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Abstract

In the last few years, Byzantine robust algorithms to solve a minimization problem in the
Federated setup have received significant attention. Most of the existing works consider the
problem of byzantine-robustness for single-level optimization or consider the federated bilevel
optimization without Byzantine nodes. However, problem formulation such as federated
bilevel optimization in the presence of byzantine nodes is unexplored. Recognizing the gap,
for the first time, we propose a computationally efficient and robust algorithm for solving
Federated Bilevel Optimization with Byzantine (FedBOB) nodes that: ① Work under the
assumption that the data across nodes are heterogeneous (non-iid), ② Consider the lower-
level objective is non-convex and satisfies the Polyak-Łojasiewicz (PL)-inequality, and ③
Is fully first-order and does not rely on second order information. We achieve this by
reformulating the federated bilevel problem into a single penalty problem. We provide
the theoretical performance of the proposed algorithm and experimentally corroborate our
theoretical findings.

1 Introduction

Deep Learning thrives on large datasets that are often distributed across multiple owners (Verbraeken et al.,
2020). The challenge of training the model on distributed data sets was addressed using a paradigm called
Federated Learning (FL), which enables clients (agents) to train models locally on private data while a
central server (aggregator) combines them into a unified model (McMahan et al., 2017; Smith et al., 2017).
Although FL offers several benefits, it comes with certain risks. Since it is a collaborative mechanism, it
opens the possibility of security threats (Karimireddy et al., 2020; Gorbunov et al., 2022). In particular, a
few nodes in the FL setting can potentially be malicious, also known as Byzantine nodes, and send corrupt
information which renders the updates at the central server useless. Recently, the question of byzantine
robustness has received significant attention making it relatively well studied both in theory and practice
for single-level minimization problems in the FL setting (Yin et al., 2018; Blanchard et al., 2017b; Chen
et al., 2017; Karimireddy et al., 2021; 2020; Rammal et al., 2024). There are many real-world applications
that cannot be modeled as single level minimization problems, e.g. robust learning Zhang et al. (2022);
Khanduri et al. (2023), meta-learning Rajeswaran et al. (2019), hyperparameter optimization Franceschi
et al. (2018), neural architecture search Xue et al. (2021), resource management Sun et al. (2021), and image
denoising Crockett et al. (2022) and other problems encountered in machine learning and signal processing
tasks Zhang et al. (2024), to name a few. Such problems follow a nested structure that goes beyond the
scope of a standard single-level minimization structure, as in Karimireddy et al. (2021; 2020); Rammal et al.
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(2024). Towards solving such nested problems, bilevel optimization in non-FL as well as the FL setting has
received great attention in the recent past Ghadimi & Wang (2018); Hong et al. (2023); Khanduri et al.
(2021); Tarzanagh et al. (2022); Huang et al. (2023); Yang et al. (2024b). But these works cannot handle
the presence of Byzantine clients. Recently, the authors in Abbas et al. (2024) proposed a byzantine-resilient
bilevel federated optimization algorithm. However, they ①use second order information to update its model
parameters making it computationally expensive, and ② make restrictive assumption such as strongly-convex
lower level function.

A typical approach to solving the bilevel problems is to compute the gradient of the upper-level function
(called hypergradient). To find the hypergradient there is a need to compute the second-order information of
the lower-level function that makes the algorithm computationally complex (Ghadimi & Wang, 2018; Chen
et al., 2021). This issue was resolved by using the first order method involving penalty formulation (Liu
et al., 2022a; Kwon et al., 2023b; Shen & Chen, 2023; Chen et al., 2023) of the bilevel problem; albeit in the
non-FL setting. However, none of the existing work considers a computationally efficient robust algorithm
to solve a bilevel optimization problem in the FL setting leading to the following question.

Q: Is it possible to design a Robust and Low Complexity algorithm for solving a bilevel optimization
problem in the FL setting in the presence of Byzantine nodes?

In this paper, we answer the above question by considering a federated version of the bilevel optimization
problem in the presence of Byzantine nodes. We assume that there are N nodes denoted by N = G

⋃
B,

where G is the set of good or legitimate nodes, and B is the set of Byzantine or bad nodes. Let |G| = G and
|B| = B. The problem of Federated Bilevel Optimization with Byzantine (FedBOB Problem) involves solving
the following:

min
x∈Rd1

f(x) := f (x,y∗(x)) := 1
G

∑
k∈G

fk (x,y∗(x))

subject to

y∗(x) ∈

{
arg min

y∈Rd2
g(x,y) := 1

G

∑
k∈G

gk (x,y)
}
, (1)

where fk : Rd1 × Rd2 −→ R and gk : Rd1 × Rd2 −→ R, k ∈ G are upper and lower level objective func-
tions, respectively. The standard approach to solving the above problem involves computing second-order
information such as Hessian, which is computationally expensive. In this paper, we take the first order
approach by minimizing a penalty function defined as minx,y {hλ (x,y) := f(x) + λp(x,y)}, where λ > 0
and p(x,y) := g(x,y) − miny′ g

(
x,y′

)
(Shen & Chen, 2023; Liu et al., 2022a; Kwon et al., 2023b;a). Next,

we present challenges that we need to address in comparison with the existing work (Karimireddy et al.,
2020; Shen & Chen, 2023; Blanchard et al., 2017a; Pillutla et al., 2022a).

Challenges: The penalty based method in the non-FL setting is very well studied (Shen & Chen, 2023). This
work relies on the equivalence between a local solution to the penalty formulation (i.e., the point at which the
gradient is zero) and a solution to the original problem. Unfortunately, the FL setting with heterogeneous
and Byzantine nodes forces the solution to have non-zero gradients (see lower bounds in (Karimireddy et al.,
2020)), and hence the equivalence in (Shen & Chen, 2023) cannot be directly used. We take a different
approach where we analyze (i) convergence of the gradient, as in (Shen & Chen, 2023) and (b) a new notion
called constraint violation that measures the average violation of the constraint in the lower-level problem,
which is new. Keeping track of the average constraint violation is particularly important in settings such
as adversarial learning (Khanduri et al., 2023). The average constraint violation gives information on how
frequently the constraint is violated rather than capturing it implicitly in the convergence rate, as in (Shen
& Chen, 2023). In addition, minimizing the penalty function involves computing miny′ g

(
x,y′

)
in a FL

fashion in the presence of Byzantine. To make matters more challenging, the resulting lower-level optimum
drifts away from y∗(x) due to heterogeneity in the data and is further alleviated due to the presence of
Byzantine nodes, which makes the analysis difficult.

Contribution: In this paper, we address the above challenges and make the following contribution.
① We consider the FedBOB problem in equation 1, and propose a robust and fully first-order federated al-
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gorithm by reformulating the federated bilevel problem into a single-level penalty-based optimization prob-
lem that makes it computationally efficient. Unlike the existing work on federated bilevel optimization
(Tarzanagh et al., 2022; Huang et al., 2023; Yang et al., 2024b) where the lower level is strongly convex, we
consider a class of non-convex functions satisfying the PL inequality, thus widening the scope of applicability.

② The proposed algorithm (Rob-FedBOB) is shown to converge at a rate of O
(

λ2

R + α(ζ2
f + λ2ζ2

g )
)

, where
R is the number of communication rounds, ζf and ζg are the inter-client heterogeneity terms correspond-
ing to the upper and lower level objective functions, respectively, and α ∈ [0, 0.5] is the fraction of the
Byzantine nodes. Additionally, the algorithm results in an average constraint violation that scales as
O
(

(1+cαζ2
f )

λ2 + cαζ2
g

)
. Our results demonstrate the trade-off between the convergence and the constraint

violation that is captured through λ. Higher λ results in better constraint violation properties, but at the
expense of lower convergence rate and vice versa. Furthermore, our bounds reveal that Byzantine nodes
and heterogeneity act as a bottleneck in achieving good performance, as expected. We study the trade-off
between convergence and the constraint violation, and provide insight on the choice of λ.

③ Finally, we present experimental results for data hyperclearning application for various attacks and cor-
roborate our theoretical findings. In particular, we consider the following attacks (i) Bit Flipping (BF), (ii)
Label Flipping (LF), (iii) Inner Product Manipulation (IPM), and (iv) A Little is Enough (ALIE), and show
that both gradient and constraint violation go down and converge to a constant with increasing number of
communication rounds. The constants to which the gradient and the average violation converge are governed
by the number of Byzantine nodes, and the inter-client heterogeneity of the good nodes.

1.1 Related Work

Robust Federated Learning: Over the recent years there has been a significant amount of work on
byzantine robustness in case of single level optimization problems (Karimireddy et al., 2020; Gorbunov
et al., 2022). Byzantine robustness is very well studied when the nodes have iid data distributions. One
approach to obtaining robustness is to use robust aggregation strategies such as Coordinate wise median
(Chen et al., 2017), KRUM (Blanchard et al., 2017a), geometric median (Pillutla et al., 2022a), use variance
reduction techniques (Wu et al., 2020), filter byzantine nodes. Recently, there have been many works which
consider byzantine robustness for non-iid data distributions such as: outlier based-robust clustering (Sattler
et al., 2020), spectral methods for robust optimization (Data & Diggavi, 2021). Other interesting approaches
include use of (a) a formal definition of robust aggregation with client momentum (Karimireddy et al., 2020),
(b) random checks of computations (Rammal et al., 2024), (c) normalized gradient (Zuo et al., 2024), and
(d) normalized momentum (Yang et al., 2024a). These works are limited to solving single level federated
learning problem in the presence of Byzantine nodes.

Federated Bilevel Optimization (FBO): Recently some works have considered Federated Bilevel opti-
mization as many machine learning applications can be formulated as a nested bilevel problem. The authors
in (Tarzanagh et al., 2022) proposed a federated alternating stochastic gradient method that requires a fed-
erated hypergradient computation. They use variance reduction to handle lower-level heterogeneity. The
results on the complexity of the sample were improved using momentum-based federated bilevel algorithms
with a reduction in variance in (Li et al., 2022). Later, the work in (Huang et al., 2023) achieved linear
speedup in the presence of non-iid data by using a novel client sampling scheme. Along similar lines, the
authors in (Yang et al., 2024b) propose a communication efficient federated bilevel optimization algorithm.
However, most of these works require the second-order information to perform the gradient update. Further,
these works limit the lower-level objective function to strongly convex. Thus, the challenging problem of
finding a computationally efficient algorithm that is robust to byzantine attacks in a federated bilevel setting
is still an open problem. In this work, we have closed this gap. Concurrent to our work, the authors in
(Abbas et al., 2024) proposed a byzantine-resilient bilevel federated optimization algorithm. They use the
second order information such as the Hessians/Jacobians making it computationally expensive. In addition,
we have included more experimental results compared to (Abbas et al., 2024).
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2 Problem Statement

We consider a federated version of the bilevel optimization problem in the presence of Byzantine nodes as in
equation 1. The problem in equation 1 cannot be solved directly in the presence of Byzantine nodes. This
is due to the fact that the Byzanine nodes can share corrupt information with the central server, which can
make the updates potentially useless. The problem of Byzantine robust distributed optimization in various
settings have been studied earlier (Blanchard et al., 2017a; Pillutla et al., 2022a; Wu et al., 2020; He et al.,
2020). Clearly, as explained in the previous section, the problem of federated bilevel optimization with
Byzantine is not at all addressed in the literature as it posses several challenges: ① The typical solution for
the bilevel problem without Byzantine involves using second order methods thus making it computationally
expensive (Ghadimi & Wang, 2018; Chen et al., 2021). ② Most of these works assume that the lower level
function gk (x,y) for all k ∈ G is strongly convex making it more restrictive. ③ The lower level optimum
drifts away from y∗(x) due to heterogeneity in the data, and is further aggravated due to the presence
of Byzantine nodes. We handle the above challenges by ① proposing a fully first order method of solving
FedBOB Problem, and ② using robust aggregation strategies that is resilient to the Byzantine attacks. Our
method is motivated by reformulating the FedBOB Problem into an approximate equivalent form as follows:

Approx-FedBOB Problem: min
x

f (x,y)

such that p(x,y) := g (x,y) − v(x) ≤ ϵ, (2)

where v(x) := miny g (x,y) and ϵ > 0. Letting ϵ = 0 in the above problem makes it equivalent to that of the
FedBOB Problem. Writing the Lagrangian function of the above problem results in

hλ (x,y) := 1
G

G∑
k=1

hλ,k (x,y) := f (x,y) + λp (x,y) (3)

for all x ∈ Rd1 , y ∈ Rd2 . In the above, λ > 0 and p (x,y) is the penalty term. Now, the dual problem is to
solve the following in the presence of Byzantine nodes

FedBOB Penalty Problem: min
x,y

hλ (x,y) . (4)

It turns out that solving the above problem is approximately equivalent to solving the original problem (see
(Shen & Chen, 2023) for more details). Note that this boils down to a single level federated learning problem
in the presence of Byzantine. Although single level federated optimization in the presence of Byzantine (see
(Karimireddy et al., 2020; Gorbunov et al., 2022; Pillutla et al., 2022a; Wu et al., 2020)) has been studied
in the literature, our framework is completely different in the following sense ① the impact of the Byzantine
nodes and λ on the performance need to be studied, and does not follow directly from the existing literature.
② The solution obtained by our proposed algorithm should not only result in a good stationary point of
equation 4 but also should exhibit good constraint violation properties—this additional requirement is not
explicit in the single level formulation. Proposing a low complexity robust algorithm and analyzing its
performance is completely new.

2.1 Preliminaries

In this subsection, we discuss the assumptions and definitions required in the analysis of the proposed Robust
Federated Bilevel Optimization with Byzantine (Rob-FedBOB) algorithm.
Assumption 1. (Smoothness): The upper-level objective function fk (x,y) is assumed to be Lf,k smooth
for all good nodes k ∈ G, i.e.,

∥∇fk (x,y) − ∇fk (x,y′)∥2 ≤ Lf,k ∥y − y′∥2

for all x,x′ ∈ Rd1 , y,y′ ∈ Rd2 . Further, we also assume that fk (x,y) is a lf,k−Lipschitz, i.e.,

| fk (x,y) − fk (x,y′) |≤ lf,k ∥y − y′∥2

for all x,x′ ∈ Rd1 , y,y′ ∈ Rd2 and k ∈ G. In addition, gk (x, ∗) is a Lg,k-smooth and lg,k−lipschitz function
for all k ∈ G.
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Assumption 2. (PL inequality): The lower-level objective function gk (x,y) for all k ∈ G satisfies the PL
inequality, i.e., ∥∇gk (x,y)∥2 ≥ µg (gk (x,y) − vk(x)) for some µg > 0 and for all x ∈ Rd1 ,y1,y2 ∈ Rd2 .
Here y∗

k(x) ∈ miny gk(x,y). In addition, we consider the average lower level objective g (x,y) satisfies the
PL inequality, i.e., ∥∇g (x,y)∥2 ≥ µg (g (x,y) − v(x)) for some µg > 0 for all x ∈ Rd1 ,y ∈ Rd2 .
Assumption 3. (Inter-client heterogeneity): The upper-level objective function fk (x,y) for all k ∈ G is
said to satisfy inter-client heterogeneity, i.e., Ek∈G ∥∇fk (x,y) − ∇f (x,y)∥2 ≤ ζ2

f for some ζf > 0 and for
all x ∈ Rd1 ,y ∈ Rd2 . In addition, gk (x,y) also satisfies inter-client heterogeneity for some ζg > 0, i.e.,
Ek∈G ∥∇gk (x,y) − ∇g (x,y)∥2 ≤ ζ2

g .

Most of the assumptions above such as smoothness, inter-client heterogeneity are standard (Shen & Chen,
2023; Karimireddy et al., 2020; Rammal et al., 2024). The PL inequality is satisfied by most of the over-
parameterized neural networks (Liu et al., 2022b; Shen & Chen, 2023). The inter-client heterogeneity (Karim-
ireddy et al., 2020; Gorbunov et al., 2022; Yu et al., 2018) restricts the data heterogeneity of good nodes.
In fact, the lower bound in (Karimireddy et al., 2020) shows that the heterogeneity condition is inevitable.
Note that ζf = 0 and ζg = 0 case imply that the data are homogeneous across all nodes.

3 Algorithm Design

It is well known that the aggregator plays an important role in the performance of any algorithm with
Byzantines. Hence, we first define the class of aggregators, which is adapted from (Karimireddy et al.,
2020).
Definition 1. ((α, c)-Robust Aggregator): Let us assume that we are given inputs {x1,x2, . . . ,xN } such that
there exists a subset G ⊆ [N ] of size | G |= G ≥ (1 − α)N for α ≤ 0.5 such that E ∥xi − xj∥2 ≤ δ2 for all
i, j ∈ G and some δ ≥ 0. Then we say that x̂ satisfies (α, c)-Robust Aggregator (RAgg) if

E ∥x̂ − x̄∥2 ≤ cαδ2, (5)

where x̄ = 1
G

∑G
k=1 xk. Here the expectation is taken with respect to possible randomness of good nodes

{x1,x2, . . . ,xG}.

Note that (α, c)-Robust Aggregator property is satisfied by many aggregators such as KRUM, Coordinate-
wise median (CM), Geometric median (RFA). We provide more details in Appendix H.

3.1 Rob-FedBOB Algorithm

Given that the penalty reformulation is a single level problem, an obvious approach is to use the following
gradient updates: xr+1 = x − β∇xhλ (xr,yr) and yr+1 = y − β∇yhλ (xr,yr). However, this computation
involves finding ∇p (xr,yr) which requires ∇v (xr). In general, v (x) need not to smooth always. Further,
∇xv(x) ̸= ∇xg (x,y∗) at y∗. From assumptions 2 and 1, using Lemma A.5 of Nouiehed et al. (2019), we can
see that ∇v(x) = ∇xg (x,y∗(x)). In addition to this, the gradient update requires y∗(x), which is a solution
to the lower level problem with respect to y, and is unknown. More specifically, computing y∗(x) requires
access to g(x,y) (see equation 1), which is not available at each node. One way to handle this is that each
node k runs T number of GD steps on the lower level function gk (xr,y) for a given xr as follows (see line 9
of Algorithm 1)

yr,t+1 = yr,t − γ∇ygag (xr,yr,t) ,

where yr,0 = yr−1 and t = 0, 1, . . . , T − 1. Here,

∇ygag (xr,yr) = RAgg (∇ygk (xr,yr) , k ∈ [N ]) , (6)

where RAgg uses bucketing followed by geometric median aggregation (see (Karimireddy et al., 2020) for
more details). Now, we can use yk,T as a proxy for y∗(xr) to get the following updates (see line 13 of
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Algorithm 1):

yr+1 = yr − η∇yhλ,ag (xr,yr) , and (7)
xr+1 = xr − β∇xĥλ,ag (xr,yr) , (8)

where the gradients are defined as

∇yhλ,ag (xr,yr) = RAgg (∇yhλ,k (xr,yr) , k ∈ [N ]) ,

∇xĥλ,ag (xr,yr) = RAgg
(

∇xĥλ,k (xr,yr) , k ∈ [N ]
)
.

In the above,

∇xĥλ,k (xr,yr) := ∇xfk (xr,yr) + λ (∇xgk (xr,yr) − ∇xgk (xr,yr,T )) (9)

and ∇yhλ,k (xr,yr) := ∇yfk (xr,yr) + λ∇ygk (xr,yr) for all k ∈ G. In order to access whether the output
of the algorithm satisfies the constraint or not, we propose the following notion of violation:

ViolR :=
R−1∑
r=0

p(xr,yr), (10)

where xr and yr are the output of the algorithm in round r. Note that when ViolR/R converges to a small
constant, it means that p(xr,yr) for sufficiently large r is close to the constant, and hence captures the
violation performance of the algorithm.
Note: The robust strategy involving binning followed by geometric median is known to satisfy the (α, c)
robustness (see (Karimireddy et al., 2020)) property. However, in our case, the gradient of the penalty
function is aggregated at the central server. This function depends on λ and the proxy for y∗(xr), which
is obtained by using lines 5 to 11 in Algorithm 1. This makes it necessary for us to prove that the (α, c)
robustness is still achieved for the penalty function, as shown in the following lemmas.

Lemma 1. For the robust aggregator RARgg, we have for some c > 0∥∥∇yhλ,ag (xr,yr) − ∇yhλ (xr,yr)
∥∥2 ≤ cαρ2

where ρ2 := 8ζ2
f + 8λ2ζ2

g .

Proof: See Sec. B in Appendix.

The above lemma shows that the robustness depends on λ and the heterogeneity terms. In the following,
we prove the robustness of ∇x

¯̂
hλ (xr,yr) := 1

G

∑G
k=1 ∇xĥλ,k (xr,yr) with δ2 := 8λ2L2

g,maxl2
g,max

µ2
g

(
1 − γµg

2
)T +

8λ2L2
g,maxcαζ2

g

µg
+ 6ζ2

f + 12λ2ζ2
g , where Lg,max := maxk∈G Lg,k and lg,max := maxk∈G lg,k.

Lemma 2. The robust aggregator ARgg satisfies∥∥∥∇xĥλ,ag (xr,yr) − ∇x
¯̂
hλ (xr,yr)

∥∥∥2
≤ cαδ2.

Proof: See Sec. C in Appendix.

The above lemma shows that the robustness depends on how close the proxy yr,T is to the actual optimal
y∗(xr) captured through the first term in δ2. It also reveals that this can be reduced by increasing T .
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Algorithm 1 Rob-FedBOB Algorithm
1: Initialize x0 ∈ Rd1 , y0 ∈ Rd2

2: for r = 0, 1, 2, . . . , R− 1 do
3: Send xr,yr to each node
4: Set zr,0 = yr

5: for t = 0, 1, . . . , T − 1 do
6: for k ∈ N in parallel do
7: Send ∇ygk (xr,yr,t), k ∈ N
8: end for
9: yr,t+1 = yr,t − γ∇ygag (xr,yr,t)

10: Send yr,t+1 to all nodes
11: end for
12: Set yr,T = yr,T

13: Server updates xr+1 and yr+1 using equation 8 and equation 7, respectively.
14: end for

Output: xR and yR

3.2 Convergence Analysis

In the following, we provide the first main result for the Rob-FedBOB algorithm.

Theorem 1. Suppose assumptions 1-3 hold, then for the aggregator RAgg, Algorithm 1 achieves the
following bound

1
R

R−1∑
r=0

∥∇hλ (xr,yr)∥2 ≤ O
(
λ2

R
+ α(ζ2

f + λ2ζ2
g )
)

for constant learning rates η ≤ 1
Lh

, β ≤ 1
Lh

, and T ≥ 2
γµg

log
(

8λ2RL2
g,maxl2

g,max
µ2

g

)
.

Proof: See Sec. F in Appendix.

The above result reveals the effect of λ, the fraction of the Byzantine nodes α, and the heterogeneity terms
ζf and ζg on the convergence rate. Note that when α = 0, i.e., when there are no byzantine nodes, we get a
convergence rate of O

(
λ2

R

)
. Thus, a smaller gradient can be achieved by choosing larger R. On the other

hand, in the presence of Byzantine, i.e., α ̸= 0, we have

1
R

R−1∑
r=0

∥∇hλ (xr,yr)∥2 = O(α(ζ2
f + ζ2

g )). (11)

This cannot be made very small unless the heterogeneity terms ζ2
f and ζ2

g are zeros. A similar observation
was made in Karimireddy et al. (2020) in the context of single level setting. They also showed a lower bound
demonstrating that the result they obtain cannot be improved further. Since single level is a special case of
the bilevel problem that we are considering, we believe that the bound in Theorem 1 cannot be improved.
Next, we present a bound on the average violation that relates to the gradient of the penalty function.

Lemma 3. Suppose Assumptions 1 and 2 hold, and ∥∇hλ (x,y)∥ ≤ ψ for some ψ > 0, then the
average violation in equation 10 is bounded as follows

ViolR

R
≤

2
(
l2f + ψ2

)
µgλ2 . (12)

Proof: See Sec. D in Appendix.
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Note that the above shows that by choosing a large λ or if ψ is small results in a good constraint qualification
properties. In order to prove a violation bound on the proposed algorithm, we use a bound on ∥∇hλ (xr,yr)∥2

for each r obtained in the proof of Theorem 1.

Theorem 2. Algorithm 1 satisfies the following average constraint violation provide the conditions
in Theorem 1 are satisfied

ViolR

R
≤ O

(
(1 + cαζ2

f )
λ2 + cαζ2

g

)
.

Proof: See Sec. G in Appendix.

We observe from the above theorem that larger values of λ result in a better violation qualification properties,
as expected. In particular, as λ → ∞, average violation converges to cαζ2

g revealing the bottleneck due to
the Byzantine nodes and the heterogeneity in the lower level function. Since the violation is with respect
to the lower level function, it is expected that the heterogeneity in the upper level function impacts mildly
on the average violation. However, larger λ results in a bad gradient bound leading to a trade-off between
convergence (gradient bound) and violation.
Convergence versus Violation trade-off: To better understand the trade-off, consider α = 0 condition,
i.e., no Byzantine nodes. In this case, choosing λ = O

(
1√
ϵ

)
results in an average violation of O (ϵ) and

the average gradient converges at the rate of O
( 1

R

)
recovering the results of (Huang et al., 2023; Tarzanagh

et al., 2022) when the variance is zero. The presence of the Byzantine nodes (i.e., α ̸= 0) changes the
scenario completely. Choosing λ as above, and R → ∞ results in an average violation of O

(
cαζ2

g

)
and the

convergence rate of the average gradient decreases to

lim
R→∞

1
R

R−1∑
r=0

∥∇hλ (xr,yr)∥2 ≤ O

(
α

(
ζ2

f +
ζ2

g

ϵ

))
. (13)

This also reveals the impact of heterogeneity in the presence of Byzantine nodes.

Remark: Note that the ((α, c)-Robust Aggregator, initially proposed by Karimireddy et al. (2021;
2020) plays an important role in our algorithm. Most of the existing works that use this robust aggregator
(Karimireddy et al., 2020; Rammal et al., 2024; Yang et al., 2024a) with single-level optimization problem.
However, we consider a bilevel problem, which requires us to carefully combine the upper and lower level
objective functions. Moreover, we need to obtain the optimal solution y∗(x) to the lower level problem,
which adds complexity to our analysis. Also, our problem formulation requires proving convergence of the
gradient and a bound on the average constraint violation, which is completely new. In addition, λ plays an
important role in studying the trade-off between convergence of the gradient and the constraint violation
guarantee; this makes the problem more challenging compared to existing work (Karimireddy et al., 2020;
Shen & Chen, 2023).

Complexity: The total number of communication rounds for bilevel federated learning problems (with or
without Byzantine) is O(R) (Huang et al., 2023). Our communication complexity is O(R logR), and order-
wise matches with other existing algorithms except for a logR factor; this is done to ensure a good proxy
for y∗(xr) (see lines 5 to 11 of Algorithm 1). In contrast to the existing algorithms in the federated bilevel
learning problem (Tarzanagh et al., 2022; Huang et al., 2023), we require only first-order information, and
as a consequence, the run time at each node is very low as demonstrated in our experimental results.

3.3 Proof Sketch of Theorem 1

In order to prove our main results, we first need the smoothness of the penalty problem.
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Lemma 4. Suppose assumption 1 hold, then the function h(x,y) is Lh smooth i.e.,

∥∇hλ(x,y) − ∇hλ(x,y′)∥ ≤ Lh ∥y − y′∥ ,

where Lh := Lf + λLg.

Proof: See Sec. E in Appendix.
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Figure 1: Effect of α on the convergence of Rob-FedBOB under BF (see (a)), LF (see (b)), IPM (see (c))
and ALIE (see (d)) attacks on the data hypercleaning application.
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Figure 2: Effect of α on the violation under BF (see (a)), LF (see (b)), IPM (see (c)) and ALIE (see (d))
attacks on the data hypercleaning application.

Note that unlike vanilla FL problems, in the bilevel problems, we need extra rounds of communication (see
lines 5 to 11 of the algorithm) to obtain a good proxy for the lower level problem, which is stated in the next
lemma.

Lemma 5. Under assumptions 1-2 and choosing η ≤ 1
µg

, the approximation error in Algorithm 1 is
bounded as

d2
S(xr)(yr,T ) ≤

2l2g,max

µ2
g

γ̄T +
2cαζ2

g

µg
,

where γ̄ :=
(
1 − γµg

2
)
.

Proof: See Sec. E in Appendix.

Note that by choosing T as in Theorem 1 ensures that d2
S(xr)(yr,T ) ≤ O

(
1
R + 2cαζ2

g

µg

)
indicating that the

presence of Byzantines effect the proxy for the lower level problem as well. Since the gradients ∇yhλ,k (xr,yr)
and ∇xĥλ,k (xr,yr) are sent to the central server, and is aggregated using bucketing followed by geometric
median, we first need to relate these gradients to the true average gradients of the good nodes. This is done
using Lemmas 1 and 2. Once these results are established, we prove a bound on ∥∇hλ (x,y)∥2, which is

9
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summed over r = 0, 1, . . . , R− 1 to get a bound on the total gradient as in Theorem 1. We establish a result
that connects violation to the bound on ∥∇hλ (x,y)∥2 as in Lemma 3. Using this Lemma, we establish the
rates for the average violation as in Lemma 2.
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Figure 3: Effect of α on the convergence of Rob-FedBOB under BF (see (a)), IPM (see (b)) and ALIE (see
(c)) attacks on the learnable regularization application.
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Figure 4: Effect of α on the violation under BF (see (a)), LF (see (b)), IPM (see (c)) and ALIE (see (d))
attacks on the learnable regularization application.

4 Experimental Results

In this section, we experimentally validate our theoretical findings of Rob-FedBOB. We evaluate the perfor-
mance of Rob-FedBOB on two ML applications.

Data Hyper-cleaning: We consider the Data Hyper-cleaning task to experimentally validate our theory
(Shaban et al., 2019; Kwon et al., 2023b) for the following attacks (i) BF, (ii) LF, (iii) IPM, and (iv) ALIE.
The goal of Data Hyper-cleaning is to solve the following bilevel problem in a federated manner:

min
x

1
Gm

G∑
k=1

m∑
i=1

lk,i

(
y∗(x); Dval

k

)
subject to

y∗(x) ∈ arg min
y

1
Gn

G∑
k=1

n∑
i=1

σ(xk,i)lk,i

(
y; Dtrain

k

)
+ c ∥y∥2

, (14)

where, Dtrain
k := {(ãk,i, b̃k,i)}m

i=1 is the noisy training data set and Dval
k := {(ak,i, bk,i)}n

i=1 denotes a clean
validation data set. Here, σ(xk,i) is the sigmoid function, lk () is the cross entropy loss at each node k ∈ N
and c is the regularization constant. The lower level problem aims to find the optimal model parameters y
that minimizes the weighted average of the loss function (with regularization) on the noisy dataset Dtrain

k

for a fixed set of coefficients σ(xk,i), k ∈ G. On the other hand, the upper-level optimization problem aims
to find the coefficients σ(xk,i) by minimizing the validation loss learned on the clean dataset Dval

k for k ∈ G.
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Learnable Regularization: The goal of learnable regularization is to learn the optimal regularization
coefficients for newsgroup dataset (Chen et al., 2023; Liu et al., 2022a). The federated bilevel optimization
problem for this task can be posed as:

min
x

1
Gm

G∑
k=1

m∑
i=1

lk
(
y∗(x); Dval

k

)
,

subject to

y∗(x) ∈ arg min
y

1
Gm

G∑
k=1

n∑
i=1

lk
(
y,Dtrain

k

)
+ ∥Wxk

y∥2
,

where, Dtrain
k := {(ãk,i, b̃k,i)}m

i=1 the training data set and Dval
k := {(ak,i, bk,i)}n

i=1 denotes the validation data
set. The lower level function minimizes the loss on the training dataset across the good nodes by finding the
optimal model parameters for a given regularization coefficient. The upper level objective finds the optimal
regualrization coefficient by minimizing the validation dataset of good nodes.

We train a linear model on the MNIST dataset with N = 16 nodes. We divide the dataset into equal parts
among G good nodes, and ensured that the data distribution is heterogeneous. Also, we consider Byzantine
nodes which have access to the entire dataset. We have used the bucketing algorithm followed by geometric
median aggregator. Next, we present the four different attacks that we consider:
Bit Flipping (BF): In this attack, the Byzantine nodes change the sign of the gradient of the penalty
function computed using the entire data set, i.e., it sends −∇hλ(x,y) aiming to cancel the effect of the
gradients shared by all the good nodes. See (Karimireddy et al., 2020; Rammal et al., 2024) for more details.
Label Flipping (LF): Byzantine nodes modify the label of the MNIST dataset to 9 − z, z ∈ {0, 1, . . . , 9}.
Inner product Manipulation (IPM): The byzantine nodes will send ∆

G

∑
k∈G ∇hλ,k(x,y), where ∆

decides the intensity of the attack (Xie et al., 2020).
A Little is Enough (ALIE): The byzantine nodes send µG − νσG to the server, where µG and σG are the
mean and the standard deviations of the good nodes gradients, respectively. Here, ν dictates the intensity
of the attack (Baruch et al., 2019).

Next, we present the experimental results for Rob-FedBOB algorithm and corroborate our theoretical findings
made in this paper for N = 16 nodes:

Effect of α and heterogeneity: Figure 1 and 3 show the convergence rate of the proposed algorithm
versus the communication rounds R under different attacks for the application of the data hypercleaning
and learnable regularization, respectively. We have chosen B = 3 and B = 6 for a total of N = 16 nodes
which result in approximately α = 0.2 and α = 0.4, respectively. It is clear from the figure that the gradients
does not converge to zero due to the presence of Byzantine nodes, as expected. The figures also demonstrate
that the gradient converges to a constant that scales with α. This corroborates with Theorem 1, where we
have shown that 1

R

∑R−1
r=0 ∥∇hλ (xr,yr)∥2 increases as α increases because of α(ζ2

f + λ2ζ2
g ) term, provided

λ and the inter-client heterogeneity are fixed. Figures 2 and 4 show the plot of the constraint violation (in
log scale) versus the number of communication rounds R under different attacks for data hypercleaning and
learnable regularization applications, respectively. In particular, the figure shows that by increasing α for a
fixed λ = 1 results in a poor violation performance. This corroborates our theoretical findings (see Theorem
2), where we have proved that ViolR

R increases as α increases at the rate of α(ζ2
f + λ2ζ2

g ).

In this subsection, we use the same setting as explained in our experimental results section (see 4).
Effect of λ: Figures 5(a) and (b) show the plot of convergence rate (in log scale) and the constraint
violation (in log scale) versus R by varying λ while fixing α = 0.2. The heterogeneity in the data causes
the Rob-FedBOB to convergence to a non-zero gradient and violation, as expected. Note that Theorem 1
shows that the average gradient ∥∇hλ (xr,yr)∥2 scales with λ as λ2

R . On the contrary, Fig. 5(b) shows that
larger λ results in a better violation. This is in agreement with Theorem 2 where we have shown that ViolR

decreases at the rate of 1
λ2 .

Effect of T : Figure 6(a) and (b) show the effect of T on the convergence and constraint violation of
Rob-FedBOB algorithm. We get O( 1

R ) rate when T ≥ O(log(R)) rounds.
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Figure 5: Effect of λ on the convergence of Rob-FedBOB (see (a)) and violation (see (b)) under BF attack
in the log scale for the data hyperclearning application.
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Figure 6: Effect of T on the convergence of Rob-FedBOB (see (a)) and violation (see (b)) under LF attack
in the log scale for the data hypercleaning application.
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Figure 7: Performance comparison of Rob-FedBOB with
BILATINE.

Performance Comparison: The Figure 7
shows the performance comparison between
our proposed method (Rob-FedBOB) and
Hessian-based federated bilevel optimization
algorithm (BILANTINE) for the data hyper
cleaning application. We have considered the
bit flipping attack in both the cases. In Kwon
et al. (2023b), the authors have demonstrated
the superiority of the penalty based method
over the second order (Hessian) method in the
absence of Byzantine nodes in the centralized
case. We on the other hand show superior-
ity of our penalty method compared to BILA-
TINE (second order method) in the FL setting
in the presence of Byzantine nodes. As stated
in Kwon et al. (2023b), the exact mathemati-
cal reason of why the penalty methods work better than the second order methods is not clear, and will be
relagated to the future work.
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5 Conclusion

In this work, we considered the problem of bilevel optimization with Byzantine nodes where both upper
and lower level objective functions are non-convex. Typically, bilevel problems are solved using an estimate
of the hypergradient which requires second-order information about the lower level objective making it
computationally expensive. Further, the presence of Byzantine nodes require the algorithm to be robust
against attacks. We propose Rob-FedBOB algorithm, a fully first order byzantine robust federated algorithm
that (i) does not require second-order information making it computationally efficient, (ii) handles non-
convex lower level objective function satisfying PL-inequality and heterogeneous data, and (iii) aggregates
the information from all the nodes in a robust manner making it resilient to Byzantine attacks. We prove
theoretical performance of the proposed algorithm, and show that the rate at which the gradient and the
average violation scale depends heavily on the fraction of the Byzantine nodes and the heterogeneity of the
upper and lower level objective functions. In the absence of Byzantine nodes, we show that the gradient
converges at the rate of 1/R, where R is the number of communication rounds while the violation can be
made arbitrarily small. We have performed extensive experiments to corroborate our theoretical findings
and to demonstrate that the complexity of Rob-FedBOB is very low.
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CRG (grant number: CRG/2021/007502) and SERB-MATRICS (grant number: MTR/2021/000575). The
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A Appendix

A.1 Useful Lemma

In this subsection, we prove a lemma that relates the gradient of the lower level functions with and without
aggregation.

Lemma 6. Suppose the aggregator RAgg is (α, c) robust aggregator (see definition 1), then

∥∇ygag (xr,yr,t) − ∇yg (xr,yr,t) ∥2 ≤ 4cαζ2
g .

Proof: It follows from the definition 1 of (α, c)-Robust Aggregator that the above result can be shown
provided we prove a bound on E ∥∇ygi (xr,yr,t) − ∇ygj (xr,yr,t)∥2, where the expectation is with respect to
uniformly randomly chosen i, j ∈ G. Adding and subtracting the term ∇yg (xr,yr) and using the inequality
∥a+ b∥2 ≤ 2 ∥a∥2 + 2 ∥b∥2, we get

E ∥∇ygi (xr,yr,t) − ∇ygj (xr,yr,t)∥2 ≤ 2Ei∈G ∥∇ygi (xr,yr) − ∇yg (xr,yr,t)∥2 +
2Ej∈G ∥∇ygj (xr,yr) − ∇yg (xr,yr,t)∥2

= 4Ei∈G ∥∇ygi (xr,yr) − ∇yg (xr,yr,t)∥2
. (15)

Using the inter-client heterogeneity in Assumption 3, the above is bounded as

Ei∈G ∥∇ygi (xr,yr) − ∇yg (xr,yr,t)∥2 ≤ ζ2
g . (16)

Using this in equation 15, we get

E ∥∇ygi (xr,yr,t) − ∇ygj (xr,yr,t)∥2 ≤ 4ζ2
g .

From the definition 1 of (α, c)-Robust Aggregator, it follows that

∥∇ygag (xr,yr,t) − ∇yg (xr,yr,t) ∥2 ≤ 4cαζ2
g .

This completes the proof.

B Proof of Lemma 1

In this section, we prove a bound on
∥∥∇yhλ,ag (xr,yr) − ∇yhλ (xr,yr)

∥∥2 to show robustness of the aggregator
with respect to the penalty function. From Definition 1, we know that robustness can be proved by proving
a bound on E ∥∇yhλ,i (xr,yr) − ∇xhλ,j (xr,yr)∥2, where expectation is with respect i, j uniformly sampled
from G. Adding and subtracting the term ∇yhλ (xr,yr) and using the inequality ∥a+ b∥2 ≤ 2 ∥a∥2 + 2 ∥b∥2,
we get

E ∥∇yhλ,i (xr,yr) − ∇yhλ,j (xr,yr)∥2 ≤ 2Ei∈G ∥∇yhλ,i (xr,yr) − ∇yhλ (xr,yr)∥2 +
2Ej∈G ∥∇yhλ,j (xr,yr) − ∇yhλ (xr,yr)∥2

= 4Ei∈G ∥∇yhλ,i (xr,yr) − ∇yhλ (xr,yr)∥2
. (17)

Consider the above equation, i.e., A := Ei∈G ∥∇yhλ,i (xr,yr) − ∇yhλ (xr,yr)∥2. Substituting
∇yhλ,i (xr,yr) = ∇yfi (xr,yr) + λ∇ygi (xr,yr) for all i ∈ G and ∇yhλ (xr,yr) = ∇yf (xr,yr) +
λ∇yg (xr,yr), we get

A = Ei∈G∥∇yfi (xr,yr) + λ∇ygi (xr,yr) − ∇yf (xr,yr) − λ∇yg (xr,yr) ∥2

(a)
≤ 2Ei∈G ∥∇yfi (xr,yr) − ∇yf (xr,yr)∥2 + 2Ei∈Gλ

2 ∥∇ygi (xr,yr) − ∇yg (xr,yr)∥2
,

≤ 2ζ2
f + 2λ2ζ2

g , (18)
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where (a) follows from the inequality, ∥a+ b∥2 ≤ 2 ∥a∥2 + 2 ∥b∥2, and the last inequality follows from the
heterogeneity Assumption 3. Substituting the above in equation 17, we get

E ∥∇yhλ,i (xr,yr) − ∇yhλ,j (xr,yr)∥2 ≤ 8ζ2
f + 8λ2ζ2

g .

From the definition 1 of (α, c)-Robust Aggregator,it is clear that the output of robust aggregator satisfies

∥∥∇yhλ,ag (xr,yr) − ∇yhλ (xr,yr)
∥∥2 ≤ cα

(
8ζ2

f + 8λ2ζ2
g

)
.

This completes the proof.

C Proof of Lemma 2

In this section, we prove a bound on
∥∥∥∇xĥλ,ag (xr,yr) − ∇x

¯̂
hλ (xr,yr)

∥∥∥2
. Towards this, we need to first

prove a bound on (see Definition 1) E
∥∥∥∇xĥλ,i (xr,yr) − ∇xĥλ,j (xr,yr)

∥∥∥2
, where i, j are uniformly chosen

from G. Adding and subtracting the term ∇xhλ (xr,yr) to the above and using the inequality ∥a+ b∥2 ≤
2 ∥a∥2 + 2 ∥b∥2, we get

E
∥∥∥∇xĥλ,i (xr,yr) − ∇xĥλ,j (xr,yr)

∥∥∥2
≤ 2Ei∈G

∥∥∥∇xĥλ,i (xr,yr) − ∇xhλ (xr,yr)
∥∥∥2

+

2Ej∈G

∥∥∥∇xĥλ,j (xr,yr) − ∇xhλ (xr,yr)
∥∥∥2

= 4Ei∈G

∥∥∥∇xĥλ,i (xr,yr) − ∇xhλ (xr,yr)
∥∥∥2
. (19)

The following lemma is required to prove a bound on the above equation.

Lemma 7. Under Assumption 3, the following bound is satisfied

Ei∈G ∥∇xhλ,i (xr,yr) − ∇xhλ,j (xr,yr)∥2 ≤ 4λ2L2
g,maxd

2
S(xr)(yr,T ) + 6ζ2

f + 12λ2ζ2
g . (20)

Proof: Towards bounding the above equation, let us add and subtract the term ∇x
¯̂
hλ (xr,yr) :=

1
G

∑
k∈G ĥλ,j (xr,yr) (see Lemma 2)

Ei∈G

∥∥∥∇xĥλ,i (xr,yr) − ∇xhλ (xr,yr)
∥∥∥2

= Ei∈G

∥∥∥∇xĥλ,i (xr,yr) − ∇x
¯̂
hλ (xr,yr) +

∇x
¯̂
hλ (xr,yr) − ∇xhλ (xr,yr)

∥∥∥2

≤ 2Ei∈G

∥∥∥∇xĥλ,i (xr,yr) − ∇x
¯̂
hλ (xr,yr)

∥∥∥2

︸ ︷︷ ︸
:=A1

+

2
∥∥∥∇x

¯̂
hλ (xr,yr) − ∇xhλ (xr,yr)

∥∥∥2

︸ ︷︷ ︸
:=A2

, (21)

where the above follows from the inequality ∥a+ b∥2 ≤ 2 ∥a∥2 + 2 ∥b∥2. Consider

A1 = Ei∈G

∥∥∥∇xĥλ,i (xr,yr) − ∇x
¯̂
hλ (xr,yr)

∥∥∥2
.
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Substituting ∇xĥλ,i (xr,yr) = ∇xfi (xr,yr) + λ (∇xgi (xr,yr) − ∇xgi (xr,yr,T )) from equation 9, and
∇x

¯̂
hλ (xr,yr) = ∇xf (xr,yr) + λ (∇xg (xr,yr) − ∇xg (xr,yr,T )) in the above, we get

A1 = Ei∈G∥∇xfi (xr,yr) + λ (∇xgi (xr,yr) − ∇xgi (xr,yr,T )) − ∇xf (xr,yr) −
λ (∇xg (xr,yr) − ∇xg (xr,yr,T )) ∥2

(a)
≤ 3Ei∈G ∥∇xfi (xr,yr) − ∇xf (xr,yr)∥2 + 3Ei∈Gλ

2 ∥∇xgi (xr,yr) − ∇xg (xr,yr)∥2

+ 3Ei∈Gλ
2 ∥∇xgi (xr,yr,T ) − ∇xg (xr,yr,T )∥2

, (22)

where (a) follows from the inequality, ∥a+ b+ c∥2 ≤ 3 ∥a∥2 + 3 ∥b∥2 + 3 ∥c∥2. Now, consider

A1 ≤ 3Ei ∥∇xfi (xr,yr) − ∇xf (xr,yr)∥2 + 3λ2Ei ∥∇xgi (xr,yr) − ∇xg (xr,yr)∥2

+ 3λ2Ei ∥∇xgi (xr,yr,T ) − ∇xg (xr,yr,T )∥2

≤ 3ζ2
f + 6λ2ζ2

g , (23)

where the last inequality follows from the inter-client heterogeneity Assumption 3, i.e.,
Ei∈G ∥∇fi (x,y) − ∇f (x,y)∥2 ≤ ζ2

f and Ei∈G ∥∇gi (x,y) − ∇g (x,y)∥2 ≤ ζ2
g . Let us consider the

term A2 from equation 21

A2 =
∥∥∥∇x

¯̂
hλ (xr,yr) − ∇xh (xr,yr)

∥∥∥2
.

Substituting ∇x
¯̂
hλ (xr,yr) = ∇xf (xr,yr) + λ (∇xg (xr,yr) − ∇xg (xr,yr,T )) and ∇xh (xr,yr) =

∇xf (xr,yr) − λ (∇xg (xr,yr) − ∇xv (xr)) in the above, we get

A2 ≤ ∥∇xf (xr,yr) + λ (∇xg (xr,yr) − ∇xg (xr,yr,T )) − ∇xf (xr,yr) − λ (∇xg (xr,yr) − ∇xv (xr)) ∥2.

Simplifying further, we get

A2 ≤ λ2 ∥∇xv (xr) − ∇xg (xr,yr,T )∥2
.

Using Jensen’s inequality, we get

A2 ≤ λ2

G

G∑
k=1

∥∇xvk (xr) − ∇xgk (xr,yr,T )∥2

(a)
≤ λ2

G

G∑
k=1

L2
g,kd

2
S(xr)(yr,T )

(b)
≤ λ2L2

g,maxd
2
S(xr)(yr,T ), (24)

where (a) follows from the Assumption 1, and L2
g,max := maxk∈G L

2
g,k. Substituting equation 23, equation 24

in equation 21, we get

Ei∈G

∥∥∥∇xĥλ,i (xr,yr) − ∇xhλ (xr,yr)
∥∥∥2

≤ 2λ2L2
g,maxd

2
S(xr)(yr,T ) + 6ζ2

f + 12λ2ζ2
g . (25)

Using the results from equation 25 in equation 19, we get the desired result. This completes the proof of the
Lemma.

To complete the proof of Lemma 2, we substitute the result from Lemma 5 in equation 20 to get

Ei∈G ∥∇xhλ,i (xr,yr) − ∇xhλ,j (xr,yr)∥2 ≤
8λ2L2

g,maxl
2
g,max

µ2
g

(
1 − γµg

2

)T

+
16λ2L2

g,maxcαζ
2
g

µg

+6ζ2
f + 12λ2ζ2

g .
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Using the definition 1 of (α, c)-robust aggregator, the output of the robust aggregator satisfies the following∥∥∥∇xĥλ,ag (xr,yr) − ∇x
¯̂
hλ (xr,yr)

∥∥∥2
≤ cα

(
8λ2L2

g,maxl
2
g,max

µ2
g

(
1 − γµg

2

)T

+
16λ2L2

g,maxcαζ
2
g

µg

+6ζ2
f + 12λ2ζ2

g

)
. (26)

This completes the proof.

D Proof of Lemma 3

Suppose (xr,yr) is an approximate stationary point of FedBOB Penalty Problem, i.e.,

∥∇yhλ(xr,yr)∥ = ∥∇yf (xr,yr) + λ∇yg (xr,yr)∥ ≤ ψr, (27)

where ψr > 0 is the approximation error. Then, for some vr such that ∥vr∥ ≤ ψr, the above can be written
as

∇yf (xr,yr) = −λ∇yg (xr,yr) + vr.

Rearranging the above, taking norms on both sides and applying triangle’s inequality, we get

λ ∥∇yg (xr,yr)∥ ≤ ∥∇yf (xr,yr)∥ + ψr.

Squaring on both the sides, we get

∥∇yg (xr,yr)∥2 (a)
≤ 2

λ2

(
∥∇yf (xr,yr)∥2 + ψ2

r

)
(b)
≤ 2

λ2

(
1
G

G∑
k=0

∥∇yfk (xr,yr)∥2 + ψ2
r

)

(c)
≤

2
(
l2f + ψ2

r

)
λ2 , (28)

where (a) follows from the inequality ∥a+ b∥2 ≤ 2 ∥a∥2 + 2 ∥b∥2, (b) uses the Jensen’s inequality, and (c)
follows from Assumption 1 i.e., ∥∇yfk (x,y)∥2 ≤ l2f for all k ∈ G. From Assumption 2, we know that

g (xr,yr) − gt (xr,y∗(xr)) ≤ 1
µg

∥∇yg (xr,yr)∥2
. (29)

Substituting equation 28 in equation 29, we get

p (xr,yr) := g (xr,yr) − g (xr,y∗(xr)) ≤
2l2f
µgλ2 + 2ψ2

r

µgλ2 .

Summing from r = 0 to R− 1, and dividing by R, we get

ViolR

R
:= 1

R

R−1∑
r=0

p (xr,yr) ≤
2l2f
µgλ2 + 2

µgλ2 × 1
R

R−1∑
r=0

ψ2
r . (30)

Note that the result in Lemma 3 can be obtained by choosing (xr,yr) = (x,y) for all r satisfying
∥∇yhλ(x,y)∥ ≤ ψ. This completes the proof.

E Proof of Lemma 4 and Lemma 5

In this section, we prove smoothness of the penalty function in Lemma 4 and a bound on d2
S(xr)(yr,T ) in

Lemma E.0.2. Recall that yr,T is the output of the Algorithm 1 in step 12 which is used as a proxy for
y∗ ∈ arg miny g(xr,y). First, we state the proof of Lemma 4.
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E.0.1 Proof of Lemma 4

Recall from equation 3 that the penalty function hλ (x,y) := f (x,y) + λp (x,y). Consider the following

∥∇yhλ(x,y) − ∇yhλ(x,y′)∥ = ∥∇yf (x,y) + λ∇yp (x,y) − ∇yf (x,y′) − λ∇yp (x,y′)∥
≤ ∥∇yf (x,y) − ∇yf (x,y′)∥ + λ ∥∇yp (x,y) − ∇yp (x,y′)∥ .

The above inequality follows from the triangle’s inequality i.e., ∥a+ b∥ ≤ ∥a∥ + ∥b∥. From equation 2, we
know that p (x,y′) = g (x,y′) − g (x,y∗), where y∗ ∈ arg miny g(x,y). Using the fact that ∇yg (x,y∗) = 0
in the above, we get

∥∇hλ(x,y) − ∇hλ(x,y′)∥ = ∥∇yf (x,y) − ∇yf (x,y′)∥ + λ ∥∇yg (x,y) − ∇yg (x,y′)∥

≤

∥∥∥∥∥ 1
G

G∑
k=1

(∇yfk (x,y) − ∇yfk (x,y′))

∥∥∥∥∥+ λ

∥∥∥∥∥ 1
G

G∑
k=1

(∇ygk (x,y) − ∇ygk (x,y′))

∥∥∥∥∥
(a)
≤ 1

G

G∑
k=1

Lf,k ∥y − y′∥ + λ

G

G∑
k=1

Lg,k ∥y − y′∥

(b)
≤ (Lf,max + λLg,max) ∥y − y′∥ .
(c)
≤ Lh ∥y − y′∥ ,

where (a) follows from the triangle’s inequality and Assumption 1 and (b) uses the fact that Lf,max :=
maxk∈G Lf,k and Lg,max := maxk∈G Lg,k, and (c) results from Lh := Lf,max + λLg,max. This completes the
proof.

E.0.2 Proof of Lemma 5

First, note that in Lemma 5, we have used yr,T = yr,T . Using smoothness property from the Assumption 1,
we have

g (xr,yr,t+1) ≤ g (xr,yr,t) + ⟨yr,t+1 − yr,t,∇yg (xr,yr,t)⟩ + Lg

2 ∥yr,t+1 − yr,t∥2
.

Substituting the update in 6 i.e., yr,t+1 = yr,t − γ∇ygag (xr,yr,t) in the above, we have

g (xr,yr,t+1) ≤ g (xr,yr,t) − γ⟨∇ygag (xr,yr,t) ,∇yg (xr,yr,t)⟩ + γ2Lg

2
∥∥∇ygag (xr,yr,t)

∥∥2
.

Using the identity ⟨a, b⟩ = 1
2 ∥a∥2 + 1

2 ∥b∥2 − 1
2 ∥a− b∥2, we get

g (xr,yr,t+1) ≤ g (xr,yr,t) − γ

2 ∥∇ygag (xr,yr,t) ∥2 − γ

2 ∥∇yg (xr,yr,t) ∥2

+γ

2 ∥∇ygag (xr,yr,t) − ∇yg (xr,yr,t) ∥2 + γ2Lg

2
∥∥∇ygag (xr,yr,t)

∥∥2
. (31)

Choosing γ ≤ 1
Lg

in the above, and ignoring the negative term, we get

g (xr,yr,t+1) ≤ g (xr,yr,t) − γ

2 ∥∇yg (xr,yr,t) ∥2 + γ

2 ∥∇ygag (xr,yr,t) − ∇yg (xr,yr,t) ∥2. (32)

Using the result of Lemma 6, the third term in the above is bounded as

∥∇ygag (xr,yr,t) − ∇yg (xr,yr,t) ∥2 ≤ 4cαζ2
g . (33)

Using the PL-inequality in Assumption 2 i.e., ∥∇g (xr,yr,t)∥2 ≥ µg (g (xr,yr,t) − v(xr) and substituting
equation 33 in equation 32, we get

g (xr,yr,t+1) ≤ g (xr,yr,t) − γµg

2 (g (xr,yr,t) − v(xr) + 2γcαζ2
g
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Adding and subtracting the term v (xr), we have

g (xr,yr,t+1) − v (xr) ≤
(

1 − γµg

2

)
(g (xr,yr,t) − v(xr)) + 2γcαζ2

g .

Applying recursion, we have

g (xr,yr,T ) − v (xr) ≤
(

1 − γµg

2

)T

(g (xr,yr) − v(xr) +
T −1∑
t=0

(
1 − γµg

2

)t

2γcαζ2
g .

It is important to note that the PL-inequality implies quadratic growth condition, i.e., g (xr,yr,T )−v (xr) ≥
µg

2 d
2
S(xr)(yr,T ) for some µg > 0. Since g() satisfies the PL-inequality, invoking the quadratic growth condi-

tion, we get

d2
S(xr)(yr,T ) ≤ 2

µg

(
1 − γµg

2

)T

(g (xr,yr) − v (xr)) +
T −1∑
t=0

(
1 − γµg

2

)t

2γcαζ2
g .

Next, we can further bound the above using the fact that the lower level function satisfies the PL-inequality
(see Assumption 2):

d2
S(xr)(yr,T ) ≤ 2

µ2
g

(
1 − γµg

2

)T

∥∇g (xr,yr)∥2 +
T −1∑
t=0

(
1 − γµg

2

)t

2γcαζ2
g . (34)

Using Assumption 1, i.e., ∥∇gk (xr,yr)∥2 ≤ l2g,k, we have ∥∇g (xr,yr)∥2 ≤ 1
G

∑G
k=1 ∥∇gk (xr,yr)∥2 ≤ l2g,max.

Using this in the above results in

d2
S(xr)(yr,T ) ≤

2l2g,max

µ2
g

(
1 − γµg

2

)T

+
T −1∑
t=0

(
1 − γµg

2

)t

2γcαζ2
g . (35)

The above is further bounded using geometric series as

d2
S(xr)(yr,T ) ≤

2l2g,max

µ2
g

(
1 − γµg

2

)T

+
4cαζ2

g

µg
. (36)

This completes the proof.

F Proof of Theorem 1

First, we state and prove the following Lemma, which is also useful while proving the violation bound.

Lemma 8. Suppose assumptions 1-3 hold, then for the aggregator RAgg, Algorithm 1 achieves the
following bound

min
{
β

2 ,
η

2

}
∥∇hλ (xr,yr)∥2 ≤ (f (xr,yr) − f (xr+1,yr+1)) + λ (g (xr,yr) − g (xr+1,yr+1)) −

λ (v (xr+1) − v (xr))) + βcαδ2 + η

2 cαρ
2 +

2βλ2L2
g,maxl

2
g,max

µ2
g

(
1 − γµg

2

)T

+
2βλ2L2

g,maxcαζ
2
g

µg
. (37)

for β ≤ 1/Lh and η ≤ 1/Lh, and for any T ≥ 1.

22



Published in Transactions on Machine Learning Research (09/2025)

Proof: Using the smoothness result from Lemma 4, we can write

hλ (xr+1,yr+1) ≤ hλ (xr,yr) + ⟨xr+1 − xr,∇xhλ (xr,yr)⟩ + ⟨yr+1 − yr,∇yhλ (xr,yr)⟩

+Lh

2

[
∥xr+1 − xr∥2 + ∥yr+1 − yr∥2

]
. (38)

Substituting for the update xr+1 − xr = −β∇xĥλ,ag (xr,yr) and yr+1 − yr = −η∇yhλ,ag (xr,yr) from
equation 8 and equation 7, we get

hλ (xr+1,yr+1) ≤ hλ (xr,yr) − β
〈

∇xĥλ,ag (xr,yr) ,∇xhλ (xr,yr)
〉

− η
〈
∇yhλ,ag (xr,yr) ,∇yhλ (xr,yr)

〉
+β2Lh

2

∥∥∥∇xĥλ,ag (xr,yr)
∥∥∥2

+ η2Lh

2
∥∥∇yhλ,ag (xr,yr)

∥∥2
.

Using the identity ⟨a, b⟩ = 1
2 ∥a∥2 + 1

2 ∥b∥2 − 1
2 ∥a− b∥2, and adding and subtracting the term ∇x

¯̂
hλ (xr,yr),

we have

hλ (xr+1,yr+1) ≤ hλ (xr,yr) − β

2

∥∥∥∇xĥλ,ag (xr,yr)
∥∥∥2

− β

2 ∥∇xhλ (xr,yr)∥2

+β

2

∥∥∥∇xĥλ,ag (xr,yr) − ∇x
¯̂
hλ (xr,yr) + ∇x

¯̂
hλ (xr,yr) − ∇xhλ (xr,yr)

∥∥∥2

−η

2
∥∥∇yhλ,ag (xr,yr)

∥∥2 − η

2 ∥∇yhλ (xr,yr)∥2 + η

2
∥∥∇yhλ,ag (xr,yr) − ∇yhλ (xr,yr)

∥∥2

+β2Lh

2

∥∥∥∇xĥλ,ag (xr,yr)
∥∥∥2

+ η2Lh

2
∥∥∇yhλ,ag (xr,yr)

∥∥2
.

Combining the common terms, choosing η ≤ 1
Lh

and β ≤ 1
Lh

, and applying the inequality ∥a+ b∥2 ≤
2 ∥a∥2 + 2 ∥b∥2, we get

hλ (xr+1,yr+1) ≤ hλ (xr,yr) − β

2 ∥∇xhλ (xr,yr)∥2 + β
∥∥∥∇xĥλ,ag (xr,yr) − ∇x

¯̂
hλ (xr,yr)

∥∥∥2

+β
∥∥∥∇x

¯̂
hλ (xr,yr) − ∇xhλ (xr,yr)

∥∥∥2
− η

2 ∥∇yhλ (xr,yr)∥2 +
η

2
∥∥∇yhλ,ag (xr,yr) − ∇yhλ (xr,yr)

∥∥2
. (39)

Using ∇xĥλ,k (xr,yr) := ∇xfk (xr,yr) + λ (∇xgk (xr,yr) − ∇xgk (xr,yr,T )) in the fourth term above, we
get ∥∥∥∇x

¯̂
hλ (xr,yr) − ∇xhλ (xr,yr)

∥∥∥2
≤ ∥∇xf (xr,yr) + λ

(
∇xg (xr,yr) − 1

G

G∑
k=1

∇xgk (xr,yr,T )
)

−∇xf (xr,yr) − λ

(
∇xg (xr,yr) − 1

G

G∑
k=1

∇xvk (xr)
)

∥2.

Simplifying the above results in∥∥∥∇x
¯̂
hλ (xr,yr) − ∇xhλ (xr,yr)

∥∥∥2
≤ λ2

∥∥∥∥∥ 1
G

G∑
k=1

∇xvk (xr) − 1
G

G∑
k=1

∇xgk (xr,yr,T )

∥∥∥∥∥
2

.

Using Jensen’s inequality, the above is further bounded as∥∥∥∇x
¯̂
hλ (xr,yr) − ∇xhλ (xr,yr)

∥∥∥2
≤ λ2

G

G∑
k=1

∥∇xvk (xr) − ∇xgk (xr,yr,T )∥2

(a)
≤ λ2

G

G∑
k=1

L2
g,kd

2
S(xr)(yr,T )

(b)
≤ λ2L2

g,maxd
2
S(xr)(yr,T ),
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where (a) follows from the Assumption 1 and (b) uses the fact that L2
g,max := maxk∈G L

2
g,k. Now using the

result from Lemma 5 in equation 40, we get∥∥∥∇x
¯̂
hλ (xr,yr) − ∇xhλ (xr,yr)

∥∥∥2
≤

2λ2L2
g,maxl

2
g,max

µ2
g

(
1 − γµg

2

)T

+
4λ2L2

g,maxcαζ
2
g

µg
. (40)

From Lemma 2, the third term in equation 39 can be bounded as∥∥∥∇xĥλ,ag (xr,yr) − ∇x
¯̂
hλ (xr,yr)

∥∥∥2
≤ cαδ2, (41)

where δ2 := 8λ2L2
g,maxl2

g,max
µ2

g

(
1 − γµg

2
)T + 16λ2L2

g,maxcαζ2
g

µg
+ 6ζ2

f + 12λ2ζ2
g . Similarly, from Lemma 1, the last

term in equation 39 is bounded as∥∥∇yhλ,ag (xr,yr) − ∇yhλ (xr,yr)
∥∥2 ≤ cαρ2. (42)

where ρ2 := cα
(

8ζ2
f + 8λ2ζ2

g

)
. Substituting equation 40, equation 41 and equation 42 in equation 39, we

get

hλ (xr+1,yr+1) ≤ hλ (xr,yr) − β

2 ∥∇xhλ (xr,yr)∥2 − η

2 ∥∇yhλ (xr,yr)∥2 + βcαδ2 + η

2 cαρ
2

+
2βλ2L2

g,maxl
2
g,max

µ2
g

(
1 − γµg

2

)T

+
2βλ2L2

g,maxcαζ
2
g

µg
.

Rearranging and using the fact that hλ (x,y) = f (x,y) + λ (g (x,y) − v (x)), the above becomes

β

2 ∥∇xhλ (xr,yr)∥2 + η

2 ∥∇yhλ (xr,yr)∥2 ≤ f (xr,yr) + λ (g (xr,yr) − v (xr))

−f (xr+1,yr+1) − λ (g (xr+1,yr+1) − v (xr+1))

+βcαδ2 + η

2 cαρ
2 +

2βλ2L2
g,maxl

2
g,max

µ2
g

(
1 − γµg

2

)T

+
2βλ2L2

g,maxcαζ
2
g

µg
. (43)

Using the fact that, min
{

β
2 ,

η
2

}
∥∇hλ (xr,yr)∥2 ≤ β

2 ∥∇xhλ (xr,yr)∥2 + η
2 ∥∇yhλ (xr,yr)∥2 and rearranging

results in the bound of Lemma 8. This completes the proof of the lemma.

Completing the Proof of Theorem 1: Now, summing both sides of the the bound of Lemma 8 results
in

min
{
β

2 ,
η

2

}R−1∑
r=0

∥∇hλ (xr,yr)∥2 ≤ (f (x0,y0) − f (xR,yR)) + λ (g (x0,y0) − g (xR,yR)) −

λ (v (xR)) − v (x0)) + βRcαδ2 + η

2Rcαρ
2 +

2βRλ2L2
g,maxl

2
g,max

µ2
g

(
1 − γµg

2

)T

+
2βRλ2L2

g,maxcαζ
2
g

µg
. (44)

Since we need η, β ≤ 1/Lh, we assume that both η and β are of the same order. This results in

1
2R

R−1∑
r=0

∥∇hλ (xr,yr)∥2 ≤ (f (x0,y0) − f (xR,yR))
ηR

+ λ (g (x0,y0) − g (xR,yR))
ηR

−

λ (v (xR)) − v (x0))
ηR

+ cαδ2 + 1
2cαρ

2 +
2λ2L2

g,maxl
2
g,max

µ2
g

(
1 − γµg

2

)T

+
2λ2L2

g,maxcαζ
2
g

µg
. (45)
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We wish the second last term on the right hand side in the above equation to satisfy

2λ2L2
g,maxl

2
g,max

µ2
g

(
1 − γµg

2

)T

≤ 1
R
. (46)

The above condition is achieved by choosing T ≥ 2
γµg

log
(

2Rλ2L2
g,maxl2

g,max
µ2

g

)
; this makes the communication

complexity slighter higher than the conventional second order methods. This will be relaxed in the next
result that we state. Substituting equation 46 in equation 45, we get

1
2R

R−1∑
r=0

∥∇hλ (xr,yr)∥2 ≤ (f (x0,y0) − f (xR,yR))
ηR

+ λ (g (x0,y0) − g (xR,yR))
ηR

−

λ (v (xR)) − v (x0))
ηR

+ cαδ2 + 1
2cαρ

2 + 1
R

+
2λ2L2

g,maxcαζ
2
g

µg
.

Now, substituting for δ2 and ρ2, we get

1
2R

R−1∑
r=0

∥∇hλ (xr,yr)∥2 ≤ (f (x0,y0) − f (xR,yR))
ηR

+ λ (g (x0,y0) − g (xR,yR))
ηR

− λ (v (xR)) − v (x0))
ηR

+

cα

(
8λ2L2

g,maxl
2
g,max

µ2
g

(
1 − γµg

2

)T

+
8λ2L2

g,maxcαζ
2
g

µg
+ 6ζ2

f + 12λ2ζ2
g

)

+1
2cα

(
8ζ2

f + 8λ2ζ2
g

)
+ 1
R

+
2λ2L2

g,maxcαζ
2
g

µg
.

Suppose, we choose T ≥ 2
γµg

log
(

8Rλ2L2
g,maxl2

g,max
µ2

g

)
, the above is further bounded as

1
2R

R−1∑
r=0

∥∇hλ (xr,yr)∥2 ≤ (f (x0,y0) − f (xR,yR))
ηR

+ λ (g (x0,y0) − g (xR,yR))
ηR

+

λ (v (x0)) − v (xR))
ηR

+ cα

R
+

8λ2L2
g,maxc

2α2ζ2
g

µg
+ 6cαζ2

f + 12cαλ2ζ2
g

+4cαζ2
f + 4cαλ2ζ2

g + 1
R

+
2λ2L2

g,maxcαζ
2
g

µg
.

Rearranging the above, multiplying by 2 on both sides, and using only those terms that depend on λ and
R, we get the desired order result of the theorem. This completes the proof.

G Proof of Theorem 2

In order to prove the Theorem, we need a bound on the stationary point of the penalty function (see Lemma
3. More specifically, we need a result of the form ∥∇hλ (xr,yr)∥2 ≤ ψ2

r . Towards this, consider equation 37
of Lemma 8

min
{
β

2 ,
η

2

}
∥∇hλ (xr,yr)∥2 ≤ (f (xr,yr) − f (xr+1,yr+1)) + λ (g (xr,yr) − g (xr+1,yr+1)) −

λ (v (xr+1) − v (xr))) + βcαδ2 + η

2 cαρ
2 +

2βλ2L2
g,maxl

2
g,max

µ2
g

(
1 − γµg

2

)T

+
2βλ2L2

g,maxcαζ
2
g

µg
. (47)
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Dividing by λ2 and using the fact that min
{

β
2 ,

η
2

}
= 1

2Lh
= 1

2(Lf,max+λLg,max) and further rearranging, we
get

1
λ2 ∥∇hλ (xr,yr)∥2 ≤ 2Lf,max (f (xr,yr) − f (xr+1,yr+1))

λ2 + 2Lg,max (f (xr,yr) − f (xr+1,yr+1))
λ

+

2Lf,max (g (xr,yr) − g (xr+1,yr+1))
λ

+ 2Lg,max (g (xr,yr) − g (xr+1,yr+1)) −

2Lf,max (v (xr+1) − v (xr)))
λ

− 2Lg,max (v (xr+1) − v (xr))) + 2cαδ2

+cαρ2 +
2λ2L2

g,maxl
2
g,max

λ2µ2
g

(
1 − γµg

2

)T

+
2λ2L2

g,maxcαζ
2
g

λ2µg
.

Choosing T ≥ 2
γµg

log
(

2λ2L2
g,maxl2

g,max
µ2

g

)
, we get

1
λ2 ∥∇hλ (xr,yr)∥2 ≤ 2Lf,max (f (xr,yr) − f (xr+1,yr+1))

λ2 + 2Lg,max (f (xr,yr) − f (xr+1,yr+1))
λ

+

2Lf,max (g (xr,yr) − g (xr+1,yr+1))
λ

+ 2Lg,max (g (xr,yr) − g (xr+1,yr+1)) −

2Lf,max (v (xr+1) − v (xr)))
λ

− 2Lg,max (v (xr+1) − v (xr))) + 2cαδ2

+cαρ2 + 1
λ2R

+
2λ2L2

g,maxcαζ
2
g

λ2µg
.

Summing from r = 0 to R− 1 and simplifying, we get

1
λ2

R−1∑
r=0

∥∇hλ (xr,yr)∥2 ≤
R−1∑
r=0

2Lf,max (f (xr,yr) − f (xr+1,yr+1))
λ2 +

R−1∑
r=0

2Lg,max (f (xr,yr) − f (xr+1,yr+1))
λ

+
R−1∑
r=0

2Lf,max (g (xr,yr) − g (xr+1,yr+1))
λ

+ 2Lg,max

R−1∑
r=0

(g (xr,yr) − g (xr+1,yr+1))

−
R−1∑
r=0

2Lf,max (v (xr+1) − v (xr)))
λ

− 2Lg,max

R−1∑
r=0

(v (xr+1) − v (xr)))

+
R−1∑
r=0

2cαδ2

λ2 +
R−1∑
r=0

cαρ2

λ2 +
R−1∑
r=0

1
λ2R

+
R−1∑
r=0

2λ2L2
g,maxcαζ

2
g

λ2µg
. (48)

Using the telescopic sum, we get
∑R−1

r=0 (f (xr,yr) − f (xr+1,yr+1)) = f (x0,y0) − f (xR,yR),∑R−1
r=0 (g (xr,yr) − g (xr+1,yr+1)) = g (x0,y0) − g (xR,yR) and

∑R−1
r=0 (v (xr+1) − v (xr)) = v (xR) − v (x0).

Using these results in equation 48, we get
R−1∑
r=0

1
λ2 ∥∇hλ (xr,yr)∥2 ≤

(
2Lf,max

λ2 + 2Lg,max

λ

)
(f (x0,y0) − f (xR,yR)) +(

2Lf,max

λ
+ 2Lg,max

)
(g (x0,y0) − g (xR,yR)) +(

2Lf,max

λ
+ 2Lg,max

)
(v (x0) − v (xR)) + 2Rcαδ2

λ2 + Rcαρ2

λ2 +

1
λ2 +

2Rλ2L2
g,maxcαζ

2
g

λ2µg
. (49)

From Lemma 3, we know that

ViolR ≤
2Rl2f
µgλ2 + 2

µgλ2

R−1∑
r=0

ψ2
r . (50)
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Substituting equation 49 in equation 50, we get

ViolR ≤
2Rl2f
µgλ2 + 2

µg

(
2Lf,max

λ2 + 2Lg,max

λ

)
(f (x0,y0) − f (xR,yR)) +

2
µg

(
2Lf,max

λ
+ 2Lg,max

)
(g (x0,y0) − g (xR,yR)) +

2
µg

(
2Lf,max

λ
+ 2Lg,max

)
(v (x0) − v (xR)) +

4Rcαδ2

µgλ2 + 2Rcαρ2

µgλ2 + 1
λ2 +

2Rλ2L2
g,maxcαζ

2
g

λ2µg
. (51)

Now substituting for δ2 and ρ2, we get

ViolR ≤
2Rl2f
µgλ2 + 2

µg

(
2Lf,max

λ2 + 2Lg,max

λ

)
(f (x0,y0) − f (xR,yR)) +

2
µg

(
2Lf,max

λ
+ 2Lg,max

)
(g (x0,y0) − g (xR,yR)) +

2
µg

(
2Lf,max

λ
+ 2Lg,max

)
(v (x0) − v (xR)) +

4Rcα
µgλ2

(
8λ2L2

g,maxl
2
g,max

µ2
g

(
1 − ηµg

2

)T

+
8λ2L2

g,maxcαζ
2
g

µg
+ 6ζ2

f + 12λ2ζ2
g

)
+

2Rcα
µgλ2

(
8ζ2

f + 8λ2ζ2
g

)
+ 1
λ2 +

2Rλ2L2
g,maxcαζ

2
g

λ2µg
.

Now, choosing T ≥ 2
ηµg

log
(

8Rλ2L2
g,maxl2

g,max
µ2

g

)
, we get

ViolR ≤
2Rl2f
µgλ2 + 2

µg

(
2Lf,max

λ2 + 2Lg,max

λ

)
(f (x0,y0) − f (xR,yR)) +

2
µg

(
2Lf,max

λ
+ 2Lg,max

)
(g (x0,y0) − g (xR,yR)) +

2
µg

(
2Lf,max

λ
+ 2Lg,max

)
(v (x0) − v (xR)) +

4Rcα
µgλ2

(
1
R

+
8λ2L2

g,maxcαζ
2
g

µg
+ 6ζ2

f + 12λ2ζ2
g

)
+

2Rcα
µgλ2

(
8ζ2

f + 8λ2ζ2
g

)
+ 1
λ2 +

2Rλ2L2
g,maxcαζ

2
g

λ2µg
. (52)

Dividing on both sides of the above equation by R results in the following average violation

ViolR

R
≤

2l2f
µgλ2 + 2

Rµg

(
2Lf,max

λ2 + 2Lg,max

λ

)
(f (x0,y0) − f (xR,yR)) +

2
Rµg

(
2Lf,max

λ
+ 2Lg,max

)
(g (x0,y0) − g (xR,yR)) +

2
Rµg

(
2Lf,max

λ
+ 2Lg,max

)
(v (x0) − v (xR)) +

4cα
Rµgλ2 +

32L2
g,maxc

2α2ζ2
g

µ2
g

+
24cαζ2

f

µgλ2 +
48cαζ2

g

µg
+

16cαζ2
f

µgλ2 +
16cαζ2

g

µg
+ 1
Rλ2 +

2L2
g,maxcαζ

2
g

µg
. (53)
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Now, retaining terms that depend on λ, R and α, we get the order result stated in the Theorem. This
completes the proof.

H Examples of (α, c)−Robust Aggregators

Though many robust aggregators have been proposed in the literature (Chen et al., 2017; Pillutla et al.,
2022b), they do not satisfy the definition 1. Also there are many new attacks where the methods using these
aggregators fail to converge.

In this section, we present the aggregators which when used with the bucketing algorithm, introduced in
Karimireddy et al. (2021; 2020) satisfy (α, c)-robust aggregator definition in 1.

Geometric Median: Also known as Robust Federated Averaging (RFA) (Chen et al., 2017; Pillutla et al.,
2022b) where aggregation is performed using geometric median:

GM(x1,x2, . . . ,xN ) := arg min
x∈Rd

N∑
i=1

∥x − xi∥ .

Coordinate-wise Median: CM is an aggregator which performs co-ordinate wise median:

[CM(x1,x2, . . . ,xN )]j := Median([x1]j , [x2]j , . . . , [xN ]j),

where [x]j is the jth component of vector x.

Krum: Krum finds a vector xk which is closest to the mean of the input vectors when n− |B| − 2 vectors
are excluded

Krum(x1,x2, . . . ,xn) := arg min
x∈{x1,...,xn}

∑
j∈Sj

∥xj − xi∥2
.
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