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ABSTRACT

Multi-modal Large Language Models (MLLMs) frequently face challenges from
concept drift when dealing with real-world streaming data, wherein distributions
change unpredictably. This mainly includes gradual drift due to long-tailed data
and sudden drift from Out-Of-Distribution (OOD) data, both of which have in-
creasingly drawn the attention of the research community. While these issues
have been extensively studied in the individual domain of vision or language,
their impacts on MLLMs in concept drift settings remain largely underexplored.
In this paper, we reveal the susceptibility and vulnerability of Vision-Language
(VL) models to significant biases arising from gradual drift and sudden drift,
particularly in the pre-training. To effectively address these challenges, we pro-
pose a unified framework that extends concept drift theory to the multi-modal
domain, enhancing the adaptability of the VL model to unpredictable distribu-
tion changes. Additionally, a T-distribution based drift adapter is proposed to
effectively mitigate the bias induced by the gradual drift, which also facilitates
the model in distinguishing sudden distribution changes through explicit distri-
bution modeling. Extensive experiments demonstrate our method enhances the
efficiency and accuracy of image-text alignment in the pre-training of VL mod-
els, particularly in the concept drift scenario. Moreover, various downstream
tasks exhibit significant improvements in our model’s ability to adapt to long-
tailed open world. Furthermore, we create a set of multi-modal datasets called
OpenMMlo, specifically tailored for the long-tailed open world settings, to val-
idate our findings. To foster the development of the multi-modal community,
we have made both OpenMMlo datasets and our code publicly available at:
https://github.com/Anonymous0Knight/ConceptDriftMLLMs.

1 INTRODUCTION

The rapid expansion of data availability has created significant challenges for multi-modal large
language models (MLLMs), particularly in addressing concept drift, which predominantly manifests
as gradual drift and sudden drift Lu et al. (2019). Among them, tailed drift represents a classic
illustration of gradual drift, emerging due to severe data imbalance, where the distributions of long-
tail categories evolve because of their intrinsic sparsity and noise. Concurrently, sudden drift is
mainly represented by OOD drift, as the model encounters new, previously unseen concepts, resulting
in distributional shifts that disrupt its ability to generalize in an open-world context. While the issues
of long-tailed recognition and concept drift in open-world settings have been extensively studied in
visual models Liu et al. (2022) and language models Kandpal et al. (2023), their impact on MLLMs,
particularly vision-language (VL) models, remains largely unexplored. In this work, we aim to bridge
this gap by providing a systematic analysis of how tailed drift and OOD drift affect VL models during
both pre-training and fine-tuning phases. Our findings highlight critical vulnerabilities of current VL
models in adapting to these challenges, underscoring the need for novel strategies to enhance their
robustness in dynamic, open-world environments.

Pre-training: As illustrated in Figure 1a, a comparison of the VL model trained on the balanced
dataset ImageNet Russakovsky et al. (2015b) and the imbalanced dataset ImageNet-LT Liu et al.
(2022) is conducted. Due to the implicit feature centers of each category, we approximate them by
averaging unit image and text features obtained by samples on the test set. To assess the intra-class
compactness, the cosine distance between the image feature center and the text feature center from
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the same category is calculated and expressed as degrees. It is evident that training on the imbalanced
dataset leads to a higher degree, indicating worse intra-class compactness brought by the tailed
drift. Besides, with the tail drift intensifies, it results in a deterioration of the image-text alignment
performance in tailed categories. Beyond the deterioration in tailed categories, the tailed drift also
affects the image-text alignment in head categories with abundant training samples, which means that
it leads to an overall performance degradation, not just the tailed categories. From the perspective of
inter-class separability, we measure the average cosine distance from an image feature center to text
feature centers of different categories. Figure 1a depicts that the VL model trained on the imbalanced
dataset has lower inter-class separability. What’s more, we utilize KNN to extract 100 image and text
feature centers of OOD samples to verify the impact of OOD drift on the pre-training of the VL model.
Compared to training on the balanced dataset, the VL model trained under an imbalanced scenario is
harder to distinguish between ID samples and OOD samples from the open world due to their similar
inter-class separability. The undistinguished OOD drift will bias the underlying distribution of the
feature space in the VL model, further disturbing the image-text alignment in the pre-training.

OOD Categories

Intra-Class Compactness / LT

Inter-Class Separability / LT

Intra-Class Compactness / BL

Head Long Tailed ID Tail

Num of samples

Degree

Inter-Class Separability / BL

(a) Image-Text Alignment in Pre-training

Head Tail

Categories

Degree Inter-Class Separability

OOD vs. ID Separability

(b) Feature Space Allocation in Fine-tuning

Figure 1: The impacts of tailed drift and OOD drift on the vision language model in the stages of
pre-training and fine-tuning, respectively. (a) In terms of the pre-training, we visualize the alignment
results pre-trained on both a balanced dataset (denoted as BL) and an imbalanced dataset (as LT)
without OOD samples, under the same balanced test set. The cosine metric is used to measure the
distances between unit image and text features across various categories including OOD samples,
which is expressed as degrees. A smaller degree indicates a higher level of similarity between the
features. Thus, it provides a feature-level visualization of the intra-class compactness and inter-class
separability in the vision language model. (b) In the context of fine-tuning in imbalance datasets, the
mutual cosine distance between the centers of each category in the classifier is directly visualized to
illustrate the feature space of the classifier, denoted as blue bars. Besides, the average cosine distance
between each category center and OOD samples is calculated, which is represented as orange bars.

Fine-tuning: We explicitly leverage the weights of the embedding layer in the VL model to visualize
its feature space. The average cosine distance between each category and others is calculated as
exhibited in the blue bars of Figure 1b. with the decreasing of the training samples, a smaller degree
means a worse inter-class separability. It is verified that tail drift leads to a compression of the feature
space for tailed categories with a limited number of training samples, while head categories with
abundant samples dominate the overall feature space of the VL model. Moreover, the average cosine
distance between each category and unit features extracted by OOD samples is applied to reveal the
OOD separability as denoted as orange bars in Figure 1b. Since head categories occupies most of
the feature space, OOD samples are closer to the center of the head categories compared to the tail
categories, implying that in the stage of fine-tuning, it is difficult for the VL model to distinguish
between OOD samples under imbalanced scenarios.

To effectively address tailed drift and OOD drift within a unified framework, which often occur
simultaneously, we encapsulate them using the concept drift theory. Therefore, summarizing the
above challenges of vision language models in the long-tailed open world, it raises the important
question:

How to adapt multi-modal large language model to concept drift in the long-tailed open world?
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Remark 1.1. Research Objective: Our focus lies in addressing the drift that MLLMs exhibit when
confronted with the long-tailed open world, rather than leveraging MLLMs to enhance classification
performance on long-tailed open datasets. The classification is exploited as the downstream task to
provide a more intuitive visualization of the concept drift suffered by the MLLMs, which could have
other downstream tasks.

Therefore, we propose a concept drift-aware multi-modal large language model, mitigating the tail
drift and OOD drift encountered in the long-tailed open world. Firstly, we introduce the concept drift
theory to the multi-modal domain, which provides a more holistic perspective to explain tailed drift
and OOD drift. Then, the T-distributed adapter is proposed to be embedded in the hyperspherical
feature space. It aligns image-text features for contrastive learning in pre-training. The desirable
light-tailed property of the proposed T-distributed spherical metric (Thp) prevents the compression of
tailed categories and mitigates the crowding of feature space caused by tailed drift. Besides, in fine-
tuning, the adapter projects features to decision boundary and detects OOD samples at feature-level
based on the underlying distribution. The proposed T-hp distribution explicitly models the feature
space with concrete feature centers, optimizing large inter-class margins and yielding more desirable
hyperspherical embeddings. And a simple non-parametric KNN is adopted to distinguish the OOD
sample based on the T-hp distribution. Finally, we construct a group of multi-modal long-tailed open
datasets to support our claims.

In summary, our paper mainly makes the following contributions:

1. We are the pioneers in revealing the unexplored impacts of concept drift to multi-modal
large language models, especially in the image-text alignment in the pre-training and feature
space allocation in the fine-tuning. This allows future research to more comprehensively
study the impact of defect data on MLLMs.

2. The concept drift theory is introduced and extended to multi-modal, integrating the tailed
drift and OOD drift in a unified framework. And the T-distributed spherical adapter is
proposed to perform the tailed adaptation and OOD detection in the pre-training and fine-
tuning stage of the VL model.

3. Extensive experiments evaluate the performance of our method under the long-tailed open
world. Compared to specialized models, ours demonstrates superior performance in down-
stream tasks of long-tailed classification and OOD detection. Crucially, our model effectively
addresses drift in image-text alignment, facilitating large-scale pre-training of MLLMs.

4. We build a group of multi-modal datasets OpenMMlo under the long-tailed open world, by
extending existing image-based long-tailed open datasets. It contains about 740k image-
caption pairs with related category annotations. To support and encourage the community
focused on multi-modal, we have made both the OpenMMlo and our code public.

2 METHODOLOGY

2.1 MULTI-MODAL CONCEPT DRIFT THEORY

Concept drift is a phenomenon in which the statistical properties of a target domain change over time
in an arbitrary way Lu et al. (2019). Formally, given a set of examples denoted as the data stream
S0,t = {d0, ..., dt}, where di = (Xi, yi) is one data instance, Xi and yi respectively denote the fea-
ture vector and the label, and t represents the timestamp of the instance in the data stream. S0,t follows
a certain distribution F0,t(X, y). The concept drift is formalized as: ∃t : Pt(X, y) ̸= Pt+1(X, y),
where the joint probability Pt(X, y) can be decomposed as Pt(X, y) = Pt(X)×Pt(y|X). Although
the concept drift due to tailed and OOD data often co-occur, they are fundamentally distinct phe-
nomena. The tailed concept drift foucus on the drift in Pt(X), while Pt(y|X) = Pt+1(y|X) remains
unchanged. However, the OOD drift from the unknown categories triggers the drift of both Pt(y|X)
and Pt(X), that Pt(y|X) ̸= Pt+1(y|X) and Pt(X) ̸= Pt+1(X). Therefore, concept drift theory
provides a unified framework to harmonize the tailed shift and OOD shift that often occur together,
enabling more robust and adaptive deep learning models.

In the context of multi-modal vision language models, we extend the concept drift theory from a
single data stream to multiple data streams. Each data modal is associated with a distinct data stream.
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Thereby, the multi-modal concept drift framework can robustly handle the complex, heterogeneous
data distributions inherent to vision language models. Therefore, we formally define multi-modal
concept drift as follows:

Definition 2.1. Assume that there are N data streams corresponding to N modalities, given a set of
examples denoted as S0,t = {S0, ..., Si, ..., St}, where Si = (s1, ..., sj , ..., sN ) and sj = (Xij , yi)
is one data instance from a single j-th data stream, Xij is the feature vector, yi is the label and t
is the timestamp of the data stream. S0,t follows a certain distribution F0,t(Si), the multi-modal
concept drift occurs at timestamp t+ 1, if P0,t(Si) ̸= Pt+1,∞(Si), denoted as:

∃t : Pt(Si) ̸= Pt+1(Si) (1)
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Figure 2: The workflow of our methodology, consisting of two stages: the pre-training of the
vision-language model and the fine-tuning on downstream tasks. Within the data streaming, a drift
adaptation window slides to detect changes in data distribution and subsequently update the model,
in both pre-training and fine-tuning. In the pre-training, the T-distributed adapter aligns visual and
textual feature space by image-text contrastive learning, with a large inter-class margin. Coupled with
the language model loss, they drive the training of all modules. In the downstream task, the image
encoder and the text decoder are frozen out of training, with a linear projector fusing image-text
features. Additionally, a mixture of experts module is leveraged with the T-distributed adapter as
the router, allowing it to effectively adapt tail drift and perform OOD drift detection based on the
distribution.

2.2 T-DISTRIBUTED ADAPTER FOR CONCEPT DRIFT

To adapt the vision language model to concept drift, it is essential to adapt the model to align with
the evolving data distribution, which can be formally defined as

min
f(t),f(t+1),...,f(t+τ)

t+τ∑
i=t

L(f (i)(x(i)), y(i)) (2)

where f (t) denotes the vision language model trained by the data stream St−k,t−1 from the drift
adaption window with the size of k. And the model is driven by the target metric L continuously to
adapt the drift in a given time period [t, t+ τ ]. Thus, one prevalent method for detecting and adapting
to concept drift involves designing metrics based on data distributions that can effectively counteract
the impacts of sudden and gradual changes within the time window Jiao et al. (2022); Yu et al. (2024).
Building upon this thinking, we integrate directional statistics into distribution-based drift detection
and adaptation, proposing a T-distributed adapter to alleviate it in the vision language model. Firstly,
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we provide an overview of directional statistics in the Appendix A.2.1. Then, we will introduce the
T-distributed adapter.

Inspired by the T-SNE Van der Maaten & Hinton (2008), we design a T-distribution based metric in
hypersphere (T-hp), which follows the density:

pX(x(i)) ∝ 2

κ(1− µTx(i))
(3)

where x(i) ∈ Sd−1 denotes the unit feature vector, µ ∈ Sd−1 represents the center of category
and κ ≥ 0 symbolizes the concentration of the distribution, with higher values indicating a greater
concentration around the center µ. Accordingly, we can get the marginal normalizer:

NT (κ, d) =

∫
Sd−1

2

1− κµTx(i)
dx =

1

κ
2α+β−1Γ(α)Γ(β)

Γ(α+ β)
(4)

where α = d−1
2 , β = d−3

2 , and Γ(·) represents the gamma function. Combined with Eq. 9, the
normalizer NX(d) of density pX(x;µ) is:

NX(κ, d) = NT (κ, d) ·Ad−2 =
2α+βπβ

κ

Γ(α)

Γ(α+ β)
(5)

Thus, the probability density function of the proposed Thp distribution is as follows:

p(x(i)) = NX(d)−1 2

κ(1− µTx(i))
, x(i) ∼ Thp(µ) (6)

The detailed derivation process is provided in Appendix A.2.

0-π π

T-hp / kappa:16
T-hp / kappa:64
T-hp / kappa:128
vMF

Figure 3: The proposed T-
distributed spherical metric with
various κ and the classical vMF
metric when κ = 1.

In terms of adapting to tailed concept drift, the Thp metric with
a large concentration exhibits a light-tailed property, wherein
the probability density function exhibits a faster rate of decay
as the values increase, relative to the vMF metric, as illus-
trated in Figure 3. The high kurtosis of Thp is characterized
that it yields high confidence only when the feature vector is
sufficiently close to the center of the category, thereby min-
imizing the influence of head category samples on the tail
category centers. Formally, Lthp(µ, x

(i)) = 2
κ(1−µT x(i))+ϵ

de-
notes the T-distributed metric on hypersphere, where ϵ is a
non-zero value setting to 1 to avoid the denominator of 0, and
Lvmf(µ, x) = exp(κµTx) represents the vMF metric. Given
an unit feature vector xhead from the head categories, the gra-
dient of the metric L over the tailed category center µtail is
∂L(µtail,xhead)

∂µtail
. Due to µT

tailxhead ∈ [−1, 1], when κ ⩾ 1, it is

readily obtain that ∂Lthp

∂µtail
< ∂Lvmf

∂µtail
. Consequently, the light-tailed

Thp distribution effectively counteracts the squeezing of tail
categories caused by an overwhelming number of head samples,
thereby alleviating the bias induced by tailed concept drift.

Likewise, the Thp metric is directly applied to detect the OOD concept drift. A sample with a
unit feature vector x is deemed out-of-distribution if it lies at a relatively large distance from the
in-distribution (ID) data in the eigenspace. Following Sun et al. (2022), a simple non-parametric KNN
is adopted to partition the data into two sets (ID vs. OOD), which does not impose any distributional
assumption on the feature space. Here the distance is the Thp metric with respect to the k-th nearest
neighbor.

2.3 T-DISTRIBUTED VISION LANGUAGE MODEL FOR THE CONCEPT DRIFT

As illustrated in Figure 2, our proposed vision language model contains two stages, the pre-training
and the fine-tuning on the downstream task. Specifically, the classification task is chosen to visualize
the impact of the bias caused by the long-tailed open world on the model. The multi-modal concept
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drift theory offers a unified framework for integrating gradual drift adaptation and sudden drift
detection, where heterogeneous image and text inputs are treated as distinct data streams.

The proposed vision language model follows the encoder-decoder mixture architecture of the Blip Li
et al. (2022c), containing an image encoder, a text encoder and an image-grounded text decoder.
With an input image Ii ∈ RH×W , the visual features ximg are extracted by the image encoder Eimg
and further projected to the spherical eigenspace by the L2 normalizer Pnorm:

ximg = Pnorm(Eimg(Ii)) ∈ Rn×d (7)

where n is the number of visual features and d represents the feature dimension. The image encoder
Eimg can be any common visual backbones, such as Vit-Base Dosovitskiy et al. (2021), Vit-Large
Dosovitskiy et al. (2021) and ResNeXt-50 Xie et al. (2017). In terms of the text encoder Etxt, with
a processed input text sequence Ti, text features are extracted by the language encoder and further
projected to the spherical eigenspace by the L2 normalizer Pnorm:

xtxt = Pnorm(Etxt(Ti)) ∈ Rn×d (8)

where n is the number of input tokens and d represents the feature dimension. In our case, Bert
Devlin et al. (2019a) is used as the language encoder, where a [CLS] token is added to the start of the
text input for sentence summarization. Additionally, an image-grounded text decoder is employed to
produce a textual description corresponding to a provided image. Utilizing the input visual features
ximg and text features xtxt, we initially create fused multi-modal representations by merging the
image and text feature embeddings. These combined features act as the keys and values within the
cross-attention blocks in the image-grounded text decoder. Through conditioning on the already
predicted partial sequence yi<j , the decoder iteratively forecasts the token at position j, effectively
producing textual descriptions corresponding across modalities.

In the pre-training of the vision language model, the T-distributed adapter aligns image and text
encoders by contrastive learning. It seeks to align visual and textual transformer feature spaces by
promoting similar representations for positive pairs and dissimilar representations for negative pairs.
More importantly, our approach circumvents model bias stemming from the long-tailed distribution
of data. Specifically, given a mini-batch with N image-text feature pairs, we calculate the N ×N Thp
similarity of the cross between image and text features. N correct pairs are recognized as positive
samples to maximize the Thp similarity, whereas the rest of N2−N are negative samples to minimize
the similarity. And we follow the ALBEF Li et al. (2021) to use soft labels from a momentum encoder
as training targets to account for the potential positives in the negative pairs.

Additionally, coupled with the T-distributed adapter, language modeling loss is utilized to activate
the image-grounding text encoder for generating coherent and detailed captions based on the image,
further propelling the training of all three modules. Driven by language modeling loss, the model
is trained to optimize a cross-entropy loss with label smoothing, to maximize the likelihood of the
generated text in an autoregressive manner.

In the downstream classification task, we leverage the T-distributed adapter as the router to distribute
features to various FFNs as experts. Furthermore, by explicitly modelling the feature space, the
T-router enables a straightforward application of non-parametric KNN to effectively partition the data
into ID and OOD samples. Besides, following the Blip Li et al. (2022c), the image encoder and the
text decoder are frozen out of training during fine-tuning. A head of the classifier with two linear
layers embeds features into the spherical eigenspace is trained.

2.4 BUILDING MULTI-MODAL DATASET OPENMMLO FOR THE LONG-TAILED OPEN WORLD

As the parameters of large models continue to expand, the demand for extensive training data also
escalates. However, due to the inherent challenge of obtaining images and related captions, most
multi-modal datasets struggle to be balanced in an open world, while cleaning the data requires huge
costs. Thus, our aspiration is for the model to adeptly acclimate to the imbalanced dataset by itself,
acquiring abundant knowledge with more and more data but not exhibiting bias. In this context, a
more realistic training dataset for vision language models is required to validate their potential to be
trained under the long-tailed open world. Recognizing the demand for higher-quality multi-modal
data with long-tailed distribution in an open world, we developed a group of datasets called Open
Multi-modal Long-Tailed OOD Datasets (OpenMMlo).
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We extend the open-source datasets, namely ImageNet-LT Liu et al. (2019), iNatualist2018 Van Horn
et al. (2018) and Places-LT Liu et al. (2019). ImageNet-LT has 1,000 classes and contains 115.8k
samples, with a maximum of 1,280 samples and a minimum of 5 samples for a category. Besides, it
consists of 18k images for OOD detection. Places-LT has 184.5K samples from 365 classes, with
class samples ranging from 4,980 to 5. The iNaturalist 2018 is a large-scale species dataset collected
in the natural world with 437.5K samples for 8,142 classes. We use the InstructBLIP Dai et al. (2023)
to generate the related caption of the image, with the prompt of ”What does this picture describe?
Please describe in detail its size, location, color, and its relationship to the surroundings.”. And, We
define long-tailed data in image-caption pairs according to the image categories, which are provided
in open-source image datasets. Concerning related captions based on images, we counted the word
frequencies and found that their distribution is similar to the image categories distribution, which is
imbalanced. For more details about OpenMMlo, please refer to Appendix A.4.

3 EXPERIMENTS

In this section, we first present the performance in downstream long-tailed classification and OOD
detection tasks, which is induced by tail drift and OOD drift on MLLMs. Then, we evaluate the
interior feature space of the VL model and further demonstrate our method alleviates the crowding
and bias problems caused by the tail drift and OOD drift. The constructed long-tailed multi-modal
datasets OpenMMlo is utilized for training and validating. In terms of the OOD drift detection, we
follow the setting of CIDER Ming et al.. The model is trained on CIFAR100-LT Krizhevsky &
Hinton (2009) with an imbalance ratio of 100, and validated on external OOD datasets including
SVHN Netzer et al. (2011), Places365 Zhou et al. (2017), LSUN Yu et al., iSUN Xu et al. and Texture
Cimpoi et al. (2014). More detailed experimental implementations are given in Appendix A.3.

3.1 TAMING THE TAILED DRIFT AND OOD DRIFT FOR ROBUST FINE-TUNING

We compare our proposed vision-language model with other models to explicitly demonstrate
its superior performance in long-tailed open-world scenarios. As shown in Table 1, our model
demonstrates exceptional overall performance in long-tailed classification across two large-scale
datasets, namely the ImageNet-LT and iNaturalist 2018. To ensure a more equitable comparison,
we opted to conduct pre-training using ImageNet and iNaturalist datasets separately, rather than
pre-training the entire OpenMMlo. Besides, it is worth noting that training from scratch means that
our method uses the imbalanced dataset for pre-training instead of utilizing the pre-trained model,
such as clip Radford et al. (2021) pre-trained by the large WIT dataset. The results validate the
robustness of our vision language model against biases arising from tailed drift, particularly when
leveraging large-scale data for both pre-training and fine-tuning.

As shown in Table 1, compared to other methods trained from scratch, especially the ViT model,
our model demonstrates a notable lead across all metrics, indicating our effective mitigation of
concept drift during the pre-training, and providing robust pre-trained models for downstream tasks.
Furthermore, to compare the current long-tailed methods, we apply the same setup as LIFTShi et al.
(2024), i.e., using the pre-trained model of the clip and only fine-tuning. Only fine-tuning means that
the method does not pre-train the model on the long-tail dataset, while directly using the parameters of
CLIP pre-trained on high-quality and large-scale WIT dataset. And they only fine-tune the model on
long-tailed datasets. It is worth noting that, most vision language models only focus on the impact of
tailed drift in the fine-tuning, such as LPT DONG et al. (2023), BALLAD Ma et al. (2021), Decoder
Wang et al. (2024), VL-LTR Tian et al. (2022) and LIFT Shi et al. (2024). We are the pioneers in
revealing the unexplored impacts of concept drift from pre-training onwards. The superior results on
medium and few splits of ImageNet-LT demonstrate the adaptability and robustness of our model in
dealing with the gradual drift caused by tail data. Besides, although we are slightly behind LIFTShi
et al. (2024) in the few split of iNatualist2018, we still surpass it overall, exhibiting that our method
does not compromise the accuracy of the head category to improve the tailed.

Beyond that, we compare our method with the CLIP Radford et al. (2021) under zero-shot, linear
probing and fine-tuning, where CLIP results are from the Decoder Wang et al. (2024). Based on the
zero-shot results, it is evident that CLIP, even trained on large-scale and high-quality WIT datasets,
struggles to address the issue of tailed drift. CLIP only achieves 5.5% accuracy in iNaturalist2018,
and the accuracy variance between many-shot and medium-shot scenarios is 11.6% in ImageNet-LT.
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Table 1: Evaluation results of long-tailed classification on ImageNet-LT and iNatualist2018. The
best-performing models are highlighted in red. Many, Medi. and Few denote the evaluated splits of
many-shot (>100 training samples), medium-shot (20-100 samples) and few-shot (<20 samples).
Top-1 accuracy is applied to evaluate the performance of different methods. Additionally, † means
the model is trained with the resolution of 384× 384. Besides, ZS denotes the zero-shot results of
the CLIP model, LP represents the linear probing results, and FT means the fine-tuning results.

ImageNet-LT iNaturalist 2018
Methods Backbones Many Medium Few All Many Medium Few All

Training from scratch
cRT Kang et al. (2019) 61.8 46.2 27.3 49.6 69.0 66.0 63.2 65.2
LWS Kang et al. (2019) 60.2 47.2 30.3 49.9 65.0 66.3 65.5 65.9
MiSLAS Zhong et al. (2021) 62.9 50.7 34.3 52.7 73.2 72.4 70.4 71.6
BALMS Ren et al. (2020) 64.1 48.2 33.4 52.3 - - - 70.6
LADE Huang et al. (2016) 64.4 47.7 34.3 52.3 - - - 69.3
ACE Cai et al. (2021) - - - 56.6 - - - 72.9
RIDE Wang et al. (2020) 68.2 53.8 36.0 56.9 70.9 72.4 73.1 72.6
PaCo Cui et al. (2021) 68.2 58.7 41.0 60.0 70.3 73.2 73.6 73.2
NCL Li et al. (2022b)

ResNet-50

- - - 57.4 72.0 74.9 73.8 74.2

ViT Dosovitskiy et al. (2021) 73.7 46.5 15.6 52.4 65.4 55.3 50.9 54.6
MAE He et al. (2022) 74.7 48.2 19.4 54.5 79.6 70.8 65.0 69.4
DeiT Touvron et al. (2022) 70.4 40.9 12.8 48.4 72.9 62.8 55.8 61.0
LiVT Xu et al. (2023) 73.6 56.4 41.0 60.9 78.9 76.5 74.8 76.1
LiVT † Xu et al. (2023)

ViT-B/16
76.4 59.7 42.7 63.8 83.2 81.5 79.7 81.0

Ours 76.4 66.2 48.9 68.0 82.5 79.8 77.1 78.9
Ours† 77.2 68.6 51.3 69.6 83.3 82.1 80.5 81.5

Only Fine-tuning
CLIP+ZS Radford et al. (2021) 82.0 70.4 69.6 70.5 9.9 5.3 4.6 5.5
CLIP+LP Radford et al. (2021) 87.3 65.1 19.0 67.4 62.4 7.1 0.1 10.0
CLIP+FT Radford et al. (2021) 83.0 65.0 39.9 68.5 79.4 67.6 59.1 65.4
LPT DONG et al. (2023) - - - - 62.1 76.2 79.3 76.1
BALLAD Ma et al. (2021) 79.1 74.5 69.8 75.7 - - - -
Decoder Wang et al. (2024) - - - 73.2 - - - 59.2
VL-LTR Tian et al. (2022) 84.5 74.6 59.3 77.2 - - - 81.0
LIFT Shi et al. (2024)

ViT-B/16
(w/ Pretrained

Clip)

80.2 76.1 71.5 77.0 72.4 79.0 81.1 79.1
Ours 79.5 76.5 74.1 77.2 83.5 82.2 80.7 81.7
Ours † 79.9 76.8 74.5 77.6 84.1 82.7 81.0 82.1

Our method significantly outperforms CLIP in dealing with tailed drift, especially in iNaturalist2018.
It also indicates that training on a high-quality balanced dataset alone cannot effectively mitigate the
bias induced by long-tail drift. Furthermore, the results of linear probing and fine-tuning demonstrate
that imbalanced datasets can induce pronounced tailed drift in MLLMs that damage the model
performance. The CLIP accuracy in Few-shot is only 39.9% under fine-tuning on ImageNet-LT,
much lower than the 69.6% under zero-shot. It further verifies the challenges brought by imbalanced
data in the training of MLLMs and the superiority of our method in adapting the MLLM to concept
drift from pre-training onwards.

In terms of OOD drift detection, our proposed vision language model, trained on CIFAR100-LT as an
in-distribution dataset, demonstrates exceptional performance across four diverse OOD datasets, as
shown in Table 2. Our approach stands out with two significant advancements. Firstly, the training of
our model does not incorporate any additional data from the open world to delineate the decision
boundary between ID samples and OOD samples. Secondly, our proposed model detects OOD drift
based on the hyperspherical distribution, without the need for any specialized modules. The proposed
methodology offers the convenience of training and inference for large models.
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Table 2: Evaluation results of OOD detection on CIFAR100-LT(ID) with the OOD datasets of SVHN,
LSUN, iSUN and Texture. ResNet-34 is selected as the image encoder. The best-performing method
is highlighted in red. FPR↓ and AUROC↑ are applied to evaluate the performance of different
methods.

Methods SVHN LSUN iSUN Texture

FPR AUROC FPR AUROC FPR AUROC FPR AUROC

ProxyAnchor Kim et al. (2020) 87.2 82.4 37.2 91.7 70.0 85.0 65.6 85.0
CE + SimCLR Winkens et al. 24.8 94.5 56.4 89.0 66.5 83.8 63.7 82.0
CSI Tack et al. (2020) 44.5 92.7 75.6 83.8 76.6 85.0 61.6 86.5
SSD+ Sehwag et al. (2021) 31.2 94.2 79.4 85.2 80.9 84.1 66.6 86.2
KNN+ Sun et al. (2022) 39.2 92.8 49.0 89.3 75.0 82.7 57.2 88.4
CIDER Ming et al. 12.6 97.8 30.2 92.8 46.0 88.9 35.6 92.3
Ours 8.3 98.7 20.3 97.5 32.5 95.2 45.1 96.3

Table 3: Evaluation results of generalization on ImageNet-Sketch
Wang et al. (2019) with ImageNet Russakovsky et al. (2015a)
as the source dataset. We compare our methods with other VL
models, including zero-shot CLIP Radford et al. (2021), linear
probing CLIP Radford et al. (2021), CoOp Zhou et al. (2022),
VPT Jia et al. (2022) and DAPT Cho et al. (2023).

CLIP+ZS CLIP+LP CoOp VPT DAPT Ours
46.1 36.0 47.1 47.7 48.3 50.2

Moreover, we evaluate the gen-
eralizability of our method in
the domain generalization set-
ting. Experiments are conducted
on ImageNet-Sketch Wang et al.
(2019) with ImageNet Rus-
sakovsky et al. (2015a) as the
source dataset, as shown in the
Table 3. From the experiment
results, our method achieves su-
perior performance with an accu-
racy of 50.2% on ImageNet-Sketch, attributed to the robustness of the T-distribution-based drift
adapter. It further verifies the generalization ability of our model in the open-world.

3.2 CONCEPT DRIFT-AWARE IMAGE-TEXT ALIGNMENT FOR EFFECTIVE PRE-TRAINING

Table 4: Evaluation results of image-text alignment of
different contrastive learning strategies in the stage of
pre-training, from three perspectives: ID intra-class com-
pactness, ID inter-class separability and the separability
between ID and OOD categories. The cosine metric is
utilized to measure these distances, which is expressed
as average degrees with standard deviation in brackets.
We compare our proposed Thp with classical cosine loss,
under balanced scenario (BL, ImageNet) and imbalanced
scenarios (LT, ImageNet-LT), respectively.

Pre-training ID Intra-class
Compactness ↓

ID Inter-class
Separability ↑

ID vs. OOD
Separability ↑

BL / Cosine 33.0 (±2.85) 84.3 (±1.64) 98.4 (±0.98)
LT / Cosine 49.2 (±4.95) 76.5 (±2.16) 80.7 (±1.90)
LT / Thp 36.2 (±3.53) 85.6 (±1.88) 101.3 (±1.25)

Moreover, we verified at the feature-
level that the proposed T-distributed
adapter significantly alleviates the bias
from tailed drift and OOD drift in the
pre-training. As exhibited in Table 4, the
degree of ID intra-class compactness re-
duces from 49.2 in LT/cosine to 36.2 in
LT/Thp. It thereby validates the effec-
tiveness of the proposed T-distributed
adapter in enhancing feature extraction
in long-tailed scenarios. Notably, the
decrease in standard deviation demon-
strates that the model considerably mit-
igates the bias induced by tail drift. In
addition, our method achieves remark-
able inter-class separability within in-
distribution categories under long-tailed
scenarios, even surpassing the perfor-
mance of cosine achieved under the bal-
anced dataset. It confirms the effective-
ness of the proposed high kurtosis method in enhancing the alignment between images and text in the
pre-training stage. Concerning the separability between ID and OOD, we achieve superior results
even than the balanced condition, attributed to the inherent light-tailed property of the T-distributed
adapter. It ensures our approach performs robustly for OOD drift detection.
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3.3 ABLATION EXPERIMENTS

3.3.1 T-DISTRIBUTED SPHERICAL EMBEDDING IN THE PRE-TRAINING AND FINE-TUNING

Table 5: Ablation evaluation results with
or without the T-distributed adapter in
the pre-training or fine-tuning. The
✓denotes the stage is trained with the T-
distributed adapter. The results are based
on the ImageNet-LT with the Vit-base.
Top-1 accuracy (Acc) is used as the met-
ric.

Pre-training Fine-tuning Acc

- - 56.0
✓ - 58.7
- ✓ 65.1
✓ ✓ 69.6

Firstly, we conduct ablation experiments to verify the
improved performance of the T-distributed adapter in
the stage of pre-training and fine-tuning, respectively.
As demonstrated in Table 5, our proposed T-distributed
adapter exhibits improvements in both the pre-training
and fine-tuning stages of the vision language model. It
is worth highlighting that the T-distribution adapter plays
a more prominent role during the fine-tuning stage. We
argue that it is due to different characteristics of the pre-
training and fine-tuning. During fine-tuning, the model
is directly involved in specific downstream tasks, and ex-
plicit category centers are present in the classifier. In con-
trast, pre-training primarily focuses on aligning image-text
features, where the implicit information of categories is
embedded. As a result, the T-distribution adapter’s impact
is more pronounced in the fine-tuning stage compared to
pre-training.

3.3.2 VARIOUS CONCENTRATION κ IN T-ADAPTER

Table 6: Ablation evaluation results of vari-
ous concentration parameter κ on long-tailed
classification task. ”Training” denotes the κ
involved in the training as a parameter of the
model with an initial setting of 16. The re-
sults are based on the ImageNet-LT with the
Vit-base. Top-1 accuracy (Acc) is used as the
metric.

κ 4 16 64 128 Training

Acc 67.2 69.6 64.9 61.1 68.3

Furthermore, we conduct ablation experiments to
examine the impact of concentrations of the T-
distributed adapter on the overall performance of the
VL models in Table 6. Four fixed degrees are in-
volved, namely κ = 4 16, 64 and 128. The greater
the degree of concentration, the greater the kurtosis
of the Thp metric. Besides, the concentration can
also be utilized as a trainable parameter joining in
the training, with the initial setting of 16. In Table 6,
setting the concentration parameter to κ = 16 yields
superior results. We argue that, a smaller concen-
tration makes it challenging to effectively mitigate
the biases introduced by tail drift and OOD drift in
the vision language model. In terms of the bigger
concentration, the model is hard to train due to the
high kurtosis of the Thp metric. In the context of concentration as a trainable parameter with the
initialization of 16, there is a slight reduction in model performance, accompanied by a marginal
increase of the concentration parameter to 16.37. We assert that, the introduction of the new parameter
increases the model’s complexity, thereby making the training process more challenging.

4 CONCLUSIONS AND OUTLOOK

Our findings indicate that visual-language models are significantly affected by biases introduced
during both pre-training and fine-tuning in long-tailed open-world scenarios. To address this, we
propose a concept drift-aware unified framework for visual-language models. This framework
incorporates a T-distributed adapter designed to mitigate biases arising from both tailed drift and
out-of-distribution (OOD) drift. Additionally, we introduce a comprehensive set of multi-modal
datasets (OpenMMlo) tailored to the long-tailed open world, which includes images, captions and
related category annotations.

Finally, We hope that our work will inspire future advancements in multi-modal large language
models, specifically addressing the mitigation of biases originating from real-world data challenges,
such as tailed drift and OOD drift.
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A APPENDIX

A.1 RELATED WORKS

A.1.1 MULTI-MODAL LARGE LANGUAGE MODEL

Large Language Models (LLMs) have recently significantly impacted the field of natural language
processing. Through alignment techniques such as supervised learning and reinforcement learning
with human feedback, LLMs can effectively generalize to perform a wide range of tasks, even with
limited training data. A remarkable application of LLM is ChatGPT, which presents an amazing
ability to interact with humans. OpenAI’s ChatGPT and GPT4 are prime examples of the impact that
AI can have, and there have been extensive open-source efforts to replicate their success, such as OPT
Zhang et al. (2022), BLOOM Scao et al. (2022), PALM Chowdhery et al. (2022), LLaMA Touvron
et al. (2023).

Multi-modal large language models have further promoted the development of the vision-language
model Radford et al. (2021); Li et al. (2022d); Alayrac et al. (2022); Li et al. (2023); Zhu et al. (2023);
Liu et al. (2023); Chen et al. (2023); Yang et al. (2024).

CLIP Radford et al. (2021) was introduced to separately extract features from the visual encoder and
the text encoder, and combine them using contrastive learning. CLIP supports a variety of downstream
tasks, including image retrieval, image classification tasks and especially zero-shot classification
tasks. But, it cannot generate detailed captions based on images due to the lack of a text decoder. In
contrast, our model primarily addresses the concept drift issue within multi-modal large language
models, since an image-grounded text decoder is employed to generate text based on the images.
Besides, CLIP requires a large-scale and high-quality WIT dataset to be driven, that contains 37.6
million entity image-text samples with 11.5 million unique images across 108 Wikipedia languages.
Whereas, our method is validated under the extended ImageNet-LT, which consists of only 115.8K
imbalanced images-text pairs. Building on CLIP, GLIP Li et al. (2022d) was developed to learn
object-level, language-aware, and semantic-rich visual representations, unifying object detection
and phrase grounding for pre-training. Different from the contrastive method, Flamingo Alayrac
et al. (2022) aligned a pre-trained vision encoder and language model using gated cross-attention,
demonstrated impressive few-shot learning capabilities. BLIP2 Li et al. (2023) was subsequently
introduced, and it employed a Flan-T5 Chung et al. along with a Q-Former to effectively align visual
features with the language model. MiniGPT4 Zhu et al. (2023), the most recent development in
the field is the PaLM-E model, which features 562 billion parameters and is designed to integrate
real-world continuous sensor modalities into an LLM, thereby establishing a connection between
real-world perceptions and human languages. Based on Visual Fundamental Models like BLIP
mentioned above, Visual ChatGPT adopts ChatGPT as the central component for interacting with
users. It integrates multiple visual foundation models and utilizes prompt engineering, also known
as Prompt Manager, to instruct ChatGPT about the usage, input-output format, and capabilities of
each foundation model. This enables ChatGPT to determine how to invoke these models to fulfill the
user’s requirements. Besides, GPT-4V(ision)OpenAI (2023) and GPT-4O(mni) have recently shown
unprecedented ability in understanding and processing an arbitrary mix of input images and texts.

A.1.2 LONG-TAILED OPEN WORLD

In vision tasks, significant efforts have been devoted to mitigating the challenges posed by the
long-tailed open world. Two prominent research directions have emerged: long-tailed classification
under open-world settings, exemplified by approaches like OLTR++ Liu et al. (2019; 2022), LUNA
Cai et al. (2022), DALC Wang et al. (2023), Open-sampling Wei et al. (2022) and TLC Li et al.
(2022a), and OOD detection in long-tailed recognition, as seen in methods such as PASCL Wang et al.
(2022), EAT Wei et al. (2024). OLTR++ Liu et al. (2019; 2022) proposed an ensemble algorithm,
consisting of dynamic meta-embedding to improve the recognition of tail categories and active
learning for open categories detection. LUNA Cai et al. (2022) presented a distribution-sensitive
loss to weigh more on the tail classes and a local-density-based metric to measure the novelty of
OOD samples. DALC Wang et al. (2023) designed an active distribution optimization algorithm for
clustering, querying and classification to balance the classification bias. Open-sampling Wei et al.
(2022) rebalances class priors by sampling labels from a complementary distribution for each open-set
instance, mitigating class imbalance. TLC Li et al. (2022a) utilizes Dempster-Shafer Evidence Theory

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

in a multi-expert framework for uncertainty estimation of tail and OOD samples. PASCL Wang et al.
(2022) applied supervised contrastive learning to explicitly boost the model to distinguish between
tail-class in-distribution samples and OOD samples. EAT Wei et al. (2024) introduces abstention
classes for clear decision boundaries and augmenting tail classes with context-rich OOD data to
focus on discriminative features. MCM Ming et al. (2022) pioneers the integration of vision language
models into OOD detection, enabling zero-shot OOD by aligning visual features with text concepts
through a proposed maximum concept matching approach.

In addition, more and more VL methods have gained attention in the long-tail domain, such as LPT
DONG et al. (2023), BALLAD Ma et al. (2021), Decoder Wang et al. (2024), VL-LTR Tian et al.
(2022) and LIFT Shi et al. (2024). However, most of them pay attention to the fine-tuning of the
vision language model under long-tailed scenarios. They directly use the pre-trained CLIP model,
which is pre-trained using the high-quality and large-scale WIT dataset. In contrast, we are more
concerned about the impact of long-tail open data on the whole model training from pre-training
onwards, including pre-training and fine-tuning.

Additionally, in the domain of the language model, Kandpal et al. (2023) corroborates that large
language models (LLMs) also struggle to learn long-tailed knowledge. While larger models are better
at absorbing the long-tailed knowledge, they estimate that current models must be scaled by many
orders of magnitude to reach competitive performance. Besides, Raunak et al. alleviates the long-tail
problem in neural machine translation by quantifying token classification and sequence generation,
and introduces an anti-focus loss that incorporates beam search inductive biases to better adapt model
training to conditional text generation.

A.1.3 CONCEPT DRIFT

In the review Lu et al. (2019), the algorithms related to concept drift are categorized into three groups:
error rate-based, data distribution-based and multiple hypothesis-based. Our proposed algorithm
belongs to the distribution-based concept drift detection and adaptation method. Distribution-based
concept drift algorithms not only accurately detect drift through explicit distributions but also analyze
the drift to identify its happening timing, location, and severity.

Besides, RBM-IM Korycki & Krawczyk proposes a novel trainable concept drift detector based on
Restricted Boltzmann Machine, to slove the concept drift in multi-class imbalanced data streams.
DDG-DA Li et al. initially trains a predictor to estimate future data distribution with concept drift,
utilizes this information to create training samples, and subsequently trains models on the generated
data. CALMID Liu et al. (2021) propose a comprehensive active learning method for multiclass
imbalanced streaming data with concept drift, including an ensemble classifier, a drift detector, and a
variable threshold uncertainty strategy. DES-ICD Jiao et al. (2024) is a dynamic ensemble selection
method for imbalanced data streams with concept drift. It considers local performances of base
classifiers and addresses class imbalance using a novel synthetic minority oversampling technique.
GOOD Gui et al. (2022) develops an graph OOD benchmark, which explicitly distinguishes between
covariate and concept shifts and design data splits that accurately capture these different shifts.

Remark A.1. Differences: Concept Drift vs. Data Drift (Covariate Drift) Data drift entails
changes solely in the distribution of inputs P (x), while concept drift involves alterations in both
input and output distributions, i.e., P (x) and P (y), leading to changes in the decision boundary.
Furthermore, data drift predominantly stems from internal factors like data collection and processing,
whereas concept drift typically arises from external factors, reflecting real-world changes.

A.1.4 HYPERSPHERICAL DISTRIBUTION MODELLING

The Bayesian estimation of vMF mixture model with variational inference is addressed in Taghia
et al.. The learning task in VI consists of the optimization of the variational posterior distribution.
Besides, a deep metric learning model for image classification and retrieval is presented in Zhe
et al. , which utilizes the vMF distribution to define the loss function and introduces an effective
alternative learning algorithm by updating class centers. The model captures global information in
the embedding space and approximates the class distribution during training, leading to improved
performance in image tasks. Kobayashi extends the vMF distribution to regularize the intra-class
feature distribution for imbalanced, small-scale and noisy data. Yang et al. (2023) focus on using
hyperspherical embedding to alleviate the crowding problem arisen by the imbalanced data. Ming
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et al. utilizes hyperspherical embeddings for OOD detection in representation learning, consisting
of two losses, a dispersion loss to increase angular distances between different class prototypes,
and a compactness loss to ensure samples are closer to their respective class prototypes. Besides,
H-SRDC Tang et al. enhances intra-class compactness by combining target data clustering with a
domain-shared classifier and cluster centroid learning, enhancing deep clustering by minimizing
Kullback-Leibler divergence between network predictions and an auxiliary distribution.

A.2 THE T-DISTRIBUTED DISTRIBUTION ON HYPERSPHERE

A.2.1 DIRECTIONAL STATISTICS

Directional statistics primarily focus on the distribution of eigenvector angles, while neglecting
the impact of eigenvector module lengths. Given the unit feature vector Xij ∈ Sd−1, where
Sd−1 = {x ∈ Rd : ||x||2 = 1} denotes the (d − 1)-dimensional hyperspherical set. A key idea in
directional distribution is the tangent-normal decomposition. Any unit vector x can be decomposed
as:

x = tµ+ (1− t2)
1
2 v, t ∈ [−1, 1] (9)

with v ∈ Sd−2 a tangent to Sd−1 at µ Mardia & Jupp (2000); De Cao & Aziz (2020), where v and
t are independent and v is uniform on Sd−2. Thus, the intersection of Sd−1 with the hyperplane
through tµ and normal to µ is a (d− 2)-dimensional sphere of radius

√
1− t2, that t has density as

following:
pT (t; d) ∝ (1− t2)

d−3
2 , t ∈ [−1, 1] (10)

Therefore, through the marginal density pT and pv , we can estimate the density of the entire spherical
distribution. One prominent instance is the von Mises-Fisher distribution (vMF) Banerjee et al.
(2005), which can be interpreted as a probability distribution over the cosine similarity between a
unit vector x and a fixed mean direction µ, following the density:

pX(x;µ, κ) ∝ exp (κµTx) (11)
where κ ⩾ 0 denotes the concentration and exp represents the exponential function. Therefore,
combined with the Eq. 9 and Eq. 10, the density of vMF is:

p(x) = CX(κ, d)−1 exp (κµTx), x ∼ vMF(µ, κ)

CX(κ, d) =
(2π)d/2Id/2−1(κ)

κd/2−1

(12)

where Im denotes the modified Bessel function of the first kind at order m.

A.2.2 DERIVATION OF THE T-DISTRIBUTED DISTRIBUTION ON HYPERSPHERE

Given the unit feature vector Xij ∈ Sd−1, where Sd−1 = {x ∈ Rd : ||x||2 = 1} denotes the
(d− 1)-dimensional hyperspherical set. The proposed T-distribution metric on hypersphere (Thp)
follows the density:

pX(x) ∝ 2

κ(1− µTx)
(13)

where x ∈ Sd−1, direction µinSd−1 and concentration κ ∈ R≥0. Let T bet a random variable that
denotes the dot-product t = µTx, then T = 2Z − 1, with Z ∼ Beta(α, β), where α = d−1

2 and d−3
2 .

Proof. Given Eq. 10, the marginal distribution of the dot-product t is

t ∝ 2

κ(1− t)
(1− t2)

d−3
2 (14)

So, its normalizer is:

NT (κ, d) =

∫
Sd−1

2

κ(1− t)
(1− t2)

d−3
2 dt

=

∫ 1

−1

1

κ(1− t)
(1 + t)

d−3
2 (1− t)

d−3
2 dt

=
1

κ

∫ 1

−1

(1 + t)
d−3
2 (1− t)

d−5
2 dt

(15)
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Given the useful integral function:∫
(1 + x)a(1− x)bdx = 2a+b+1B x+1

2
(a+ 1, b+ 1) + C (16)

So, its normalizer is:

NT (κ, d) =
1

κ
2d−3(B1(

d− 1

2
,
d− 3

2
)−B0(

d− 1

2
,
d− 3

2
))

=
1

κ
2d−3B(

d− 1

2
,
d− 3

2
)

(17)

The Beta function:

B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
(18)

So, the normalizer is

NT (κ, d) =
1

κ
2α+β−1Γ(α)Γ(β)

Γ(α+ β)
(19)

where, α = d−1
2 and β = d−3

2 . It follows that the probability density function of the marginal
distribution of the dot product is

pT (t;κ, d) = NT (κ, d)
−1 2

κ(1− t)
(1− t2)

d−3
2

= NT (κ, d)
−1 2

κ
(1 + t)

d−3
2 (1− t)

d−5
2

= NT (κ, d)
−1 2

κ
(2z)

d−1
2 −1(2− 2z)

d−3
2 −1

=
2

κ
B(α, β)−1zα−1(1− z)β−1

(20)

where, α = d−1
2 and β = d−3

2 .

Due to the surface area of the hyper-sphere Sd−1 is:

Ad−1 =
2π

d
2

Γ(d2 )
(21)

The T-distributed sperical distribution is expressed via the tangent normal decomposition as a joint
distribution between T ∼ pT t;κ, d and V ∼ U(Sd−2). Since T ⊥⊥ V , the Thp normalizer Nx(p, k)
is the product of the normalizer of pT (t;κ, d) and the uniform distribution on Sd−2 is:

NX(κ, d) = NT (κ, d) ·Ad−2

= 2α+β−1B(α, β)
2πβ

κΓ(β)

=
2α+βπβ

κ

Γ(α)

Γ(α+ β)

(22)

Thus,

pX(x;µ, κ) = NX(κ, d)−1 2

κ(1− µTx)
(23)

A.3 IMPLEMENTATION DETAILS

For our language-guided image tokenizer, we leverage the strengths of both BERT Devlin et al.
(2019b) and ViT as our text encoder, text decoder and visual encoder, respectively.

We employ ViT-Bae as our visual encoder, which consists of 12 transformer encoder layers and
an FFN intermediate size of 3,072. The input image size is set to 384 × 384, with a patch size of
16× 16. The hidden dimensions of the ViT-Base are 768, with 12 attention heads. And, the number
of parameters is about 86 million. Besides, we also use ResNeXt-50 to perform ablation experiments.
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In addition, ResNeXt-50 has 16 residual blocks with 50 layers. Each block has 3 convolutional layers
with the kernel size of 3× 3, the stride of 1 and the padding of 1. The batch normalization and max
pooling are utilized to connect the convolutional layers. The classification head hidden dimensions
are 2,048.

Additionally, BERT as the language model in our vision-language model, has 12 transformer layers
with 768 hidden dimensions and 3,078 intermediate dimension. The number of attention heads is 12,
with the input sequence length of 512. It has approximately 110 million parameters.

In terms of the pre-training progress, the hyperparameters are presented in Table 7. We utilize the
AdamW optimizer, which is configured with a cosine annealing schedule as the learning policy. The
initial learning rate is set to 2× 10−5, and the AdamW optimizer is employed with hyperparameters
β = (0.9, 0.98). Additionally, we set the weight decay to 0.05 and the dropout rate to 0.1. During
the first 1,000 warm-up steps, the learning rate increases to 2× 10−5, and subsequently decays to
10−7. Unless otherwise specified, the pre-training of our vision language model consists of 800,000
steps, executed on 2× 2 NVIDIA A100 GPUs. And the pre-training experiments are conducted in
the manner of different stages, namely gradual drifts with long-tailed data and sudden drifts with
OOD data. It is mainly to compare with different methods with the same setup.

Table 7: The training hyperparameters of our vision language model.

Pre-training
Training Steps 400,000
Warmup Steps 1,000
Optimizer AdamW
Learning Rate 1e-4
Learning Rate Decay Cosine
Adam β (0.9, 0.98)
Weight Decay 0.05
Batch Size 50

Fine-tuning
Training Steps 18,000
Warmup Steps 0
Optimizer AdamW
Learning Rate 2e-5
Learning Rate Decay Cosine
Adam β (0.9, 0.98)
Weight Decay 0.05
Batch Size 400

While in the fine-tuning on downstream task of classification, the initial learning rate is reduced to
10−6 without the warmup. The visual encoder and text decoder are frozen out of the training. Thus,
the batch size can be increased to 400. The fine-tuning consists of 18,000 steps, executed on 2× 2
NVIDIA A100 GPUs. Other training parameters are the same as the pre-training. Besides, under the
only fine-tuning settings, the image encoder and the text encoder are frozen with the CLIP pre-trained
parameters, while the image-grounded text decoder is trained during the fine-tuning.

When evaluating the performance of our VL model under the long-tailed open world, we use the
top-1 accuracy metric on the downstream classification task. In particular, the categories are split into
three groups: many-shot (with more than 100 training samples), medium-shot (with 20-100 training
samples), and few-shot (with fewer than 20 training samples). The Top-1 accuracies are computed for
each group to evaluate the performance of mitigating the bias introduced by the long-tail distribution,
respectively. Furthermore, in order to assess the capability of detecting the OOD drift, we employ two
metrics: FPR95 which measures the false positive rate of OOD samples when the true positive rate of
ID samples reaches 95%, and AUROC providing the area under the receiver operating characteristic
curve. Besides, cosine distance is exploited to measure the distances between features and centers in
the feature space of the VL model.

A.4 BUILDING MULTI-MODAL LONG-TAILED OOD DATASETS GROUP OPENMMLO

Figure 4 showcases the samples utilized for training and validation in our study. To intuitively verify
the impact of long-tail open world scenarios on multi-modal large language models, we employ
classification as our downstream task. When matching images and texts, we strategically mask words
that are directly related to category names. This approach ensures the accuracy and reliability of
our experimental results. As depicted in Figure 4, comprehensive descriptions of the image are
provided through long-form text, encompassing details such as size, position, color, relationships,
and other relevant information about the objects present in the image. This ensures a detailed and
information-rich depiction of the visual content.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Caption: The image depicts a [mask], also 
known as a [mask], sitting on a branch of a 
tree. The [mask] is holding a leaf in its mouth, 
which suggests that it might be eating or chew-
ing on the plant. This behavior is typical of 
[mask]s, as they primarily feed on bamboo 
shoots, leaves, fruits, and insects. In the wild, 
[mask]s are found in the mountainous regions 
of southern and southwestern China, Myanmar, 
and India.
Annotation: lesser panda, red panda, panda, 
bear cat, cat bear, Ailurus fulgens

(a) Sample in Training Set

Caption: The picture depicts a young man 
sitting on a bench, holding a [mask] in his 
hand. This suggests that he is either playing the 
[mask] or contemplating playing it. The [mask] 
is a musical instrument that is commonly asso-
ciated with blues and folk music, and it can be 
used to create melodic and rhythmic sounds. 
The presence of the [mask] in the image adds a 
musical element to the scene.

Annotation: harmonica, mouth organ, harp, 
mouth harp

(b) Sample in Test Set

Caption: The main object in the picture is an open 
suitcase, which is a type of luggage. It is red in 
color and appears to be medium-sized. The suit-
case is located on the floor of a room. The suitcase 
is partially filled with clothing items, including 
shirts, pants, and socks. It appears that the suitcase 
is still in the process of being packed or unpacked, 
as some items are visible on top of the suitcase 
while others are spilling out of it. The suitcase is 
open, allowing easy access to the clothing items 
inside. Overall, the picture provides a glimpse into 
the process of preparing for a trip or organizing 
one's belongings.

(c) Sample in Open Set

Figure 4: Samples of OpenMMlo in training set, test set and open set.
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Under review as a conference paper at ICLR 2025

We have publicly released the datasets used for training and validation, as well as the original
unmasked datasets.

A.5 MORE EXPERIMENT RESULTS

In this section, we provide more results of OOD detection.

Table 8: Evaluation results of OOD detection on CIFAR100-LT(ID) with the OOD datasets of
SVHN, Places365, LSUN, iSUN and Texture. ResNet-34 is selected as the image encoder. The
best-performing method is highlighted in bold. FPR↓ and AUROC↑ are applied to evaluate the
performance of different methods.

Methods SVHN LSUN iSUN Texture Average

FPR AUROC FPR AUROC FPR AUROC FPR AUROC FPR AUROC

MSP Hendrycks & Gimpel 78.9 79.8 83.5 75.3 84.6 74.5 86.5 72.5 84.4 74.2
ODIN Liang et al. 70.2 84.9 76.4 80.1 79.5 79.2 85.3 75.2 82.2 75.2
Mahalanobis Lee et al. 87.1 80.6 84.2 79.4 83.2 78.8 61.7 84.9 84.6 73.9
Energy Liu et al. 66.9 85.3 59.8 86.7 66.5 84.5 79.0 80.0 81.4 76.4
GODIN Hsu et al. 74.6 84.0 93.3 67.2 94.3 65.3 86.5 69.4 89.1 69.0
LogitNorm Wei et al. 59.6 90.7 81.1 83.0 84.2 80.8 86.6 75.6 80.3 78.6
ProxyAnchor Kim et al. (2020) 87.2 82.4 37.2 91.7 70.0 85.0 65.6 85.0 65.0 86.0
CE + SimCLR Winkens et al. 24.8 94.5 56.4 89.0 66.5 83.8 63.7 82.0 52.9 87.3
CSI Tack et al. (2020) 44.5 92.7 75.6 83.8 76.6 85.0 61.6 86.5 64.6 87.0
SSD+ Sehwag et al. (2021) 31.2 94.2 79.4 85.2 80.9 84.1 66.6 86.2 64.5 87.4
KNN+ Sun et al. (2022) 39.2 92.8 49.0 89.3 75.0 82.7 57.2 88.4 55.1 88.3
CIDER Ming et al. 12.6 97.8 30.2 92.8 46.0 88.9 35.6 92.3 31.1 93.0
Ours 8.3 98.7 20.3 97.5 32.5 95.2 45.1 96.3 26.6 96.9
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