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ABSTRACT

General-purpose learning systems should improve themselves in open-ended fash-
ion in ever-changing environments. Conventional learning algorithms for neural
networks, however, suffer from catastrophic forgetting (CF)—previously acquired
skills are forgotten when a new task is learned. Instead of hand-crafting new
algorithms for avoiding CF, we use our novel Automated Continual Learning
(ACL) to train self-referential neural networks to meta-learn their own in-context
continual (meta-)learning algorithms. ACL encodes all desiderata—good perfor-
mance on both old and new tasks—into its learning objectives. We demonstrate
the effectiveness and promise of ACL on multiple few-shot and standard image
classification tasks adopted for continual learning: Mini-ImageNet, Omniglot,
FC100, MNIST-families, and CIFAR-10.1

1 INTRODUCTION

Enemies of memories are other memories (Eagleman, 2020). Continually-learning artificial neural
networks (NNs) are memory systems where their weights store memories of task-solving skills or
programs, and their learning algorithm is responsible for memory read/write operations. Conventional
learning algorithms—used to train NNs in the standard scenarios where all training data is available “at
once” as opposed to “sequentially” in the case of continual learning (CL)—are known to be inadequate
for continual learning. They suffer from the so-called catastrophic forgetting (CF; McCloskey &
Cohen (1989); Ratcliff (1990); French (1999)) problem, where the NNs forget, or rather, the learning
algorithm erases, previously acquired skills, in exchange of learning to solve a new task. Naturally,
a certain degree of forgetting is unavoidable when the memory capacity is limited, and the amount of
things to remember exceeds such an upper bound. In general, however, capacity is not the fundamental
cause of CF; typically, the same NNs, suffering from CF when trained on two tasks sequentially, can
perform well on both tasks when they are jointly trained on the two tasks at once instead (see, e.g.,
Irie et al. (2022a)). The real root of CF lies in the learning algorithm as a memory mechanism. A
“good” CL algorithm should preserve previously acquired knowledge while also leveraging previous
learning experiences to improve future learning, by maximally exploiting the limited memory space
of model parameters. All of this is the decision-making problem of a learning algorithm. In fact, we
can not blame the conventional learning algorithms for causing CF, since they are not aware of such a
problem. They are designed to train NNs for a given task at hand; they treat each learning experience
independently (they are stationary up to certain momentum parameters in certain optimizers), and
ignore any potential influence of current learning on past or future learning experiences. Effectively,
more sophisticated algorithms previously proposed against CF (Kortge, 1990; French, 1991), such as
elastic weight consolidation (Kirkpatrick et al., 2017; Schwarz et al., 2018) or synaptic intelligence
(Zenke et al., 2017), often introduce manually-designed constraints as regularization terms to explicitly
penalize current learning for deteriorating knowledge acquired in past learning.

Here, instead of hand-crafting learning algorithms for continual learning, we train self-referential
neural networks (Schmidhuber, 1992a; 1987) to meta-learn their own ‘in-context’ continual learning
algorithms. We train them through gradient descent on learning objectives that reflect desiderata
for continual learning algorithms—good performance on both old and new tasks, including forward
and backward transfer. In fact, by extending the standard settings of few-shot or meta-learning
based on sequence-processing NNs (Hochreiter et al., 2001; Younger et al., 1999; Cotter & Conwell,
1991; 1990; Mishra et al., 2018), the continual learning problem can also be formulated as a long-
span sequence processing task (Irie et al., 2022c). Corresponding sequences can be obtained by
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concatenating multiple few-shot/meta-learning sub-sequences, where each sub-sequence consists
of input/target examples corresponding to the task to be learned in-context. As we’ll see in Sec. 3,
this setting also allows us to seamlessly express classic desiderata for continual learning (knowledge
preservation, forward/backward transfer, etc.) as part of objective functions of the meta-learner.

Once formulated as such a sequence-learning task, we let gradient descent search for CL algorithms
achieving the desired CL behaviors in the program space of NN weights. In principle, all typical
challenges of CL—such as the stability-plasticity dilemma (Grossberg, 1982)—are automatically
discovered and handled by the gradient-based program search process. Once trained, CL is automated
through recursive self-modification dynamics of the trained NN, without requiring any human
intervention such as adding extra regularization or even setting hyper-parameters for continual
learning. Therefore, we call our method, Automated Continual Learning (ACL).

ACL requires training settings and datasets similar to those of few-shot/meta learning problems:
training sequences are constructed by shuffling target labels for various combinations of underlying
class categories, such that each such sequence represents a new learning experience for the model.
Our experiments focus on supervised image classication, and make use of the standard few-shot
image classification datasets for meta-training, namely, Mini-ImageNet (Vinyals et al., 2016; Ravi &
Larochelle, 2017), Omniglot (Lake et al., 2015), and FC100 (Oreshkin et al., 2018), while we also
meta-test on standard image classification datasets including MNIST families (LeCun et al., 1998;
Xiao et al., 2017) and CIFAR-10 (Krizhevsky, 2009). While these datasets remain in the realm of toy
tasks, they allow us to demonstrate the effectiveness and promise of our ACL principle.

2 BACKGROUND

Here we briefly review some background concepts that are essential for describing our method
in Sec. 3: continual learning and its desiderata (Sec. 2.1), few-shot/meta learning via sequence
processing (Sec. 2.2), and linear Transformer/fast weight programmer architectures (Sec. 2.3) that
are foundations of the self-referential neural network we use in our experiments.

2.1 CONTINUAL LEARNING

Continual or lifelong learning is a special form of multi-task learning (Thrun, 1998; Caruana, 1997).
In conventional multi-task learning scenarios, all datasets for different tasks are available at once,
and NNs are trained jointly on all of them (e.g., training batches mix examples from different datasets
without any particular order). In contrast, in continual learning settings, presentation of tasks/datasets
is sequential; an NN training process only has access to one task/dataset at a time. When a dataset for a
new task becomes available, we lose access to the training examples from the previous task, and so on.

The main focus of this work is on continual learning in supervised learning settings. In addition, we
focus on the realm of CL methods that keep model sizes constant (unlike certain CL methods that
incrementally add more parameters as more tasks are presented; see, e.g., Rusu et al. (2016)), and do
not make use of any external replay memory (used in other CL methods; see, e.g., Robins (1995);
Rolnick et al. (2019); Zhang et al. (2022)). High-level principles we discuss here also transfer to
reinforcement learning settings (Ring, 1994), but our experiments focus on supervised learning.

Classic desiderata for a CL system (see, e.g., Lopez-Paz & Ranzato (2017); Veniat et al. (2021))
are typically summarized as good performance on three metrics: classification accuracies on each
dataset (or their average), backward transfer (which measures the impact of learning a new task on the
model’s performance on previous tasks; e.g., catastrophic forgetting is a negative backward transfer),
and forward transfer (impact of learning a task for the model’s performance on a future task). From
a broader perspective of meta-learning systems, we may also measure other effects such as learning
acceleration (i.e., whether the system leverages previous learning experiences to accelerate future
learning); here we only briefly discuss this as our primary focus remains the classic CL metrics above.

2.2 FEW-SHOT/META-LEARNING VIA SEQUENCE LEARNING

In Sec. 3, we’ll formulate continual learning as a long-span sequence processing task. This is a direct
extension of the classic few-shot/meta learning formulated as sequence learning problem. In fact,
since the seminal works by Hochreiter et al. (2001); Younger et al. (1999); Cotter & Conwell (1991;
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1990) (see also Naik & Mammone (1992)), many sequence processing neural networks (see, e.g.,
Bosc (2015); Santoro et al. (2016); Duan et al. (2016); Wang et al. (2017); Munkhdalai & Yu (2017);
Munkhdalai & Trischler (2018); Miconi et al. (2018; 2019); Munkhdalai et al. (2019); Kirsch &
Schmidhuber (2021); Sandler et al. (2021); Huisman et al. (2023) including Transformers (Vaswani
et al., 2017) as in Mishra et al. (2018)) have been trained as a meta-learner (Schmidhuber, 1987;
1992a) that learn by observing sequences of training examples (i.e., pairs of inputs and their labels)
in-context. Here we briefly review such a formulation.

Let d, N , K, P be positive integers. In sequential N -way K-shot classification settings, a sequence
processing NN with a parameter vector θ ∈ RP observes a pair (xt, yt) where xt ∈ Rd is the input
and yt ∈ {1, ..., N} is its label at each step t ∈ {1, ..., N ·K}, corresponding to K examples for
each one of N classes. After the presentation of these N · K examples (often called the support
set), one extra input x ∈ Rd (often called the query) is fed to the model without its true label but
an “unknown label” token ∅ (number of input labels accepted by the model is thus N + 1). The
model is trained to predict its true label, i.e., the parameters of the model θ are optimized to maximize
the probability p(y|(x1, y1), ..., (xN ·K , yN ·K), (x,∅); θ) of the correct label y ∈ {1, ..., N} of
the input query x. Since class-to-label associations are randomized and unique to each sequence
((x1, y1), ..., (xN ·K , yN ·K), (x,∅)), each such a sequence represents a new (few-shot or meta)
learning experience to train the model. To be more specific, this is the synchronous label setting of
Mishra et al. (2018) where the learning phase (observing examples (x1, y1), ..., (xN ·K , yN ·K)) is
separated from the prediction phase (predicting label y given (x,∅)). We opt for this variant in our
experiments as we empirically find this (at least in our specific settings) more stable than the delayed
label setting (Hochreiter et al., 2001) where the model has to make a prediction for every input, and
the label is fed to the model with a delay of one time step.

2.3 SELF-REFERENTIAL WEIGHT MATRICES OR RECURSIVE LINEAR TRANSFORMERS

Our method (Sec. 3) can be applied to any sequence-processing NN architectures in principle.
Nevertheless, certain architectures naturally fit better to parameterize a self-improving continual
learner. Here we use the modern self-referential weight matrix (SRWM; Irie et al. (2022c)) to build a
generic self-modifying NN. An SRWM is a weight matrix (WM) that sequentially modifies itself as a
response to a stream of input observations (Schmidhuber, 1992a; 1993). The modern SRWM belongs
to the family of linear Transformers a.k.a. Fast Weight Programmers (FWPs; Schmidhuber (1991;
1992b); Katharopoulos et al. (2020); Choromanski et al. (2021); Peng et al. (2021); Schlag et al.
(2021); Irie et al. (2021)). Linear Transformers and FWPs are an important class of the now popular
Transformers (Vaswani et al., 2017): unlike the standard Transformers whose state size linearly grows
with the context length, the state size of FWPs is constant w.r.t. sequence length (like in the standard
RNNs). This is an important property for in-context continual learning, since, conceptually, we want
such a CL system to continue to learn for an arbitrarily long, lifelong time span. Moreover, the duality
between linear attention and FWPs (Schlag et al., 2021)—and likewise, between linear attention and
linear layers trained by the gradient descent learning algorithm (Irie et al., 2022a; Aizerman et al.,
1964)—have played a key role in certain theoretical analyses of in-context learning capabilities of
Transformers (von Oswald et al., 2023a; Dai et al., 2023).

The dynamics of an SRWM (Irie et al., 2022c) are described as follows. Let din, dout, t be positive
integers, and ⊗ denote outer product. At each time step t, an SRWM Wt−1 ∈ R(dout+2∗din+1)×din

observes an input xt ∈ Rdin , and outputs yt ∈ Rdout , while also updating itself to Wt:

[yt,kt, qt, βt] = Wt−1xt (1)
vt = Wt−1ϕ(qt); v̄t = Wt−1ϕ(kt) (2)
Wt = Wt−1 + σ(βt)(vt − v̄t)⊗ ϕ(kt) (3)

where vt, v̄t ∈ R(dout+2∗din+1) are value vectors, qt ∈ Rdin and kt ∈ Rdin are query and key vectors,
and σ(βt) ∈ R is the learning rate. σ and ϕ denote sigmoid and softmax functions respectively. ϕ is
typically also applied to xt in Eq. 1; here we follow Irie et al. (2022c)’s few-shot image classification
setting, and use the variant without it. Eq. 3 corresponds to a rank-one update of the SRWM, from
Wt−1 to Wt, through the delta learning rule (Widrow & Hoff, 1960; Schlag et al., 2021) where the
self-generated patterns, vt, ϕ(kt), and σ(βt), play the role of target, input, and learning rate of the
learning rule respectively. The delta rule in FWPs is typically reported to be crucial broadly across
many practical tasks (Schlag et al., 2021; Irie et al., 2021; 2022b; Irie & Schmidhuber, 2023b).
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Figure 1: An illustration of meta-training in Automated Continual Learning (ACL) for a self-
referential/modifying weight matrix W0. Weights WA obtained by observing examples for Task A
(blue) are used to predict a test example for Task A. Weights WA,B obtained by observing examples
for Task A then those for Task B (yellow) are used to predict a test example for Task A (backward
transfer) as well as a test example for Task B (forward transfer).

The initial weight matrix W0 is the only trainable parameters of this layer, that encodes the initial
self-modification algorithm. In practice, we use the layer above as a direct replacement to the
self-attention layer in the Transformer architecture (Vaswani et al., 2017); we also use the multi-head
version of the SRWM computation above. For further details, we refer to Irie et al. (2022c).

3 METHOD

Task Formulation. We formulate continual learning as a long-span sequence learning task. Consider
two “training” tasks A and B to be learned sequentially (as we’ll see, this can also be straightforwardly
extended to training using three or more tasks). We denote the respective training datasets as A and B,
and test sets as A′ and B′. Let D, N , K, L denote positive integers. We assume that each datapoint
in these datasets consists of one input feature x ∈ RD of dimension D (here we generically denote
x as a vector, but it is an image in all our experiments) and one label y ∈ {1, ..., N} denoting one
out of N classes (that is, these are N -way classification tasks). We further consider two sequences
of L training examples

(
(xA

1 , y
A
1 ), ..., (xA

L , y
A
L )

)
and

(
(xB

1 , y
B
1 ), ..., (x

B
L, y

B
L)

)
sampled from the

respective training sets A and B. In practice, L = NK where K is the number of training examples
for each class (1 out of N ). By concatenating these two sequences, we obtain one long sequence
representing a continual learning example to be presented to the model as an input sequence. Now
we also need to introduce test examples. We assume a single test example (hence, without index)
for each task: (xA′

, yA
′
) and (xB′

, yB
′
) respectively; let us further simplify the notation and denote

them as (xA
test, y

A
test) and (xB

test, y
B
test) instead. In the next section, we describe how these test examples

are used to construct the learning objectives to train the model.

Our model is a self-referential neural network that modifies its own weight matrices as a function
of input observations. To simplify the notation, we denote the state of our self-referential NN as
a single SRWM W∗ (even though, in practice, it may have many of them) where we’ll replace
∗ by various symbols representing the context/inputs it has observed. Given a training sequence(
(xA

1 , y
A
1 ), ..., (xA

L , y
A
L ), (xB

1 , y
B
1 ), ..., (x

B
L, y

B
L)

)
, our model consumes one input at a time, from left

to right, in the auto-regressive fashion. Let WA denote the state of the SRWM that has consumed the
first part of the sequence corresponding to the examples from Task A, i.e., (xA

1 , y
A
1 ), ..., (xA

L , y
A
L ),

and let WA,B denote the state of our SRWM having observed the entire sequence.

ACL Meta-Training Objectives. The ACL objective function consists in tasking the model to
correctly predict the test examples of all tasks learned so far at each task boundaries. That is, in the
case of two-task scenario described above (learning Task A then Task B), we use the weight matrix
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WA to predict the label yAtest from input (xA
test,∅), and we use the weight matrix WA,B to predict the

label yBtest from input (xB
test,∅) as well as the label yAtest from input (xA

test,∅). By letting p(y|x;W∗)
denote the model’s output probability for label y ∈ {1, .., N} given input x and model weights/state
W∗, the ACL objective function can be expressed as:

minimize
θ

−
(
log(p(yAtest|xA

test;WA)) + log(p(yBtest|xB
test;WA,B)) + log(p(yAtest|xA

test;WA,B))
)

(4)

for an input training sequence
(
(xA

1 , y
A
1 ), ..., (xA

L , y
A
L ), (xB

1 , y
B
1 ), ..., (x

B
L, y

B
L)

)
(which can be easily

extended to mini-batches with multiple such sequences), where θ denotes the model parameters (for
the SRWM layer, it is the initial weights W0). Figure 1 illustrates the overall training process of ACL.

The ACL objective function above (Eq. 4) is simple but encapsulates desiderata for continual learning
(reviewed in Sec. 2.1). The last term of Eq. 4 with p(yAtest|xA

test;WA,B) (or schematically p(A′|A,B))
optimizes for backward transfer: (1) remembering the first task A after learning B (combatting
catastrophic forgetting), and (2) leveraging learning of B to improve performance on a past task
A. The second term of Eq. 4, p(yBtest|xB

test;WA,B) (or schematically p(B′|A,B)), optimizes forward
transfer leveraging the past learning experience of A to improve predictions in the second task B, in
addition to simply learning to solve Task B from the corresponding training examples. To complete,
the first term of Eq. 4 is a simple, single-task meta-learning objective for Task A.

Overall Model Architecture. As we mention in Sec. 2, in our NN architecture, the core sequential
dynamics of continual learning are learned by the self-referential layers. However, as an image-
processing NN, our model makes use of a vision backend consisting of multiple convolutional
layers. In practice, we use the “Conv-4” architecture of Vinyals et al. (2016) typically used in
the context of few-shot learning. Overall, the model takes an image as input, process it through
a feedforward convolutional NN, whose output is fed to the SRWM-layer block. Note that this
is one of the limitations of this work. While our architecture with fixed vision components still
allows us to experimentally demonstrate the principle of ACL, more general ACL should make
use of self-modifying NNs that also learn to modify the vision components. One straightforward
architecture fitting the bill is an MLP-mixer architecture (Tolstikhin et al. (2021); built of several linear
layers), where all linear layers are replaced by the self-referential linear layers of Sec. 2.3. While we
implemented such a model, it turned out to be too slow for us to conduct corresponding experiments.
We will include our code of self-referential MLP-mixers in our public repository, but for further
experiments, we leave the future work with such an architecture using more efficient CUDA kernels.

Another crucial architectural aspect that is specific to continual/multi-task image processing is the
choice of normalization layers (see also Bronskill et al. (2020)). Typical convolutional NNs used
in few-shot learning (e.g., Vinyals et al. (2016)) contain batch normalization (BN; Ioffe & Szegedy
(2015)) layers. In our preliminary experiments, as expected, we found instance normalization (IN;
Ulyanov et al. (2016)) to generalize much better than BN layers in our CL setting. Thus, all BN
layers in our models are replaced by IN layers.

4 EXPERIMENTS

Common Settings. All tasks are configured to be a 5-way classification task. Not only this is one
of the classic configurations for few-shot learning tasks, but this also allows us to keep the overall
computational costs of our experiments reasonable (at the same time, we’ll also discuss this as a
limitation in Sec. 5). For standard datasets such as MNIST, we split the dataset into sub-datasets of
disjoint classes (Srivastava et al., 2013): for example for MNIST which is originally a 10-way classifi-
cation task, we split it into two 5-way tasks, one consisting of images of class ‘0’ to ‘4’ (‘MNIST-04’),
and another one made of class ‘5’ to ‘9’ images (‘MNIST-59’). When we refer to a dataset without
specifying the class range, we refer to the first sub-set. Unless otherwise indicated, we concatenate 15
examples for each class for each task in the context for both meta-training and meta-testing (resulting
in sequences of length 75 for each task). All images are resized to 32× 32-size 3-channel images,
and normalized according to the original dataset statistics. Appendix A provides further details.

4.1 TWO-TASK EVALUATION

Here we show the essence of our method (Sec. 3) in the two-task setting. We consider two meta-
training task combinations: Omniglot (Lake et al., 2015) and Mini-ImageNet (Vinyals et al., 2016;
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Table 1: 5-way classification accuracies using 15 examples for each class in the context (i.e., as
meta-testing training examples). Each row corresponds to a single model. bold numbers highlight
cases where in-context catastrophic forgetting is avoided through ACL.

Meta-Test Tasks: Context/Train (top) & Test (bottom)

Meta-Training Tasks A A → B B B → A

Task A Task B ACL A B A B A B

Omniglot Mini-ImageNet No 97.6 ± 0.2 52.8 ± 0.7 22.9 ± 0.7 52.1 ± 0.8 97.8 ± 0.3 20.4 ± 0.6
Yes 98.3 ± 0.2 54.4 ± 0.8 98.2 ± 0.2 54.8 ± 0.9 98.0 ± 0.3 54.6 ± 1.0

FC100 Mini-ImageNet No 49.7 ± 0.7 55.0 ± 1.0 21.3 ± 0.7 55.1 ± 0.6 49.9 ± 0.8 21.7 ± 0.8
Yes 53.8 ± 1.7 52.5 ± 1.2 46.2 ± 1.3 59.9 ± 0.7 45.5 ± 0.9 53.0 ± 0.6

Table 2: Similar to Table 1 above but using MNIST and CIFAR-10 (unseen domains) for meta-testing.

Meta-Test Tasks: Context/Train (top) & Test (bottom)

Meta-Training Tasks MNIST MNIST → CIFAR-10 CIFAR-10 CIFAR-10 → MNIST

Task A Task B ACL MNIST CIFAR-10 MNIST CIFAR-10 MNIST CIFAR-10

Omniglot Mini-ImageNet No 71.1 ± 4.0 49.4 ± 2.4 43.7 ± 2.3 51.5 ± 1.4 68.9 ± 4.1 24.9 ± 3.2
Yes 75.4 ± 3.0 50.8 ± 1.3 81.5 ± 2.7 51.6 ± 1.3 77.9 ± 2.3 51.8 ± 2.0

FC100 Mini-ImageNet No 60.1 ± 2.0 56.1 ± 2.3 17.2 ± 3.5 54.4 ± 1.7 58.6 ± 1.6 21.2 ± 3.1
Yes 70.0 ± 2.4 51.0 ± 1.0 68.2 ± 2.7 59.2 ± 1.7 66.9 ± 3.4 52.5 ± 1.3

Ravi & Larochelle, 2017) or FC100 (Oreshkin et al., 2018) (which is based on CIFAR100 (Krizhevsky,
2009)) and Mini-ImageNet. The order of appearance of two tasks within meta-training sequences is
alternated for every batch. We compare systems trained with or without the backward transfer term
in the ACL loss (the last term in Eq. 4).

Table 1 shows the results when the meta-trained models are meta-tested on the corresponding test sets
of the few-shot learning datasets used for training. We observe that in both pairs of training tasks, the
models without the ACL loss catastrophically forget the first task after learning the second one: the
accuracy on the first task is at the chance level of about 20% for 5-way classification after learning
the second task in-context. The ACL loss clearly addresses this problem: the CL algorithm learned
through ACL preserves the performance of the first task. This effect is particularly pronounced in the
Omniglot/Mini-ImageNet case (involving two rather distinct tasks).

Table 2 shows a similar evaluation but on two standard datasets, 5-way MNIST and CIFAR10. Again,
ACL-trained models better preserve the memory of the first task after learning the second one. In
the Omniglot/Mini-ImageNet case, we even observe certain positive backward tranfer effects: in
particular, in the “MNIST-then-CIFAR10” continual learning case, the performance on MNIST
noticeably improves after learning CIFAR10 (possibly leveraging ‘more data’ provided in-context).

4.2 IN-CONTEXT CATASTROPHIC FORGETTING IN THE BASELINES

Here we report some empirical observations on the baseline models trained without the backward
transfer term (the last/third term in Eq. 4) in the ACL objective loss (corresponding to the ACL/No
cases in Tables 1 and 2), namely emergence of “in-context catastrophic forgetting” during training.
We focus on the Omniglot/Mini-ImageNet case, but similar trends can also be observed in the
FC100/Mini-ImageNet case. Figures 2a and 2b show two cases we typically observe. These figures
show an evolution of six individual loss terms (the lower the better), reported separately for the cases
where Task A (here Omniglot) or Task B (here Mini-ImageNet) appears at the first (1) or second
(2) position in the 2-task continual learning training sequences. 4 out of 6 curves correspond to the
learning progress, showing whether the model becomes capable of in-context learning the given task
(A or B) at the given position (1 or 2). The 2 remaining curves are the ACL backward tranfer loss,
also measured for Task A and B separately here.
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(b) Case where one task is learned first (here Task A)
then the other one is learned later.

Figure 2: ACL/No-case meta-training curves displaying 6 individual loss terms, when the last term
of the ACL objective (the backward tranfer loss; “Task A ACL bwd” and “Task B ACL bwd” in the
legend) is not minimized (ACL/No case in Tables 1 and 2). Here Task A is Omniglot and Task B is
Mini-ImageNet. We observe that, in both cases, without explicit minimization, backward transfer
capability (purple and brown curves) of the learned learning algorithm gradually degrades as it learns
to learn a new task (all other colors), causing in-context catastrophic forgetting. Note that blue/orange
and green/red curve pairs almost overlap; indicating that when a task is learned, the model can learn
it whether it is in the first or second segment of the continual learning sequence.

Figure 2a shows the case where two tasks are learned about at the same time. We observe that when
the learning curves go down, the ACL losses go up, indicating that more the model learns, more it
tends to forget the task in-context learned previously. This trend is similar when one task is learned
before the other one as is the case in Figure 2b. Here Task A alone is learned first; while Task B is
not learned, both learning and ACL curves go down for Task A (essentially, as the model does not
learn the second task, there is no force that encourages forgetting). At around 3000 steps, the model
also starts learning Task B. From this point, the ACL loss for Task A also starts to go up, indicating
again a sort of opposing force effect between learning a new task and remembering a past task.

These observations clearly indicate that, without explicitly taking into account the backward transfer
loss as part of learning objectives, the gradient descent search tends to find solutions/CL algorithms
that prefer to erase previously learned knowledge (this is rather intuitive; it seems easier to find such
algorithms that ignore any influence of the current learning to past learning than “better” ones that
preserve prior knowledge). In all cases, we find our ACL objective to be crucial for the learned CL
algorithms to be capable of remembering the old task while also learning the new task at the same.

4.3 GENERAL EVALUATION

Evaluation on standard Split-MNIST. Here we evaluate ACL on the standard Split-MNIST task in
domain-incremental and class-incremental settings (Hsu et al., 2018; Van de Ven & Tolias, 2018),
and compare its performance to existing CL and meta-CL algorithms (see Appendix A.6 for full
references of these methods). Our comparison focuses on methods that do not require replay memory.
Table 3 shows the results. Since our ACL-trained models are general-purpose learners, they can be
directly evaluated (meta-tested) on a new task, here Split-MNIST. “ACL (Out-of-the-box model)”
row of Table 3 corresponds to our model from Sec. 4.1 meta-trained on Omniglot and Mini-ImageNet
using the 2-task ACL objective. It performs very competitively with the best existing methods in the
domain-incremental setting, while it largely outperforms them in the 2-task class-incremental setting.
The same model can be further meta-finetuned using the 5-task version of the ACL loss (here we only
used Omniglot as the meta-training data). The resulting model (the last row of Table 3) outperforms
all other methods in all settings studied here. We refer to Appendix A.6 for further discussions.

Evaluation on diverse task domains. Here we evaluate our ACL-trained models for CL involving
more tasks/domains; using meta-test sequences made of MNIST, CIFAR-10, and Fashion MNIST. We
also evaluate the impact of the number of tasks in the ACL objective: in addition to the model trained
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Table 3: Classification accuracies (%) on the Split-MNIST domain-incremental and class-incremental
learning (CIL) settings (Hsu et al., 2018). Both tasks are 5-task CL problems. For the CIL case, we
also report the 2-task case for which we can directly evaluate our out-of-the-box ACL meta-learner
of Sec. 4.1 (trained with a 5-way output and the 2-task ACL loss) which, however, is not applicable
(N.A.) to the 5-task CIL requiring a 10-way output. Mean/std over 10 training/meta-testing runs.
None of the methods here requires replay memory. See Appendix A.6 for further details.

Domain Incremental Class Incremental

Method 5-task 2-task 5-task

Stochastic Gradient Descent (SGD) 63.2 ± 0.4 48.8 ± 0.1 19.5 ± 0.1
Adam 55.2 ± 1.4 49.7 ± 0.1 19.7 ± 0.1

Adam + L2 66.0 ± 3.7 51.8 ± 1.9 22.5 ± 1.1
Elastic Weight Consolidation (EWC) 58.9 ± 2.6 49.7 ± 0.1 19.8 ± 0.1
Online EWC 57.3 ± 1.4 49.7 ± 0.1 19.8 ± 0.1
Synaptic Intelligence (SI) 64.8 ± 3.1 49.4 ± 0.2 19.7 ± 0.1
Memory Aware Synapses (MAS) 68.6 ± 6.9 49.6 ± 0.1 19.5 ± 0.3
Learning w/o Forgetting (LwF) 71.0 ± 1.3 - 24.2 ± 0.3

Online-aware Meta Learning (OML; Out-of-the-box) 69.9 ± 2.8 46.6 ± 7.2 24.9 ± 4.1
+ optimized # meta-testing iterations 73.6 ± 5.3 62.1 ± 7.9 34.2 ± 4.6

ACL (Out-of-the-box model; Sec. 4.1) 72.2 ± 0.9 71.5 ± 5.9 N.A.
+ meta-finetuned with 5-task ACL loss 84.3 ± 1.2 93.4 ± 1.2 74.6 ± 2.3

on Omniglot/Mini-ImageNet using the 2-task ACL (Sec. 4.1), we also meta-train a model (with the
same architecture and hyper-parameters) using 3 tasks, Omniglot, Mini-ImageNet, and FC100, using
the 3-task ACL objective (see Appendix A.4). Note that the 3-task version is not only meta-trained
for longer CL, but also meta-trained using more data. Table 4 shows the results. We observe that both
ACL-trained models are indeed capable of retaining the knowledge without catastrophic forgetting for
multiple tasks during meta-testing, while we also observe that the performance on prior tasks gradually
degrade as the model learns new tasks. The 3-task version outperforms the 2-task one overall,
encouragingly indicating a potential for further improvements even with a fixed parameter count.

5 DISCUSSION

Prior work. While there are several prior works that are catagorized as ‘meta-continual learning’
or ‘continual meta-learning’ (see, e.g., Javed & White (2019); Beaulieu et al. (2020); Caccia et al.
(2020); He et al. (2019); Yap et al. (2021); Munkhdalai & Yu (2017), most of them are based
on “model-agnostic meta-learning” (MAML; Finn et al. (2017); Finn & Levine (2018)) and learn
representations for CL but still make use of classic CL algorithms. In particular, tuning of the
learning rate and number of iterations is still required for optimal performance (see, e.g., Appendix
A.6). In contrast, our approach learn learning algorithms in the spirit of Hochreiter et al. (2001);
Younger et al. (1999); this may be categorized as ‘in-context continual learning’. Several recent works
(see, e.g., Irie & Schmidhuber (2023a); Coda-Forno et al. (2023); von Oswald et al. (2023b)) mention
the possibility of such in-context CL without any concrete study. We show that in-context learning
also suffers from catastrophic forgetting (Sec. 4.1-4.2) and propose ACL to address this problem.

Artificial v. Natural ACL in Large Language Models? Recently, “on-the-fly” or few-shot/meta
learning capability of sequence processing NNs has attracted broader interests in the context of large
language models (LLMs; Radford et al. (2019)). In fact, the task of language modeling itself has a
form of sequence processing with error feedback (essential for meta-learning (Schmidhuber, 1990)):
the correct label to be predicted is fed to the model with a delay of one time step in an auto-regressive
manner. Trained on a large amount of text covering a wide variety of credit assignment paths, LLMs
exhibit certain sequential few-shot learning capabilities in practice (Brown et al., 2020). This was
rebranded as in-context learning, and has been the subject of numerous recent studies (e.g., Xie et al.
(2022); Min et al. (2022); Yoo et al. (2022); Chan et al. (2022b;a); Kirsch et al. (2022); Akyürek et al.
(2023); von Oswald et al. (2023a); Dai et al. (2023)). Here we explicitly/artificially construct ACL
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Table 4: 5-way classification accuracies using 15 examples for each class for each task in the context.
2-task models are meta-trained on Omniglot and Mini-ImageNet, while 3-task models are in addition
meta-trained on FC100. ‘A, B’ in ‘Context/Train’ column indicates that models sequentially observe
meta-test training examples of Task A then B; evaluation is only done at the end of the sequence.

ACL
Meta-Testing Tasks Number of Meta-Training Tasks

Context/Train Test 2 3

A: MNIST-04 A 75.4 ± 3.0 89.7 ± 1.6
B: CIFAR10-04 B 51.6 ± 1.3 55.3 ± 0.9
C: MNIST-59 C 63.0 ± 3.3 76.1 ± 2.0
D: FMNIST-04 D 54.8 ± 1.3 59.2 ± 4.0

Average 61.2 70.1

A, B A 81.5 ± 2.7 88.0 ± 2.2
B 50.8 ± 1.3 52.9 ± 1.2

Average 66.1 70.5

A, B, C A 64.5 ± 6.0 82.2 ± 1.7
B 50.8 ± 1.2 50.3 ± 2.0
C 33.7 ± 2.2 44.3 ± 3.0

Average 49.7 58.9

A, B, C, D A 64.3 ± 4.8 78.9 ± 2.3
B 47.5 ± 1.0 49.2 ± 1.3
C 32.7 ± 1.9 45.4 ± 3.9
D 31.2 ± 4.9 30.1 ± 5.8

Average 43.9 50.9

training sequences and its objectives, but in modern large language models trained on a large amount
of data mixing a large diversity of dependencies using a large backpropagation span, it is conceivable
that some ACL-like objectives may naturally appear in the data.

Limitations. While we argue that our ACL is a promising approach for automating development
of CL algorithms, there are also several limitations. First of all, directly scaling ACL for real-world
tasks requiring many more classes does not seem straightforward: it would require very long training
sequences. That said, it is also possible that ACL could be achieved without exactly following the
process we propose; as we mention above for the case of LLMs, certain real-world data may naturally
give rise to an ACL-like objective. Another limitation of this work is training within the limited span.
It should be noted that unlike the standard Transformers, linear Transformers/FWPs like SRWMs can
be trained by carrying over states across two consecutive batches for arbitrarily long sequences. Such
an approach has been successfully applied to language modeling with FWPs (Schlag et al., 2021).
This possibility, however, has not been investigated here, and is left for future work. This work is also
limited to the task of image classification, which can be solved by feedforward NNs. Future work
may investigate the possibility to extend ACL to continual learning of sequence learning tasks, such
as continually learning new languages. Finally, ACL learns CL algorithms that are specific to the pre-
specified model architecture; more general meta-learning algorithms may aim at achieving learning
algorithms that are applicable to any model, as is the case for many classic learning algorithms.

6 CONCLUSION

Our novel Automated Continual Learning (ACL) formulates continual learning as sequence learning
across long time lags, and trains sequence-processing self-referential neural networks (SRNNs) to
learn their own in-context continual (meta-)learning algorithms. ACL encodes classic desiderata for
continual learning (such as knowledge preservation, forward and backward transfer, etc.) into the
objective function of the meta-learner. ACL uses gradient descent to deal with classic challenges
of CL, to automatically discover CL algorithms with good behavior. Once trained, our SRNNs
autonomously run their own continual learning algorithms without requiring any human intervention.
Our experiments demonstrate the effectiveness and promise of the proposed approach.
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Hao Peng, Nikolaos Pappas, Dani Yogatama, Roy Schwartz, Noah A Smith, and Lingpeng Kong.
Random feature attention. In Int. Conf. on Learning Representations (ICLR), Virtual only, 2021.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. [Online]. : https://blog.openai.com/better-language-
models/, 2019.

Roger Ratcliff. Connectionist models of recognition memory: constraints imposed by learning and
forgetting functions. Psychological review, 97(2):285, 1990.

Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. In Int. Conf. on
Learning Representations (ICLR), Toulon, France, April 2017.

Mark B. Ring. Continual Learning in Reinforcement Environments. PhD thesis, University of Texas
at Austin, Austin, TX, USA, 1994.

Anthony Robins. Catastrophic forgetting, rehearsal and pseudorehearsal. Connection Science, 7(2):
123–146, 1995.

David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy P. Lillicrap, and Gregory Wayne. Experience
replay for continual learning. In Proc. Advances in Neural Information Processing Systems
(NeurIPS), pp. 348–358, Vancouver, Canada, December 2019.

Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Ko-
ray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. Preprint
arXiv:1606.04671, 2016.

Mark Sandler, Max Vladymyrov, Andrey Zhmoginov, Nolan Miller, Tom Madams, Andrew Jackson,
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A EXPERIMENTAL DETAILS

A.1 DATASETS

For classic image classification datasets such as MNIST (LeCun et al., 1998), CIFAR10 (Krizhevsky,
2009), and FashionMNIST (FMNIST; Xiao et al. (2017)) we refer to the original references for
details.

For Omniglot (Lake et al., 2015), we use Vinyals et al. (2016)’s 1028/172/432-split for the
train/validation/test set, as well as their data augmentation methods using rotation of 90, 180, and 270
degrees. Original images are grayscale hand-written characters from 50 different alphabets. There
are 1632 different classes with 20 examples for each class.

Mini-ImageNet contains color images from 100 classes with 600 examples for each class. We use the
standard train/valid/test class splits of 64/16/20 following (Ravi & Larochelle, 2017).

FC100 is based on CIFAR100 (Krizhevsky, 2009). 100 color image classes (600 images per class,
each of size 32× 32) are split into train/valid/test classes of 60/20/20 (Oreshkin et al., 2018).

We use torchmeta (Deleu et al., 2019) which provides common few-shot/meta learning settings
for these datasets to sample and construct their meta-train/test datasets.

A.2 HYPER-PARAMETERS

We use the same model and training hyper-parameters in all our experiments. All hyper-parameters
are summarized in Table 5. We use the Adam optimizer with the standard Transformer learning rate
warmup scheduling (Vaswani et al., 2017). The vision backend is the classic 4-layer convolutional
NN of Vinyals et al. (2016). Most configurations follow those of Irie et al. (2022c); except that we
initialize the ‘query’ sub-matrix in the self-referential weight matrix using a normal distribution
with a mean value of 0 and standard deviation of 0.01/

√
dhead while other sub-matrices use an std

of 1/
√
dhead (motivated by the fact that a generated query vector is immediately multiplied with the

same SRWM to produce a value vector). For any further details, we’ll refer the readers to our public
code we’ll release upon acceptance.

Table 5: Hyper-parameters.

Parameters Values

Number of SRWM layers 2
Total hidden size 256

Feedforward block multiplier 2
Number of heads 16

Batch size 16 or 32

A.3 EVALUATION PROCEDURE

For evaluation on few-shot learning datasets (i.e., Omniglot, Mini-Imagenet and FC100), we use 5
different sets consisting of 32 K random test episodes each, and report mean and standard deviation.

For evaluation on standard datasets, we use 5 different random support sets for in-context learning,
and evaluate on the entire test set. We report the corresponding mean and standard deviation across
these 5 evaluation runs.

A.4 THREE-TASK ACL

We can straightforwardly extend the 2-task version of ACL presented in Sec. 3 to more tasks. In
the 3-task case (we denote the three tasks as A, B, and C) used in Sec. 4.3, the objective function
contains six terms. Following three terms are added to Eq. 4:
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−
(
log(p(yCtest|xC

test;WA,B,C)) + log(p(yBtest|xB
test;WA,B,C)) + log(p(yAtest|xA

test;WA,B,C))
)

(5)

A.5 AUXILIARY 1-SHOT LEARNING OBJECTIVE

In practice, instead of training the models only for “15-shot learning,” we also add an auxiliary loss
for 1-shot learning. This naturally encourages the models to learn in-context from the first examples.

A.6 DETAILS OF THE SPLIT-MNIST EXPERIMENT

Here we provide details of the Split-MNIST experiments presented in Sec. 4 and Table 3. The
baseline methods presented in Table 3 include: standard SGD and Adam optimizers, Adam with
the L2 regularization, elastic weight consolidation (Kirkpatrick et al., 2017) and its online variant
(Schwarz et al., 2018), synaptic intelligence (Zenke et al., 2017), memory aware synapses (Aljundi
et al., 2018), learning without forgetting (LwF; Li & Hoiem (2016)). For these methods, we directly
take the numbers reported in Hsu et al. (2018) for the 5-task domain/class-incremental settings.

For the 2-task class incremental setting, we use Hsu et al. (2018)’s code to train the correspond
models (the number for LwF is currently missing as it is not implemented in their code base; we will
add the corresponding/missing entry in Table 3 for the final version of this paper).

Finally we also evaluate a MAML-based meta-learning approach, OML (Javed & White, 2019). We
note that as reported by Javed & White (2019) in their public code repository; after some critical bug
fix, the performance of their OML matches that of Beaulieu et al. (2020) (which is a direct application
of OML to another model architecture). Therefore, we focus on OML as our main meta-continual
learning baseline. We take the out-of-the-box model (meta-trained for Omniglot, with a 1000-way
output) made publicly available by (Javed & White, 2019). We evaluate the corresponding model in
two ways. In the first, ‘out-of-the-box’ case, we take the meta-pre-trained model and only tune its
meta-testing learning rate (which is done by (Javed & White, 2019) even for Omniglot meta-testing).
We find that this method does not perform very well. In the other case (‘optimized # meta-testing
iterations’), we additionally tune the number of meta-test training iterations. We’ve done a grid search
of the meta-test learning rate in 3 ∗ {1e−2, 1e−3, 1e−4, 1e−5} and the number of meta-test training
steps in {1, 2, 5, 8, 10}; we found the learning rate of 3e−4 and 8 steps to consistently perform the
best in all our settings. We’ve also tried it ‘with’ and ‘without’ the standard mean/std normalization
of the MNIST dataset; better performance was achieved without such normalization (which is in
fact consistent as they do not normalize the Omniglot dataset for their meta-training/testing). Their
performance on the 5-task class-incremental setting is somewhat surprising/disappointing (since
genenralization from Omniglot to MNIST is typically straightforward, at least, in common non-
continual few-shot learning settings; see, e.g., Munkhdalai & Yu (2017)). At the same time, to
the best of our knowledge, OML-trained models have not been tested in such a condition in prior
work; from what we observe, the publicly available out-of-the-box model might be overtuned for
Omniglot/Mini-ImageNet or the frozen ‘representation network’ is not ideal for genenralization.

Unlike any other methods above, our out-of-the-box ACL models (trained on Omniglot and Mini-
ImageNet) do not require any tuning at meta-test time. Nevertheless, we’ve checked the effect of the
number of meta-test training examples (5 vs. 15; 15 is the number used using meta-training); we found
15 examples to work better. For the version that is meta-finetuned using the 5-task ACL objective
(using only the Omniglot dataset), we use 5 examples for both meta-train and meta-test training.
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