
Learning cure kinetics of frontal polymerization PDEs
using differentiable simulations

Pengfei Cai1, Qibang Liu2, Philippe Geubelle2, and Rafael Gomez-Bombarelli1
1Massachusetts Institute of Technology, {pengfeic, rafagb}@mit.edu

2University of Illinois at Urbana-Champaign, {qibang, geubelle}@illinois.edu

Abstract

Recent advances in frontal ring-opening metathesis polymerization (FROMP) offer
a sustainable and energy-efficient alternative for the rapid curing of thermoset
polymers compared to conventional bulk curing. To predict FROMP dynamics for
different formulations and processing conditions, we require an accurate continuum
model. The driving force for FROMP lies in the underlying cure kinetics, but our
understanding of the mechanisms is limited and existing cure kinetics models fall
short. Herein, we demonstrate that a differentiable simulator for partial differential
equations (PDEs) enables learning of cure kinetics functions from video frames
of the true solution. With a hybrid PDE solver, where learnable terms are param-
eterized by orthogonal polynomials or neural networks, we can uncover missing
physics within the PDE by applying PDE-constrained optimizations and the adjoint
method. Our work paves the way for learning spatiotemporal physics and kinetics
from experimentally captured videos.

1 Introduction

1.1 Background

Thermoset polymers are integral in many industries due to their strong specific mechanical properties
and thermo-chemical stability. However, current manufacturing of thermosets is energy-inefficient
and unsustainable, requiring long curing times at high temperatures in large autoclaves. For instance,
about 350 GJ is required to cure a section of Boeing 787’s carbon fiber/epoxy fuselage over 8 hours
and this process emits more than 80 tons of CO2 [22]. Recent advancements in frontal ring-opening
metathesis polymerization (FROMP) [18, 20] have enabled the rapid and stable curing of thermosets,
particularly polydicyclopentadiene (pDCPD). Since the heat of polymerization released by the ring-
opening metathesis reaction can propagate further FROMP reactions, only an initial thermal trigger
is required. Thus, FROMP can be an energy-efficient and sustainable alternative for manufacturing
thermosets at scale.

To discover formulations and processing conditions for stable and rapid FROMP, we need an accurate
predictive model at the continuum scale. The dynamics of FROMP can be modeled as thermo-
chemical PDEs in terms of the temperature T (in K) and the degree of cure α (dimensionless), as
described in Eq. (1).
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In the coupled PDE, the reaction term provides the heat source associated with the exothermic reaction
and the heat diffusion term describes the heat transport ahead of the advancing polymerization front.
The degree of cure α, a phenomenological quantity from 0 (uncured resin) to 1 (fully cured polymer),
is the ratio of the amount of heat released to the total heat of polymerization (α = H/Hr) [18].

T (x, y, 0) = T0,

α(x, y, 0) = α0,

T (0, y, t) = Ttrig, 0 < t ≤ ttrig,

∂T

∂x
(0, y, t) = 0, t > ttrig,

− κ∇T · n = hL(T − T0) or 0, y = ±w

2
.

(2)

The initial conditions and boundary conditions (BCs) are described in Eq. (2), where a trigger
temperature Ttrig is applied on one end x = 0 over ttrig (Dirichlet BC), followed by an adiabatic BC.
Adiabatic or heat convection BCs (with heat transfer coefficient hL) are imposed on other boundaries
depending on problem settings, where w is the width of the domain.

1.2 Learning the complete PDE: Hybrid model with a differentiable PDE solver

In FROMP, the reaction kinetics coupled with different processing conditions are complex and not
well understood. Existing cure kinetics functions f(α) are defined explicitly and parameters are
obtained by nonlinear fitting of differential scanning calorimetry (DSC) curves, where experiments are
performed at a controlled and low heating rate (typically dT/dt ≤ 20 oC/min). However, the heating
rate at the polymerization front is up to ∼105 oC/min in FROMP - thus existing f(α) functions fitted
from DSCs would not robustly predict the FROMP dynamics for different initial conditions and
chemical formulations. To address this, we aim to learn unknown physics or kinetics by augmenting
the existing PDE with learnable terms and learning the dynamics from experimentally observed
spatiotemporal data.

Figure 1: Differentiable hybrid PDE solver to learn unknown term(s) within the PDE

Herein, we adopt a hybrid solver approach where known terms form the base PDE and we focus on
learning unknown physics from data. We demonstrate that we can recover the unknown physics from
simulation videos by applying PDE-constrained optimization [26, 27] using a differentiable PDE sim-
ulator and differentiable programming in JAX [1]. The framework developed will eventually be useful
to learn unknown physics and cure kinetics from thermal capture videos obtained experimentally, thus
this work paves the way towards that goal. We need a PDE simulator that is end-to-end differentiable
so we can update learnable terms within the PDE using gradient descent. The gradients of the loss
function (between the true observed dynamics and the simulated PDE solutions) with respect to the
parameters are backpropagated through the simulation time steps by solving the adjoint equations.
For the numerical method, we choose the finite element method (FEM) [15, 25] due to its versatility
and flexibility over different geometries. Unknown terms can be represented as neural networks or
orthogonal bases, such as Legendre polynomials. For more details, refer to Appendix A.2.

2 Results and Discussion

We first demonstrate that the differentiable simulator can be used for the control and learning of
parameters within the PDE (Appendix A.3).
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2.1 Learning cure kinetics models

Figure 2: Learned cure kinetics functions f(α) for DCPD-GC1 by learning from a) degree of cure
or b) temperatures. Learned f(α) for the FROMP of c) COD and d) DCPD-GC2 by learning from
temperatures.

Eventually, we aim to learn unknown physics from experimental videos of FROMP. To this end, we
demonstrate the ability to learn unknown cure kinetics functions from simulated FROMP videos (i.e.
numerical PDE solutions). To test the robustness of the framework, we will examine different FROMP
formulations, namely the polymerization of DCPD with Grubbs catalyst type 1 (DCPD-GC1), DCPD
with Grubbs catalyst type 2 (DCPD-GC2) and the unstable FROMP of cyclooctadiene (COD) [14].

fθ(α) = (1− α)

N=10∑
n=0

bnPn (3)

L(Tsim, Ttrue) =

Nt∑
i=1

∥Tsim,i − Ttrue,i∥2
∥Ttrue,i∥2

(4)

For all cases, we parameterize the f(α) term with a linear combination of orthogonal polynomials,
specifically with the first ten Legendre polynomials (Eq. (3)), and learn the eleven bn coefficients that
weigh each polynomial’s contribution (including the 0-th order term) [27]. We choose orthogonal
Legendre polynomials due to their high expressivity and interpretability while having less tunable
parameters. We impose a prior of (1−α) since the reaction rate is 0 when the resin is fully cured. For
the loss function (Eq. (4)), we use the relative L2-norm between the simulated solutions (predictions)
and the true solutions, summed over Nt frames. During training, the gradients of the loss with respect
to the learnable parameters are backpropagated to update f iteratively via gradient descent.

Learning f(α) for the stable FROMP of DCPD-GC1. In the first case, we attempt to learn f(α)
for the DCPD-GC1 system using 21 training samples. The true f(α) (Eq. (5)) is the nth-order
Prout-Tompkins model (PTn) [9] and this was used to solve the PDE to obtain the true solutions.

f(α) = (1− α)1.927(1 + 0.365α) (5)

The Legendre polynomial parameters are initiated to be zeros and the PDE is solved forward for 100
steps (dt = 0.01). With a batch size of 3, the average gradients in each batch are backpropagated
with respect to the 11 parameters to update them every batch. For this scheme, we learned from
either degree of cure (Fig. 2a) or temperature (Fig. 2b). Evidently, it is easier to reproduce the true
f(α) when we learn directly from the degree of cure as the cure kinetics function is a function of α.
Our problem is a coupled time-dependent PDE where both temperature and degree of cure influence
each solution in the next time step. In practice, we can only measure the spatiotemporal changes in
temperature but not the degree of cure. As such, it is more meaningful to learn the f(α) from the
sample’s temperatures and solve for the degree of cure using the learned f(α) in each iteration.

Learning f(α) for FROMP of COD and DCPD-GC2. In the next two cases, we learn the f(α) from
T (x, y, t) and demonstrate that with only 3 solutions for training, we can learn a good approximation
of the f(α) over 50 epochs. Instead of mini-batching and updating with average gradients, we solve
the PDE forward and update the parameters over each sample. COD polymerizes with an unstable
FROMP profile with certain initial temperatures and pre-cure despite having a relatively simpler cure
kinetics following the Prout-Tompkins (PT) model (Eq. (6)).
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f(α) = (1− α)2.514α0.817 (6)

We generate 3 solutions with chaotic fronts and attempt to learn the f(α) with only the first 5 frames
of the PDE solution (Fig. 2c). Thus, with a total of only 15 frames of T (x, y, t) solution, we can
recover the f(α). This is possible because the (1− α) prior enforces f(α) to be 0 when α is 1, and
the 3 training samples have 3 different initial conditions of α that give a sufficient range of trajectories
for learning.

f(α) = (1− α)1.72α0.77e−14.48(α−0.41) (7)
Finally, we try to learn a more complicated f(α) involving the Prout-Tompkins model with a diffusion
term (Eq. (7)), this model accounts for diffusion effects at higher temperatures [9]. For this case, we
find that solving the PDE over longer trajectories (50 steps) is required for a more accurate recovery
of f(α) (Fig. 2d).

For the experiments discussed, the trajectories of the learned f(α) over iterations and learning curves
are in Appendix A.4. Using the learned f(α), we solve the PDE and plot the roll-out solutions for
both T and α (Fig. 6, Fig. 7, Fig. 8) for a few test samples.

2.2 Comparing function representations

Figure 3: Comparison of validation loss curves and learned f(α) functions parameterized by Legendre
polynomials, MLP, and KAN on the unstable COD FROMP case.

We compare parameterizations of f(α) using Legendre polynomials, MLPs, and Kolmogorov-Arnold
Networks (KANs) [13] to learn the PT model (Eq. (6)) for COD (Fig. 3). MLPs with appropriate
activation functions (tanh) can converge, but are harder to train than orthogonal polynomials.
Orthogonal bases like Legendre polynomials work well for smaller datasets due to fewer tunable
parameters and better interpretability. With MLPs, inductive biases have to be enforced through the
right selection of activation functions to accurately capture the physical dynamics. Nevertheless,
neural networks would be more useful when we have larger datasets. In our example, KANs have
shown promise in learning unknown terms in PDEs. Herein, we adopted a JAX re-implementation,
based on b-splines as the underlying basis functions, of KANs. For future work, it could be meaningful
to examine the effectiveness of KANs, particularly with other bases such as Legendre and Chebyshev
polynomials, in learning PDEs.

3 Conclusion

With a hybrid differentiable PDE simulator, we have demonstrated that we can learn missing functions
within the PDE by applying gradient-based PDE-constrained optimizations. We applied the approach
to learn the cure kinetics models for three different FROMP systems - DCPD-GC1, DCPD-GC2,
and the unstable FROMP of COD. With limited training samples and a few frames of PDE solu-
tions, we can recover the true f(α) by iteratively updating the learnable function with gradient
descent. Parameterizing the unknown functions with orthogonal polynomials give high accuracy and
interpretability. Our work paves the way to uncover missing physics and cure kinetics from videos
captured experimentally - thereby allowing end-to-end learning of continuum models from observed
dynamics.
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A Appendix

A.1 Related works in scientific machine learning and neural PDEs

Neural PDE models aim to learn a data-driven PDE solver that can predict solutions for each time
step autoregressively [2]. Notably, neural operators learn the mapping between function spaces [8].
Some examples include the Fourier [10], Laplace [3], Wavelet [23], and spectral neural operators [12].
Various NN and neural operator models have found successes in climate and weather forecasting
where the models are trained on a large corpus of historic data [16]. However, for applications as
surrogate PDE solvers, neural operators are usually trained on PDE solutions that are generated by
a numerical solver [21]. Another direction involves Physics-Informed Neural Networks (PINNs)
[17, 11] where NNs parameterize the underlying PDE solutions and incorporate the equations of the
PDE to construct the loss function (i.e. with PDE residual, boundary conditions, initial conditions
terms). In our case, we do not know the complete physics of the underlying PDE - our goal is to learn
the PDE rather than to learn the solution or its operator.

Hybrid physics machine learning methods combine numerical methods with data-driven methods
and these could be useful in multiscale closure modeling. This emerging direction has been applied
to learn closure relations in PDEs [5], hybrid general circulation model of the atmosphere [7], and
to learn kinetics of Lithium intercalation and pattern formations [26, 27]. Unknown physics within
the differential equations, either due to unknown complex relationships or governed by higher-order
behaviors not captured by the existing model assumptions, may be parameterized by learnable
functions to recover the true physics. At the core of these methods is an end-to-end differentiable
simulator enabled by the growing ecosystem of differentiable programming [7], differentiable PDE
solvers [24], and the field of neural differential equations [4, 6]. In our work, we build on top of
FEniCS-adjoint and JAX-FEniCS [15, 25], where FEM is the underlying PDE solver and the interface
with JAX provides differentiable programming and neural networks support.

A.2 Methods

A.2.1 Numerical simulations with the Finite Element Method

To generate all the true numerical solutions examined in this paper, we solved the PDE using the
finite element method implemented in FEniCS. The continuous Galerkin elements from the Lagrange
family of function spaces are used to approximate the physical fields. An interval mesh and a
rectangular mesh were used for 1D and 2D problems. For 2D problems, convective heat loss is
applied on y = ±w

2 , where w is the width of the domain. For all examples, a Dirichlet boundary
condition is imposed on one end of the domain (x = 0) with T = Ttrig.

For examples involving the optimization of parameters and learning cure kinetics of DCPD-GC1,
the PDEs of Eq. (1) are framed as a coupled scheme that solves T and α simultaneously using a
nonlinear solver following Newton’s method and the iterative linear solver of the generalized minimal
residual (GMRES) method with an algebraic multigrid (AMG) preconditioner.

Due to convergence issues using the coupled scheme, for examples involving the learning of cure
kinetics of DCPD-GC2 and unstable COD FROMP, Eq. (1) is solved in a decoupled scheme, in which
an iterative linear solver with the conjugate gradient method and an AMG preconditioner are used to
solve the diffusion PDE (Eq. (1a)) for T in an implicit Euler scheme, and an explicit Euler scheme
is used to solve the reaction ordinary differential equation (ODE, Eq. (1b)) for α. The material
properties shown in Eq. (1) for thermal conductivity κ (in W m−1 K−1), specific heat capacity Cp (J
kg−1 K−1), density ρ (kg m−3), enthalpy of polymerization Hr (J kg−1), pre-exponent A (in s−1)
and activation energy E (in kJ mol−1) for DCPD-GC1, DCPD-GC2 and COD can be found in [9].

A.2.2 Differentiable PDE solver

A differentiable PDE solver is required to allow end-to-end learning of unknown terms in the PDE.
We apply PDE-constrained optimizations with the adjoint method [19, 26], and backpropagate the
loss to update learnable parameters within the PDE. With reverse-mode auto-differentiation, the
vector-Jacobian product functions solve the adjoint equations in FEniCS-adjoint [15]. In our time-
dependent PDE, solving the PDE forward evaluates T (Eq. (8)) while the adjoint equation (Eq. (9)) is
solved backward in time. The adjoint variable, λ, is the solution of the adjoint equation and θ is a set
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of parameters that we are trying to learn. A loss function (or objective function) which depends on
the state variable (i.e. temperature T ) integrated over time (L(T ) =

∫ t

0
l(T ) dt), is constructed based

on the relative L2 norm between the true T and simulated T . Eq. (10) shows the gradient of the loss
function with respect to the parameters where ∂T/∂θ is the sensitivity.

M
dT

dt
= F (T, θ) (8)

−M† dλ

dt
=

(
∂F

∂T

)†

λ+
∂l

∂T
(9)

∂L

∂θ
=

∫ t

0

(
∂l

∂T

)†
∂T

∂θ
dt (10)

By interfacing with JAX [1], we can create end-to-end differentiable simulators and parameterize
learnable functions within the PDE with versatile representations, such as orthogonal polynomials
and neural networks. The ADAM optimizer is used to update parameters iteratively through gradient
descent with weight decay. An L2 regularization is imposed in the loss function to discourage larger
values of the parameters.

A.3 Optimizing and learning parameters within the PDE

Optimizing material parameters towards high frontal velocities. We apply our approach to
optimize material parameters that would steer the PDE solutions toward high frontal velocities. We
solve the 1D problem of the PDE forward and calculate the frontal velocities (Vf ) using the relative
positions of the front with α=0.5. By setting a target Vf in the loss function, we optimize the material
parameters within the PDE to control the PDE solutions to reach a high Vf by taking the gradients
with respect to each parameter. Specifically, we optimize for the thermal conductivity (κ), specific
heat capacity (Cp), and the enthalpy of polymerization (Hr). Intuitively, from the PDE, we know that
a high κ, low Cp, and high Hr would lead to high Vf . With this toy problem, we demonstrate that
known parameters within the PDE can be optimized (Fig. 4) to give high Vf , thus reproducing our
physical intuition built within the PDE.

Learning initial conditions and thermal conductivity. Similarly, we can recover parameters and
initial conditions with the same approach. We generate a 2D solution and use only the first 10 time
steps (first 0.1s) for learning. Initializing the κ term and the initial temperature T0 as zeros, we solve
the PDE forward for 10 steps and backpropagate the loss (mean squared error for all 10 frames) to
update both κ and T0. With 300 iterations, the parameters converged to recover κ and T0 as 0.1523
and 24.90, which are close to the true values of 0.152 W/m · K and 25.0 ◦C respectively (Fig. 4).

Figure 4: a) Optimizing material parameters for high FROMP frontal velocities. b) Learning thermal
conductivity and initial temperature.

A.4 Supplementary figures for learning f(α) and roll-out solutions
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Figure 5: Evolution of learned f(α) over training iterations for DCPD-GC1, COD, and DCPD-GC2.

Figure 6: Comparisons of roll-out solutions with the learned f(α) and the true solutions for FROMP
of DCPD-GC1. Both T and α solutions are plotted at different t (Test set example).
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Figure 7: Comparisons of roll-out solutions with the learned f(α) and the true solutions for unstable
FROMP of COD. Both T and α solutions are plotted at different t (Example 1, test set).

Figure 8: Comparisons of roll-out solutions with the learned f(α) and the true solutions for unstable
FROMP of COD. Both T and α solutions are plotted at different t (Example 2, test set).
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