂3η1t

∂2z1,t∂zn,t−r−1

∂3η2t

∂2z2,t∂z1,t−r−1

∂3η2t

∂2z2,t∂z2,t−r−1
· · · ∂3η2t

∂2z2,t∂zn,t−r−1

...
...

. . .
...

∂3ηnt

∂2zn,t∂z1,t−r−1

∂3ηnt

∂2zn,t∂z2,t−r−1
· · · ∂3ηnt

∂2zn,t∂zn,t−r−1


T

(13)

separately. The sufficiency assumption is satisfied if and only if Vt, V̊t are of full rank, thus[
Vt 0

0 V̊t

]
is of full rank. The purpose of this assumption is that the model can capture and distinguish

independent noise from transition dynamics only when they are sufficiently diverse. This property
will be used in the following proof.
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Proof. For any t, combining Eq 9 and Eq 10 gives

zt = m(xt:t−µ)

= m(ĝ(ẑt, ẑt−1:t−r),xt−1:t−µ)

= m(ĝ(ẑt, m̂(xt−1:t−µ−1), · · · , m̂(xt−r:t−µ−r)),xt−1:t−µ),

(14)

as well as ẑt = m̂(g(zt,m(xt−1:t−µ−1), · · · ,m(xt−r:t−µ−r)),xt−1:t−µ) similarly. Upon Eq 14,
we have an unified partially invertible function zt = h(ẑt|xt−1:t−µ−r) where h = m ◦ ĝ with
Jacobian ∂zt

∂ẑt
= Ht(ẑt;xt−1:t−µ−r). By partially invertible it means that z and ẑ are in one-to-one

correspondence for any context observations xt−1:t−µ−r that are fixed. One more thing to notify is
that since g, ĝ,m, m̂ are second-order differentiable, the nested h is also second-order differentiable.
Let us consider the mapping from joint distribution (ẑt,xt−1:t−µ−r−1) to (zt,xt−1:t−µ−r−1), i.e.,

P (zt,xt−1:t−µ−r−1) = P (ẑt,xt−1:t−µ−r−1) / |Jt|, (15)

where

Jt =

[
∂zt

∂ẑt
0

∗ I

]
, (16)

which is a lower triangle matrix, where I infers eye matrix and ∗ infers any possible matrix. Thus, we
have determinant |Jt| = |∂zt

∂ẑt
| = |Ht|. Dividing both sides of Eq 15 by P (xt−1:t−µ−r−1) gives

LHS = P (zt|xt−1:t−µ−r−1) = P (zt|zt−1:t−r−1), (17)

since zt and xt−1:t−µ−r−1 are independent conditioned on zt−1:t−r−1. Similarly, RHS =
P (ẑt|xt−1:t−µ−r−1) = P (ẑt|ẑt−r−1) holds true as well, which yields to

P (zt|zt−1:t−r−1) = P (ẑt|ẑt−1:t−r−1) / |Ht|. (18)

From a direct observation, if the components of ẑt are mutually independent given ẑt−1:t−r−1, then
for any distinct i ̸= j, ẑit and ẑjt are conditionally independent given (ẑt \ {ẑit, ẑjt}) ∪ ẑt−1:t−r−1.
This mutual independence of the components of ẑt based on ẑt−1:t−r−1 implies two things:

• ẑit is independent from ẑt \ {ẑit, ẑjt} conditional on ẑt−1:t−r−1. Formally,

p(ẑit | ẑt−1:t−r−1) = p(ẑit | (ẑt \ {ẑit, ẑjt}) ∪ ẑt−1:t−r−1).

• ẑit is independent from ẑt \ {ẑit} conditional on ẑt−1:t−r−1. Represented as:

p(ẑit | ẑt−1:t−r−1) = p(ẑit | (ẑt \ {ẑit}) ∪ ẑt−1:t−r−1).

From these two equations, we can derive:

p(ẑit | (ẑt \ {ẑit}) ∪ ẑt−1:t−r−1) = p(ẑit | (ẑt \ {ẑit, ẑjt}) ∪ ẑt−1:t−r−1),

which yields that ẑit and ẑjt are conditionally independent given (ẑt \ {ẑit, ẑjt}) ∪ ẑt−1:t−r−1

for i ̸= j. Leveraging an inherent fact, i.e., if ẑit and ẑjt are conditionally independent given
(ẑt \ {ẑit, ẑjt}) ∪ ẑt−1:t−r−1, the subsequent equation arises:

∂2 log p(ẑt, ẑt−1:t−r−1)

∂ẑit∂ẑjt
= 0,

assuming the cross second-order derivative exists.

Given that p(ẑt, ẑt−1:t−r−1) = p(ẑt | ẑt−1:t−r−1)p(ẑt−1:t−r−1) and p(ẑt−1:t−r−1) remains
independent of ẑit or ẑjt, the above equality is equivalent to

∂2 log p(ẑt | ẑt−1:t−r−1)

∂ẑit∂ẑjt
= 0. (19)

Referencing Eq 18, it gets expressed as:

log p(ẑt | ẑt−1:t−r−1) = log p(zt | zt−1:t−r−1) + log |Ht| =
n∑

k=1

ηkt + log |Ht|. (20)

15



Under review as a conference paper at ICLR 2024

The partial derivative w.r.t. ẑit is presented below:

∂ log p(ẑt | ẑt−1:t−r−1)

∂ẑit
=

n∑
k=1

∂ηkt
∂zkt

· ∂zkt
∂ẑit

+
∂ log |Ht|

∂ẑit

=

n∑
k=1

∂ηkt
∂zkt

·Hkit +
∂ log |Ht|

∂ẑit
.

The second-order cross derivative can be depicted as:

∂2 log p(ẑt | ẑt−1:t−r−1)

∂ẑit∂ẑjt
=

n∑
k=1

(∂2ηkt
∂z2kt

·HkitHkjt +
∂ηkt
∂zkt

· ∂Hkit

∂ẑjt

)
+

∂2 log |Ht|
∂ẑit∂ẑjt

. (21)

According to Eq 19, the right-hand side of the presented equation consistently equals 0. Therefore,
for each index l ranging from 1 to n, and every associated value of zl,t−r−1, its partial derivative with
respect to zl,t−r−1 remains 0. That is,

n∑
k=1

( ∂3ηkt
∂z2kt∂zl,t−r−1

·HkitHkjt +
∂2ηkt

∂zkt∂zl,t−r−1
· ∂Hkit

∂ẑjt

)
≡ 0, (22)

where we leveraged the fact that entries of Ht do not depend on zl,t−r−1. Considering any given
value of zt, v1t, v̊1t,v2t, v̊2t, ...,vnt, v̊nt are linearly independent, to make the above equation hold
true, one has to set HkitHkjt = 0 or i ̸= j. In other words, each row of Ht consists of at most a
single non-zero entry. Given that second-order differentiable function h is defined on path-connected
domain and partially invertible with regard to context xt−1:t−µ−r, in addition to non-degeneracy,
zt must be a component-wise transformation of a permuted version of ẑt with regard to context
according to Lemma A2.

Note that in the proof of Theorem A1, we require the transition lag τ to be larger than the mixing lag
r = 1. When a mixing lag exists, the guarantee of identifiability requires dynamic information from
a further previous time step. As long as this inequality τ > r is satisfied, the parameters τ can be
extended to arbitrary numbers following a similar modification in Appendix A1.2.

A1.2 EXTENSION TO MULTIPLE LAGS

Multiple Transition Time Lag τ . For the sake of simplicity, we consider only one special case
with τ = r + 1 in Theorem A1. Our identifiability theorem can be actually extended to arbitrary
lags directly. For any given τ , according to modularity we have different conclusion at Eq 17
as LHS = P (zt|xt−1:t−µ−r−τ ) = P (zt|zt−1:t−r−τ ). Similarity RHS = P (ẑt|xt−1:t−µ−r−τ ) =
P (ẑt|ẑt−1:t−r−τ ) holds true as well. In addition, some modifications are needed in sufficiency
assumption, i.e., re-define ηkt ≜ log p(zkt|zt−1:t−r−τ ) and there should be at least 2n linear inde-
pendent vectors for v, v̊ with regard to zl,η where l = 1, 2, · · · , n and t− τ ≤ µ ≤ t− 1. No extra
changes are needed.

Infinite Mixing Lag r. The Theorem 1 can also be easily extended to infinite mixing lag since
zt = h(zt;x<t) still exists when r → ∞, the partially invertible function.

A1.3 NECESSITY OF CONTINUITY

Let us first give an extreme example to illustrate the importance of extra constraints for identifia-
bility. Consider 4 independent random variables u, v, x, y subjects to standard normal distribution
respectively. Suppose that there exist an invertible function (x, y) = h(u, v) satisfies{

x = I(x+ y > 0) · u+ I(x+ y ≤ 0) · v
y = I(x+ y > 0) · v + I(x+ y ≤ 0) · u. (23)

Notice that the Jacobian from (u, v) to (x, y) contains at most one non-zero entry for each column
or row. However, the result (x, y) is still entangled, and the identifiability of (u, v) is not achieved.
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What if now we notate latent variable as ẑ = (u, v), estimated latent variable as z = (x, y) and the
transition process with two mixing functions as h = g−1 ◦ ĝ?

In the literature of nonlinear ICA, the gap between Hij ·Hik = 0 when j ̸= k and identifiability
is ill-discussed. In linear ICA, since the Jacobian is a constant matrix, these two statements are
equivalent. Nevertheless, in nonlinear ICA, H = ∂z

∂ẑ is not a constant, but a function of ẑ, which may
leads to the failure of identifiability as shown in Eq 23.

The counterexamples can still be easily constructed even if function h is continuous. For brevity, let
us denote a segment-wise linear indicator function as f(u, v) = min(max(0, u+ v + 0.5), 1), and
we have h as {

x = f(u, v) · u+ (1− f(u, v)) · v
y = f(u, v) · v + (1− f(u, v)) · u. (24)

When u, v, x, y are independent uniform distributions on [−2,−1] ∪ [1, 2], all conditions are still
satisfied while the identifiability cannot be achieved.

To fill this gap, we provide two more assumptions. The domain Ẑ of ẑ should be path-connected, i.e.,
for any ẑ(1), ẑ(2) ∈ Ẑ , there exists a continuous path connecting ẑ(1) and ẑ(2) with all points of the
path in Ẑ . In addition, the derivative of function h is not zero for any value of ẑ ∈ Ẑ

Lemma A1 (Disentanglement with Continuity). For second-order differentiable invertible function h

defined on a path-connected domain Ẑ ⊆ Rn which satisfies z = h(ẑ), suppose the non-degeneracy
condition holds. If there exists at most one non-zero entry in each row of the Jacobian matrix H = ∂z

∂ẑ ,
ẑ is a disentangled version of z up to a permutation and a element-wise nonlinear operation.

Proof. For any row i, ∂zi

∂ẑ = [ ∂zi

∂ẑ1
, ∂zi

∂ẑ2
, ..., ∂zi

∂ẑn
] ∈ Rn is a n-dimensional variable. Its image is

a subspace as
⋃n

k=1

{
( ∂zi

∂ẑ1
, ∂zi

∂ẑ2
, ..., ∂zi

∂ẑn
) ∈ Rn : ∂zi

∂ẑj
= 0 for all j ̸= k, and xk ̸= 0

}
, since there

exists at most one non-zero entry in each row of the Jacobian matrix H = ∂z
∂ẑ and the derivative of

function h is not zero for any value, according to the non-degeneracy condition.

We use proof by contradiction. Suppose there exist two different samples a,b ∈ Z ⊆ Rn with
different non-zero entries j ̸= k subjects to[

∂zi
∂ẑ

∣∣∣∣
ẑ=a

]
j

̸= 0,

[
∂zi
∂ẑ

∣∣∣∣
ẑ=b

]
k

̸= 0 (25)

where [·]j refers to the j-th entry of vector. Their values are respectively within{
(0, 0, ..., ∂zi

∂ẑj
, 0, ..., 0) ∈ Rn : ∂zi

∂ẑj
̸= 0

}
and

{
(0, 0, ..., ∂zi

∂ẑk
, 0, ..., 0) ∈ Rn : ∂zi

∂ẑk
̸= 0

}
. Clearly,

there is no path from ∂zi
∂ẑ

∣∣
ẑ=a

to ∂zi
∂ẑ

∣∣
ẑ=b

. Since h is a second-order differentiable invertible
function, we have its derivative h′ is also differentiable. Thus, Ẑ ⊆ Rn is a path-connected domain
which denotes that the image of ∂zi

∂ẑ is also path-connected. It will be violated that there is no path
from ∂zi

∂ẑ

∣∣
ẑ=a

to ∂zi
∂ẑ

∣∣
ẑ=b

thus the proof is established.

When it comes to partially invertible function with regard to side information c, the proof is the same
with only a modification on conditions. That is, the path-connected domain assumption is applied to
(z, c), and the infinite differentiability is extended to both z and c, i.e., ∂2zi

∂a∂b for a, b ∈ {z|zi}×{c|ci}
when a ̸= b exists.

Let’s further review the example we provided earlier. Example in Eq 23 and Eq 24 respectively
demonstrate the scenarios where the assumptions of differentiability and connectivity fail, leading to
the breakdown of identifiability.
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Lemma A2 (Disentanglement with Continuity under Side Information). For second-order differ-
entiable invertible function h defined on a path-connected domain Ẑ × C ⊆ Rn+m which satisfies
z = h(ẑ, c), suppose the non-degeneracy condition holds. If there exists at most one non-zero entry
in each row of the Jacobian matrix H(c) = ∂z

∂ẑ , ẑ is a disentangled version of z up to a permutation
and a element-wise nonlinear operation.

Proof. Suppose there exist two different samples a,b ∈ Ẑ × C ⊆ Rn with different non-zero entries
j ̸= k subjects to [

∂zi
∂(ẑ, c)

∣∣∣∣
(ẑ,c)=a

]
j

̸= 0,

[
∂zi

∂(ẑ, c)

∣∣∣∣
(ẑ,c)=b

]
k

̸= 0. (26)

Similar to Lemma A1, there exists no path between them because they are blocked in Ẑ alone. In
the same way, since h is a second-order differentiable invertible function, and the non-degeneracy
condition holds, the image of ∂zi

∂(ẑ,c) is also path-connected. It will be violated and the proof is
established.

A1.4 IDENTIFIABILITY BENEFITS FROM NON-STATIONARITY

We can further leverage the advantage of non-stationary data for identifiability. Let vkt(ur) be vkt,
which is defined in Eq 11, in the ur context. Similarly, Let v̊kt(ur) be v̊kt in the ur context. Let

skt ≜
(
vkt(u1)

⊺, ...,vkt(um)⊺,
∂2ηkt(u2)

∂z2kt
− ∂2ηkt(u1)

∂z2kt
, ...,

∂2ηkt(um)

∂z2kt
− ∂2ηkt(um−1)

∂z2kt

)⊺
,

s̊kt ≜
(
v̊kt(u1)

⊺, ..., v̊kt(um)⊺,
∂ηkt(u2)

∂zkt
− ∂ηkt(u1)

∂zkt
, ...,

∂ηkt(um)

∂zkt
− ∂ηkt(um−1)

∂zkt

)⊺
.

As provided below, in our case, the identifiability of zt is guaranteed by the linear independence of
the whole function vectors skt and s̊kt, with k = 1, 2, ..., n. This linear independence is generally a
much stronger condition.

Corollary A1 (Identifiability under Non-Stationary Process). Suppose xt = g(zt), zt = m(xt:t−µ),
and that the conditional distribution p(zk,t | zt−1,u) may change across m values of the context
variable u, denoted by u1, u2, ..., um. Suppose the components of zt are mutually independent
conditional on zt−1 in each context. Assume that the components of ẑt are also mutually independent
conditional on ẑt−1. Suppose the domain is path-connected and m, m̂,g, ĝ are second-order differen-
tiable and their combination subjects to non-degenerate condition. If the 2n function vectors sk,t and
s̊k,t, with k = 1, 2, ..., n, are linearly independent, then ẑt is a permuted invertible component-wise
transformation of zt.

Proof. Drawing upon the arguments in the proof of Theorem 1, given that the components of ẑt are
mutually independent conditional on ẑt−1, we know that for i ̸= j,

∂2 log p(ẑt | ẑt−1;u)

∂ẑit∂ẑjt
=

n∑
k=1

(∂2ηkt(u)

∂z2kt
·HkitHkjt+

∂ηkt(u)

∂zkt
· ∂Hkit

∂ẑjt

)
− ∂2 log |Ht|

∂ẑit∂ẑjt
≡ 0. (27)

In contrast to Eq 21, we now allow p(ẑt | ẑt−1) to depend on u. Given that the aforementioned
equation is always 0, its partial derivative w.r.t. zl,t−1 yields

∂3 log p(ẑt | ẑt−1;u)

∂ẑit∂ẑjt∂zl,t−1
=

n∑
k=1

( ∂3ηkt(u)

∂z2kt∂zl,t−1
·HkitHkjt +

∂2ηkt(u)

∂zkt∂zl,t−1
· ∂Hkit

∂ẑjt

)
≡ 0. (28)

18



Under review as a conference paper at ICLR 2024

Similarly, when using varied values for u in Eq 27, computing the difference between these instances
yields

∂2 log p(ẑt | ẑt−1;ur+1)

∂ẑit∂ẑjt
− ∂2 log p(ẑt | ẑt−1;ur+1)

∂ẑit∂ẑjt

=

n∑
k=1

[(∂2ηkt(ur+1)

∂z2kt
− ∂2ηkt(ur)

∂z2kt

)
·HkitHkjt +

(∂ηkt(ur+1)

∂zkt
− ∂ηkt(ur)

∂zkt

)
· ∂Hkit

∂ẑjt

]
≡ 0.

(29)

Therefore, if skt and s̊kt, for k = 1, 2, ..., n, are linearly independent, HkitHkjt has to be zero for
all k and i ̸= j. Building on the insights from the proof of Theorem 1, ẑt is compelled to be a
permutation of a component-wise invertible transformation of zt.

A2 EXPERIMENT SETTINGS

A2.1 REPRODUCIBILITY

All experiments are done in a GPU workstation with CPU: Intel(R) Xeon(R) Platinum 8168 CPU @
2.70GHz, GPU: Tesla V100. The source code and the generated data for the simulation experiments
are attached in the supplementary materials.

A2.2 SYNTHETIC DATASET GENERATION

In this section, we give 2 representative simulation settings for NG and NG-TDMP respectively
to reveal the identifiability results. For each synthetic dataset, we set latent space to be 3, i.e.,
xt ∈ X ⊆ R3.

Non-invertible Generation For NG, we set the transition lag as τ = 1. We first generate 10, 000
data points from uniform distribution as the initial state z0 ∼ U(0, 1). For t = 1, · · · , 9, each latent
variable zt will be generated from the proceeding latent variable zt−1 through a nonlinear function f
with a non-additive zero-biased Gaussian noise ϵt (σ = 0.1), i.e., zt = f(zt, ϵt). To introduce the
non-invertibility, the mixing function g leverages only the first two entries of the latent variables to
generate the 2-d observation zt = g(x1,t, x2,t) ∈ Z ⊆ R2.

Time-Delayed Mixing Process For UG-TDMP, we set the transition lag as τ = 1 and mixing lag
r = 2. Similar to the Non-invertible Generation scenario, we generate the initial states from uniform
distribution and the subsequent latent variables following a nonlinear transition function. The noise is
also introduced in a nonlinear Gaussian (σ = 0.1) way. The mixing process is a nonlinear function
with regard to zt plus a side information from previous steps zt−1:t−2, i.e.,

xt = A3×3 · σ
(
B3×3 · σ(C3×3 · zt)

)
+

[
0
0

D3×1zt−1 + E3×1zt−2

]
, (30)

where σ refers to the ReLU function and the capital characters refer to matrices. Note that we make
two modifications to show the advantage of CaRiNG . The reason we consider larger mixing lag is
that it is a much more difficult scenario to handle, with more distribution from the mixing process
and less dynamic information from transition. We run experiments in both scenarios with different
transition and mixing lag. Besides, we also find out that even without time-lagged latent variables in
the decoder, it leads to a smaller model that is more stable and easy to train. Refer to Table A1 for a
detailed ablation study.

Post-processing Precedure During the generating process, we did not explicitly enforce the data to
meet the constraint zt = m(xt:t−µ). On the contrary, we implement a checker to filter the data that
is qualified. To be more precise, we do linear regression from xt:t−µ to zt to figure out how much
information of latent variables can be recovered from observation series in the best case. We choose
the smallest µ when the amount of information that can be recovered is acceptable. We set µ = 2 for
UG and µ = 4 for UG-TDMP.
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setting τ = 1, r = 2 τ = 2, r = 1

CaRiNG 0.9436 0.9131
CaRiNG (lagged decoder) 0.9250 0.9220

TDRL 0.8947 0.7519

Table A1: Ablation study on different settings for UG-TDMP. (a) The second column is a more
difficult scenario compared to the first, where the performance of CaRiNG remains good while that
of baseline decreases significantly. (b) Omit the time-lagged latent variables in the decoder will not
damage the performance much, but one can enjoy the benefits from a much simpler model.

A2.3 IMPLEMENTATION DETAILS

A2.3.1 SYNTHETIC DATA

Network Architecture To implement the Sequence-to-Step encoder, we leverage the torch.unfold
to generate the nesting observations. Let us denote x

(µ)
t = [xt, · · · ,xt−µ] as inputs. For the time

steps that do not exist, we simply pad them with zero. Refer to Table A2 for detailed network
architecture.

Training Details The models were implemented in PyTorch 1.11.0. An AdamW optimizer is used
for training this network. We set the learning rate as 0.001 and the mini-batch size as 64. We train
each model under four random seeds (770, 771, 772, 773) and report the overall performance with
mean and standard deviation across different random seeds.

Table A2: Architecture details. BS: batch size, T: length of time series, i_dim: input dimension,
o_dim: output dimension, z_dim: latent dimension, LeakyReLU: Leaky Rectified Linear Unit.

Configuration Description Output

1. Sequence-to-Step Encoder Encoder for Synthetic Data

Input: x(µ)
1:T Observed time series BS × T × i_dim

Dense 128 neurons, LeakyReLU BS × T × 128
Dense 128 neurons, LeakyReLU BS × T × 128
Dense 128 neurons, LeakyReLU BS × T × 128
Dense Temporal embeddings BS × T × z_dim

2. Step-to-Step Decoder Decoder for Synthetic Data
Input: ẑ1:T Sampled latent variables BS × T × z_dim
Dense 128 neurons, LeakyReLU BS × T × 128
Dense 128 neurons, LeakyReLU BS × T × 128
Dense i_dim neurons, reconstructed x̂1:T BS × T × o_dim

3. Factorized Inference Network Bidirectional Inference Network
Input Sequential embeddings BS × T × z_dim
Bottleneck Compute mean and variance of posterior µ1:T , σ1:T

Reparameterization Sequential sampling ẑ1:T

4. Modular Prior Nonlinear Transition Prior Network
Input Sampled latent variable sequence ẑ1:T BS × T × z_dim
InverseTransition Compute estimated residuals ϵ̂it BS × T × z_dim
JacobianCompute Compute log (|det (J)|) BS

A2.3.2 REAL-WORLD DATASET

Network Architecture We choose HCRN (Le et al., 2020) (without classification head) as the
encoder backbone of CaRiNG on the real-world dataset: SUTD-TrafficQA. Given that HCRN is
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Q:Which could be the reason for this accident?

Q: Could the accident be prevented if all vehicles drive in the correct
direction?
A: No, that was not the main cause of the accident.

Q: What types of vehicles that if get removed from the videos, there won't
be an accident?
A: Mini van or van.

Q:	What	could	possibly	cause	this	accident?

A:	Sudden	or	extreme	movement	by	a	vehicleA:	Retrograde	vehicles	.

Figure A1: Qualitative resutls on SUTD-TrafficQA dataset. We provide some positive examples
and also fail cases to analyze our model.

an encoder that calculates the cross attention between visual input and text input sequentially, we
apply a decoder, which shares the same structure as the Step-to-Step Decoder shown in Table A2 to
reconstruct the visual feature embedded with the temporal information. As it goes to transition prior,
we use the Modular Prior shown in Table A2. This encoder-decoder structure can guide the model
to learn the hidden representation with identifiable guarantees under the non-invertible generation
process.

A3 MORE VISUALIZATION RESULTS ON REAL-WORLD DATA

As shown Table A1, we provide some positive examples and also fail cases to analyze our model.
From the top two examples, we can find that our method can solve the occlusions well. From the
bottom right one, we find that our model can solve the blurred situation. However, when the alignment
between visual and textual domains is difficult. The model may fail.

A4 MORE EXPERIMENTAL RESULTS

A4.1 COMPUTATION COST COMPARISON

We provide the comparisons between the computational cost of the CaRiNGmodel compared to
HCRN to analyze our efficiency. As shown in Table A3, we provide a detailed comparison of the
number of parameters, training time, and inference efficiency. It is important to note that while
the CaRiNG model requires a longer training time due to the application of normalizing flow for
calculating the Jacobian matrix, its inference efficiency remains on par with HCRN, as the normalizing
flow is utilized only for calculating KL loss and not during inference.

Method HCRN CaRiNG
Number of Parameters 42,278,786 43,721,954
Training Time per Epoch 6min 54s/epoch 13min 26s/epoch
Inference Time per Epoch 49s/epoch 49s/epoch

Table A3: Comparative Analysis of HCRN and CaRiNGModels

This analysis clearly demonstrates that the increased training time for the CaRiNG model is offset
by its comparable inference efficiency, highlighting its practical applicability in scenarios where
inference time is critical.
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A4.2 EVALUATION OF IDENTIFIABILITY IN THE QA BENCHMARK

In the context of real-world applications, particularly in scenarios lacking ground truth for rigorous
metrics like MCC, alternative evaluation strategies become essential. we leverage proxy metrics to
assess the performance of the proposed algorithm, focusing on two pivotal aspects: disentanglement
and reconstruction ability of the learned representations. Intuitively, as delineated in Theorem A1 and
detailed in Section 4, a representation can be considered identifiable if it possesses the dual capability
of fully reconstructing the observation while also achieving disentanglement. Thus, as a supplement
to the accuracy we used before, we benchmark disentanglement and reconstruction ability as side
evidence to support that the improvement is caused by better identifiability.

We use the ELBO loss as a proxy metric to evaluate the identifiability. Figure A2 illustrates our
method’s performance compared to the baseline TDRL method. The results clearly show that our
approach exhibits superior disentanglement and reconstruction abilities. This evidence suggests that
the advantage of our proposed algorithm is primarily attributed to its enhanced identifiability and
effective disentanglement of data representations.

Loss

Iterations

TDRL
CaRiNG

Figure A2: Comparative analysis of disentanglement and reconstruction abilities of different methods.

A4.3 PARAMETER ANALYSIS ON τ IN SUTD-TRAFFICQA

In this section, we present the results of our parameter analysis conducted on the SUTD-TrafficQA
dataset, focusing on the impact of varying the time lag τ . The study aimed to assess the robustness of
our model to changes in the time lag parameter. As the table below illustrates, the model demonstrates
consistent accuracy across different values of τ , indicating robustness to the variation in time lag.

τ 1 2 3

Accuracy (%) 41.22 41.23 41.27

Table A4: Parameter analysis results of τ on model accuracy in the SUTD-TrafficQA dataset.

A4.4 MODEL SELECTION WITH VARYING µ

In this subsection, we discuss a preliminary experiment that was instrumental in the model selection
process for our application in the NG-TDMP settings. The experiment focused on evaluating the
performance of the model with varying lengths of time lag µ.

Our findings indicate that an increase in µ does not always correlate with enhanced model performance.
We observed that the effectiveness of each latent variable diminishes as the time lag µ increases. In
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practical applications, this motivates a strategy of model selection where an appropriate value of µ is
chosen based on the model’s performance. The following table summarizes our experimental results:

µ 3 4 5

Accuracy (%) 0.88 0.92 0.92

Table A5: Impact of varying µ on model performance in NG-TDMP settings.

These results suggest that while a larger µ might imply a more extensive recovery of context
information, it can also introduce inefficiencies in information recovery, potentially adding noise and
impeding model training.

A5 RELATED WORK

A5.1 CAUSAL DISCOVERY WITH LATENT VARIABLES

Some studies have aimed to discover causally related latent variables, such as Silva et al. (2006);
Kummerfeld & Ramsey (2016); Huang et al. (2022) leverage the vanishing Tetrad conditions Spear-
man (1928) or rank constraints to identify latent variables in linear-Gaussian models, and Shimizu
et al. (2009); Cai & Xie (2019); Xie et al. (2020; 2022) draw upon non-Gaussianity in their analysis
for linear, non-Gaussian scenarios. Furthermore, some methods aim to find the structure beyond the
latent variables, resulting in the hierarchical structure. Some hierarchical model-based approaches
assume tree-like configurations, such as Pearl (1988); Zhang (2004); Choi et al. (2011); Drton et al.
(2017), while the other methods assume a broader hierarchical structure Xie et al. (2022); Huang et al.
(2022). However, these methods remain confined to linear frameworks and face escalating challenges
with intricate datasets, such as videos.

A5.2 NONLINEAR ICA FOR TIME SERIES DATA

Nonlinear ICA represents an alternative methodology to identify latent causal variables within time
series data. Such methods leverage auxiliary data—like class labels and domain indices—and
impose independence constraints to facilitate the identifiability of latent variables. To illustrate:
Time-contrastive learning (TCL (Hyvarinen & Morioka, 2016)) adopts the independent sources
premise and capitalizes on the variability in variance across different data segments. Furthermore,
Permutation-based contrastive (PCL (Hyvarinen & Morioka, 2017)) puts forth a learning paradigm
that distinguishes genuine independent sources from their permuted counterparts. Furthermore,
i-VAE (Khemakhem et al., 2020) utilizes deep neural networks, VAEs, to closely approximate
the joint distribution encompassing observed and auxiliary non-stationary regimes. Recent work,
exemplified by LEAP (Yao et al., 2022b), has tackled both stationary and non-stationary scenarios in
tandem. In the stationary context, LEAP postulates a linear non-Gaussian generative process. For the
non-stationary context, it assumes a nonlinear generative process, gaining leverage from auxiliary
variables. Advancing beyond LEAP, TDRL (Yao et al., 2022a) initially extends the linear non-
Gaussian generative assumption to a nonlinear formulation for stationary scenarios. Subsequently,
it broadens the non-stationary framework to accommodate structural shifts, global alterations, and
combinations thereof. Additionally, CITRIS (Lippe et al., 2022b;a) champions the use of intervention
target data to precisely identify scalar and multi-dimensional latent causal factors. However, a
common thread across these methodologies is the presumption of an invertible generative process, a
stance that often deviates from the realities of actual data.

A6 MORE DISCUSSIONS

To make our contribution more clear, we provide more discussions with other related work.
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A6.1 COMPARISON TO (LACHAPELLE ET AL., 2023)

Concurrently to our work, Lachapelle et al. (2023) rightfully points out that one has to be careful when
going from “Jacobian is a permutation-scaling matrix“ to “the mapping is a permutation composed
with an element-wise transformation“ when the domain of the function is not simply Rn. This
conclusion strongly supports our viewpoint. In their context, the terms “local disentanglement“ and
“global disentanglement“ are used.

A6.2 COMPARISON WITH SEQUENTIALVAE CHUNG ET AL. (2015)

In this subsection, we provide a detailed exploration of the unique aspects of our approach, CaRiNG,
distinguishing it from the original Sequential VAE:

• Identifiability Theory: Our approach extends the identifiability theory to scenarios involv-
ing non-invertible mixing functions, enhancing the existing ICA framework. We introduce
theoretical constructs that enable the identification of latent variables even when the mix-
ing function is non-invertible. This theory paves the way for a more robust and accurate
extraction of latent factors from mixed signals.

• Temporal Dynamics Modeling: CaRiNGincorporates a transition function for capturing
the temporal dynamics of multivariate data. By integrating such a transition function, our
model can effectively track and represent the causal relations of latent variables over time.
This aspect is particularly vital in understanding and predicting time-series data where the
temporal relationship plays a crucial role.

• Prior Module for Conditional Independence: A novel aspect of CaRiNGis the intro-
duction of a prior module specifically designed to enforce the conditional independence
of latent variables. This module aids in disentangling the latent space by ensuring that
the dependencies among latent variables are captured more explicitly and accurately. By
promoting conditional independence, our model enhances the clarity and interpretability of
the latent representations, which is a significant step forward in latent variable modeling.

These enhancements position CaRiNG as a method focused on learning causal representations with
clear identifiability guarantees, marking a departure from the generation-centric objectives commonly
seen in traditional VAE-based methods. Our method’s ability to provide clearer, more interpretable
latent representations makes it particularly valuable in complex data analysis and modeling scenarios.

Experimentally, we also compared the identifiability of the learned variables between our methods and
other SequentialVAE-based methods, including SKD Berman et al. (2022) and SequentialVAE Chung
et al. (2015). As shown in Table 1 and Figure 4, our method shows significant improvement over
SKD. Interestingly, we find that the SequentialVAE method works better than other methods that
don’t use the temporal context, which also demonstrates the necessity of temporal context to solve
the invertibility issue. However, we still find that constraining conditional independence benefits
better performance.

A6.3 COMPARISON TO OTHER METHODS USING NORMALIZING FLOW REZENDE & MOHAMED
(2015); ZIEGLER & RUSH (2019)

Our approach, while applying normalizing flows Rezende & Mohamed (2015), is distinct from
existing works in its motivation and implementation:

• Application of Normalizing Flows for Prior Distribution: In CaRiNG, normalizing flows
are uniquely utilized for the computation of the prior distribution, which is a fundamental
aspect of our model’s architecture. It plays a vital role in constraining the conditional
independence of latent variables. For existing works Rezende & Mohamed (2015); Ziegler
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& Rush (2019), they apply the normalizing flow to obtain the invertible deterministic
transformation between two variables in the sequence, which is distinct from ours.

• Sequence-to-Step Encoder: Our model incorporates a sequence-to-step encoder, specifi-
cally designed to leverage the temporal context of data. This encoder is adept at addressing
the challenges brought about by non-invertible mixing functions. Unlike existing meth-
ods that predominantly focus on current observations, our encoder takes into account the
temporal context of data.

By integrating these unique features, CaRiNGleans the disentangled latent variables with an identifi-
ability guarantee. This methodological distinction underscores our contribution to the field of VAE
models, even though we all apply normalizing flows as a tool.

A7 BROADER IMPACTS, LIMITATION, AND FUTURE WORK

This study introduces both a theoretical framework and a practical approach for extracting causal
representations from time-series data. Such advancements enable the development of more transparent
and interpretative models, enhancing our grasp of causal dynamics in real-world settings. This
approach may benefit many real-world applications, including healthcare, auto-driving, and finance,
but it could also be used illegally. For example, within the financial sphere, it can be harnessed to
decipher ever-evolving market trends, optimizing predictions and thereby influencing investment
and risk management decisions. However, it’s imperative to note that any misjudgment of causal
relationships could lead to detrimental consequences in these domains. Thus, establishing causal
links must be executed with precision to prevent skewed or biased inferences.

Theoretically, though allowing for the non-invertible generation process, our theoretical assumptions
still fall short of fully capturing the intricacies of real-world scenarios. For example, identifiability
requires the absence of instantaneous causal relations, i.e., relying solely on time-delayed influences
within the latent causal dynamics. Furthermore, we operate under the presumption that the number of
variables remains consistent across different time steps, signifying that no agents enter or exit the
environment. Moving forward, we aim to broaden our framework to ensure identifiability in more
general settings, embracing instantaneous causal dynamics and the flexibility for variables to either
enter or exit.

In our experiments, we evaluate our approach with both simulated and real-world datasets. However,
our simulation relies predominantly on data points, creating a gap from real-world data. Concurrently,
the real datasets lack the presence of ground truth latent variables. In the future, we plan to develop
a benchmark specifically tailored for the causal representation learning task. This benchmark will
harness the capabilities of game engines and renderers to produce videos embedded with ground-truth
latent variables.
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