
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FED MOBILLM: EFFICIENT FEDERATED LLM FINE-
TUNING OVER HETEROGENEOUS MOBILE DEVICES VIA
SERVER ASSISTED SIDE-TUNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Collaboratively fine-tuning (FT) large language models (LLMs) over heterogeneous
mobile devices fosters immense potential applications of personalized intelligence.
However, such a vision faces critical system challenges. Conventional federated
LLM FT approaches place prohibitive computational and memory burdens on
mobile hardware, and their synchronous model aggregation protocols stall for
slower devices. In this paper, we propose Fed MobiLLM, a novel design to
facilitate efficient federated LLM FT across mobile devices with diverse com-
puting/communication speeds and local model architectures. In particular, Fed
MobiLLM implements a pioneering server-assisted federated side-tuning paradigm.
Briefly, mobile devices perform lightweight forward propagation computations on
local data using their frozen pre-scaled backbone LLMs, and then upload selected
intermediate activations. The server trains a shared side-network independently,
eliminating client-side backpropagation and enabling asynchronous updates. To
bridge model heterogeneity across different devices, we introduce an adaptive
layer-wise feature alignment method, which ensures consistent representations
for collaboratively tuning a shared side network. Extensive experimental results
demonstrate that Fed MobiLLM can maintain robust fine-tuning performance
while achieving extremely low on-device memory, with at least 95.2% reduction in
computation overhead, 93.2% reduction in communication costs and 5.1× faster
convergence compared to existing methods, validating its efficacy for practical
LLM adaptation over heterogeneous mobile devices.

1 INTRODUCTION

Fine-tuning large language models (LLMs) for domain-specific tasks unlocks significant potential for
novel applications, driving growing demand for personalized intelligence. Data required for such task
adaptation is naturally generated and stored across massive personal mobile devices like smartphones
and wearables. However, due to privacy constraints, this decentralized data cannot be combined for
centralized training. Federated learning (FL) (McMahan et al., 2017) offers a promising paradigm for
enabling collaborative, privacy-preserving LLM fine-tuning across mobile devices while keeping raw
user data localized. While foundational models like GPT (Brown et al., 2020), BERT (Devlin et al.,
2018), and LLaMA (Touvron et al., 2023) demonstrate broad capabilities (Ren et al., 2024; Ye, 2024;
Brown et al., 2020), practical federated fine-tuning of LLMs faces critical bottlenecks due to mobile
devices’ limited computational power, memory capacity, and network bandwidth.

To tackle these resource constraints, recent work explores federated LLM FT with parameter-efficient
fine-tuning (PEFT) methods like Adapters (Houlsby et al., 2019) or LoRA (Hu et al., 2022). These
approaches follow the standard FL loop (local training → upload → server aggregation → model
distribution), but exchanging only lightweight trainable modules (eg. LoRA) instead of full model
weights. While reducing client-side computation (due to fewer trainable parameters), local training
still requires storing LLM weights, intermediate activations and optimizer states—often exceeding
the memory capacity of mobile devices. For example, tuning a 1.3B-parameter model with LoRA
typically requires over 14.5 GB of GPU memory, which exceeds the 4–12 GB available on most
mobile devices (Li et al., 2025). Furthermore, the inherently synchronous aggregation protocol forces
the server to wait for multiple updates, resulting in significant resource waste when dealing with

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

heterogeneous devices; stragglers with slower computation or communication dramatically prolong
convergence time—an issue amplified by the sheer size of modern LLMs.

In this paper, we propose Fed MobiLLM, a novel and efficient federated LLM fine-tuning framework
built upon the server-assisted side-tuning principle inspired by PAE MobiLLM (Yang et al., 2025).
Specifically, we decouple resource-intensive gradient computation from mobile devices by hosting
all trainable parameters within a shared side-network on the server, while each mobile device
retains only its frozen backbone LLM. During federated fine-tuning, each mobile device executes
forward propagation computations on local data using its frozen backbone and uploads selected
intermediate activations to the server. The server performs asynchronous backpropagation using
these activations, computing gradients and updating the shared side-network independently for each
mobile device’s activations - without requiring global synchronization. In this way, Fed MobiLLM
allows mobile devices to bypass costly on-device backpropagation and optimizer steps, drastically
reducing client memory and computational load. Crucially, by enabling server-side side-network
training to proceed immediately upon receiving any mobile device’s activations, Fed MobiLLM
eliminates the fundamental straggler bottleneck inherent in synchronous FL aggregation protocols.
Fed MobiLLM thus offers a mobile device-friendly, training-efficient, and heterogeneity-tolerant
solution for federated LLM adaptation across mobile devices.

Our salient contributions are summarized as follows:

• We propose Fed MobiLLM, a novel framework that pioneers mobile-friendly, asynchronous
server-assisted side-tuning for LLM adaptation across distributed mobile data. Our design
decouples computation by having devices perform only forward passes (no backpropagation)
and upload activations, where the server asynchronously updates a unified side-network
per-client activation arrival. This eliminates synchronization bottlenecks and removes all
gradient computation from devices.

• We design adaptive mechanisms enabling Fed MobiLLM to support heterogeneous mobile
devices via capacity-scaled backbone models and cross-architecture layer alignment tech-
niques. This ensures devices with divergent model structures/sizes can collaboratively train
a unified server-side shared side-network that consolidates knowledge from all devices.

• We implement and evaluate Fed MobiLLM across diverse mobile platforms (NVIDIA Jetson
TX2, Xavier NX, and AGX Xavier) and model scales (sub-billion to billion parameters).
Experiments across multiple tasks and system settings demonstrate that Fed MobiLLM
achieves extremely low on-device memory usage, with at least 95.2% reduction in com-
putation overhead, 93.2% reduction in communication costs and 5.1× faster convergence
compared to existing methods. It also delivers state-of-the-art and highly robust LLM
fine-tuning performance.

2 RELATED WORK

2.1 FEDERATED LLM FINE-TUNING

The limited scale and diversity of data on individual mobile devices necessitate collaborative LLM
fine-tuning across devices to enhance model performance. FL has emerged as a dominant paradigm
for this purpose, where devices perform local training and upload parameter updates to a central server
for aggregation. However, fine-tuning large language models (LLMs) under this paradigm presents
significant challenges due to their substantial computational and memory requirements. To address
these constraints, PEFT methods have been widely adopted for local training (Zhang et al., 2023).
Techniques such as Adapters (Houlsby et al., 2019), LoRA (Hu et al., 2022), and BitFit (Zaken et al.,
2021) freeze pretrained backbone parameters while fine-tuning only minimal additional parameters.
To further alleviate on-device memory burden, split federated learning (SFL) approaches further
reduce device load by offloading deeper layers to the server (Tian et al., 2022; Chen et al., 2025;
Gupta & Raskar, 2018). Specifically, devices sequentially exchange activations/gradients with the
server during forward/backward passes, while the device-side sub-models require periodic weight
aggregations across devices. Alternatively, forward-only methods like FwdLLM (Xu et al., 2024)
eliminate backpropagation by estimating gradients through parameter perturbations. While reducing
activation memory to inference levels, this approach requires multiple forward passes per update -
increasing device computational overhead.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2.2 EFFICIENT ON-DEVICE LLM FINE-TUNING

Figure 1: An overview of the PAE MobiLLM.

Enabling LLM fine-tuning directly on mobile
devices requires innovative architectures that
minimize memory and computational load while
retaining raw data locally. Server-assisted side-
tuning, pioneered by MobiLLM (Li et al., 2025),
addresses this by decoupling trainable side-
networks from frozen backbones and offloading
all the gradient computation to the server. Ad-
vancing this approach, PAE MobiLLM (Yang
et al., 2025)(as illustrated in Fig. 1) introduces
key optimizations: mobile devices perform only
a single forward pass through frozen backbones,
compute output deviations ∆y = Labely − ypre without exposing ground-truth labels, and upload
selected sparse intermediate activations (A1, . . . ,AL) alongside ∆y. The server then trains the
side-network exclusively using these activation-deviation pairs (A1, · · · ,AL,∆y), ensuring no raw
data access. A server-cached replay mechanism further reduces device overhead by limiting local
data processing to the first epoch, with subsequent iterations handled server-side. This achieves an
efficient balance between device resource consumption, communication costs, and training speed for
on-device LLM fine-tuning. While highly effective for single-device scenarios, scaling server-assisted
side-tuning to federated environments introduces fundamental new challenges, including coordination
across heterogeneous devices and cross-architecture knowledge aggregation. Our work addresses
this gap by extending the side-tuning paradigm to federated fine-tuning scenarios through novel
architectural and algorithmic innovations.

3 MOTIVATION

3.1 INEFFICIENCIES OF SOTA FEDERATED LLM FT

State-of-the-art federated LLM fine-tuning methods fail to adequately address the tension between
mobile device constraints and LLM computational demands. PEFT techniques reduce communication
costs by updating only small modules (e.g., adapters, low-rank matrices), yet still require devices to
perform backpropagation through full LLMs. This necessitates storing intermediate activations for
all layers during fine-tuning, resulting in memory footprints that significantly exceed typical mobile
device capacities - often causing out-of-memory failures or impractical computation delays. Split
federated learning mitigates device load by offloading deeper layers to the server but introduces
coordination bottlenecks: devices must serially exchange activations and gradients with the server
during forward/backward passes, while device-side sub-models require periodic cross-device weight
aggregation. In addition, in scenarios where the backbone model is privately deployed within
a closed device cluster and is not publicly available, sharing its parameters with the server may
violate confidentiality requirements. Forward-only perturbation methods (e.g., FwdLLM) avoid
backpropagation at the cost of increased computational overhead, requiring multiple forward passes
per update to estimate gradients. Collectively, existing federated LLM fine-tuning approaches exhibit
critical gaps and cannot simultaneously optimize on-device memory usage, computational overhead,
communication cost, and fine-tuning performance.

3.2 HETEROGENEITY CHALLENGES FOR FEDERATED LLM FT

The significant variation in computational power, memory capacity, and network bandwidth across
mobile devices introduces fundamental limitations to traditional synchronous federated learning
protocols, which require the central server to wait for model updates from all participating devices
before every-round global aggregation. This synchronization barrier creates unavoidable delays
caused by slow devices (stragglers), forcing faster devices to remain idle during waiting periods. When
applied to LLM fine-tuning, this synchronization bottleneck is exacerbated: intensive computational
demands further amplify performance gaps between high- and low-end devices, leaving powerful
ones underutilized or idle for extended periods and significantly slowing overall progress. Moreover,
memory heterogeneity also leads to significant resource waste. To enable cross-device parameter

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

aggregation, all devices must adopt the same backbone model, forcing its size to conform to the
memory constraints of the least-capable device (Su et al., 2024). This constraint underutilizes
the capacity of high-resource devices and results in computational waste. In practice, capable
devices naturally prefer to load larger, more powerful models for achieving better performance. In
summary, as device diversity increases, this inefficiency fundamentally conflicts with FL’s core goal
of collaborative resource utilization, and necessitates asynchronous paradigm designs resilient to
device heterogeneity in computation and memory.

4 FED MOBILLM DESIGN

4.1 FED MOBILLM OVERVIEW AND PROCEDURE

Fed MobiLLM is a server-assisted distributed learning framework designed to enable resource-
constrained mobile devices to collaboratively fine-tune LLMs using their local data. Fig. 2(a) presents
an overview of the Fed MobiLLM system. The key idea is to let devices retain merely a frozen
LLM backbone with pre-trained parameters locally while deploying a tunable side network on the
server. This distinguishes it fundamentally from conventional federated FT approaches that require
full LLMs (frozen backbone + tunable modules) on each device. Fed MobiLLM coordinates devices
to extract features from local data via forward propagation through their frozen backbones, guiding
the server-side training of a shared side-network. By centralizing all tunable parameters on the server,
Fed MobiLLM eliminates expensive on-device backpropagation and reduces memory overhead
(activations/optimizer states) during LLM fine-tuning.

During federated tuning, each mobile device performs forward propagation through its frozen
backbone using mini-batches sampled from its local dataset. For each mini-batch, device i transmits
selected intermediate activations (A1

i , . . . ,A
L
i ) from the backbone layers, along with the prediction

residual ∆yi (defined as the difference between ground-truth label and backbone output) to the
server, consistent with PAE MobiLLM’s design (Yang et al., 2025). Upon receiving these activation-
deviation pairs (A1

i , · · · ,AL
i ,∆yi) from any device, the server updates the shared side-network

immediately, i.e., processing each device’s contribution sequentially upon arrival without global
synchronization1. As device-side local models are frozen, Fed MobiLLM inherently yields the
following advantages: i) Devices can perform local computations and upload activations at the same
time. ii) Devices keep processing their local data without stopping to wait for server-side updates.
iii) The server triggers immediate side-network updates upon receiving any device’s activations,
eliminating global synchronization barriers. iv) Each device processes its local dataset in just a single
pass during the entire training process. Particularly, the server caches received activations to construct
an activation repository for iterative side-network training. To mitigate non-IID data bias, cached
samples are randomly shuffled during storage. During idle periods, the server trains continuously on
cached samples to maximize computational efficiency. This design ensures uninterrupted training
despite slow devices—eliminating straggler bottlenecks while maintaining full utilization of server
resources. After all devices complete uploading, the server performs efficient standalone tuning
using the comprehensive cached dataset. Through flexible and non-blocking device-server parallel
collaboration, Fed MobiLLM eliminates training bottlenecks and progress stalls caused by slower
devices. (A more detailed description of Fed MobiLLM’s training procedure under heterogeneous
devices is provided in Appendix B. )

4.2 HETEROGENEITY-AWARE CROSS-MODEL ALIGNMENT

Beyond computational heterogeneity through non-blocking device-server collaboration, Fed Mo-
biLLM fundamentally resolves memory-driven model capacity divergence across mobile devices
where deployable backbone sizes are dictated by each device’s memory constraints. Specifically, Fed
MobiLLM allows each device to load a pre-trained backbone model scaled to its hardware capacity.

1Note that the concerns about data privacy arising from the transmission of intermediate activations in Fed
MobiLLM are aligned with the definitions adopted in Google’s federated learning (FL) work (McMahan et al.,
2017) and split learning related architectures (Tian et al., 2022). Similar to these approaches, Fed MobiLLM is
naturally compatible with existing advanced privacy-preserving techniques, such as differential privacy (DP)
mechanisms (Dwork, 2006) (e.g., adding DP noise to gradients, inputs, outputs, or objective functions) and
secure multiparty computation (Du & Atallah, 2001).

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 2: An overview of the Fed MobiLLM.

As illustrated in Fig. 2(b), devices may employ different-sized models (e.g., OPT-125M, OPT-350M,
OPT-1.3B (Zhang et al., 2022)), resulting in backbone architectures with varying numbers of trans-
former layers and hidden dimensions. This architectural diversity introduces two key challenges: (1)
server-side adapters must accommodate diverse backbone structures, and (2) uploaded activations
exhibit inconsistent shapes across devices. To resolve these issues, we introduce two structural
alignment mechanisms—layer-wise activation sampling and hidden dimension scaling—that unify
activation patterns across heterogeneous devices for federated training of the shared side-network on
the server.

Layer-Wise Activation Sampling. Our layer-wise activation sampling mechanism addresses mis-
matches in transformer layer counts across backbone models. Inspired by empirical evidence in
LST (Sung et al., 2022) demonstrating that not all layers require dedicated adaptation modules, we
propose selectively extracting activations from strategic layer positions.

As shown in Fig. 2(b), when devices use backbones with differing layer counts (e.g., 12 vs. 24 layers),
we partition all models into a fixed number of blocks (e.g., 12 blocks). Activations are then sampled
exclusively from the final layer of each block. The server-side network is configured with an equal
number of adapter modules, each processing one aligned activation block. Through comparative
experiments of various strategies, we established optimal configuration guidelines: the block count is
set to the minimum layer depth among participating models (e.g., 12 blocks for 12/24-layer models),
while deeper models are partitioned at uniform intervals (e.g., sampling every other layer in a 24-layer
backbone). This approach ensures layer-wise structural consistency while preserving representational
capacity.

Hidden Size Scaling. Pre-trained models of different scales exhibit varying hidden sizes, preventing
direct integration of their activations into a unified side-network adapter module. To resolve this,
we introduce dedicated trainable linear projection layers for each backbone model type, mapping
activations to a consistent hidden size for shared side-network processing.

As shown in Fig. 2(b), three distinct backbone models (hidden sizes: 2048, 1024, 768) require
dimension standardization. We configure the side-network adapter with a target hidden size of 1024
and deploy projection layers (p1i , . . . , p

12
i ) on the server for each model variant. Consider device

1 using OPT-1.3B (hidden size 2048): its activations (A1
1, . . . ,A

12
1 ) pass through corresponding

projection layers (p1
1, . . . ,p

12
1 ) ∈ R2048∗1024, producing transformed activations (P1

1, . . . ,P
12
1 ) with

uniform 1024-dimensional features. These standardized activations then feed into the shared adapter
modules (s1i , . . . , s

12
i ), which enable collaborative training across heterogeneous models.

All projection layers are server-managed and co-trained with the side-network. After fine-tuning,
devices download their specific projection layers alongside the shared side-network for local infer-
ence. Our empirical study suggests selecting mid-range dimensions (e.g., 1024 for 768/1024/2048
scenarios) can optimize efficiency-accuracy balance in multi-device scenarios, while prioritizing
larger dimensions can preserve representation capacity in scenarios involving only two model sizes.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

5 EXPERIMENTAL SETUP

5.1 FED MOBILLM IMPLEMENTATION

The experimental testbed consists of a server with an NVIDIA A100 GPU and three types of
heterogeneous client devices representing increasing computational capabilities for LLM processing:
(1) NVIDIA Jetson TX2 (8GB RAM, 1.3 TFLOPS), (2) NVIDIA Jetson Xavier NX (8GB RAM, 6
TFLOPS peak), and (3) NVIDIA Jetson AGX Xavier (16GB RAM, up to 10 TFLOPS peak).

5.2 MODELS, DATASETS AND PARAMETERS

Models: To systematically evaluate Fed MobiLLM’s performance, we employ two representative
pre-trained LLM architectures: i) decoder-based OPT series (OPT-1.3B, OPT-350M, OPT-125M),
and ii) encoder-based RoBERTa series (RoBERTa-large(350M) and RoBERTa-base(125M)). This
selection ensures architectural diversity while maintaining mobile compatibility. All models are
initialized via HuggingFace Transformers (Wolf et al., 2019).

Datasets: We take the GLUE benchmark (Wang et al., 2018) and DialogSum dataset (Chen
et al., 2021) for the evaluation of NLP tasks, which are widely used in the fine-tuning research
for LLM (Zhang et al., 2023; Sun et al., 2024; Sung et al., 2022). GLUE benchmark comprises
eight tasks, including linguistic acceptability (CoLA (Warstadt, 2019)), sentiment analysis (SST-
2 (Socher et al., 2013)), similarity and paraphrase (MRPC (Dolan & Brockett, 2005), QQP (Iyer
et al., 2017), STS-B (Cer et al., 2017)), and natural language inference (MNLI (Williams et al.,
2017), QNLI (Rajpurkar, 2016), RTE (Bentivogli et al., 2009)). DialogSum includes summaries of
real-world conversations on a diverse set of topics and scenarios to evaluate text-generation tasks. We
use ROUGE scores (R1/R2/RL) as the accuracy metric. Following FedPETuning (Zhang et al., 2023),
we simulate non-IID data partitions using a Dirichlet distribution with concentration parameter α,
where lower α values induce higher label distribution shift. (See Appendix C for dataset details.)

Parameters: Following FedPETuning (Zhang et al., 2023), we set the number of communication
rounds to 100 and the number of local training epochs to 1 for all baselines under the FL paradigm.
All configurations deploy 100 clients with balanced device-type distribution in heterogeneous settings.
For Fed MobiLLM and those centralized fine-tuning baselines, the number of training epochs is set to
20. To ensure fair comparison, all experiments share the same configurations unless specified: FP16
precision, batch size 8, learning rate 5e-4, maximum sequence length 256, and 60 Mbps in-lab Wi-Fi
transmission speed. Additionally, LoRA and Fed MobiLLM employ rank-64 low-rank trainable
modules by default, while FwdLLM uses 300 global perturbations per iteration.

5.3 BASELINES FOR PERFORMANCE COMPARISON

We compare Fed MobiLLM with three baseline approaches: i) FedPETuning (Zhang et al., 2023)
(hereafter FL): Implements standard FedAvg aggregation with local PEFT on devices. ii) Fed-
Bert (Tian et al., 2022) (hereafter SFL): Extends FL with split learning, retaining only first/last
transformer layers on devices while offloading intermediate layers to the server. iii) FwdLLM (Xu
et al., 2024): Follows FL paradigm but replaces backpropagation with on-device perturbation training.

Each baseline is evaluated with two representative PEFT methods: i) LoRA (Hu et al., 2022): Inserts
trainable low-rank matrices into frozen backbone networks. ii) BitFit (Zaken et al., 2021): Fine-tunes
exclusively bias terms while freezing other pre-trained weights.

6 EVALUATION RESULTS AND ANALYSIS

6.1 COMPARATIVE ANALYSIS WITH FEDERATED FT BASELINES

We conduct comprehensive experiments to validate Fed MobiLLM’s advantages in on-device resource
efficiency, training efficiency, and fine-tuning performance across homogeneous and heterogeneous
device environments. (See Appendix D for details of result computation.)

On-Device Resource Efficiency. As detailed in Table 1, Fed MobiLLM demonstrates superior
resource efficiency across metrics in terms of on-device memory footprint, computation cost, and

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Comparison across methods: i) Per-device resource efficiency (mem-
ory/computation/communication); ii) Fine-tuning accuracy (centralized training vs. federated
training); and iii) Time-to-Accuracy (TTA) under homogeneous (TX2/Xavier/AGX Xavier clusters)
and heterogeneous (Mixed) device configurations. Task: RoBERTa-Base@MRPC. Note: Fed
MobiLLM uses uniform backbone models across devices in mixed settings for fairness.

Methods
On-device
memory

(GB)

On-device
comp.

(TFLOPs)

On-device
comm.
(MB)

FT Performance (Acc.) TTA@86.5(Mins)

Centralized Federated TX2
(Hom.)

Xavier
(Hom.)

AGX
(Hom.)

Mixed
(Heter.)

FL-LoRA 1.18 395.7 31.1 91.5 86.9 54.2 41.6 35.7 49.3
FL-BitFit 1.02 388.1 23.1 90.7 86.8 49.7 39.1 32.2 35.6

SFL-LoRA 0.54 58.3 5437.5 91.5 87.8 782.1 763.2 741.3 777.3
SFL-BitFit 0.49 56.5 5429.4 90.7 87.2 774.2 751.2 722.9 767.9

FwdLLM-LoRA 0.42 407.4 22.8 91.5 87.1 41.2 28.9 25.4 40.3
FwdLLM-BitFit 0.38 391.5 16.2 90.7 87.4 32.7 22.9 20.2 30.3
Fed MobiLLM 0.38 2.7 1.1 89.6 88.1 5.7 6.0 5.1 5.9

Figure 3: Convergence performance on various models and tasks under heterogeneous-device settings.

communication cost. Conventional FL-based PEFT methods (e.g., FedPETuning) incur substantial
resource demands, while SFL approaches like FedBert trade computation savings for significantly
increased communication overhead (up to 175×). Similarly, FwdLLM trades memory savings for
higher computation load. In contrast, Fed MobiLLM maintains an optimal balance, where devices
perform only a single forward pass, reducing memory consumption to inference levels (e.g., 2.68×
reduction for RoBERTa-Base). Besides, it achieves at least 95.2% lower computation and 93.2%
less communication by eliminating on-device backpropagation and leveraging server-side activation
caching.

Training Efficiency. We evaluate Fed MobiLLM’s training efficiency by measuring time-to-accuracy
across diverse configurations, including two model architectures (OPT, RoBERTa) and two tasks
(MRPC, QNLI), as shown in Fig. 3. To ensure fair comparison, all heterogeneous devices use identical
backbone models across Fed MobiLLM and other baselines. The results show that Fed MobiLLM
achieves at least a 5.1× speedup across all tasks. This acceleration stems from our full-pipeline
efficient design: during the initial phase, clients perform only one forward propagation per data
sample, avoiding both on-device backpropagation in conventional FL and multi-pass perturbations in
FwdLLM. After aggregating activations from all devices, the server performs iterative training on the
shared side-network independently, eliminating parameter synchronization with devices inherent in
FL paradigms.

We further evaluate training efficiency across different client device setups, as shown in Table 1, which
validates Fed MobiLLM’s superior straggler resilience. Under the heterogeneous-device setting,
baselines suffer severe slowdowns due to synchronous waiting periods in federated aggregation
protocols, resulting in training times approaching the all-TX2 (lowest-capacity devices) configuration.
In contrast, Fed MobiLLM benefits from extremely lightweight on-device computation and non-
blocking parallel device-server collaboration. As a result, computational speed variations across
devices are effectively masked, yielding consistent training times across diverse client setups.

LLM FT Performance. We evaluate Fed MobiLLM against federated LLM FT methods and their
centralized PEFT counterparts (LoRA, BitFit, side-network tuning). As Table 1 shows, while LoRA
and BitFit outperform side-network tuning in centralized settings, their accuracy significantly degrades
under federated deployment with distributed data. Even the best federated baseline (FwdLLM-BitFit)

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: FT Performance under data heterogeneity: IID vs. non-IID (α = {0.1, 1.0, 10.0}).

RoBERTa-Base@MRPC (Acc.) OPT-1.3B@DialogSum (R1/R2/RL)
Methods IID non-IID

(α= 10.0)
non-IID
(α= 1.0)

non-IID
(α= 0.1) IID non-IID

(α= 10.0)
non-IID
(α= 0.1)

FL-LoRA 86.9 85.1 84.5 82.1 19.2 / 6.1 / 15.1 17.9 / 5.2 / 14.3 16.1 / 4.6 / 12.7
FL-BitFit 86.8 84.9 84.6 81.5 19.0 / 6.2 / 14.9 17.7 / 5.1 / 14.2 16.4 / 4.2 / 12.9

SFL-LoRA 87.8 87.1 86.8 84.3 19.9 / 6.5 / 15.8 18.5 / 6.1 / 15.1 18.0 / 5.5 / 13.8
SFL-BitFit 87.2 87.0 86.1 85.2 19.7 / 6.2 / 15.5 18.7 / 6.0 / 15.2 17.8 / 5.4 / 13.4

FwdLLM-LoRA 87.1 86.7 86.5 84.1 19.3 / 6.3 / 15.7 18.2 / 6.2 / 15.1 17.8 / 5.2 / 13.7
FwdLLM-BitFit 87.4 87.1 86.6 84.7 19.6 / 5.9 / 15.1 18.6 / 6.1 / 14.9 17.3 / 5.1 / 14.1
Fed MobiLLM 88.1 87.8 87.7 87.3 21.0 / 7.7 / 17.2 20.2 / 7.4 / 16.0 20.0 / 7.3 / 16.3

(a) OPT-1.3B (b) RoBERTa-large (c) OPT Models (d) RoBERTa Models

Figure 4: Comparative accuracy across sampling methods (a-b) and hidden-size scaling (c-d) (Task:
SST-2).

exhibits at least 3.3% performance drop. In contrast, Fed MobiLLM maintains near-centralized with
only a 1.5% accuracy drop, outperforming all federated FT baselines by at least 0.3%.

We further evaluate the impacts of data heterogeneity on Fed MobiLLM’s performance. To build
local datasets, we use three Dirichlet distributions (α ∈ {0.1, 1.0, 10.0}) where a lower α indicates a
higher non-IID level (Zhang et al., 2023). Table 2 demonstrates that while the performance of all
methods degrades under data heterogeneity, Fed MobiLLM shows superior resilience. Taking the
MRPC task as an example, at extreme heterogeneity (α = 0.1), Fed MobiLLM’s accuracy drop is
1.2% smaller than SFL-BitFit, validating enhanced robustness to cross-client data distribution shifts.

6.2 CROSS-MODEL ALIGNMENT PERFORMANCE

We evaluate the efficacy of our layer-wise activation sampling and hidden size scaling methods for
heterogeneous model adaptation through comparative experiments with alternative approaches.

Layer Alignment Design. To determine optimal block configurations for layer alignment in Fed
MobiLLM, we perform comparative experiments using OPT-1.3B and RoBERTa-Large models.
Specifically, we feed sampled layer-wise backbone activations to the side network and analyze how
layer-wise activation sampling strategies affect performance, as shown in Fig. 4 (a-b). We compare
five strategies: shallow-only, deep-only, average-interval, random, and importance-based selection
(identified via layer-wise ablation). Results indicate: i) Performance improves with more backbone
activation layers; ii) The average-interval strategy achieves accuracy comparable to computationally
intensive importance-based approaches. These findings support Fed MobiLLM’s configuration:
set block count to the most lightweight LLM backbone’s layer depth across devices, partitioning
larger-sized LLMs at equal intervals to ensure structural alignment while maintaining performance.

Hidden Size Alignment Design. For cross-model hidden size scaling, determining a unified dimen-
sion for side-network adapters is critical. We experiment with various OPT and RoBERTa models,
and evaluate performance under different side-network hidden sizes. As shown in Fig. 4 (c-d), peak
performance is achieved when side-network hidden sizes match backbone sizes, while dimensional
mismatches degrade accuracy. For example, OPT-125M (hidden size =768) performs worse when
forced dimension to 2048, which demonstrates that larger dimensions aren’t always beneficial. These
findings yield practical Fed MobiLLM configuration guidelines: for multi-device scenarios, se-
lect median dimensions (e.g., 1024 for 768/1024/2048); for dual-model scenarios, prioritize larger
dimensions to preserve representational capacity.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Fed MobiLLM under heterogeneous device configurations with capacity-scaled backbone
allocation. (Single: isolated side-network training on each single device’s local data; Global:
collaborative training of a shared side-network. Results partitioned by model family (OPT series
upper, RoBERTa series lower) on SST-2 task.)

Devices
Local

Backbone
Model

On-device
Memory

(GB)

On-device
Comp.

(TFLOPs)

Per-device
Local

Runtime(s)

FT Performance (Acc.)
IID (α=1.0) (α=0.1)

Single Global Single Global Single Global
AGX OPT-1.3B 3.44 422.3 92.3 90.0 92.9 89.1 92.3 83.1 91.9

Xavier OPT-350M 1.10 108.8 88.2 89.9 92.4 88.5 91.8 81.6 91.5
TX2 OPT-125M 0.56 31.5 84.6 88.4 92.1 87.4 91.6 80.4 91.6
AGX RoBERTa-large 0.86 108.4 81.9 91.8 93.5 88.1 92.7 84.3 91.7

Xavier RoBERTa-large 0.86 108.4 92.4 91.8 93.5 88.1 92.7 84.3 91.7
TX2 RoBERTa-base 0.38 30.9 90.7 90.4 92.7 87.6 92.3 82.9 91.0

6.3 VALIDATION OF HETEROGENEOUS BACKBONE ADAPTATION

To validate the efficacy and necessity of Fed MobiLLM’s heterogeneous backbone design, we
conduct systematic experiments across OPT and RoBERTa model series, where each device loads a
capacity-scaled backbone model tailored to its hardware capabilities.

Device-Specific Workload Balancing. As shown in the results of the on-device workload in
Table 3, device-specific backbone assignment optimizes hardware resource utilization compared to
uniform model deployment. For example, AGX Xavier and Xavier run OPT-1.3B and OPT-350M,
respectively, with memory usage both around 30% of their available capacities (12.4 GB and 4.6 GB).
Computational loads similarly scale to device capacities, resulting in comparable execution times for
local forward propagation and activation uploads across heterogeneous devices. This helps ensure
near-balanced contributions to side-network training and prevent representation drift toward data
from those fast devices. This confirms Fed MobiLLM’s effective workload balancing and cross-client
coordination through hardware-aware model scaling.

Cross-Capacity Collaboration Effects. We investigate whether collaboration with lower-capacity
devices in Fed MobiLLM compromises high-capacity device performance. To this end, we evaluate
performance under two settings: i) training the side network using only each device’s local data
(denoted by Single), and ii) federated training of a shared side network across all devices (denoted
by Global). As shown in Table 3, Global consistently outperforms Single across different backbone
sizes and data distributions, particularly under high data heterogeneity. For example, when α =
0.1, the accuracy improvement is at least 8.8% and 7.4% with OPT models and RoBERTa models,
respectively. These results demonstrate that Fed MobiLLM enables all devices to benefit from
collaboratively trained robust side-networks without performance degradation.

7 CONCLUSION

This paper has presented Fed MobiLLM, an efficient and scalable framework for federated fine-tuning
of LLMs across heterogeneous mobile devices. By pioneering an asynchronous server-assisted side-
tuning paradigm, Fed MobiLLM decouples device responsibilities to forward-only propagation and
activation uploading, while the server trains a shared side-network, which eliminates synchronization
bottlenecks inherent in conventional FL-based fine-tuning approaches. Through layer-wise activation
sampling and cross-architecture dimension alignment, Fed MobiLLM enables each device to load
backbone models that match its hardware capacities while still maintaining the ability to collabo-
ratively train a shared side network, ensuring robust support for device heterogeneity. Extensive
experiments demonstrate Fed MobiLLM’s efficacy and efficiency: achieving 2.68× reduction in
on-device memory usage, 95.2% reduction in computational cost, 93.2% lower communication
overhead, and 5.1× faster convergence compared to state-of-the-art methods, while maintaining
competitive accuracy under IID/non-IID data distributions. These results collectively establish Fed
MobiLLM as a practical and deployment-ready solution for real-world federated LLM fine-tuning on
distributed mobile datasets. (See Appendix E for extended discussion.)

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

8 REPRODUCIBILITY STATEMENT

It is important to note that the work presented in this paper is reproducible. To ensure the reproducibil-
ity of our results, we have made several efforts, which we summarize below. A detailed description
of our method is provided in Section 4 and Appendix B. Comprehensive implementation details,
encompassing hyperparameter configurations and optimization procedures, are delineated in Sec-
tion 5 and Appendix D. For reproducibility, the source code has been included in the supplementary
materials. Following acceptance, it will be released publicly on GitHub to facilitate further research.
By providing these detailed resources, we aim to ensure that our work can be reproduced accurately.
Furthermore, we encourage others to conduct further exploration and research based on our work.

REFERENCES

Luisa Bentivogli, Peter Clark, Ido Dagan, and Danilo Giampiccolo. The fifth pascal recognizing
textual entailment challenge. TAC, 7(8):1, 2009.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-Gazpio, and Lucia Specia. Semeval-2017 task
1: Semantic textual similarity-multilingual and cross-lingual focused evaluation. arXiv preprint
arXiv:1708.00055, 2017.

Xiaopei Chen, Liang Li, Fei Ji, and Wen Wu. Memory-efficient split federated learning for llm
fine-tuning on heterogeneous mobile devices. arXiv preprint arXiv:2506.02940, 2025.

Yulong Chen, Yang Liu, Liang Chen, and Yue Zhang. Dialogsum: A real-life scenario dialogue
summarization dataset. arXiv preprint arXiv:2105.06762, 2021.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Bill Dolan and Chris Brockett. Automatically constructing a corpus of sentential paraphrases. In
Third international workshop on paraphrasing (IWP2005), 2005.

Wenliang Du and Mikhail J Atallah. Secure multi-party computation problems and their applications:
a review and open problems. In Proceedings of the 2001 workshop on New security paradigms, pp.
13–22, 2001.

Cynthia Dwork. Differential privacy. In International colloquium on automata, languages, and
programming, pp. 1–12. Springer, 2006.

Otkrist Gupta and Ramesh Raskar. Distributed learning of deep neural network over multiple agents.
Journal of Network and Computer Applications, 116:1–8, 2018.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
nlp. In Proc. of 36th International Conference on Machine Learning (ICML), Long Beach, CA,
June 2019.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Shankar Iyer, Nikhil Dandekar, Kornél Csernai, et al. First quora dataset release: Question pairs.
data. quora. com, 2017.

Liang Li, Xingke Yang, Wen Wu, Hao Wang, Tomoaki Ohtsuki, Xin Fu, Miao Pan, and Xuemin Shen.
Mobillm: Enabling llm fine-tuning on the mobile device via server assisted side tuning. arXiv
preprint arXiv:2502.20421, 2025.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282. PMLR, 2017.

P Rajpurkar. Squad: 100,000+ questions for machine comprehension of text. arXiv preprint
arXiv:1606.05250, 2016.

Xubin Ren, Wei Wei, Lianghao Xia, Lixin Su, Suqi Cheng, Junfeng Wang, Dawei Yin, and Chao
Huang. Representation learning with large language models for recommendation. In Proceedings
of the ACM Web Conference 2024, pp. 3464–3475, 2024.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. Recursive deep models for semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 conference on empirical methods in natural language processing, pp.
1631–1642, 2013.

Huai-an Su, Pavana Prakash, Rui Chen, Yanmin Gong, Rong Yu, Xin Fu, and Miao Pan. Dafl:
Device-to-device transmissions for delay efficient federated learning over mobile devices. IEEE
Internet of Things Journal, 2024.

Youbang Sun, Zitao Li, Yaliang Li, and Bolin Ding. Improving lora in privacy-preserving federated
learning. arXiv preprint arXiv:2403.12313, 2024.

Yi-Lin Sung, Jaemin Cho, and Mohit Bansal. Lst: Ladder side-tuning for parameter and memory
efficient transfer learning. In Proc. of Advances in Neural Information Processing Systems
(NeurIPS), New Orleans, Louisiana, December 2022.

Yuanyishu Tian, Yao Wan, Lingjuan Lyu, Dezhong Yao, Hai Jin, and Lichao Sun. Fedbert: When
federated learning meets pre-training. ACM Transactions on Intelligent Systems and Technology
(TIST), 13(4):1–26, 2022.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
Glue: a multi-task benchmark and analysis platform for natural language understanding. corr
abs/1804.07461 (2018). arXiv preprint arXiv:1804.07461, 2018.

A Warstadt. Neural network acceptability judgments. arXiv preprint arXiv:1805.12471, 2019.

Adina Williams, Nikita Nangia, and Samuel R Bowman. A broad-coverage challenge corpus for
sentence understanding through inference. arXiv preprint arXiv:1704.05426, 2017.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface’s transformers:
State-of-the-art natural language processing. arXiv preprint arXiv:1910.03771, 2019.

Mengwei Xu, Dongqi Cai, Yaozong Wu, Xiang Li, and Shangguang Wang. {FwdLLM}: Efficient
federated finetuning of large language models with perturbed inferences. In 2024 USENIX Annual
Technical Conference (USENIX ATC 24), pp. 579–596, 2024.

Xingke Yang, Liang Li, Zhiyi Wan, Sicong Li, Hao Wang, Xiaoqi Qi, Jiang Liu, Tomoaki Ohtsuki,
Xin Fu, and Miao Pan. Pae mobillm: Privacy-aware and efficient llm fine-tuning on the mobile
device via additive side-tuning. arXiv preprint arXiv:2507.01216, 2025.

Qinyuan Ye. Cross-task generalization abilities of large language models. In Proceedings of the
2024 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 4: Student Research Workshop), pp. 255–262, 2024.

Elad Ben Zaken, Shauli Ravfogel, and Yoav Goldberg. Bitfit: Simple parameter-efficient fine-tuning
for transformer-based masked language-models. arXiv preprint arXiv:2106.10199, 2021.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language
models. arXiv preprint arXiv:2205.01068, 2022.

Zhuo Zhang, Yuanhang Yang, Yong Dai, Qifan Wang, Yue Yu, Lizhen Qu, and Zenglin Xu. Fed-
petuning: When federated learning meets the parameter-efficient tuning methods of pre-trained
language models. In Annual Meeting of the Association of Computational Linguistics 2023, pp.
9963–9977. Association for Computational Linguistics (ACL), 2023.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A LLM USAGE DECLARATION

Large language models (e.g., ChatGPT) were used solely for language editing and formatting. They
did not contribute to the conception, design, implementation, analysis, data generation or labeling, or
evaluation of the methods and results. All technical content and claims were authored and verified by
the authors, and no personal, proprietary, or sensitive data were shared with LLM services.

B FED MOBILLM DETAILED PROCEDURES

Without loss of generality, we present here a more detailed description of the entire process by which
Fed MobiLLM performs LLM fine-tuning for downstream tasks in heterogeneous mobile device
scenarios.

(1) Initialization (on mobile device & server):

• Before federated LLM fine-tuning begins, each mobile device loads a pre-trained LLM
backbone that matches its local compute and memory budget, chosen based on its inference
footprint. Each device then sends the loaded backbone parameters to the server.

• Upon aggregating the configurations of all N participating devices, the server configures
the shared side network as follows: (i) set the number of adapter modules to the minimum
backbone depth across devices (e.g. 12 blocks for 12/24-layer backbones); (ii) set the adapter
hidden size to the median hidden dimension across devices (e.g., 1024 for 768/1024/2048);
and (iii) allocate a projection layer P for each backbone hidden size. The adapter modules
and projection layers on the server are trainable and initialized from a zero-mean Gaussian
distribution with a well-chosen standard deviation.

• The server then communicates the chosen number of shared adapters to all devices (i.e.,
the number of blocks to which each device will align). Given its own depth, each device
determines which layers to upload by sampling in a block-wise manner at uniform intervals
(e.g., every other layer in a 24-layer backbone).

(2) Local backbone forward propagation and activation upload (on mobile device):

• During training, the N devices run independently. Each device samples a mini-batch from
its local dataset and performs forward propagation through the frozen backbone. Following
the block-wise selection decided at initialization, the device records activations at the
transformer layers designated for upload.

• For each mini-batch, after the forward pass the device obtains the local prediction ypre and
computes the deviation from the ground truth ylabel as ∆y = ylabel − ypre. In parallel, for
intermediate activations at each transformer layer, the device extracts only the positions
relevant to the current task involved in the calculation of the loss (e.g., the last token in the
classification), resulting in the activation set (A1

i , . . . ,A
L
i ). For a more detailed explanation

of ∆y and the token selector, refer to PAE MobiLLM (Yang et al., 2025). Once ∆y is
computed and (A1

i , . . . ,A
L
i ) is selected, the mini-batch forms an activation-deviation pair

(A1
i , · · · ,AL

i ,∆yi), which is immediately submitted to the server.

• On each device, training proceeds mini-batch by mini-batch: after completing the forward
pass and uploading the activation-deviation pair for a mini-batch, the device immediately
moves to the next one. Once the local dataset has been traversed once, the device’s local
work is complete. In contrast to previous methods that repeatedly iterate over local data
until convergence, Fed MobiLLM keeps the device-side backbone frozen and leverages
server-side caching and reuse, so the device avoids redundant on-device computation.

(3) Forward and backward propagation training (on server):

• The server runs in an asynchronous, arrive-and-train manner: it receives activation–deviation
pairs from devices and updates the model immediately upon arrival. For each incoming
sample, the server first inspects the hidden size of the uploaded activations, applies the
corresponding projection layer p in the forward pass, and then runs the shared side-network

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

(adapters) forward. It computes the loss between the side-network output yside and the
deviation ∆y, and backpropagates along the same path. As a result, activations from
different hidden-size backbones jointly train the shared adapters while separately updating
their size-specific projection layers; activations with the same hidden size jointly update the
same adapter stack and projection layer.

• After each update, the server also inserts the sample into a cache for replay. To mitigate
non-IID bias, cached samples are randomly shuffled at insertion and sampling. During
idle periods, the server continues to train on cached samples to maximize compute utiliza-
tion. This design keeps training uninterrupted despite slow devices, eliminates straggler
bottlenecks, and maintains high server utilization.

(4) Fine-tuned side-network download and local inference (server → mobile device ):

Figure 5: How to execute on-device inferences in Fed MobiLLM.

After the federated LLM fine-
tuning is complete, the mo-
bile device downloads from the
server the projection layer p
that matches its hidden size and
the side-network (adapters), for
on-device inference (see Fig. 5).
These modules can be seamlessly
attached to the frozen local back-
bone. During inference, the side
network produces yside, which
provides a residual correction to the backbone output ypre, producing the fine-tuned model out-
put youtput = ypre + yside. This also clarifies why the server-side training targets the deviation
∆y = ylabel − ypre: by learning to predict ∆y, the deployed side-network output yside approximates
this deviation, ensuring the residual correction is aligned with the downstream task.

C DATASETS STATISTICS

Table 4: Datasets Statistics.

Dataset Description Task # Samples (train/eval)
CoLA Linguistic Acceptability Classification 8551 / 1043
SST2 Sentiment Analysis Classification 67350 / 873
MRPC Sentence Equivalence Classification 5801 / 408
STSB Sentence Similarity Regression 5712 / 1471
QQP Paraphrase Recognition Classification 363847 / 40431
RTE Textual Entailment Classification 2491 / 278
QNLI Natural Language Inference Classification 103141 / 5268
MNLI Textual Entailment Classification 392702 / 9815(9832)
DialogSum Abstract Summary Generation 12460 / 500

D COMPUTATION OF REPORTED RESULTS

In this section, we use Table 1 as an example to present how we compute on-device resource overhead
and training efficiency metrics for Fed MobiLLM and other baselines. We consider a federated
setting with 100 homogeneous NVIDIA Xavier clients, each of which loads the same RoBERTa-Base
backbone. The unified experimental setup is as follows: using the MRPC dataset with 5,801 samples,
data is evenly distributed across 100 clients (58 samples per client) according to the standard federated
learning configuration. FP16 precision, batch size = 8, sequence length = 256, and an in-lab Wi-Fi
throughput of 60 Mbps.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

D.1 ON-DEVICE MEMORY FOOTPRINT

• FL-LoRA: Performs full LoRA fine-tuning on the RoBERTa model on the device. The
memory footprint consists of model weights + intermediate activation + optimizer states
and hence is the largest among all methods.

• SFL-LoRA (U-shaped split learning): To keep raw data and labels on the device, only
offload the middle 10 layers of the 12-layer transformer to the server; the remaining layers
are LoRA fine-tuned on the device. The memory footprint consists of partial weights +
partial intermediate activation + partial optimizer states, thus lower than FL-LoRA.

• FwdLLM-LoRA and Fed MobiLLM: The device only performs forward propagation.
The memory footprint consists of model weights + a small inference-time intermediate
activation, achieving the smallest memory footprint.

D.2 ON-DEVICE COMPUTATION

We report on-device computation as the total FLOPs executed on a single device over the entire
training process until it reaches the target accuracy. Let the number of global rounds be R, the number
of local iterations (epochs/passes) per round be E, and let Costlocal denote the computation for one
complete local epoch under a given method.

• FL-LoRA: Each local epoch performs the full RoBERTa + LoRA (forward & backward).
Computationdevice = CostFT(full backbone, LoRA) ×R× E.

• SFL-LoRA (U-shaped split learning): Only the non-offloaded layers performs LoRA on
device (forward & backward).

Computationdevice = CostFT(partial backbone, LoRA) ×R× E.

• FwdLLM-LoRA (forward-only with perturbations): The device performs only forward
propagation; each round uses K local perturbation forwards.

Computationdevice = CostInfer(full backbone) ×R×K.

• Fed MobiLLM: The device performs a single forward propagation traversal of its local
data (no local replay).

Computationdevice = CostInfer(full backbone) .

D.3 ON-DEVICE COMMUNICATION

We report on-device communication as the total amount of data a single device exchanges with the
server over the entire training process until it reaches the target accuracy. Let the number of global
rounds be R, the number of local iterations (epochs/passes) per round be E.

• FL-LoRA: In standard FL, devices and server exchange trainable parameters in both
directions (upload/downlink) each global round:

Communicationdevice = 2×R×
∣∣θLoRA

∣∣,
where

∣∣θLoRA
∣∣ is the size of the on-device LoRA trainable parameters.

• SFL-LoRA (U-shaped split learning): Beyond the round-wise parameter exchange, split
learning requires frequent exchange of intermediate activations and backward gradients
during local forward/backward:

Communicationdevice = 2×R×
∣∣θLoRA

∣∣ + R× E × Commact/grad-per epoch,

where Commact/grad-per epoch denotes the activation/gradient traffic for one local for-
ward+backward epoch.

• FwdLLM-LoRA. Similar to FL-LoRA, the standard communication rhythm for federated
learning:

Communicationdevice = 2×R×
∣∣θLoRA

∣∣.
• Fed MobiLLM: The device performs a single forward propagation traversal of its local

data and uploads only a small subset of layer-wise activations selected by the token selector;
there is no parameter round-trip or gradient return:

Communicationdevice ≈ Commselected-activations- single epoch.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

D.4 TRAINING TIME TO TARGET ACCURACY

We report the training time to target accuracy for each LLM federated FT framework. Let the number
of global rounds be R, and define: t1 — per-round on-device runtime, t2 — per-round device–server
parameter communication time, t3 — per-round server aggregation time.

For FL-LoRA / SFL-LoRA / FwdLLM-LoRA, the per-round steps run serially, so

Ttrain = (t1 + t2 + t3)×R.

The only difference lies in t1:

• FL-LoRA: t1 = on-device LoRA fine-tuning (forward + backward).

• SFL-LoRA: t1 = split-learning based device–server co-training; frequent activa-
tion/gradient exchange makes t1 typically longer.

• FwdLLM-LoRA: t1 = on device multiple forward propagations.

Fed MobiLLM does not follow a federated sequential rhythm. Instead, it overlaps single forward
propagation time on the device side with communication time and server iteration time in parallel.
The total training time approximates the maximum duration among these three components. In our
testing, the server iteration typically dominates, i.e., Ttrain ≈ tserver-iter.

E DISCUSSIONS

E.1 IMPACT OF NETWORK SPEED ON TRAINING EFFICIENCY

Figure 6: Impact of network speed on time-to-accuracy (homogeneous Xavier clusters, task:
RoBERTa-Base@MRPC).

In practical federated LLM fine-tuning, device-server communication makes training efficiency sensi-
tive to network conditions. Consequently, network fluctuations may impact overall training efficiency.
Figure 6 illustrates the training efficiency across methods under different wireless transmission speeds.
Since the total training time in FL-LoRA and FwdLLM-LoRA is affected by the communication
time, they suffer severe performance degradation under low-speed transmission conditions. For
example, FwdLLM-LoRA shows a 1.62× slowdown at 10Mbps vs. 100Mbps. In contrast, Fed
MobiLLM maintains stable total latency across different transmission speeds, demonstrating almost
no variations from 10 Mbps to 100 Mbps. Such resilience stems from parallel scheduling that
overlaps communication with device- and server-side computation, masking transmission delays with
on-device compute time that is unaffected by network-speed fluctuations.

E.2 SERVER STORAGE

As shown in Table 5, we report Fed MobiLLM’s server-side cache usage across different backbone
sizes (from RoBERTa-Base to OPT-1.3B) and dataset scales (from RTE to QNLI). When targeting
larger backbones or higher data throughput, edge servers with tight storage budgets may require

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 5: Server cache size across backbones and tasks.

Backbone Server cache size (GB)

RTE SST2 QNLI

OPT-1.3B 0.23 6.21 36.21
RoBERTa-Base 0.08 2.40 13.99

additional scalability measures for the caching mechanism. As future work, we will explore activation-
aware quantization (e.g., mixed 2–4-bit precision per layer) and intelligent lifecycle management
(automatically purging stale or low-impact activation–deviation samples) to align storage costs with
operational budgets without compromising adaptation quality.

17


	Introduction
	Related Work
	Federated LLM Fine-tuning
	Efficient On-device LLM Fine-Tuning

	Motivation
	Inefficiencies of SOTA Federated LLM FT
	Heterogeneity Challenges for Federated LLM FT

	Fed MobiLLM Design
	Fed MobiLLM Overview and Procedure
	Heterogeneity-aware Cross-model Alignment

	Experimental Setup
	Fed MobiLLM Implementation
	Models, Datasets and Parameters
	Baselines for Performance Comparison

	Evaluation Results and Analysis
	Comparative Analysis with Federated FT Baselines
	Cross-Model Alignment Performance
	Validation of Heterogeneous Backbone Adaptation

	Conclusion
	REPRODUCIBILITY STATEMENT
	LLM Usage declaration
	Fed MobiLLM Detailed Procedures
	Datasets Statistics
	Computation of Reported Results
	On-Device Memory footprint
	On-Device computation
	On-Device Communication
	Training Time to Target Accuracy

	Discussions
	Impact of Network Speed on Training Efficiency
	Server Storage


