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Abstract

PAC-Bayesian bounds have proven to be a valuable tool for deriving generalization
bounds and for designing new learning algorithms in machine learning. However,
they typically focus on providing generalization bounds with respect to a chosen loss
function. In this study, we concentrate on the problem of PAC-Bayesian classifica-
tion, specifically referring to the PAC-Bayesian method for binary classification. In
classification tasks, due to the non-convex nature of the 0-1 loss, a convex surrogate
loss is often used, and thus current PAC-Bayesian bounds are primarily specified
for this convex surrogate. This work shifts its focus to providing misclassification
excess risk bounds for PAC-Bayesian classification when using a convex surrogate
loss. Our key ingredient here is to leverage PAC-Bayesian relative bounds in expec-
tation rather than relying on PAC-Bayesian bounds in probability. We demonstrate
our approach in several important applications.

Keyword: binary classification, PAC-Bayes bounds, prediction bounds, misclassification excess risk,
convex surrogate loss

1 Introduction and motivation

Building on foundational works by Shawe-Taylor and Williamson (1997); McAllester (1998; 1999),
PAC-Bayesian theory has emerged as a vital framework for deriving generalization bounds and
developing innovative learning algorithms in machine learning (Catoni, 2007; Guedj, 2019; Alquier,
2024; Rivasplata, 2022; Germain et al., 2009; Reeb et al., 2018). PAC-Bayesian bounds typically
focus on risk assessments related to specific loss functions. However, in classification, the non-
convex and non-smooth characteristics of the 0-1 loss require the use of convex surrogate losses
for effective computation (Zhang, 2004; Bartlett et al., 2006). This need is crucial for advancing
novel learning algorithms derived from PAC-Bayes bounds. Several studies have addressed this
by integrating convex surrogate losses, such as Dalalyan and Tsybakov (2012a) and Alquier et al.
(2016), which concentrate on risk bounds for the convexified loss. Despite recent progress in
applying PAC-Bayesian techniques to establish prediction bounds in classification, a significant
gap remains in providing misclassification risk bounds (Cottet and Alquier, 2018; Mai, 2023; 2024).
This paper seeks to fill this gap by focusing on misclassification excess risk bounds for PAC-Bayesian
approaches in classification that utilizing a convex surrogate loss.

We formally consider the following general binary classification. Given a covariate/feature x ∈ X ,
one has that the class label Y = 1 with probability p(x), and Y = −1 with probability 1 − p(x),
here p(x) denotes the conditional probability P[Y = 1|X = x]. The accuracy of a classifier η is
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defined by the prediction or misclassification error, given as

R0/1(η) = P(Y 6= η(x)).

The Bayes classifier, η∗(x) = sign(p(x)−1/2), is widely recognized for minimizing R0/1(η) (Vapnik,
1998; Devroye et al., 1996), i.e.

R∗0/1 := R0/1(η∗) = inf R0/1(η).

With p(x) being unknown, a classifier η̂(x) needs to be designed using the available data: a random
sample of n independent observations Dn = {(x1, y1), . . . , (xn, yn)}. The design points xi may be
considered as fixed or random. The corresponding (conditional) prediction error of η̂ is now as

R0/1(η̂|Dn) = P(Y 6= η̂(x) | Dn)

and the goodness of η̂ with respect to η∗ is measured by the misclassification excess risk
(Abramovich and Grinshtein, 2018), defined as

ER0/1(η̂|Dn)−R∗0/1 = ER0/1(η̂|Dn)−R0/1(η∗).

The empirical risk minimization method is a general nonparametric approach to determine a clas-
sifier η̂ from data, where the true prediction error R0/1(η) minimization is replaced by the mini-

mization of the empirical risk r
0/1
n over a specified class of classifiers, {ηθ : X → {−1, 1}, θ ∈ Θ},

where r
0/1
n is given by:

r0/1
n (θ) =

1

n

n∑
i=1

1{yi 6= ηθ(xi)}.

PAC-Bayesian approaches for binary classification using the 0-1 loss was thoroughly examined in
a series of works by Olivier Catoni over 20 years ago, in Catoni (2003; 2004; 2007). However,
due to the computational challenges posed by the non-convexity of the zero-one loss function,
particularly when dealing with huge and/or high-dimensional data, a convex surrogate loss is often
preferred to simplify the computational problem. The convex surrogate loss in PAC-Bayesian
approach for classification has been considered in various studies. For example, Alquier et al. (2016)
explored a variational inference approach for PAC-Bayesian methods, emphasizing the importance
of convexified loss, while Dalalyan and Tsybakov (2012a) and Mai (2024) investigated a PAC-
Bayesian method for classification using convex surrogate loss and gradient-based sampling methods
such as Langevin Monte Carlo. PAC-Bayesian bounds as in Alquier (2024), when using a convexified
loss, often leads to prediction bounds or excess risk with respect to the convexified loss.

In this work, we provide a unified procedure to obtain misclassification excess risk bounds for PAC-
Bayesian approaches in classification when using convexified loss. Our work is carried out under
the so-called low-noise condition. The low-noise condition described is a common assumption in the
classification literature, as seen in works such as Mammen and Tsybakov (1999); Tsybakov (2004);
Bartlett et al. (2006). The main challenge for any classifier typically lies near the decision boundary
{x : p(x) = 1/2}. In this region, accurately predicting the class label is particularly difficult because
the label information is predominantly noisy. Given this, it is reasonable to assume that p(x) is
unlikely to be very close to 1/2.

Structure of the paper: in Section 2, we introduce our primary notations and present our
main results. In Section 3, we apply our general procedure to two significant applications: high-
dimensional sparse classification and 1-bit matrix completion. To the best of our knowledge, the
results obtained for these two problems are novel. We conclude our work in Section 4, while all
technical proofs are provided in Appendix A.
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2 Main result

2.1 PAC-Bayesian framework

We observe an i.i.d sample (X1, Y1), . . . , (Xn, Yn), of a random pair (X,Y ) taking values in X ×
{−1, 1}, from the same distribution P. A set of classifiers is chosen by the user: {ηθ : X →
{−1, 1}, θ ∈ Θ}. For example, one may have ηθ(x) = sign(〈θ, x〉) ∈ {−1, 1}. In this paper, the
symbol E will always denote the expectation with respect to the (unknown) law P of the (Xi, Yi)’s.

Consider a loss surrogate function φ : R2 → R+ that is convex with respect to its second component,
the empirical convex risk is defined as

rφn(θ) :=
1

n

n∑
i=1

φi(θ) :=
1

n

n∑
i=1

φ(Yi, ηθ(Xi)),

and its expected risk is given as Rφ(θ) = E[φ(Y, ηθ(X))].
Convex loss functions commonly used in classification include logistic loss and hinge loss. More
examples can be found for example in Bartlett et al. (2006).

Let P(Θ) denote the set of all probability measures on Θ. We define a prior probability measure
π(·) on the set Θ. For any λ > 0, as in the PAC-Bayesian framework Catoni (2007); Alquier (2024),

the Gibbs posterior ρ̂φλ, with respect to the convex loss φ, is defined by

ρ̂φλ(dθ) =
exp[−λrφn(θ)]∫
exp[−λrφn]dπ

π(dθ), (1)

and our mean estimator is defined by θ̂ =
∫
θρ̂φλ(dθ). From now, we will let θ∗ denote a minimizer

of Rφ when it exists: Rφ(θ∗) = minθ∈ΘR
φ(θ).

In PAC-Bayes theory, when utilizing a φ-loss function, it is customary to regulate the excess φ-risk,

Rφ(θ)−Rφ(θ∗)

see e.g. Alquier (2024). However, in classification tasks, it is equally crucial to control the misclas-
sification excess risk, ER0/1(θ)−R∗0/1, which is the primary focus of this paper.

2.2 Main result

2.2.1 Assumptions

Certain conditions are essential for deriving our main result.

Assumption 1 (Bounded loss). The convex surrogate loss function φ is assumed to be bounded,
with its values lying in the range [0, B].

The boundedness condition in Assumption 1 is not central to our analysis; rather, it serves to
simplify the presentation and enhance the clarity of the paper. It is important to note that PAC-
Bayesian bounds can also be derived for unbounded loss functions, as discussed in Alquier (2024).

Assumption 2 (Lipschitz loss). We assume that the loss function φ(y, ·) is L-Lipschitz in the
sense that there exist some constant L > 0 such that |φ(y, ηθ(x))− φ(y, ηθ′(x))| ≤ L‖θ − θ′‖.
Assumption 3 (Bernstein condition). Assuming that there is a constant K > 0 such that, for any
θ ∈ Θ, ‖θ − θ∗‖22 ≤ K[Rφ(θ)−Rφ(θ∗)].
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Assumption 2 and 3 have been extensively studied in various forms in the learning theory literature,
such as (Mendelson, 2008; Zhang, 2004; Alquier et al., 2019; Elsener and van de Geer, 2018; Alaya
and Klopp, 2019). The hinge loss φ(y, y′) = max(0, 1− yy′) and the logistic loss φ(y, y′) = log(1 +
exp(−yy′)) are 1-Lipschitz with respect to their second argument. Therefore, under appropriate
conditions, they satisfy the requirements of Assumption 2 (refer to Section 3 for an example).
Assumption 3 implicitly means that our predictors are identifiability.

Remark 1. It is worth noting that our Bernstein condition in Assumption 3 is slightly stronger
than the one considered in Alquier (2024). Specifically, Definition 4.1 in Alquier (2024) defines a
Bernstein condition where there exists a constant K > 0 such that for any θ ∈ Θ, with φi(θ) =
φ(Yi, ηθ(Xi)),

E
{

[φi(θ)− φi(θ∗)]2
}
≤ K[Rφ(θ)−Rφ(θ∗)].

Therefore, if we additionally assume that the loss function φ in our context is further L-Lipschitz,

then E
{

[φi(θ)− φi(θ∗)]2
}
≤ L2E‖θ − θ∗‖22 ≤ L2K[Rφ(θ) − Rφ(θ∗)], which satisfies Definition 4.1

in Alquier (2024).

Assumption 4 (Margin condition). We assume that there exist a constant c > 0 such that

P {0 < |p(X)− 1/2| < 1/(2c)} = 0.

The low-noise condition described in Assumption 4 is a common assumption in the classification
literature, as seen in works such as (Abramovich and Grinshtein, 2018; Tsybakov, 2004; Mammen
and Tsybakov, 1999; Bartlett et al., 2006). The main challenge for any classifier typically lies
near the decision boundary {x : p(x) = 1/2}, which in logistic regression corresponds to the

hyperplane θ>x = 0, where p(x) = (1 + e−θ
>x)−1. In this region, accurately predicting the class

label is particularly difficult because the label information is predominantly noisy. Given this, it is
reasonable to assume that p(x) is unlikely to be very close to 1/2.

Assumption 5 (classification-calibrated loss). For ζ ∈ [0, 1], ζ 6= 1/2, the following condition must
hold: infα∈RGζ(α) < infα:α(2ζ−1)≤0Gζ(α), where Gζ(α) = ζφ(α) + (1− ζ)φ(−α).

Assumption 5 is a minimal requirement, indicating that the φ-loss function possesses the same
capacity for classification as the Bayes classifier. For a more detailed discussion, refer to Bartlett
et al. (2006).

2.2.2 Main results

While high probability PAC-Bayes bounds for the excess φ-risk, Rφ(θ) − Rφ(θ∗), are frequently
discussed in the literature (see e.g. Alquier (2024)), PAC-Bayes bounds in expectation have received
comparatively less attention. Utilizing high probability PAC-Bayes bounds for deriving prediction
bounds has also been explored to some extent, as evidenced by several works such as Cottet and
Alquier (2018); Mai (2023; 2024). However, these approaches often do not provide bounds for
misclassification excess risk unless under strictly noiseless conditions.

In this study, we illustrate the utility of PAC-Bayes bounds in expectation for deriving misclas-
sification excess risk bounds. Specifically, we first introduce a PAC-Bayesian relative bound in
expectation, which is a slight extension of Theorem 4.3 in Alquier (2024). For two probability
distributions µ and ν in P(Θ), let K(ν‖µ) denote the Kullback-Leibler divergence from ν to µ.

Put C := max(2L2K,B). Here after, let Pn and En denote the expectation with respect to the
joint distribution of the whole random sample (X1, Y1), . . . , (Xn, Yn).
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Theorem 1. Assuming that Assumptions 1, 2 and 3 are satisfied, let’s take λ = n/C. Then we
have:

En[E
θ∼ρ̂φλ

[Rφ(θ)]]−Rφ(θ∗) ≤ 2 inf
ρ∈P(Θ)

{
Eθ∼ρ[Rφ(θ)]−Rφ(θ∗) +

CK(ρ‖π)

n

}
.

The proof is given in Appendix A. As discussed in Catoni (2007); Alquier (2024), the bound in
Theorem 1 can be employed to derive error rates for the excess φ-risk in a general setting as follows:
one needs to find a ρε such that Eθ∼ρε [Rφ(θ)] ' Rφ(θ∗) + ε

n and ensure that K(ρε‖π) ' ε to obtain:

En[Eθ∼ρ̂λ [Rφ(θ)]] . Rφ(θ∗) + ε
n + 2Cε

n . Hence the rate is of order 1/n.

Remark 2. One can derive a PAC-Bayesian relative bound without invoking the Bernstein condi-
tion from Assumption 3, see e.g Alquier (2024). Nevertheless, this results in a slower convergence
rate of order n−1/2. In contrast, under the low-noise condition specified in Assumption 4, which is
our primary assumption, it is well-known that a faster rate of order 1/n can be obtained Abramovich
and Grinshtein (2018); Tsybakov (2004). Hence, the need for imposing the Bernstein condition in
Assumption 3 becomes crucial.

The following theorem presents our main results on misclassification excess risk bounds for PAC-
Bayesian approaches in classification using convexified loss. The strategy involves utilizing a broad
result from Bartlett et al. (2006). To establish our main result presented in Theorem 2 below, we
further assume that the φ-loss function is classification-calibrated.

Theorem 2. Assuming both Theorem 1 and Assumption 4, 5 hold, and by selecting λ = n/C, there
exists a constant Ψ > 0 such that

En[E
θ∼ρ̂φλ

[R0/1(θ)]]−R∗0/1 ≤ Ψ inf
ρ∈P(Θ)

{
Eθ∼ρ[Rφ(θ)]−Rφ(θ∗) +

CK(ρ‖π)

n

}
, (2)

and

En[R0/1(θ̂)]−R∗0/1 ≤ Ψ inf
ρ∈P(Θ)

{
Eθ∼ρ[Rφ(θ)]−Rφ(θ∗) +

CK(ρ‖π)

n

}
, (3)

in particular, one can take Ψ = 4c.

Remark 3. Similar to Theorem 1, the bound in Theorem 2 can be utilized to derive general mis-
classification error rates. For instance, since the bound in (2) holds for any ρ ∈ P(Θ), one can
specify a distribution ρδ such that Eθ∼ρδ [Rφ(θ)] − Rφ(θ∗) . δ/n and that K(ρδ‖π) . δ and conse-

quently: En[E
θ∼ρ̂φλ

[R0/1(θ)]]−R∗0/1 . δ
n + 2Cδ

n , hence the misclassification excess rate can be of the

order 1/n. Some classical examples are given below.

From Theorem 2, we immediately obtain the following corollary regarding the `2 error for the
predictor.

Corollary 1. Assuming that Theorem 2 is satisfied and let’s take λ = n/C. Then, with some
universal constant C > 0, we have that

En Eθ∼ρ̂φλ
[
‖θ − θ∗‖22

]
≤ C inf

ρ∈P(Θ)

{
Eθ∼ρ[Rφ(θ)−Rφ(θ∗)] +

K(ρ‖π) + log 2
ε

λ

}
.

With the same rationale as provided in Remark 3, some error rates can be obtained from Corollary
1.

Remark 4. It is crucial to recognize that, in the absence of Assumption 4, one may not achieve
a result analogous to Theorem 2. For instance, as demonstrated by Zhang (2004), for the logistic
loss, En[R0/1(θ)]−R∗0/1 . (En[Rφ(θ)]−Rφ(θ∗))1/2. Consequently, it is generally unlikely to derive
a comparable result for PAC-Bayesian methods without employing Assumption 4.
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Examples

We now demonstrate that using Theorem 2 can yield bounds on the misclassification excess risk
in various scenarios. Further non-trivial applications are discussed in Section 3. The following two
examples are similar to Example 2.1 and 2.2 in Alquier (2024), but we focus on binary classification
setting.

Example 1 (Finite case). Let us begin with the special case where Θ is a finite set, specifically,

card(Θ) = M < +∞. In this scenario, the Gibbs posterior ρ̂φλ of (1) is a probability distribution
over the finite set Θ defined by

ρ̂φλ(θ) =
e−λr

φ
n(θ)π(θ)∑

ϑ∈Θ e−λr
φ
n(ϑ)π(ϑ)

.

As the bounds in (2) and (3) hold for all ρ ∈ P(Θ), it holds in particular for all ρ in the set of
Dirac masses {δθ, θ ∈ Θ}. That

En[E
θ∼ρ̂φλ

[R0/1(θ)]]−R∗0/1 ≤ Ψ inf
θ∈Θ

{
Rφ(θ)−Rφ(θ∗) +

CK(ρ‖π)

n

}
,

and in particular, for θ = θ∗, this becomes

En[E
θ∼ρ̂φλ

[R0/1(θ)]]−R∗0/1 ≤ Ψ
CK(δθ‖π)

n
,

And, K(δθ‖π) =
∑

θ′∈Θ log
(
δθ(θ′)
π(θ′)

)
δθ(θ

′) = log 1
π(θ) . This gives us an insight into the role of the

measure π: the bound will be tighter for θ values where π(θ) is large. However, π cannot be large
everywhere because it is a probability distribution and that

∑
θ∈Θ π(θ) = 1. The larger the set Θ,

the more this total sum of 1 will be spread out, resulting in large values of log(1/π(θ)). If π is the
uniform probability distribution, then log(1/π(θ)) = log(M), and the previous bound becomes

En[E
θ∼ρ̂φλ

[R0/1(θ)]]−R∗0/1 ≤ ΨC
log(M)

n
.

Thus, in this case, the misclassification excess risk is of order log(M)/n.

Example 2. Now, we consider the continuous case where Θ = Rd, the loss function is Lipschitz,
and the prior π is a centered Gaussian: N (0, σ2Id), where Id denotes the d × d identity matrix.
When applying Theorem 2, the right-hand side in (2) involves an infimum over all ρ ∈ P(Θ).
However, for simplicity and practicality, it is advantageous to consider Gaussian distributions as
ρ = ρm,s = N (m, s2Id) with m ∈ Rd, s > 0.

First, it is well known that, K(ρm,s‖π) = ‖m‖2
2σ2 + d

2

[
s2

σ2 + log(σ
2

s2
)− 1

]
. Moreover, the risk Rφ

inherits the Lipschitz property of the loss, that is, for any (θ, ϑ) ∈ Θ2, Rφ(θ)−Rφ(ϑ) ≤ L‖ϑ− θ‖.
And, by Jensen’s inequality, that Eθ∼ρm,s‖ϑ − θ‖ ≤

√
Eθ∼ρm,s [‖θ −m‖2] ≤ s

√
d. Consequently,

putting all thing together, with m = θ∗

En[E
θ∼ρ̂φλ

[R0/1(θ)]]−R∗0/1 ≤ Ψinf
s > 0

Ls√d+ C

‖θ∗‖2
2σ2 + d

2

[
s2

σ2 + log(σ
2

s2
)− 1

]
n

 .
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Taking s = 1/(n
√
d),

En[E
θ∼ρ̂φλ

[R0/1(θ)]]−R∗0/1 ≤ Ψ

{
L

n
+ C

‖θ∗‖2
2σ2 + d

2

[
1

n2dσ2 + log(n2dσ2)− 1
]

n

}
.
d log(n)

n
.

Thus, in this case, the misclassification excess risk is of order d log(n)/n.

3 Application

We note that Theorem 2 is applicable to different classification contexts. Here, we will demonstrate
it with the following two important examples.

3.1 High dimensional sparse classifcation

In this context, we have that X = Rd and that d > n. Consider the class of linear classifiers,

the empirical risk is now given by: r
0/1
n (θ) = 1

n

∑n
i=1 1{Yi(θ>Xi) < 0}, and the prediction risk

R0/1(θ) = En
[
r

0/1
n (θ)

]
. For the sake of simplicity, we put R∗ := R(θ∗), where θ∗ is the ideal Bayes

classifier.

Our analysis is centered on a sparse setting, where we assume s∗ < n, with s∗ = ‖θ∗‖0, denoting
the number of nonzero elements in the parameter vector. Here, we primarily focus on the hinge
loss, which results in the following hinge empirical risk:

rhn(θ) =
1

n

n∑
i=1

(1− Yi (θ>xi))+ ,

where (a)+ := max(a, 0),∀a ∈ R. We consider the following Gibbs-posterior distribution: ρ̂hλ(θ) ∝
exp[−λrhn(θ)]π(θ) where λ > 0 is a tuning parameter and π(θ) is a prior distribution, given in (4),
that promotes (approximately) sparsity on the parameter vector θ. Given a positive number C1,
for all θ ∈ B1(C1) := {θ ∈ Rd : ‖θ‖1 ≤ C1}, we consider the following prior,

π(θ) ∝
d∏
i=1

(τ2 + θ2
i )
−2, (4)

where τ > 0 is a tuning parameter. For technical reason, we assume that C1 > 2dτ . This prior
is known as a scaled Student distribution with 3 degree of freedom. This type of prior has been
previously examined in the different sparse problems (Dalalyan and Tsybakov, 2012a;b; Mai, 2024).

Theorem 3. Given that E‖X‖ ≤ Cx < ∞, Theorem 1 and Assumption 4 are satisfied, and by
setting λ = n/C, it follows that

En[Eθ∼ρ̂hλ [R0/1(θ)]]−R∗0/1 ≤ C
s∗ log (d/s∗)

n
,

and

En[R0/1(θ̂)]−R∗0/1 ≤ C
s∗ log (d/s∗)

n
,

for some universal constant C > 0 depending only on K,B,C1, Cx.

Remark 5. According to Theorem 3, the misclassification excess rate is of order s∗ log(d/s∗)/n
which is established as minimax-optimal in high-dimensional sparse classification, according to
Abramovich and Grinshtein (2018). This result is novel and extends the work of Mai (2024),
which addresses only the misclassification excess rate in the noiseless scenario.
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3.2 1-bit matrix completion

For sake of simplicity, for any positive integer m, let [m] denote {1, . . . ,m}.

Formally, the 1-bit matrix completion problem can be defined as a classification problem as follow:
we observe (Xk, Yk)k∈[n] that are n i.i.d pairs from a distribution P. The Xk’s take values in
X = [d1] × [d2] and the Yk’s take values in {−1,+1}. Hence, the k-th observation of an entry of
the matrix is Yk and the corresponding position in the matrix is provided by Xk = (ik, jk).

Here, a predictor is a function [d1]× [d2]→ R, and it can therefore be represented by a matrix M .
A natural approach is to employ M such that when (X,Y ) ∼ P, the predictor M predicts Y using
sign(MX). The performance of this predictor in predicting a new matrix entry is subsequently
measured by the risk

R(M) = EP [1(YMX < 0)] ,

and its empirical counterpart is: rn(M) = 1
n

∑n
k=1 1(YkMXk < 0) = 1

n

∑n
k=1 1(YkMik,jk < 0).

From the classification theory (Vapnik, 1998), the best possible classifier is the Bayes classifier

η(x) = E(Y |X = x) or equivalently η(i, j) = E[Y |X = (i, j)],

and equivalently we have a corresponding optimal matrix M∗ij = sign[η(i, j)]. We define rn =

rn(M∗). Note that, clearly, if two matrices M1 and M2 are such as, for every (i, j), sign(M1
ij) =

sign(M2
ij) then R(M1) = R(M2), and obviously, ∀M, ∀(i, j) ∈ [d1] × [d2], sign(Mij) = M∗ij ⇒

rn(M) = rn.

In the paper (Cottet and Alquier, 2018), the authors deal with the hinge loss, which leads to the
following so-called hinge risk and hinge empirical risk:

Rh(M) = EP [(1− YMX)+] , rhn(M) =
1

n

n∑
k=1

(1− YkMXk)+.

Specifically, with M = LR> and for some large enough K (e.g. K = min(d1, d2)), Cottet and
Alquier (2018) define the prior distribution as the following hierarchical model:

∀k ∈ [K], γk
iid∼ πγ ,

Li,·, Rj,·|γ
iid∼ N (0, diag(γ)), ∀(i, j) ∈ [m1]× [m2],

where the prior distribution on the variances πγ is either the Gamma or the inverse-Gamma dis-
tribution: πγ = Γ(α, β), or πγ = Γ−1(α, β).

Let θ denote the parameter θ = (L,R, γ). As in PAC-Bayes theory Catoni (2007), the Gibbs-
posterior is as follows:

ρ̂hλ(dθ) =
exp[−λrhn(LR>)]∫

exp[−λrhn]dπ
π(dθ)

where λ > 0 is a parameter to be fixed by the user.

The paper (Cottet and Alquier, 2018) explores a Variational Bayes (VB) approximation, which
facilitates the replacement of MCMC methods with more efficient optimization algorithms. They
define a VB approximation as ρ̃λ = arg minρ∈F K(ρ‖ρ̂hλ).
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We define M(r,B) for r ≥ 1 and B > 0 as the set of pairs of matrices (Ū , V̄ ), with dimensions
d1 × K and d2 × K respectively, that meet the conditions ‖Ū‖∞ ≤ B, ‖V̄ ‖∞ ≤ B, Ūi,` = 0 for
i > r, and V̄j,` = 0 for j > r. Consistent with Cottet and Alquier (2018); Alquier and Ridgway
(2020), we assume that M∗ = Ū V̄ t for some (Ū , V̄ ) in M(r,B).

Theorem 4. Assuming that Theorem 1 and Assumption 4 holds and taking λ = n/C, then we
have that

En[Eθ∼ρ̃λ [R0/1(θ)]]−R∗0/1 ≤ C
r(d1 + d2) log(nd1d2)

n
,

and

En[R0/1(θ̂)]−R∗0/1 ≤ C
r(d1 + d2) log(nd1d2)

n
,

for some universal constant C > 0 depending only on K,B.

Remark 6. The misclassification excess error rate presented in Theorem 4, which is on the order
of r(d1 + d2)/n (up to a logarithmic factor), is established as minimax-optimal, as demonstrated in
Alquier et al. (2019).

4 Concluding discussions

This paper presents misclassification excess risk bounds for PAC-Bayesian approaches in binary
classification, achieved through the application of a convex surrogate loss function. The methodol-
ogy primarily relies on the PAC-Bayesian relative bound in expectation, coupled with the assump-
tion of low noise condition. While our analysis assumes a bounded loss, it is worth mentioning
that the findings can be extended to unbounded loss scenarios, given additional conditions as elab-
orated in Alquier (2024). Once the PAC-Bayesian relative bound in expectation for the chosen loss
function is established, our theoretical results are applicable.

In our work, the Bernstein condition is assumed; however, it may not always be necessary. Indeed,
as evidenced by several studies Cottet and Alquier (2018); Mai (2024), in the noiseless scenario, the
margin condition alone is adequate for deriving a misclassification excess risk bound. Additionally,
Section 6 of Alquier et al. (2019) highlights that, under the hinge loss, the low-noise condition
aligns with the Bernstein condition. This suggests that investigating the relationship between the
Bernstein condition on convex loss and the margin condition within PAC-Bayes bounds could be a
valuable area for future research.
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A Proofs

A.1 Proof of Section 2

Proof os Theorem 1. From Assumption 2, the loss is Lipschitz,

E
{

[φi(θ)− φi(θ∗)]2
}
≤ L2E

[
‖θ − θ∗‖22

]
.

9
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and from Assumption 3,

E
{

[φi(θ)− φi(θ∗)]2
}
≤ L2E

[
‖θ − θ∗‖22

]
≤ L2K[Rφ(θ)−Rφ(θ∗)].

Therefore, the assumption (Definition 4.1) of Theorem 4.3 in Alquier (2024) is satisfied with L2K.
Thus, the result is obtained by using Theorem 4.3 in Alquier (2024).

Proof of Theorem 2. As Assumption 4 is satisfied, according to Theorem 3 in Bartlett et al.
(2006) (taking α = 1 and ψ(t) = t2), one has that

En[R0/1(θ)]−R∗0/1 ≤ 4c
[
En[Rφ(θ)]−Rφ(θ∗)

]
,

integrating with respect to ρ̂φλ, and then using Fubini’s theorem,

En[E
θ∼ρ̂φλ

[R0/1(θ)]]−R∗0/1 ≤ 4c
(
En[E

θ∼ρ̂φλ
[Rφ(θ)]]−Rφ(θ∗)

)
,

we obtain the result in (2) by utilizing the result from Theorem 1.

To obtain (3), as φ is convex, an application of Jensen’s inequality to Theorem 1 yields

En[Rφ(θ̂)]−Rφ(θ∗) ≤ EnEθ∼ρ̂φλ [Rφ(θ)]−Rφ(θ∗)

thus we can now apply Theorem 3 in Bartlett et al. (2006) to get that

En[R0/1(θ̂)]−R∗0/1 ≤ 4c
(
En[Rφ(θ̂)]−Rφ(θ∗)

)
,

and the result is followed. This completes the proof.

Proof of Corollary 1. As Assumptions 2 and 3 are satisfied, we obtain Theorem 1,

En[E
θ∼ρ̂φλ

[Rφ(θ)]]−Rφ(θ∗) ≤ 2 inf
ρ∈P(Θ)

{
Eθ∼ρ[Rφ(θ)]−Rφ(θ∗) +

CK(ρ‖π)

n

}
.

Moreover, from Assumption 3, ‖θ− θ∗‖22 ≤ K[Rφ(θ)−Rφ(θ∗)]. Therefore, the result is obtained by
combining these bounds.

A.2 Proof of Section 3

Proof of Theorem 3. As the hinge loss is 1-Lipschitz, one has that

Rφ(θ)−Rφ(θ∗) ≤ E‖X‖‖θ − θ∗‖

We define the following distribution as a translation of the prior π,

p0(β) ∝ π(β − β∗)1B1(2dτ)(β − β∗). (5)

From Lemma 1, we have, for ρ := p0, that∫
[Rφ(θ)−Rφ(θ∗)]p0(dθ) ≤ Cx

∫
‖β − β∗‖p0(dβ) ≤ Cx

(∫
‖β − β∗‖2p0(dβ)

)1/2

≤ Cx

√
4dτ2

10
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and

K(p0‖π) ≤ 4s∗ log

(
C1

τs∗

)
+ log(2).

Plug-in these bounds into inequality (2), one gets that

En[E
θ∼ρ̂φλ

[R0/1(θ)]]−R∗0/1 ≤ Ψ inf
τ∈(0,C1/2d)

{
Cx2τ

√
d+

C14s∗ log
(
C1
τs∗

)
+ log(2)

n

}
,

and the choice τ = (Cxn
√
d)−1 leads to

En[E
θ∼ρ̂φλ

[R0/1(θ)]]−R∗0/1 ≤ Ψ

 2

n
+
C14s∗ log

(
CxC1n

√
d

s∗

)
+ log(2)

n

 ≤ cs∗ log (d/s∗)

n
,

for some positive constant c depending only on L,K,B,C1, Cx. A similar argument application to
inequality (3), one gets that

En[R0/1(θ̂)]−R∗0/1 .
s∗ log (d/s∗)

n
.

The proof is completed.

Proof of Theorem 4. Using similar argument as in the proof of Theorem 4.3 in Alquier (2024)
(see also the proof of Theorem 4.3 in Alquier et al. (2016)), one obtains that

En[Eθ∼ρ̃λ [Rφ(θ)]]−Rφ(θ∗) ≤ 2 inf
ρ∈F

{
Eθ∼ρ[Rφ(θ)]−Rφ(θ∗) +

C1K(ρ‖π)

n

}
.

A similar argument as in Theorem 2,

En[Eθ∼ρ̃λ [R0/1(θ)]]−R0/1(θ∗) ≤ Ψ inf
ρ∈F

{
Eθ∼ρ[Rφ(θ)]−Rφ(θ∗) +

C1K(ρ‖π)

n

}
.

As the hinge loss is 1-Lipschitz, and noting that θ∗ = M∗, θ = LR>,one has that

Rφ(θ)−Rφ(θ∗) ≤ ‖θ − θ∗‖ = ‖LR> −M∗‖

Given B > 0 and r ≥ 1, for any pair (Ū , V̄ ) ∈M(r,B), we define

ρn(dU,dV,dγ) ∝ 1(‖U−Ū‖∞≤δ,‖U−Ū‖∞≤δ)π(dU,dV,dγ), (6)

where δ ∈ (0, B) to be selected later. For any (U, V ) in the support of ρn, given in (6), one has that

‖M∗ − UV t‖F = ‖Ū V̄ t − ŪV t + ŪV t − UV t‖F
≤ ‖Ū(V̄ t − V t)‖F + ‖(Ū − U)V t‖F
≤ ‖Ū‖F ‖V̄ − V ‖F + ‖Ū − U‖F ‖V t‖F
≤ d1d2‖Ū‖1/2∞ ‖V̄ − V ‖1/2∞ + d1d2‖V ‖1/2∞ ‖Ū − U‖1/2∞
≤ d1d2δ

1/2[B1/2 + (B + δ)1/2]

≤ 2d1d2δ
1/2(B + δ)1/2 ≤ 23/2d1d2δ

1/2B1/2.

11
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Thus, with δ = B/[8(nd1d2)2], one gets that

Eθ∼ρn [Rφ(θ)]−Rφ(θ∗) ≤ B/n.

Now, from Lemma 2 with δ = B/[8(nd1d2)2], we have that

1

n
K(ρn‖π) ≤ 2(1 + 2a)r(d1 + d2) [log(nd1d2) + Ca]

n
.

Putting all together,

En[Eθ∼ρ̃λ [R0/1(θ)]]−R0/1(θ∗) ≤ C
{
B

n
+

2(1 + 2a)r(d1 + d2) [log(nd1d2) + Ca]

n

}
.
r(d1 + d2) log(nd1d2)

n
,

for some numerical constant C > 0 depending only on a,C1. The proof is completed.

Lemma 1. Let p0 be the probability measure defined by (5). If d ≥ 2 then
∫

Λ ‖β − β
∗‖2p0(dβ) ≤

4dτ2,and K(p0‖π) ≤ 4s∗ log
(
C1
τs∗

)
+ log(2).

Proof. The proof can be found in Mai (2024), which utilizes results from Dalalyan and Tsybakov
(2012a).

Lemma 2. Put Ca := log(8
√
πΓ(a)210a+1)+3 and with δ = B/[8(nd1d2)2] that satisfies 0 < δ < B,

we have for ρn in (6) that K(ρn‖π) ≤ 2(1 + 2a)r(d1 + d2) [log(nd1d2) + Ca] .

Proof. This result can found in the proof of Theorem 4.1 in Alquier and Ridgway (2020).
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