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Abstract

We consider stochastic optimization with delayed gradients where, at each time step 𝑡,
the algorithm makes an update using a stale stochastic gradient from step 𝑡 − 𝑑𝑡 for
some arbitrary delay 𝑑𝑡 . This setting abstracts asynchronous distributed optimization
where a central server receives gradient updates computed by worker machines.
These machines can experience computation and communication loads that might
vary significantly over time. In the general non-convex smooth optimization setting,
we give a simple and efficient algorithm that requires 𝑂 (σ2/ϵ4 + τ/ϵ2) steps for
finding an ϵ-stationary point 𝑥, where τ is the average delay 1

𝑇

∑𝑇
𝑡=1 𝑑𝑡 and σ2 is

the variance of the stochastic gradients. This improves over previous work, which
showed that stochastic gradient decent achieves the same rate but with respect to
the maximal delay max𝑡 𝑑𝑡 , that can be significantly larger than the average delay
especially in heterogeneous distributed systems. Our experiments demonstrate the
efficacy and robustness of our algorithm in cases where the delay distribution is
skewed or heavy-tailed.

1 Introduction
Gradient-based iterative optimization methods are widely used in large-scale machine learning
applications as they are extremely simple to implement and use, and come with mild computational
requirements. On the other hand, in their standard formulation they are also inherently serial and
synchronous due to their iterative nature. For example, in stochastic gradient descent (SGD), each step
involves an update of the form 𝑥𝑡+1 = 𝑥𝑡 − η𝑔𝑡 where 𝑥𝑡 is the current iterate, and 𝑔𝑡 is a (stochastic)
gradient vector evaluated at 𝑥𝑡 . To progress to the next step of the method, the subsequent iterate 𝑥𝑡+1
has to be fully determined by the end of step 𝑡 as it is required for future gradient queries. Evidently,
this scheme has to wait for the computation of the gradient 𝑔𝑡 to complete (this is often the most
computationally intensive part in SGD) before it can evaluate 𝑥𝑡+1.
In modern large scale machine learning applications, a direct serial implementation of gradient
methods like SGD is overly costly, and parallelizing the optimization process over several cores or
machines is desired. Perhaps the most common parallelization approach is via mini-batching, where
computation of stochastic gradients is distributed across several worker machines that send updates to
a parameter server. The parameter server is responsible for accruing the individual updates into a
single averaged gradient, and consequently, updating the optimization parameters using this gradient.
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While mini-batching is well understood theoretically [e.g., 16, 9, 8, 10], it is still fundamentally
synchronous in nature and its performance is adversely determined by the slowest worker machine:
the parameter server must wait for all updates from all workers to arrive before it can update the model
it maintains. This could cause serious performance issues in heterogeneous distributed networks,
where worker machines may be subject to unpredictable loads that vary significantly between workers
(due to different hardware, communication bandwidth, etc.) and over time (due to varying users load,
power outages, etc.).
An alternative approach that has recently gained popularity is to employ asynchronous gradient
updates [e.g., 21, 2, 7, 18, 11]; namely, each worker machine computes gradients independently
of the other machines, possibly on different iterates, and sends updates to the parameter server in
an asynchronous fashion. This implies the parameter server might be making stale updates based
on delayed gradients taken at earlier, out-of-date iterates. While these methods often work well
in practice, they have proven to be much more intricate and challenging to analyze theoretically
than synchronous gradient methods, and overall our understanding of asynchronous updates remains
lacking.
Recently, Arjevani et al. [4] and subsequently Stich and Karimireddy [26] have made significant
progress in analyzing delayed asynchronous gradient methods. They have shown that in stochastic
optimization, delays only affect a lower-order term in the convergence bounds. In other words, if
the delays are not too large, the convergence rate of SGD may not be affected by the delays. (4 first
proved this for quadratic objectives; 26 then proved a more general result for smooth functions.) More
concretely, Stich and Karimireddy [26] showed that SGD with a sufficiently attenuated step size to
account for the delays attains an iteration complexity bound of the form

𝑂

(
σ2

ϵ4 + τmax

ϵ2

)
(1)

for finding an ϵ-stationary point of a possibly non-convex smooth objective function (namely, a point
at which the gradient is of norm ≤ ϵ). Here σ2 is the variance of the noise in the stochastic gradients,
and τmax is the maximal possible delay, which is also needed to be known a-priori for properly tuning
the SGD step size. Up to the τmax factor in the second term, this bound is identical to standard
iteration bounds for stochastic non-convex SGD without delays [12].
While the bound in Eq. (1) is a significant improvement over previous art, it is still lacking in
one important aspect: the dependence on the maximal delay could be excessively large in truly
asynchronous environments, making the second term in the bound the dominant term. For example,
in heterogeneous or massively distributed networks, the maximal delay is effectively determined by
the single slowest (or less reliable) worker machine—which is precisely the issue with synchronous
methods we set to address in the first place. Moreover, as Stich and Karimireddy [26] show, the step
size used to achieve the bound in Eq. (1) could be as much as τmax-times smaller than that of without
delays, which could severely impact performance in practice.

1.1 Contribution
We propose a new algorithm for stochastic optimization with asynchronous delayed updates, we call
“Picky SGD,” that is significantly more robust than SGD, especially when the (empirical) distribution
of delays is skewed or heavy-tailed and thus the maximal delay could be very large. For general
smooth possibly non-convex objectives, our algorithm achieves a convergence bound of the form

𝑂

(
σ2

ϵ4 +
τavg

ϵ2

)
,

where now τavg is the average delay in retrospect. This is a significant improvement over the bound
in Eq. (1) whenever τavg ≪ τmax, which is indeed the case with heavy-tailed delay distributions.
Moreover, Picky SGD is very efficient, extremely simple to implement, and does not require to know
the average delay τavg ahead of time for optimal tuning. In fact, the algorithm only relies on a single
additional hyper-parameter beyond the step-size.
Notably, and in contrast to SGD as analyzed in previous work [26], our algorithm is able to employ
a significantly larger effective step size, and thus one could expect it to perform well in practice
compared to SGD. Indeed, we show in experiments that Picky SGD is able to converge quickly on
large image classification tasks with a relatively high learning rate, even when very large delays are
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introduced. In contrast, in the same setting, SGD needs to be configured with a substantially reduced
step size to be able to converge at all, consequently performing poorly compared to our algorithm.
Finally, we also address the case where 𝑓 is smooth and convex, in which we give a close variant of
our algorithm with an iteration complexity bound of the form

𝑂

(
σ2

ϵ2 +
τavg

ϵ

)
for obtaining a point 𝑥 with 𝑓 (𝑥) − 𝑓 (𝑥∗) ≤ ϵ (where 𝑥∗ is a minimizer of 𝑓 over ℝ𝑑). Here as well,
our rate matches precisely the one obtained by the state-of-the-art [26], but with the dependence on
the maximal delay being replaced with the average delay. For consistency of presentation, we defer
details on the convex case to the full version of the paper [? ] and focus here on our algorithm for
non-convex optimization.
Concurrently to this work, Aviv et al. [5] derived similar bounds that depend on the average delay.
Compared to our contribution, their results are adaptive to the smoothness and noise parameters, but
on the other hand, are restricted to convex functions and their algorithms are more elaborate and their
implementation is more involved.

1.2 Additional related work
For general background on distributed asynchronous optimization and basic asymptotic convergence
results, we refer to the classic book by Bertsekas and Tsitsiklis [6]. Since the influential work of Niu
et al. [24], there has been significant interest in asynchronous algorithms in a related model where
there is a delay in updating individual parameters in a shared parameter vector (e.g., [25, 19, 28, 17]).
This is of course very different from our model, where steps use the full gradient vector in atomic, yet
delayed, updates.
Also related to our study is the literature on Local SGD (e.g., 27 and references therein), which
is a distributed gradient method that perform several local (serial) gradient update steps before
communicating with the parameter server or with other machines. Local SGD methods have become
popular recently since they are used extensively in Federated Learning [20]. We note that the
theoretical study in this line of work is mostly concerned with analyzing existing distributed variants
of SGD used in practice, whereas we aim to develop and analyze new algorithmic tools to help with
mitigating the effect of stale gradients in asynchronous optimization.
A related yet orthogonal issue in distribution optimization, which we do not address here, is reducing
the communication load between the workers and servers. One approach that was recently studied
extensively is doing this by compressing gradient updates before they are transmitted over the network.
We refer to [3, 14, 26] for further discussion and references.

2 Setup and Basic Definitions
2.1 Stochastic non-convex smooth optimization
We consider stochastic optimization of a β-smooth (not necessarily convex) non-negative function
𝑓 defined over the 𝑑-dimensional Euclidean space ℝ𝑑 . A function 𝑓 is said to be β-smooth if it is
differentiable and its gradient operator is β-Lipschitz, that is, if ∥∇ 𝑓 (𝑥) − ∇ 𝑓 (𝑦)∥ ≤ β∥𝑥 − 𝑦∥ for all
𝑥, 𝑦 ∈ ℝ𝑑 . This in particular implies (e.g., [22]) that for all 𝑥, 𝑦 ∈ ℝ𝑑 ,

𝑓 (𝑦) ≤ 𝑓 (𝑥) + ∇ 𝑓 (𝑥) · (𝑦 − 𝑥) + β

2
∥𝑦 − 𝑥∥2. (2)

We assume a stochastic first-order oracle access to 𝑓 ; namely, 𝑓 is endowed with a stochastic gradient
oracle that given a point 𝑥 ∈ ℝ𝑑 returns a random vector �̃�(𝑥), independent of all past randomization,
such that 𝔼[�̃�(𝑥) | 𝑥] = ∇ 𝑓 (𝑥) and 𝔼[∥�̃�(𝑥) − ∇ 𝑓 (𝑥)∥2 | 𝑥] ≤ σ2 for some variance bound σ2 ≥ 0.
In this setting, our goal is to find an ϵ-stationary point of 𝑓 , namely, a point 𝑥 ∈ ℝ𝑑 such that
∥∇ 𝑓 (𝑥)∥ ≤ ϵ, with as few samples of stochastic gradients as possible.

2.2 Asynchronous delay model
We consider an abstract setting where stochastic gradients (namely, outputs for invocations of the
stochastic first-order oracle) are received asynchronously and are subject to arbitrary delays. The
asynchronous model can be abstracted as follows. We assume that at each step 𝑡 of the optimization,
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the algorithm obtains a pair (𝑥𝑡−𝑑𝑡 , 𝑔𝑡 ) where 𝑔𝑡 is a stochastic gradient at 𝑥𝑡−𝑑𝑡 with variance bounded
by σ2; namely, 𝑔𝑡 is a random vector such that 𝔼𝑡𝑔𝑡 = ∇ 𝑓 (𝑥𝑡−𝑑𝑡 ) and 𝔼𝑡 ∥𝑔𝑡 − ∇ 𝑓 (𝑥𝑡−𝑑𝑡 )∥2 ≤ σ2

for some delay 0 ≤ 𝑑𝑡 < 𝑡. Here and throughout, 𝔼𝑡 [·] denotes the expectation conditioned on all
randomness drawn before step 𝑡. After processing the received gradient update, the algorithm may
query a new stochastic gradient at whatever point it chooses (the result of this query will be received
with a delay, as above).
Few remarks are in order:
• We stress that the delays 𝑑1, 𝑑2, . . . are entirely arbitrary, possibly chosen by an adversary; in

particular, we do not assume they are sampled from a fixed stationary distribution. Nevertheless,
we assume that the delays are independent of the randomness of the stochastic gradients (and of the
internal randomness of the optimization algorithm, if any).1

• For simplicity, we assumed above that a stochastic gradient is received at every round 𝑡. This is
almost without loss of generality:2 if at some round no feedback is observed, we may simply skip
the round without affecting the rest of the optimization process (up to a re-indexing of the remaining
rounds).

• Similarly, we will also assume that only a single gradient is obtained in each step; the scenario that
multiple gradients arrive at the same step (as in mini-batched methods) can be simulated by several
subsequent iterations in each of which a single gradient is processed.

3 The Picky SGD Algorithm
We are now ready to present our asynchronous stochastic optimization algorithm, which we call Picky
SGD; see pseudo-code in Algorithm 1. The algorithm is essentially a variant of stochastic gradient
descent, parameterized by a learning rate η as well as a target accuracy ϵ.

Algorithm 1: Picky SGD
1: input: learning rate η, target accuracy ϵ.
2: for 𝑡 = 1, . . . , 𝑇 do
3: receive delayed stochastic gradient 𝑔𝑡 and point 𝑥𝑡−𝑑𝑡 such that 𝔼𝑡 [𝑔𝑡 ] = ∇ 𝑓 (𝑥𝑡−𝑑𝑡 ).
4: if ∥𝑥𝑡 − 𝑥𝑡−𝑑𝑡 ∥ ≤ ϵ/(2β) then
5: update: 𝑥𝑡+1 = 𝑥𝑡 − η𝑔𝑡 .
6: else
7: pass: 𝑥𝑡+1 = 𝑥𝑡 .
8: end if
9: end for

Picky SGD maintains a sequence of iterates 𝑥1, . . . , 𝑥𝑇 . At step 𝑡, the algorithm receives a delayed
stochastic gradient 𝑔𝑡 that was computed at an earlier iterate 𝑥𝑡−𝑑𝑡 (line 3). Then, in line 4, the
algorithm tests whether ∥𝑥𝑡 − 𝑥𝑡−𝑑𝑡 ∥ ≤ ϵ/2β. Intuitively, this aims to verify whether the delayed
(expected) gradient ∇ 𝑓 (𝑥𝑡−𝑑𝑡 ) is “similar” to the gradient ∇ 𝑓 (𝑥𝑡 ) at the current iterate 𝑥𝑡 ; due to the
smoothness of 𝑓 , we expect that if 𝑥𝑡−𝑑𝑡 is close to 𝑥𝑡 , then also the corresponding gradients will be
similar. If this condition holds true, the algorithm takes a gradient step using 𝑔𝑡 with step size η.
Our main theoretical result is the following guarantee on the success of the algorithm.
Theorem 1. Suppose that Algorithm 1 is initialized at 𝑥1 ∈ ℝ𝑑 with 𝑓 (𝑥1) ≤ 𝐹 and ran with

𝑇 ≥ 500β𝐹
(
σ2

ϵ4 + τ + 1
ϵ2

)
, η =

1
4β

min
{
1,

ϵ2

σ2

}
,

where τ be the average delay, i.e., τ = (1/𝑇)
∑𝑇

𝑡=1 𝑑𝑡 . Then, with probability at least 1
2 , there is some

1 ≤ 𝑡 ≤ 𝑇 for which ∥∇ 𝑓 (𝑥𝑡 )∥ ≤ ϵ.

Observe that the optimal step size in Theorem 1 is independent of the average delay τ. This is
important for two main reasons: (i) implementing the algorithm does not require knowledge about

1One can thus think of the sequence of delays as being fixed ahead of time by an oblivious adversary.
2We may, in principle, allow to query the stochastic gradient oracle even on rounds where no feedback is

received, however this would be redundant in most reasonable instantiations of this model (e.g., in a parameter
server architecture).
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future, yet-to-be-seen delays; and (ii) even with very large delays, the algorithm can maintain a high
effective step size.
We note that the guarantee of Theorem 1 is slightly different from typical bounds in non-convex
optimization (e.g., the bounds appearing in the previous work [14]): our result claims about the
minimal gradient norm of any iterate rather than the average gradient norm over the iterates. Arguably,
this difference does not represent a very strong limitation: the significance of convergence bounds in
non-convex optimization is, in fact, in that they ensure that one of the iterates along the trajectory of
the algorithm is indeed an approximate critical point, and the type of bound we establish is indeed
sufficient to ensure exactly that.
We further note that while the theorem above only guarantees a constant success probability, it is not
hard to amplify this probability to an arbitrary 1 − δ simply by restarting the algorithm 𝑂 (log(1/δ))
times (with independent stochastic gradients); with high probability, one of the repetitions will be
successful and run through a point with gradient norm ≤ ϵ, which would imply the guarantee in the
theorem with probability at least 1 − δ.

4 Analysis
In this section we analyze Algorithm 1 and prove our main result. Throughout, we denote 𝑥 ′𝑡 = 𝑥𝑡−𝑑𝑡
and let 𝑁𝑡 denote the noise vector at step 𝑡, namely 𝑁𝑡 = 𝑔𝑡 − ∇ 𝑓 (𝑥 ′𝑡 ). Note that 𝔼[𝑁𝑡 | 𝑥𝑡 , 𝑥 ′𝑡 ] = 0
and 𝔼[∥𝑁𝑡 ∥2 | 𝑥𝑡 , 𝑥 ′𝑡 ] ≤ σ2, since the iterates 𝑥𝑡 , 𝑥 ′𝑡 are conditionally independent of the noise in 𝑔𝑡
as this gradient is obtained by the algorithm only at step 𝑡, after 𝑥𝑡 , 𝑥 ′𝑡 were determined.
To prove Theorem 1, we will analyze a variant of the algorithm that will stop making updates once
it finds a point with ∥∇ 𝑓 (𝑥)∥ ≤ ϵ (and eventually fails otherwise). That is, if ∥𝑥𝑡 − 𝑥 ′𝑡 ∥ > ϵ/2β or
∥∇ 𝑓 (𝑥𝑡 )∥ ≤ ϵ then 𝑥𝑡+1 = 𝑥𝑡 . Else, 𝑥𝑡+1 = 𝑥𝑡 − η𝑔𝑡 . This variant is impossible to implement (since it
needs to compute the exact gradient at each step), but the guarantee of Theorem 1 is valid for this
variant if and only if it is valid for the original algorithm: one encounters an ϵ-stationary point if and
only if the other does so.
First, we prove a simple technical lemma guaranteeing that whenever the algorithm takes a step, a
large gradient norm implies a large decrease in function value. It is a variant of the classical “descent
lemma,” adapted to the case where the gradient step is taken with respect to a gradient computed at a
nearby point.
Lemma 2. Fix 𝑥, 𝑥 ′ ∈ ℝ𝑑 with ∥𝑥 − 𝑥 ′∥ ≤ ϵ/2β and ∥∇ 𝑓 (𝑥 ′)∥ > ϵ. Let 𝑁 ∈ ℝ𝑑 be a random vector
with 𝔼[𝑁 | 𝑥, 𝑥 ′] = 0 and 𝔼[∥𝑁 ∥2 | 𝑥, 𝑥 ′] ≤ σ2. Then,

𝔼[ 𝑓 (𝑥 − η(∇ 𝑓 (𝑥 ′) + 𝑁))] − 𝔼 𝑓 (𝑥) ≤ −η
2
𝔼∥∇ 𝑓 (𝑥 ′)∥2 + η2β

2
(σ2 + 𝔼∥∇ 𝑓 (𝑥 ′)∥2).

In particular, for our choice of η, we have
η

4
𝔼∥∇ 𝑓 (𝑥 ′)∥2 ≤ 𝔼 𝑓 (𝑥) − 𝔼[ 𝑓

(
𝑥 − η(∇ 𝑓 (𝑥 ′) + 𝑁)

)
] . (3)

Proof. Using the smoothness of 𝑓 (Eq. (2)), we have

𝑓 (𝑥 − η(∇ 𝑓 (𝑥 ′) + 𝑁)) − 𝑓 (𝑥) ≤ −η∇ 𝑓 (𝑥) · (∇ 𝑓 (𝑥 ′) + 𝑁) + 1
2η

2β∥∇ 𝑓 (𝑥 ′) + 𝑁 ∥2.

Taking expectation over 𝑁 conditioned on 𝑥, 𝑥 ′, we get

𝔼[ 𝑓 (𝑥 − η(∇ 𝑓 (𝑥 ′) + 𝑁)) − 𝑓 (𝑥) | 𝑥, 𝑥 ′]
≤ −η∇ 𝑓 (𝑥) · ∇ 𝑓 (𝑥 ′) + 1

2η
2β(∥∇ 𝑓 (𝑥 ′)∥2 + σ2)

= −η∇ 𝑓 (𝑥 ′) · ∇ 𝑓 (𝑥 ′) − η∇ 𝑓 (𝑥 ′) · (∇ 𝑓 (𝑥) − ∇ 𝑓 (𝑥 ′)) + 1
2η

2β(∥∇ 𝑓 (𝑥 ′)∥2 + σ2)
≤ −η∥∇ 𝑓 (𝑥 ′)∥2 + ηβ∥∇ 𝑓 (𝑥 ′)∥∥𝑥 − 𝑥 ′∥ + 1

2η
2β(∥∇ 𝑓 (𝑥 ′)∥2 + σ2)

= η(β∥∇ 𝑓 (𝑥 ′)∥∥𝑥 − 𝑥 ′∥ − ∥∇ 𝑓 (𝑥 ′)∥2) + 1
2η

2β(∥∇ 𝑓 (𝑥 ′)∥2 + σ2).

Since ϵ ≤ ∥∇ 𝑓 (𝑥 ′)∥ then

∥𝑥 − 𝑥 ′∥ ≤ ϵ

2β
≤ 1

2β
∥∇ 𝑓 (𝑥 ′)∥,
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and we have

𝔼
[
𝑓 (𝑥 − η(∇ 𝑓 (𝑥 ′) + 𝑁)) − 𝑓 (𝑥) | 𝑥, 𝑥 ′

]
≤ −η

2
∥∇ 𝑓 (𝑥 ′)∥2 + 1

2η
2β(σ2 + ∥∇ 𝑓 (𝑥 ′)∥2).

If ϵ ≥ σ then σ2 ≤ ∥∇ 𝑓 (𝑥 ′)∥2. This, with η = 1/4β, yields Eq. (3). If ϵ < σ and η = ϵ2/4σ2β, then
η2 ≤ ϵ2/16σ2β2. Plugging that in instead, using ∥∇ 𝑓 (𝑥 ′)∥ ≥ ϵ, and taking expectations (with respect
to 𝑥, 𝑥 ′) gets us Eq. (3). ■

We next introduce a bit of additional notation. We denote by 𝐼𝑡 the indicator of event that the algorithm
performed an update at time 𝑡. Namely,

𝐼𝑡 = 𝐼
{
∥𝑥𝑡 − 𝑥 ′𝑡 ∥ ≤ ϵ/2β and ∥∇ 𝑓 (𝑥𝑡 )∥ > ϵ

}
.

Note that 𝐼𝑡 = 1 implies that ∥∇ 𝑓 (𝑥𝑠)∥ ≥ ϵ for all 𝑠 = 1, . . . , 𝑡. Further, we denote by ∆𝑡 =

𝑓 (𝑥𝑡 ) − 𝑓 (𝑥𝑡+1) the improvement at time 𝑡. Since 𝑓 is non-negative and 𝑓 (𝑥1) ≤ 𝐹, we have that for
all 𝑡,

𝑡∑︁
𝑖=1

∆𝑖 = 𝑓 (𝑥1) − 𝑓 (𝑥𝑡+1) ≤ 𝐹.

Note that by Lemma 2 we have that 𝔼∆𝑡 ≥ 0. The rest of the proof is split into two cases: σ ≤ ϵ, and
σ ≥ ϵ.

4.1 Case (i): σ ≤ ϵ

This regime is intuitively the “low noise” regime in which the standard deviation of the gradient noise,
σ, is smaller than the desired accuracy ϵ. We prove the following.
Lemma 3. Suppose that σ ≤ ϵ and the algorithm fails with probability ≥ 1

2 . Then 𝑇 ≤ 128β𝐹 (τ +
1)/ϵ2.

To prove the lemma above, we first show that the algorithm must make a significant number of updates,
as shown by the following lemma.
Lemma 4. If the algorithm fails, then the number of updates that it makes is at least 𝑇/4(τ + 1).

Proof. Consider 𝑈2τ, the number of steps 𝑡 for which the delay 𝑑𝑡 is at least 2τ. We must have
𝑈2τ ≤ 𝑇/2 (otherwise the total sum of delays exceeds τ𝑇 , contradicting the definition of τ). On the
other hand, let 𝑘 be the number of updates that the algorithm makes. Let 𝑡1 < 𝑡2 < ... < 𝑡𝑘 be the
steps in which an update is made. Denote 𝑡0 = 0 and 𝑡𝑘+1 = 𝑇 . Now, fix 𝑖 and consider the steps at
times 𝑠𝑛 = 𝑡𝑖 + 𝑛 for 𝑛 ∈ [1, 2, . . . , 𝑡𝑖+1 − 𝑡𝑖 − 1]. In all those steps no update takes place and 𝑥𝑠𝑛 = 𝑥𝑡𝑖 .
We must have 𝑑𝑠𝑛 > 𝑛 for all 𝑛 (otherwise 𝑥𝑡 = 𝑥𝑡−𝑑𝑡 for 𝑡 = 𝑠𝑛 and an update occurs). In particular
we have that 𝑑𝑠𝑛 ≥ 2τ in at least 𝑡𝑖+1 − 𝑡𝑖 − 1 − 2τ steps in [𝑡𝑖 , 𝑡𝑖+1]. Hence,

𝑈2τ ≥
𝑘−1∑︁
𝑖=0

(𝑡𝑖+1 − 𝑡𝑖 − 1 − 2τ) = 𝑇 − 𝑘 (1 + 2τ).

Finally, it follows that 𝑇 − 𝑘 (1 + 2τ) ≤ 𝑇/2 which implies 𝑘 ≥ 𝑇
4(τ+1) . ■

Given the lemma above, we prove Lemma 3 by showing that if the algorithm fails, it makes many
updates in all of which we have ∥∇ 𝑓 (𝑥𝑡 )∥ > ϵ. By Lemma 2, this means that in the 𝑇 time steps
of the algorithm, it must decrease the value of 𝑓 significantly. Since we start at a point in which
𝑓 (𝑥1) ≤ 𝐹, we must conclude that 𝑇 cannot be too large.

Proof of Lemma 3. Combining Eq. (3) with η = 1/(4β) and Lemma 4, we get that if the algorithm
fails with probability ≥ 1

2 then

𝐹 ≥
𝑇∑︁
𝑡=1

𝔼∆𝑡 ≥
1

16β

𝑇∑︁
𝑡=1

𝔼[𝐼𝑡 ∥∇ 𝑓 (𝑥𝑡 )∥2] ≥ 1
16β

𝔼

[
𝑇∑︁
𝑡=1

𝐼𝑡 ∥∇ 𝑓 (𝑥𝑡 )∥2

]
≥ 1

32β
𝔼

[
𝑇∑︁
𝑡=1

𝐼𝑡 ∥∇ 𝑓 (𝑥𝑡 )∥2

����� algorithm fails

]
≥ ϵ2

32β
𝔼

[
𝑇∑︁
𝑡=1

𝐼𝑡

����� algorithm fails

]
≥ ϵ2

32β
𝑇

4(τ + 1) .

This yields the lemma’s statement. ■
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4.2 Case (ii): σ > ϵ

This is the “high noise” regime. For this case, we prove the following guarantee for the convergence
of our algorithm.
Lemma 5. Assume that σ > ϵ and the algorithm fails with probability ≥ 1

2 . Then,

𝑇∑︁
𝑡=1

𝔼∆𝑡 ≥
𝑇

500β
min

{
ϵ2

τ
,
ϵ4

σ2

}
.

In particular,

𝑇 ≤ 500β𝐹
(
τ

ϵ2 + σ2

ϵ4

)
.

This result is attained using the following observation. Consider the iterate of algorithm at time 𝑡, 𝑥𝑡 ,
and the point at which the gradient was computed 𝑥 ′𝑡 = 𝑥𝑡−𝑑𝑡 . We claim that if the algorithm has not
decreased the function value sufficiently during the interval [𝑡 − 𝑑𝑡 , 𝑡 − 1], then it is likely to trigger a
large decline in the function value at time 𝑡. Formally, either 𝔼∆𝑡 is large, or

∑𝑡−1
𝑖=𝑡−𝑑𝑡 𝔼∆𝑖 is large. To

show the claim, we first upper bound the distance ∥𝑥𝑡 − 𝑥 ′𝑡 ∥ in terms of
∑𝑡−1

𝑖=𝑡−𝑑𝑡 𝔼∆𝑖 , as shown by the
following technical lemma.
Lemma 6. For all 𝑡 and 𝑘 , it holds that

𝔼∥𝑥𝑡 − 𝑥𝑡+𝑘 ∥ ≤

√√√
1
β

𝑡+𝑘−1∑︁
𝑖=𝑡

𝔼∆𝑖 +
4
ϵ

𝑡+𝑘−1∑︁
𝑖=𝑡

𝔼∆𝑖 .

Proof. We have

𝔼∥𝑥𝑡 − 𝑥𝑡+𝑘 ∥ = η𝔼

𝑡+𝑘−1∑︁
𝑖=𝑡

𝐼𝑖 (∇ 𝑓 (𝑥 ′𝑖) + 𝑁𝑖)
 ≤ η𝔼

𝑡+𝑘−1∑︁
𝑖=𝑡

𝐼𝑖∇ 𝑓 (𝑥 ′𝑖)
 + η𝔼

𝑡+𝑘−1∑︁
𝑖=𝑡

𝐼𝑖𝑁𝑖

.
We continue bounding the second term above as follows:

𝔼

𝑡+𝑘−1∑︁
𝑖=𝑡

𝐼𝑖𝑁𝑖

 ≤

√√√√
𝔼

𝑡+𝑘−1∑︁
𝑖=𝑡

𝐼𝑖𝑁𝑖


2

=

√√√√
𝔼

𝑡+𝑘−1∑︁
𝑖=𝑡

𝑡+𝑘−1∑︁
𝑗=𝑡

𝐼𝑖 𝐼 𝑗𝑁𝑖 · 𝑁 𝑗

=

√√√
𝔼

𝑡+𝑘−1∑︁
𝑖=𝑡

𝐼𝑖 ∥𝑁𝑖 ∥2 (𝔼[𝑁𝑖 | 𝐼𝑖 , 𝐼 𝑗 , 𝑁 𝑗 ] = 0 for 𝑖 > 𝑗)

≤ σ

√√√
𝔼

𝑡+𝑘−1∑︁
𝑖=𝑡

𝐼𝑖

≤ σ

ϵ

√√√
𝔼

𝑡+𝑘−1∑︁
𝑖=𝑡

𝐼𝑖 ∥∇ 𝑓 (𝑥 ′
𝑖
)∥2 (∥∇ 𝑓 (𝑥 ′

𝑖
)∥ ≥ ϵ when 𝐼𝑖 = 1)

≤ σ

ϵ

√√√
16σ2β

ϵ2

𝑡+𝑘−1∑︁
𝑖=𝑡

𝔼∆𝑖 (Eq. (3), η = ϵ2/4βσ2)

=
4σ2

ϵ2

√√√
β

𝑡+𝑘−1∑︁
𝑖=𝑡

𝔼∆𝑖
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=
1
η

√√√
1
β

𝑡+𝑘−1∑︁
𝑖=𝑡

𝔼∆𝑖 , (η = ϵ2/4βσ2)

and

𝔼

𝑡+𝑘−1∑︁
𝑖=𝑡

𝐼𝑖∇ 𝑓 (𝑥 ′𝑖)
 ≤

𝑡+𝑘−1∑︁
𝑖=𝑡

𝔼𝐼𝑖 ∥∇ 𝑓 (𝑥 ′𝑖)∥

≤ 1
ϵ

𝑡+𝑘−1∑︁
𝑖=𝑡

𝔼𝐼𝑖 ∥∇ 𝑓 (𝑥 ′𝑖)∥2 (∥∇ 𝑓 (𝑥 ′
𝑖
)∥ ≥ ϵ when 𝐼𝑖 = 1)

≤ 4
ϵη

𝑡+𝑘−1∑︁
𝑖=𝑡

𝔼∆𝑖 . (Eq. (3))

This completes the proof. ■

Given the lemma above, it is now clear that if
∑𝑡−1

𝑖=𝑡−𝑑𝑡 𝔼∆𝑖 is sufficiently small, then 𝔼∥𝑥𝑡 − 𝑥 ′𝑡 ∥ ≪ ϵ/β
which means that the algorithm is likely (with constant probability) to take a step at time 𝑡. This
argument yields the following.
Corollary 7. Assume that the algorithm fails with probability ≥ 1

2 . If
∑𝑡−1

𝑖=𝑡−𝑑𝑡 𝔼∆𝑖 < ϵ2/125β then
𝔼∆𝑡 ≥ ϵ4/64σ2β. In particular,

𝔼∆𝑡 +
1
2τ

𝑡−1∑︁
𝑖=𝑡−𝑑𝑡

𝔼∆𝑖 ≥
1

250β
min

{
ϵ2

τ
,
ϵ4

σ2

}
.

Proof. If
∑𝑡−1

𝑖=𝑡−𝑑𝑖 𝔼∆𝑖 < ϵ2/125β, then 𝔼∥𝑥𝑡−𝑑𝑡 − 𝑥𝑡 ∥ ≤ ϵ/8β by Lemma 6. By a Markov inequality,
with probability ≥ 3

4 , we have ∥𝑥𝑡−𝑑𝑡 − 𝑥𝑡 ∥ ≤ ϵ/2β. Since the probability that ∥∇ 𝑓 (𝑥𝑡−𝑑𝑡 )∥ > ϵ is at
least 1

2 , we get that 𝔼𝐼𝑡 ≥ 1
4 . By Lemma 2 this implies that

𝔼∆𝑡 ≥
1
4
· ϵ

2 · ϵ2

16σ2β
=

ϵ4

64σ2β
,

which yields our claim. ■

We now prove our main claim. We show that if the algorithm fails, then in all time steps in which
𝑑𝑡 ≤ 2τ (of which there are at least 𝑇/2), either the algorithm makes a substantial step, or it has made
significant updates in the interval [𝑡 − 𝑑𝑡 , 𝑡 − 1]. In any case, the function value must necessarily
decrease overall in the 𝑇 time steps of the algorithm, concluding that 𝑇 cannot be too large.

Proof of Lemma 5. We have,
𝑇∑︁
𝑡=1

𝔼∆𝑡 ≥
∑︁

𝑡:𝑑𝑡 ≤2τ

1
2τ

𝑡−1∑︁
𝑖=𝑡−𝑑𝑡

𝔼∆𝑖 .

Hence, using Corollary 7,
𝑇∑︁
𝑡=1

𝔼∆𝑡 ≥
1
2

∑︁
𝑡:𝑑𝑡 ≤2τ

(
𝔼∆𝑡 +

1
2τ

𝑡−1∑︁
𝑖=𝑡−𝑑𝑡

𝔼∆𝑖

)
≥

��{𝑡 : 𝑑𝑡 ≤ 2τ}
�� 1
250β

min
{
ϵ2

τ
,
ϵ4

σ2

}
≥ 𝑇

2
1

250β
min

{
ϵ2

τ
,
ϵ4

σ2

}
=

𝑇

500β
min

{
ϵ2

τ
,
ϵ4

σ2

}
,

where we used Markov’s inequality to show that |{𝑡 : 𝑑𝑡 ≤ 2τ}| ≥ 1
2𝑇 . ■
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4.3 Concluding the proof

Proof of Theorem 1. In the case σ ≤ ϵ, Lemma 3 implies that if 𝑇 > 128β𝐹 (τ + 1)/ϵ2 then the
algorithms succeeds with probability greater than 1/2, which yields the theorem in this case. Similarly,
Lemma 5 gives our claim in the case when σ > ϵ. ■

5 Experiments
To illustrate the robustness and efficacy of Picky SGD, we present a comparison between the
performance of SGD versus Picky SGD under various delay distributions. In particular, we show that
Picky SGD requires significantly less iterations to reach a fixes goal and is more robust to varying
delay distributions.

5.1 Setup
The main goal of our experimental setup is to be reproducible. For that end, the experimentation
is done in two phases. First, we perform a simulation to determine the delay 𝑑𝑡 at each iteration
without actually computing any gradients:3 this is done by simulating 𝑁 concurrent worker threads
sharing and collectively advancing a global iteration number, where each worker repeatedly records
the current global iteration number 𝑡start, waits a random amount of time from a prescribed Poisson
distribution, then records the new global iteration number 𝑡 = 𝑡end and the difference 𝑑𝑡 = 𝑡end − 𝑡start,
and increases the global iteration number. This information (a delay schedule) is calculated once for
each tested scheme (differing in the number of workers and random distribution, as detailed below),
and is stored for use in the second phase.
In the second phase of the experiments, the algorithms SGD and Picky SGD are executed for each
delay schedule. Here, at every iteration the gradient is computed (if needed) and is kept until its
usage as dictated by the schedule (and then applied at the appropriate global iteration number). As
a result of this configuration, we get a fully reproducible set of experiments, where the algorithms
performance may be compared as they are executed over identical delay series of identical statistical
properties.
We created four different delay schedules: A baseline schedule (A) using 𝑁 = 10 workers and
sampling the simulated wait from a Poisson distribution (this schedule serves to compare Picky SGD
and SGD in a setting of relatively small delay variance) and schedules (B) (C) and (D) all using
𝑁 = 75 workers and sampling the simulated wait from bi-modal mixtures of Poisson distributions of
similar mean but increasing variance respectively.4 See Figure 2 in the the full version of the paper [?
] for an illustration of the delay distributions of the four delay schedules used.
All training is performed on the standard CIFAR-10 dataset [15] using a ResNet56 with 9 blocks
model [13] and implemented in TensorFlow [1]. We compare Picky SGD (Algorithm 1) to the SGD
algorithm which unconditionally updates the state 𝑥𝑡 given the stochastic delayed gradient 𝑔𝑡 (recall
that 𝑔𝑡 is the stochastic gradient at state 𝑥𝑡−𝑑𝑡 ).
For both algorithms, instead of a constant learning rate η we use a piecewise-linear learning rate
schedule as follows: we consider a baseline η0 piecewise-linear learning rate schedule5 that achieves
optimal performance in a synchronous distributed optimization setting (that is, for 𝑑𝑡 ≡ 0)6 and
search (for each of the four delay schedules and each algorithm – to compensate for the effects of
delays) for the best multiple of the baseline rate and the best first rate-change point. Alternatively, we
also used a cosine decay learning rate schedule (with the duration of the decay as meta parameters).
Another meta-parameter we optimize is the threshold ϵ/(2β) in line 4 of Picky SGD. Batch size 64
was used throughout the experiments. Note that although use chose the threshold value ϵ/2β by an
exhaustive search, in practice, a good choice can be found by logging the distance values during a
typical execution and choosing a high percentile value. See the full version of the paper [? ] for more
details.

3Note that up to the training data ordering a computation of 𝑇 steps of Picky SGD or SGD is uniquely
determined by the starting state 𝑥1 and the sequence {𝑡 − 𝑑𝑡 }𝑡=1...𝑇 .

4See the the full version of the paper [? ] for specific parameter values and implementation details.
5With rate changes at three achieved accuracy points 0.93, 0.98, and 0.99.
6This is also the best performance achievable in an asynchronous setting.
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Figure 1: Accuracy trajectory (with a zoom-in on the tail of the convergence) over train epochs for the four delay
schedules of Fig. 2, respectively: the key metrics (reported in Table 1) for each trajectory are epochs to reach
0.99 accuracy (the number of epochs required to reach the 0.99 accuracy mark) and the baseline learning rate
multiplier η/η0.

5.2 Results
The accuracy trajectory for the best performing combination of parameters of each algorithm for
each of the four delay schedules is shown in Fig. 1 and summarized in Table 1. Clearly, Picky SGD
significantly outperforms SGD in terms of the final accuracy and the number of epochs it takes to
achieve it. We also emphasize that the generalization performance (that is, the evaluation accuracy
as related to the training accuracy) was not observed to vary across delay schedules or the applied
algorithms (see e.g., Fig. 4 in the the full version of the paper [? ]), and that the nature of the results
is even more pronounced when using the alternative cosine decay learning rate schedule (see Fig. 5 in
the the full version of the paper [? ]). Specific details of the meta parameters used, and additional
performance figures are reported in the full version of the paper [? ].

Table 1: Summary of the key metrics from Fig. 1, for each of the four delay schedules A, B, C, and D .

Epochs to 0.99% LR multiplier (η/η0)
Picky
SGD

SGD Picky
SGD

SGD

A 344 350 0.5 0.5
B 333 451 0.2 0.05
C 337 438 0.2 0.05
D 288 466 0.2 0.05

5.3 Discussion
We first observe that while the number of epochs it takes Picky SGD to reach the target accuracy mark
is almost the same across the delay schedules (ranging from 288 to 344), SGD requires significantly
more epochs to attain the target accuracy (ranging from 350 up to 466 for the highest variance delay
schedule)—this is consistent with the average-delay bound dependence of Picky SGD (as stated in
Theorem 1) compared to the max-delay bound dependence of SGD. Furthermore, the best baseline
learning rate multiplier meta-parameter for Picky SGD is the same (0.2) across all high-variance
delay schedules, while the respective meta parameter for SGD is significantly smaller (0.05) and
sometimes varying, explaining the need for more steps to reach the target and evidence of Picky SGD
superior robustness.
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