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ABSTRACT

The reasoning processes of large language models often lack faithfulness; a model
may generate a correct answer while relying on a flawed or irrelevant reasoning
trace. This behavior, a direct consequence of training objectives that solely re-
ward final-answer correctness, severely undermines the trustworthiness of these
models in high-stakes domains. This paper introduces Counterfactual Sensitiv-
ity Regularization (CSR), a novel training objective designed to forge a strong,
causal-like dependence between a model’s output and its intermediate reasoning
steps. During training, CSR performs automated, operator-level interventions on
the generated reasoning trace (e.g., swapping ‘+° with ‘-”) to create a minimally-
perturbed counterfactual. A regularization term then penalizes the model if this
logically flawed trace still yields the original answer. Our efficient implementation
adds only 8.7% training overhead through warm-start curriculum and token-subset
optimization. We evaluate faithfulness using Counterfactual Qutcome Sensitiv-
ity (COS), a metric quantifying how sensitive the final answer is to such logi-
cal perturbations. Across diverse structured reasoning benchmarks—arithmetic
(GSMB8K), logical deduction (ProofWriter) , multi-hop QA (HotpotQA), and code
generation (MBPP) —models trained with CSR demonstrate a vastly superior
trade-off between accuracy and faithfulness. CSR improves faithfulness over
standard fine-tuning and process supervision by up to 70 percentage points, with
this learned sensitivity generalizing to larger models and enhancing the perfor-
mance of inference-time techniques like self-consistency. To demonstrate the
broader applicability of this principle, we conduct a pilot study on the HellaSwag
-commonsense reasoning task, showing that a semantic version of CSR (using
causal connectives, temporal markers, and key entities as operators) can signifi-
cantly improve faithfulness there as well.

1 INTRODUCTION

Large Language Models (LLMs) are being deployed in increasingly critical applications, yet their
internal decision-making processes remain disturbingly opaque. While capable of generating com-
plex, step-by-step rationales through methods like Chain-of-Thought (CoT) prompting (Wei et al.|
2022; Kojima et al., 2022} Nye et al. |2021)) and more advanced deliberation strategies (Yao et al.,
2023), a particularly acute problem is the crisis of unfaithful reasoning: an LLM may produce a
correct answer accompanied by a plausible-looking chain of thought, yet the rationale itself is a
fabrication, disconnected from the model’s true “computation” (Lanham et al., 2023} [Turpin et al.,
2023)). This behavior, where models learn to rationalize post-hoc rather than reason genuinely, poses
a fundamental threat to their trustworthiness. For LLMs to be reliable partners in science, medicine,
and engineering, the reasoning they present must be the reasoning they use.

This disconnect arises from the dominant training paradigm of outcome supervision, where models
are optimized exclusively for final-answer accuracy (Cobbe et all 2021). This objective function
incentivizes models to exploit spurious correlations and statistical shortcuts in the data (Meng et al.,
2023)), completely bypassing the intermediate reasoning steps. Recent studies confirm this troubling
behavior, showing that larger, more capable models are particularly adept at ignoring their own
generated explanations, feigning a structured thought process while relying on shallow heuristics
(Turpin et al., 2023)).
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This paper confronts the challenge of instilling faithfulness within structured reasoning do-
mains—tasks such as mathematics, formal logic, and planning, where the validity of an argument is
governed by well-defined operators and rules. In these domains, the notion of a “correct” reasoning
step is unambiguous. We introduce Counterfactual Sensitivity Regularization (CSR), a training
objective that enforces a strong dependence between a model’s reasoning trace and its final output.
Our approach is motivated by principles of causal intervention (Pearl, [2009), using targeted pertur-
bations as a practical and highly effective heuristic to train for more robust and faithful reasoning.

The core principle of CSR is simple: a model that truly relies on its reasoning should change its
answer when that reasoning is broken. During each training step, CSR generates a reasoning trace
and then creates a minimally perturbed counterfactual trace by swapping a single, critical operator
(e.g., changing ‘+’ to ‘-’ in a mathematical proof). A regularization loss then penalizes the model
if its prediction remains unchanged in the face of this logical inconsistency, thereby forcing it to
become sensitive to the integrity of its intermediate steps. The entire process is automated and
computationally efficient, with our optimized implementation adding only 8.7% training overhead.

This paper makes three core contributions:

* Theoretical Foundation: We formalize counterfactual sensitivity and prove it domi-
nates sufficiency/comprehensiveness under identifiable causal edits, providing the first
theoretically-grounded training objective for faithfulness with formal guarantees.

* CSR Training Method: We introduce Counterfactual Sensitivity Regularization with
learned intervention policies that substantially outperform existing baselines: +62.7 COS
points on GSMS8K, +60.6 on HotpotQA, and +62.5 on Proof Writer (all p < 0.001, Cohen’s
d > 2.0), with efficient implementation (< 10% overhead).

* Cross-Domain Validation: We demonstrate CSR’s effectiveness across structured reason-
ing (math, logic, multi-hop QA) and specialized domains (biomedical QA), with automatic
operator discovery achieving 74% precision without manual supervision.

2 RELATED WORK

Our work builds on research in faithfulness evaluation (Lanham et al.,|2023}; | Turpin et al., 2023) and
process supervision (Lightman et al.l 2023} [Uesato et al.,[2022). Recent inference-time verification
methods, such as inference-time search with scaled self-verification (Zhao et al.l [2025)), extend this
idea by sampling multiple reasoning traces and automatically selecting faithful outputs, but unlike
CSR they remain post-hoc checks without training-time guarantees. CausalGPT (Tang et al., [2023)
for prompting-based counterfactual reasoning, and faithful CoT (Lyu et al., |2023) using human
verification. Unlike these post-hoc or manual approaches, CSR provides automated training-time
intervention with theoretical guarantees. A more detailed related work is discussed in the Appendix

H

While existing approaches provide valuable insights into faithfulness evaluation and step-level su-
pervision, they share fundamental limitations: they either rely on manual annotation, operate only
at inference time, or lack theoretical grounding for their interventions. To address these gaps, we
introduce a novel training methodology that automatically generates meaningful counterfactual rea-
soning traces and uses them to enforce faithful dependence between reasoning steps and final outputs
during the learning process itself.

3 COUNTERFACTUAL SENSITIVITY REGULARIZATION (CSR)

The central goal of CSR is to train a model such that its generated reasoning trace, T, is a necessary
component for arriving at its final answer, Y. We operationalize this goal by penalizing the model
whenever a significant intervention on the logical structure of 7' fails to produce a corresponding
change in the distribution of Y. Figure |l]illustrates the CSR training process, and the complete
training process is detailed in Algorithm
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The Counterfactual Sensitivity Regularization (CSR) Process

Step 1: Forward Pass Step 2: Intervention Step 3: Counterfactual
Generate T, Y D — T-T D ——— Generate Y' from T'
Compute Leask (+->-*=)) Compute P(Y|T", X)

Step 4: CSR Loss
Lcsg = =D (PY|T, X)IP(Y|T', X))

‘ Ltotal = Ltask — A * Lcsr ‘

Figure 1: CSR training process. CSR performs automated interventions on reasoning traces and
maximizes the divergence between original and counterfactual answer distributions.

3.1 STANDARD FORWARD PASS AND TASK LOSS

For a given input question X, the model first generates a sequence autoregressively, containing both
the reasoning trace 7" and the final answer Y':

(T,Y) = Model(X) (1)

Answer Distribution Definition. We formally define the answer space Y and extraction method
p(Y|T, X) per domain: numerical answers use classification heads over number tokens, QA tasks
use constrained decoding over document spans, and classification tasks extract logits for specific
answer tokens. Complete definitions and examples are in Appendix

The standard task objective minimizes negative log-likelihood of the ground-truth answer:

Lk = — 10g P(Y = KruelTv X) (2)

3.2 LEARNED CAUSAL INTERVENTIONS VIA A MULTI-EDIT PoLICY

The core of CSR’s effectiveness lies in the quality of its counterfactual traces. Simple, random
interventions (e.g., always swapping ‘+’ with ‘-’) can be gamed by the model, which may learn a
superficial heuristic (e.g., “if you see ‘+’, ignore it”’). To overcome this, we introduce a more power-
ful intervention mechanism: a learned editor model that is trained to produce minimal, plausible,
and causally significant edits.

To create challenging counterfactuals, we use a learned editor model that generates operator-level
interventions validated by lightweight verifiers. The editor is trained to produce minimal edits that
break trace validity while maximizing distributional change (details in Appendix [C).

3.3 THE CSR OBIJECTIVE

With the perturbed trace 7" in hand, we perform a second, counterfactual forward pass to obtain a
new answer distribution, P(Y|T”, X). A faithful model, upon processing the logically inconsistent
trace, should change its prediction or at least become less certain. We formalize this intuition with
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Algorithm 1 CSR Training with Enhanced Details

1: Input: Question X, Ground-truth Y;,., Model My, Editor M.q;, Verifier v, Regularization A
2: QOutput: Updated model parameters 6

> 1. Generate original reasoning trace
(T,Y) + Mp(X) > Sample trace and answer autoregressively
4: Porig(Y|T, X) Softmax(LogitsMg (X,7))
5: Liask < — logporig(}/true‘Ta X)

[9%]

> 2. Create counterfactual via learned editor

6: edits + Meai (X, T) > Sample edit operations (e.g., + — —)
7: T' < ApplyEdits(T, edits) > Apply operator swaps to trace
> 3. Verify edit validity and compute CSR loss
8: if v(T") = 0and v(T) = 1 then > Valid edit: breaks trace validity (1=valid, O=invalid)
9: pet(Y|T', X) < Softmax(Logits ,,, (X, 7")) > Counterfactual forward pass
10: Lecsr Dk (Porig || pet) > Maximize distribution divergence
11: Liotal < Liask — A - Lesr
12: else
13: Liotal < Liask > Skip CSR if edit invalid
14: end if

> 4. Update model parameters
15: 0 + 0 — NV Lo > Gradient descent step

a regularization term that maximizes the distance between the original and counterfactual answer
distributions. We use the Kullback-Leibler (KL) divergence for this purpose:

Lesg = D (p(Y|T, X)||p(Y|T', X)) 3)

Maximizing this objective pushes the two probability distributions apart. This objective directly
encourages the model’s output distribution to be sensitive to the logical integrity of the input trace.
If the model is truly reasoning through the trace, a fundamental error in that trace should lead to a
different conclusion.

3.4 COMBINED TRAINING OBJECTIVE

The final training objective is a weighted sum of the task loss and the CSR regularization term:
Etotal = £task —A- ECSR (4)

where A trades off correctness and faithfulness; we show a robust range in Appendix [[} Intuition: if
the trace is broken in a way that should matter, the answer distribution must move. This combined
objective balances ensuring the model maintains correctness while forcing dependence on valid
reasoning.

4 THEORETICAL FOUNDATIONS

Our approach is grounded in a formal, causally-motivated measure of faithfulness we term Counter-
factual Sensitivity. We provide theoretical foundations establishing its link to causal faithfulness and
key properties. All formal definitions, complete proofs, and detailed analysis are in Appendix D}

Definition 1 (Faithfulness Measures). We define three faithfulness measures: Comprehensiveness
(answer change when removing important tokens), Sufficiency (answer change when keeping only
important tokens), and Counterfactual Sensitivity (answer change when editing logical structure).
All use KL-divergence between answer distributions.

Theorem 1 (Dominance of Counterfactual Sensitivity). Under identifiable causal edits, Counter-
factual Sensitivity dominates traditional comprehensiveness and sufficiency measures in expectation.
Complete proof in theorem

Theorem 2 (Shortcut Prevention). Under sufficient regularization strength, CSR provably forces
models to rely on reasoning traces rather than spurious shortcuts when shortcuts are causally dis-
connected from valid edits. Complete proof in theorem
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Our theoretical analysis establishes that CSR measurements are robust and statistically reliable,
with 78-85% theory-practice alignment in structured domains. We view theory as guiding principles
rather than formal guarantees in practice. Complete proofs, validation studies, synthetic benchmarks
(Table[34)), and theory-practice gap analysis (Table 35) are provided in Appendix D]

Robustness to noise. We extend the guarantees to imperfect verifiers and operator discovery in
Appendix [D.2] showing CSR’s expected regularization scales smoothly with the rate of accepted,
causally-invalidating edits.

Having established the theoretical foundations for CSR, we now turn to empirical validation. Our
experiments are designed to test three key hypotheses: (1) CSR substantially improves faithful-
ness over existing baselines while maintaining accuracy, (2) the method generalizes across diverse
reasoning domains and model architectures, and (3) the approach remains computationally efficient
and robust to implementation choices. We evaluate these claims through comprehensive experiments
across seven reasoning benchmarks with rigorous statistical analysis.

5 EXPERIMENTS

5.1 SETUP & METRICS

We evaluate CSR on Llama-2-13B and GPT-3.5-class models across seven reasoning domains:
GSMBK (arithmetic), HotpotQA (multi-hop QA), ProofWriter (logic), MBPP (code), PubMedQA
(biomedical), HellaSwag (commonsense) Zellers et al.| (2019), and Natural Questions (retrieval-
augmented QA). We compare against Process Supervision, Process Reward Models, and Verifier-
Guided Training under matched computational budgets. All baseline comparisons use identical
computational budgets defined by: (1) equal total token updates across training data, (2) identical
context window limits (2048 tokens), (3) same hyperparameter search budget (3 seeds x 5 A val-
ues), and (4) equivalent GPU-hour allocations per method. This ensures fair comparison of training
efficiency and cost-effectiveness.

Our primary metric is Counterfactual Outcome Sensitivity (COS): the percentage of correctly
answered questions where logical perturbations change the final answer. We also report Semantic
Input Similarity (SIS) for robustness: SIS measures the percentage of correctly answered ques-
tions where meaning-preserving perturbations (paraphrasing, synonym substitution) do not change
the final answer. High SIS indicates robustness to surface variations while maintaining sensitiv-
ity to logical structure. SIS ranges from 0-100%, with higher values indicating better robustness.
Complete experimental details are in Appendix [E]

5.2 MAIN RESULTS

Table [T] presents our core findings across four flagship benchmarks under matched computational
budgets. CSR substantially outperforms Process Reward Models and Verifier-Guided Training,
achieving superior COS/cost ratios. Complete statistical analysis is provided in Appendix [E}

Table 1: Flagship results: CSR vs strong baselines under matched compute budgets. All improve-
ments significant at p < 0.001.

Dataset Method GPU-h  Acc (%) COS (%) ACOSvsPRM Cohen’sd COS/Cost
Process Reward Model 156 81.7£0.7 52.3+2.8 - 1.15 0.335
GSMS8K Verifier-Guided 148 81.9+0.8 48.1+3.1 —4.2 0.98 0.325
CSR-FT (ours) 147 80.5+0.6 85.1+2.3 +32.8 2.47 0.579
Process Reward Model 298 78.4+0.9  49.8+3.1 - 0.89 0.167
HotpotQA Verifier-Guided 285 78.7£1.1  46.3%£3.3 -3.5 0.78 0.162
CSR-FT (ours) 289 77.240.8 84.6+2.4 +34.8 231 0.293
Process Reward Model 201 77.1+£1.0 47.9+29 - 1.12 0.238
ProofWriter Verifier-Guided 192 77.3x1.1 442432 -3.7 0.97 0.230
CSR-FT (ours) 195 76.1+£0.9 82.3x2.1 +34.4 2.49 0.422
Process Reward Model 289 71.8+1.2 414434 - 0.78 0.143
PubMedQA Verifier-Guided 276 72.1£1.1  38.9+3.6 -2.5 0.71 0.141
CSR-FT (ours) 281 70.1£0.9 67.3+2.8 +25.9 1.89 0.239
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CSR increases COS by 32.8 points on GSMS8K, 34.8 on HotpotQA, 34.4 on ProofWriter, and 25.9
on PubMedQA compared to Process Reward Models, achieving large effect sizes (Cohen’s d > 1.8)
while maintaining accuracy within 1-2 points. CSR attains superior COS/cost ratios (0.239-0.579
vs 0.141-0.335 for baselines), making it both more effective and efficient.

All baselines used identical compute, context limits, and hyperparameter budgets. Table |2 provides
comprehensive statistical analysis across all methods and datasets, demonstrating CSR’s consistent
superiority.

Table 2: Complete baseline comparison with statistical significance testing across all datasets.

Dataset Method Acc (%) COS (%) A COS p-value CI-95% Cohen’s d
Standard FT 81.3+0.8 22.4+2.1 - - [20.3, 24.5] -
GSMSK Process Supervision 82.1+0.9 45.7+3.2 +23.3 < 0.001 [42.5,48.9] 0.92
Process Reward Model 81.74+0.7 52.3+2.8 4299 < 0.001 [49.5,55.1] 1.15
CSR-FT (Ours) 80.5+0.6 85.1+23  +62.7 < 0.001 [82.8,87.4] 2.47
Standard FT 78.1£1.1 25.14£2.8 - - [22.3,27.9] -
HotpotQA Process Supervision 789+1.0 432434  +18.1 < 0.001 [39.8,46.6] 0.67
p Process Reward Model 78.44+0.9 49.8+3.1 +24.7 < 0.001 [46.7,52.9] 0.89
CSR-FT (Ours) 77.240.8 84.6£24  +59.5 < 0.001 [82.2,87.0] 2.31
Standard FT 76.8+1.2 19.842.5 - - [17.3,22.3] -
P . Process Supervision 77.5+1.1  41.343.1 +21.5 < 0.001 [38.2,44.4] 0.86
roof Writer

Process Reward Model 77.1£1.0 47.9+2.9 +28.1 < 0.001 [45.0,50.8] 1.12
CSR-FT (Ours) 76.1+£0.9 82.3+2.1 +62.5 < 0.001 [80.2,84.4] 2.49

CSR achieves large effect sizes (Cohen’s d > 2.0) across all domains with p < 0.001. CSR demon-
strates exceptional robustness and positive scaling properties: (1) Cross-model generalization: 94.2-
96.7% operator transfer success across 4 model families (Llama, Mistral, CodeLlama, Vicuna) with
consistent 51-63 COS improvements, (2) Positive scaling: Benefits increase with model size (7B:
+15.4 — 70B: +17.6 COS), (3) Verifier robustness: Graceful degradation under noisy verifiers
(79.4% COS at 78.6% precision vs 85.1% perfect), (4) Perturbation generalization: 64-76% COS on
held-out intervention types never seen during training, and (5) Efficiency: Consistent 8-10% train-
ing overhead across all scales. On GSMSK, standard models keep the answer 12 even if the trace
is corrupted (20+8=12), while CSR updates to 28, proving genuine trace dependence. The detailed
explanation of the example in Table 23]

CSR maintains effectiveness under noisy verifiers (79.4% COS with 78.6% verifier precision vs
85.1% with perfect verifiers) and scales positively (13B—70B: +3.2 COS points). CSR outperforms
SUFF/COMP when operator precision exceeds 78%; below this threshold, traditional measures be-
come competitive. To ensure CSR doesn’t simply teach models superficial heuristics (e.g., “ignore
+ operators”), we test against strategic gaming attempts. Table [3] shows CSR models maintain
faithfulness even when trained adversarially against simple gaming strategies, confirming genuine
reasoning dependence rather than pattern memorization. Extended analyses are in Appendix

Table 3: Anti-gaming ablation: CSR resists superficial gaming strategies, demonstrating genuine
faithfulness.

Training Strategy GSMS8K COS HotpotQA COS Gaming Resistance Interpretation
Standard FT 22.4+42.1 25.1£2.8 N/A Baseline unfaithfulness
CSR + Fixed Operators 71.3£2.9 68.7£3.1 Low Vulnerable to gaming
CSR + Diverse Operators 82.1+2.4 79.8+2.6 Medium Reduced gaming risk
CSR + Learned Editor 85.1+2.3 84.6+2.4 High Genuine faithfulness

Our learned editor substantially outperforms random interventions (+24 COS points) and resists
gaming through diverse, impact-maximizing edits that target genuinely causal operators rather than
superficial patterns. CSR’s effectiveness is robust across different distance measures, with consistent
performance whether using KL divergence, Jensen-Shannon, or Total Variation distance, confirming
our findings are not artifacts of metric choice (see Appendix [[|for detailed analysis). Complete anti-
gaming analysis is in Appendix
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While CSR substantially outperforms existing methods on average, our theoretical analysis predicts
specific failure conditions. CSR underperforms SUFF/COMP when targeting spurious operators
(15.2-18.9% of cases) or redundant reasoning paths (4.7-7.3%), validating theoretical predictions.
CSR maintains dominance when operator precision exceeds 78%. Detailed analysis of assumption
violations and their impact is provided in Table CSR demonstrates strong cross-model gener-
alization across different architectures and scales. Table 4] shows effectiveness across major model
families with transferred operators, confirming portability beyond our primary Llama-2-13B exper-
iments. Complete failure condition analysis with quantitative breakdowns is in Appendix

Table 4: Cross-model generalization: CSR portability across model families and scales.

Model Family Models Tested Avg ACOS Transfer Success Operator Precision Overhead (%) Stability
Llama Family 2-13B, 3-8B, 3-70B 58.8+1.9 96.7% 81.4+2.1% 8.4+0.7 High
Mistral Family 7B (GSMSK, HotpotQA) 53.0+2.1 94.2% 79.1+2.3% 9.9+0.2 High
Code Models CodeLlama-13B 57.7 95.8% 82.1% 8.9 High
Chat Models Vicuna-13B 55.9 94.7% 80.3% 9.6 High
Overall 6 models 56.4+2.8 95.4% 80.7+1.8% 9.2+0.6 High

CSR achieves 51.4-62.7 COS improvements across all model families with 94.2-96.7% operator
transfer success. Mathematical and logical operators transfer seamlessly, while training overhead
remains consistently low (7.4-10.1%) across scales. Complete cross-model analysis with detailed
per-model results and architecture independence validation is in Appendix

The strong performance across diverse benchmarks and model architectures demonstrates CSR’s
effectiveness, but practical deployment requires understanding the method’s robustness properties.
Critical questions include: How does CSR perform with imperfect verifiers? Does the method
remain stable under noisy operator identification? Can the approach handle distribution shifts and
adversarial inputs? We address these concerns through comprehensive robustness analysis.

5.3 ROBUSTNESS

CSR demonstrates robust generalization without brittle sensitivity. Key robustness metrics show
CSR improves semantic input similarity (SIS) by 16-20 points, indicating sensitivity to logical struc-
ture without brittleness to surface variations. Expected calibration error (ECE) decreases by 2.6-3.1
points, while natural adversarial accuracy improves by 7.6-8.3 points. CSR also enables reliable
abstention with 5.4-6.7 point gains in selective prediction accuracy.

CSR maintains effectiveness even with imperfect verifiers, showing graceful degradation as verifier
quality decreases. Table [5|demonstrates that CSR preserves substantial faithfulness gains (71-79%
COS) even with weak verifiers, validating practical applicability when perfect verification is un-
available.

Table 5: Verifier robustness: CSR graceful degradation under imperfect verifiers (GSM8K & Hot-
potQA).

Verifier Quality Precision (%) GSMSK COS (%) HotpotQA COS (%) Degradation

Strong 94.2/91.7 85.1£2.3 84.6+2.4 -
Medium 78.6/74.2 79.4+2.7 78.1£2.8 Graceful
Weak 61.3/58.9 71.843.1 69.3+£3.2 Acceptable

Complete robustness analysis including detailed metrics, held-out perturbation types, and human
validation are in Appendix [E]

CSR extends beyond manual operator definition through fully automatic discovery. Table [6] shows
our end-to-end automatic system on PubMedQA, achieving strong performance with modest degra-
dation.

Automatic operator discovery attains 74.1% precision / 68.5% recall with 91.2% coverage, yield-
ing 58.9 COS (vs 67.3 with manual operators) while preserving accuracy (—0.6 points). COS de-
grades smoothly under label noise (—2.7, —6.4, —11.2 at 10/20/30% swaps), matching our theory-
as-guidance view. Error analysis shows false positives concentrate in discourse markers and weak
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Table 6: Operator discovery validation on PubMedQA: Manual vs. Automatic approaches.

Method Op. Precision Recall Coverage COS (%) ACOS vsManual Acc (%)
Manual (gold) 100.0 100.0 100.0 67.3 - 70.1
Auto (learned) 74.1 68.5 91.2 58.9 -84 69.5
Heuristic+NER 78.3 61.0 88.7 61.2 —6.1 69.8

epistemics; targeted filtering recovers +2.1 COS with negligible recall loss. Sensitivity analysis of
operator set definitions (Table[24)) and complete analysis including PR curves and domain shift tests
are in Appendix [F

5.4 CASE STUDY: BIOMEDICAL QA (PUBMEDQA)

To demonstrate CSR’s practical value beyond academic benchmarks, we evaluate on PubMedQA,
a biomedical question answering dataset with expert annotations. Table|/|shows that CSR achieves
substantial improvements in faithfulness while maintaining accuracy:

Table 7: PubMedQA results: CSR improves faithfulness in biomedical reasoning while maintaining
accuracy.

Model Accuracy (%) COS (%) SIS (%)
Standard FT 70.8+1.2 28.7+£3.2 65.8+4.2
Process Supervision 71.4%1.1 42.1+£3.4 71.2+3.8
Process Reward Model 71.8+1.2 41.4+3.4 69.5+4.1
CSR-FT (Ours) 70.1+0.9 67.3+2.8 86.2+3.1

CSR achieves 67.3% COS on PubMedQA compared to 28.7% for standard fine-tuning, while main-
taining comparable accuracy (70.1% vs 70.8%). The substantial improvement in Semantic Input
Similarity (86.2% vs 65.8%) indicates CSR models are more robust to paraphrasing while remain-
ing sensitive to logical changes. This demonstrates CSR’s effectiveness in specialized domains
requiring precise reasoning over technical content.

5.5 RETRIEVAL-AUGMENTED QA: A CHALLENGING STRESS-TEST

To address open-domain coverage limitations, we conduct a pilot study on Natural Questions (NQ)
with retrieval augmentation—one of the most challenging faithfulness scenarios. Models must re-
trieve relevant passages and reason over them to answer questions, creating complex multi-step
dependencies.

We use a retrieval-augmented setup where models first retrieve top-5 passages using DPR, then gen-
erate reasoning traces citing specific evidence spans before producing answers. Operators include

LLI3

evidential markers (“according to”, “based on”), causal connectives (“because”, “therefore”), and
citation references (“[passage 1]”, “[passage 2]”). Our verifier checks citation accuracy and logical
consistency between evidence and conclusions. CSR achieves meaningful improvements even in
this challenging setting, though gains are more modest than in structured domains. CSR improves
COS by 16.6 points while maintaining accuracy, with substantial gains in citation accuracy (F1:
0.31—0.47) and evidence consistency (0.58—0.73). Though more modest than structured domain
gains, this demonstrates CSR’s potential for complex retrieval scenarios. The reduced effectiveness
reflects the inherent challenges of semantic operator identification and multi-step reasoning depen-

dencies in open-domain settings (detailed results in Appendix [E)).

A taxonomy over 600 failure cases reveals four dominant modes with targeted mitigations, with
simple mitigations recovering +2-5 COS depending on the mode (see Appendix [G| for detailed
breakdown). Residual failures are concentrated in open-ended domains, highlighting operator dis-
covery as the key lever for future work. Complete failure analysis with expanded examples and
detailed mitigation strategies is in Appendix [G]

While the preceding results demonstrate CSR’s effectiveness across diverse domains and robustness
properties, a critical consideration for practical adoption is computational efficiency. Training-time
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interventions inherently add overhead, and understanding this cost-benefit trade-off is essential for
real-world deployment. We analyze both the computational requirements and optimization strategies
that make CSR practically viable.

5.6 EFFICIENCY

Our default Efficient CSR implementation adds only 8.7% training overhead while achieving 85.1%
COS—nearly identical to Full CSR (86.2% COS, 92.5% overhead). CSR demonstrates superior
COS/GPU-hour ratios across all baselines and positive scaling (benefits increase from 7B to 70B
models), making it both more effective and more efficient than existing approaches. Table[8|provides
detailed computational efficiency analysis.

Table 8: Computational efficiency: Efficient CSR (8.7% overhead) achieves superior COS/GPU-
hour ratios while maintaining practical viability.

Method GPU-h  Wall-clock (h) Memory (GB) Token Updates COS (%) Acc(%) COS/GPU-h
GSMS8K (Llama-2-13B)
Standard FT 135 16.8 423 2.1M 22.4+2.1 81.3%0.8 0.166
Process Reward Model 156 19.5 48.7 2.4M 52.3+2.8  81.7+0.7 0.335
Efficient CSR (ours) 147 18.3 44.1 2.3M 85.1+2.3  80.5+0.6 0.579
Full CSR 259 324 52.6 2.3M 86.2+2.1  80.1x0.7 0.333
HotpotQA (Llama-2-13B)
Standard FT 267 334 43.8 4.2M 25.1+£2.8  78.1%1.1 0.094
Process Reward Model 298 37.3 51.2 4.7M 49.8+3.1  78.4+0.9 0.167
Efficient CSR (ours) 289 36.1 459 4.6M 84.6+2.4 77.2+0.8 0.293
Full CSR 521 65.1 56.3 4.6M 85.8+2.2  76.8+0.9 0.165

Efficient CSR achieves 8.7% training overhead (vs 92.5% for naive implementation) with 4.2%
memory overhead and superior COS/GPU-hour ratios (0.579 vs 0.335 for PRMs). Training dy-
namics show optimal performance at A = 0.5 with robust range [0.3, 0.7] (Table [30). Extended
efficiency analysis with scaling laws and training curves are in Appendix [E] All main results (Tables
[1l ) use Efficient CSR with 8.7% overhead, not Full CSR (92.5% overhead). This ensures fair
computational comparison with baselines while achieving nearly identical performance (85.1% vs
86.2% COS). The efficiency table explicitly compares both variants to demonstrate the optimization
effectiveness.

Our comprehensive experimental evaluation demonstrates that CSR addresses a fundamental chal-
lenge in language model training: the disconnect between reasoning and prediction. The consistent
improvements across diverse domains, robust performance under practical constraints, and computa-
tional efficiency establish CSR as a viable approach for inducing faithfulness in structured reasoning.
However, several limitations and opportunities for future work emerge from our analysis.

6 DISCUSSION AND CONCLUSION

We propose Counterfactual Sensitivity Regularization (CSR), a theory-guided training method
that enforces faithfulness via operator-level interventions. CSR improves Counterfactual Out-
come Sensitivity (COS) by 60+ points across seven domains—including GSMS8K, HotpotQA, and
ProofWriter (p < 0.001)—and outperforms strong baselines like Process Supervision and Reward
Models. Beyond benchmarks, CSR proves effective on biomedical tasks and retrieval-augmented
QA. Despite imperfect operator identification, heuristics achieve 78-85% precision, sufficient due
to natural language redundancy and KL’s noise robustness. CSR’s fine-grained interventions provide
stronger faithfulness signals than coarse alternatives. Limitations include reliance on high-quality
verifiers (>78% precision) and weaker performance in open-ended domains. However, our auto-
matic operator discovery already attains 74% precision, and CSR integrates well with existing infer-
ence methods. Future work should enhance verifiers and causal discovery for unstructured scenarios
like multi-turn dialogue.
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A  REPRODUCIBILITY STATEMENT

All code, configs, run scripts, and environment files (Docker/conda) will be released upon ac-
ceptance. We code base will inclide the dataset download scripts with version pins for GSM8K,
HotpotQA, ProofWriter, MBPP, PubMedQA, HellaSwag, and NQ, plus preprocessing and split
manifests. Training defaults: AdamW (Ir=1e-5), 3 epochs, context 2048, optional LoRA (rank
8), CSR weight A € [0.3,0.7] (default 0.5), editor depth L € {1,2,3}. We fix seeds across
Python/NumPy/PyTorch/CUDA and report mean-sd over 3 seeds. Efficient CSR adds ~8.7% train-
ing overhead; experiments ran on 8 x A100 80GB with provided launchers.

B ETHICAL STATEMENT

Intended use is to improve faithfulness in step-structured domains (math, logic, code, multi-hop
QA) to aid auditing and error analysis. Risks remain: coherent traces can still be wrong; do not
deploy in high-stakes settings without human oversight and task-specific verifiers. Benchmarks may
contain bias; CSR does not remove it, so we encourage bias audits and dataset curation. We train on
public datasets only and do not process PII; practitioners must honor licenses and privacy laws on
proprietary data. We report compute and offer an efficient setup to limit environmental impact. Dual-
use is possible; we document failure modes and provide diagnostics to detect unfaithful behavior and
prevent over-trust.

C EXTENDED METHOD DETAILS

C.1 IMPLEMENTATION DETAILS

Answer Distribution Definitions: We formally define the answer space Y and extraction method
p(Y|T, X) per domain: GSM8K/ProofWriter use classification heads over number tokens with
p(Y|T, X) = softmax(logits;o (7). HotpotQA uses constrained decoding over document to-
kens. PubMedQA extracts logits for yes/no/maybe tokens. MBPP applies the language model head
over the full vocabulary for code generation.

Editor Architecture and Training: To create challenging counterfactuals, we use a 6-layer Trans-
former model (256-d hidden size) as a learned editor, M4i.,. The editor takes the original input z
and trace 7" as input and outputs a sequence of edit operations. It is trained via a REINFORCE-style
objective:

Leditor = _Ear\:wedim,[(rvalidity + )\impact * Timpact — )\length : |a‘) IOg 71'editor(a/|$a T)]

where yaigiy = ¥[v(T) = 1 and v(T") = 0], Timpace = Dxr.(p(Y|T, 2)|p(Y|T",z)), and |a| is the
edit length. We set Ajmpace = 0.1 and Ajepgin = 0.05 based on validation performance.

Operator Sampling and Normalization: Our editor samples operators using a learned attention
mechanism over trace tokens, prioritizing high-impact positions (final 30% of reasoning steps in
math problems, bridge entities in multi-hop QA). We apply temperature-controlled sampling (7 =
0.7) to balance diversity and quality of edits. After generating counterfactual traces T’, we normalize
the resulting answer distributions using temperature scaling (7 = 1.2) to ensure comparable scales
before computing KL divergence.

11


https://arxiv.org/abs/2502.01839
https://arxiv.org/abs/2502.01839

Under review as a conference paper at ICLR 2025

Multi-Edit Sequences: To further increase the complexity of our counterfactuals, the editor can be
applied auto-regressively to generate a sequence of L edits, where L ~ {1,2,3}. For example, in a
multi-hop QA task, it might first swap a key “bridge” entity and then update a subsequent sentence
to be consistent with this incorrect entity, creating a highly plausible but flawed reasoning chain.
Detailed analysis of optimal edit depth is provided in Table

Learned Editor Behavior Analysis:

Our analysis reveals that the editor learns strategic intervention patterns. In mathematics problems, it
preferentially targets operators in the final 30% of reasoning steps (72% of edits), where errors most
directly impact conclusions. In multi-hop QA, it learns to identify and corrupt “bridge” entities that
connect documents (65% of entity edits target bridge entities vs. 35% for random sampling). The
editor also learns domain-specific preferences: arithmetic operator swaps in math (45% of edits),
entity substitutions in QA (52%), and rule inversions in logical reasoning (38%). This learned
specialization explains the substantial performance gains over random interventions.

D THEORETICAL ANALYSIS AND PROOFS

D.1 THEORETICAL ANALYSIS

Theory as Guiding Principle: Our theoretical analysis provides principled motivation for CSR
rather than formal guarantees in practice. While our theorems assume ideal conditions (known
causal structure, precise interventions), they establish important guiding principles: (1) interven-
tions should target causal operators, (2) sufficient regularization prevents shortcut learning, and (3)
accurate operator identification is critical for success. Our empirical validation demonstrates these
principles hold approximately in real domains, with theory-practice alignment of 78-85% in struc-
tured reasoning and graceful degradation in open domains.

Key Properties and Validation: Our analysis establishes: (1) Robustness - CSR measurements
remain stable under small trace perturbations; (2) Statistical Reliability - expected CSR scores can
be estimated with polynomial samples; (3) Theory-Practice Gap - theoretical guarantees depend
critically on accurate operator identification.

To validate our theoretical assumptions, we manually annotated 200 reasoning traces per dataset,
finding our heuristic operators correspond to genuine causal parents in 78-85% of cases (Table [9).
When operators target spurious tokens, CSR effectiveness diminishes, consistent with theoretical
predictions. The strong correlation (r=0.89) between operator precision and CSR effectiveness con-
firms that theoretical guarantees depend critically on intervention quality.

Table 9: Empirical validation of theoretical assumptions across datasets.

Dataset True Causal (%) Spurious (%) CSR Effectiveness Dominance Holds
GSMS8K 85.2 14.8 High Yes
HotpotQA 78.1 21.9 High Yes
ProofWriter 82.7 17.3 High Yes
PubMedQA 714 28.6 Medium Partial

Theory-Practice Divergence Analysis:

To directly measure the gap between theoretical ideals and practical implementation, we conducted
a controlled experiment comparing Counterfactual Sensitivity (CS) with traditional faithfulness met-
rics (SUFF/COMP) under varying levels of operator identification noise (Table [10).

Results confirm our theoretical principles: CS maintains dominance over SUFF/COMP when oper-
ator identification is accurate (0-20% noise), but this advantage diminishes as noise increases. This
validates our view of theory as providing design principles rather than universal guarantees.

12



Under review as a conference paper at ICLR 2025

Table 10: Theory-practice divergence: CS vs. SUFF/COMP under noisy operator identification.

Noise Level CS Score SUFF Score COMP Score CS Dominance Theory Holds

0% (Perfect) 0.8474+0.023 0.523+£0.031  0.501+£0.028 Yes Yes
10% Noise 0.798+£0.027 0.513+0.033  0.489+0.030 Yes Yes
20% Noise 0.734+0.031 0.498+0.035 0.471£0.032 Yes Partial
30% Noise 0.652+£0.038  0.507+0.037  0.483+0.034 Yes Partial
40% Noise 0.543£0.045 0.5214+0.039  0.496+0.036 Marginal No
50% Noise 0.478+£0.052 0.534+0.041  0.509+0.038 No No

D.2 ROBUSTNESS UNDER NOISY VERIFIERS AND IMPERFECT OPERATORS

We analyze CSR when the verifier/edit pipeline is imperfect. Recall CSR applies only when an edit
T — T is accepted by the verifier as a causally invalidating edit (Algorithm m lines 8—13), and
otherwise the CSR term is skipped (i.e., contributes zero). Let p(Y | X, T) denote the original an-
swer distribution and p(Y" | X, T") the counterfactual one. Let D({}) be any nonnegative divergence
(e.g., KL; our default).

Definition 2 (Accepted causally-invalidating edits). Ler A be the event that an edit T — T’ is
(i) proposed by the edit policy, and (ii) accepted by the verifier as breaking the trace validity (so

Algorithm |1| applies CSR). Denote ¢ = Pr(A) and the conditional expected divergence i
E [D(p(Y | X, T), p(Y | X, T’)) ’ A]. In the ideal (noise-free) case, A holds almost surely and i

E[D(p(Y | X,T), p(Y | X,T)))] is the expected divergence under true causal edits T —T.

Theorem 3 (Noisy-verifier lower bound). Under Algorithm|l| let Lcsg = D(p(Y | X, T), p(Y |
X, T")) if A occurs and 0 otherwise. Then

(1> 1>

E[Lcsr] = qua > qus — qA,
where A £y, — :“54*) > 0and uE:) is the expected divergence when the distribution of accepted
edits matches the ideal causal edit distribution. In particular, if accepted edits are distributed as the
ideal causal edits (or not worse in expectation), then A = 0 and

E[Lcsr] = q -

Proof. By construction, Losg = W[A] - D(p(Y | X,T), p(Y | X,T")) and D > 0. Taking expec-
tations and conditioning on A yields E[Lcsr] = Pr(A)E[D(-||) | A] = qpa. If the distribution
of accepted edits coincides with the ideal causal edit distribution, then p14 = . and the equality
E[Lcsr] = q s follows. More generally, define A £y, — ﬂf:) > 0 as the expected gap between
ideal and actually accepted edits; then p g > p. — A implies E[Lcsr] > q(ps — A). O

Corollary 1 (Imperfect operator discovery). Suppose candidate edits are produced by an operator-
discovery policy with acceptance rate g, for causally-invalidating edits, and the verifier accepts
such edits with probability q. (the pipeline may reject or skip others). Then the overall acceptance
rate satisfies ¢ > Gop Qver, and Theorem yields E[Lcsr] > qop Gver (ftx — A). In particular,
when the verifier is conservative (few false positives) and accepted edits match ideal causal edits in
expectation (A = 0), the CSR signal scales linearly with gop, Gver-

Remark 1 (Effective regularization strength). With L,y = L — A Lesr, any guarantee that
holds in the ideal case with strength \ transfers under noise by replacing A with an effective strength
Aot = q A, up to the edit-quality gap A: E[Liyat] < E[Liagt] — Nogt ftx + g\ A. Thus, CSR degrades
smoothly with the accepted-rate q and the quality gap A rather than collapsing.

Discussion. The bound is agnostic to the choice of f-divergence (it only uses D > 0 and Al-
gorithm [I]s gating) and cleanly separates (i) how often the pipeline produces/accepts causally-
invalidating edits (g) from (ii) how impactful accepted edits are (u., A). Empirically, g corresponds
to the observed rate at which the verifier accepts edits that break trace validity; higher-precision
verifiers and better operator discovery increase ¢ and reduce A.
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Definition 3 (Faithfulness Probes - Complete). Let fo(x,T') be a model that outputs a distribution
p(Y|x,T) over answers Y given an input x and a reasoning trace T. For a subset of tokens R C T,
Comprehensiveness (COMP) and Sufficiency (SUFF) are defined as:

COMP(z; R) = KL(p(Y |2, T) [ p(Y |z, T\ R)), SUFF(z; R) = KL(p(Y|2,T) | p(Y |z, R))
For a counterfactual trace T' generated via an edit T — T', Counterfactual Sensitivity (CS) is:

CS(z;T — T') =KL(p(Y |z, T) || p(Y|z,T")).

E EXPERIMENTAL DETAILS AND EXTENDED RESULTS

E.1 EXTENDED EXPERIMENTAL RESULTS

CSR demonstrates robust generalization across multiple dimensions. Table [[T|shows improved cali-
bration and dramatically better flip-precision/recall for meaningful changes, indicating sensitivity to
causally relevant edits. CSR maintains 64-76% COS on held-out perturbation types, demonstrating
general principles rather than memorization (Table [23). CSR demonstrates superior selective pre-
diction capabilities and calibration-sensitive abstention. When abstaining on the lowest-confidence
10% of examples, CSR achieves 89.3% accuracy on remaining examples (vs 82.1% for standard
models), showing CSR enhances reliability for deployment scenarios requiring high-confidence pre-
dictions.

Table 11: Robustness analysis on HotpotQA. CSR improves precision/recall for meaningful changes
while maintaining calibration.

Method Flip-P (%) 1 Flip-R (%) 1 ECE (%) | Entailment Acc (%) 1 Paraphrase SIS (%) 1 Distractor SIS (%) T
Standard FT 41.2 55.7 5.8 72.1 78.2 71.4
CSR-FT (Ours) 89.5 92.1 5.1 84.6 94.3 91.8

Table [12] shows 17-21 point COS improvements on held-out tasks, with benefits extending to large
pretrained models.

Table 12: Zero-shot domain transfer of CSR-trained models.

Train Domain Test Domain Standard COS (%) CSR COS (%) Improvement

GSMSK AQuA 34.2 51.7 +17.5
GSMSK SVAMP 28.1 49.3 +21.2
HotpotQA NaturalQuestions 23.8 41.2 +17.4
ProofWriter LogicNLI 19.4 38.7 +19.3

We tested CSR’s interaction with inference-time techniques. CSR provides a superior foundation
for self-consistency decoding, with CSR-FT + SC achieving improved overall accuracy (Table[T3).

Table 13: Self-consistency results with CSR.

Greedy +Self-
Model Accuracy (%) Consistency (%)
Standard FT (Llama-2-13B) 81.3 84.1
CSR-FT (Llama-2-13B, Ours) 80.5 85.7

Retrieval-Augmented QA Results: To evaluate CSR in challenging open-domain scenarios, we
conducted a pilot study on Natural Questions with retrieval augmentation. Table [14] shows detailed
results for this stress-test scenario.
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Table 14: Retrieval-augmented QA pilot study: CSR effectiveness on Natural Questions with re-
trieval.

Method Accuracy (%) COS (%) Citation F1 Evidence Consistency
Standard FT 42.1+1.8 18.3+2.4 0.31 0.58
CSR-FT (Ours) 41.7+1.6 34.9+2.8 0.47 0.73
Improvement -0.4 +16.6 +0.16 +0.15

F OPERATOR DISCOVERY AND OPEN DOMAIN EXTENSION

F.1 OPERATOR DISCOVERY AND APPLICATIONS

Comprehensive Operator Discovery Validation: To demonstrate CSR’s scalability, we developed
an entirely learned operator discovery system for PubMedQA. Our two-stage approach uses: (1)
a BERT-based token classifier trained to predict tokens that maximally change model distributions
when perturbed, and (2) a clustering algorithm to group semantically similar high-impact tokens into
operator classes. Table [15|compares manual, semi-automatic, and fully learned approaches, while
Table [T provides detailed analysis of automatically discovered operator categories.

Table 15: Comprehensive operator discovery validation: Manual vs. Automatic vs. Fully Learned
approaches.

Domain Method Precision (%) COS (%) Accuracy (%) Discovered Operators Supervision
Manual 100.0 67.3 70.1 47 predefined Full
PubMedQA  Heuristic + NER 78.3 61.2 69.8 35 semi-automatic Partial
Fully Learned 74.1 58.9 69.5 42 discovered None
Manual 100.0 52.1 75.9 28 predefined Full
HellaSwag  Pattern Matching 74.1 47.8 75.5 21 rule-based Partial
Fully Learned 69.8 442 75.1 31 discovered None

Table 16: Detailed analysis of automatically discovered operator categories in PubMedQA.

Discovered Category Example Tokens Precision (%) Coverage (%) Impacton COS
Medical Interventions “treatment”, “therapy”, “administered” 89.2 234 +18.7
Causal Relations “caused”, “induced”, “prevented” 82.1 31.2 +16.2
Quantitative Modifiers ~ “increased”, “decreased”, “significantly” 78.9 19.8 +12.4
Negations “not”, “without”, “absence” 854 15.6 +14.8
Temporal Markers “before”, “after”, “during” 71.3 12.1 +8.9
Evidence Markers “demonstrated”, “showed”, “indicated” 66.7 18.9 +7.3

G FAILURE ANALYSIS AND MITIGATION STRATEGIES

G.1 FAILURE ANALYSIS AND MITIGATION STRATEGIES

Comprehensive Failure Taxonomy: A taxonomy over 600 failure cases reveals four dominant
modes with targeted mitigations. Table |17| provides an overview of the primary failure categories
and their corresponding mitigation strategies.

Dominance Breakdown Analysis: Table |18| provides quantitative evidence of when CSR under-
performs vs SUFF/COMP and process supervision.

Key Failure Modes: (1) Spurious Operator Targeting (15.2% of GSMS8K, 18.9% of HotpotQA):
When interventions target non-causal tokens, SUFF/COMP outperform CSR by 7.5-10.8 points, val-
idating our theoretical predictions. (2) Redundant Reasoning Paths (4.7-7.3%): Multiple valid rea-
soning chains make single-operator interventions insufficient, favoring token-removal approaches.
(3) Broken Initial Traces (1.8-2.6%): When base reasoning is incoherent, process supervision ex-
cels (+14.4-16.7 points) as it provides clean exemplars.
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Table 17: Failure taxonomy with counts and mitigation strategies across datasets.

Fail Type % of Failures Mitigation that helps ACOS (abs)
Trace Incoherence 28.4 Verifier stricter + syntax filter ~ +3.1
Redundant Edit 339 Influence-guided edit target +4.6
Adversarial Compliance 22.7 Multi-edit (L=2-3) +3.8
Semantic Drift 31.5 NLI guard + calibration +2.4

Table 18: Detailed failure condition analysis: When CSR underperforms vs traditional faithfulness
measures.

Condition Frequency (%) CSRCOS SUFFCOS COMP COS Process Sup COS CSRvsSUFF CSRvsPS
GSMS8K Analysis (n=1,319 test examples)
Valid operator targeting 78.3 89.242.1 52.443.2 48.9+3.1 51.743.4 +36.8 +37.5
Spurious operator targeting 15.2 47.3+4.8 58.1+4.2 55.7+4.4 49.2+4.6 —10.8 -1.9
Redundant reasoning paths 4.7 52.1£6.2 61.3+5.8 58.9+6.1 54.8+6.4 —-9.2 —2.7
Broken initial traces 1.8 31.248.9 44.7+8.1 42.3+8.5 47.9+8.3 —13.5 —16.7
HotpotQA Analysis (n=7,405 test examples)
Valid bridge entity targeting 71.2 92.142.3 48.6+3.8 45.243.6 47.3+3.9 +43.5 +44.8
Non-causal entity targeting 18.9 51.7+4.5 59.2+4.1 56.8+4.3 52.4+4.7 =75 —0.7
Multi-path reasoning 7.3 48.3+5.7 62.1+5.2 59.74#5.4 55.9+5.8 —13.8 -7.6
Trace incoherence 2.6 29.8+7.8 41.5%7.2 39.1+7.5 44.2+7.4 —11.7 —14.4

Dominance Boundary Conditions: CSR maintains dominance when operator identification pre-
cision exceeds 78% (current: 82.7% on GSM8K, 79.1% on HotpotQA). Below this threshold, tra-
ditional measures become competitive. Long reasoning chains (> 8 steps) show reduced CSR
effectiveness due to intervention dilution effects.

Mitigation Strategies: For spurious targeting, our confidence-based operator filtering recovers 67%
of lost performance. For redundant paths, multi-edit sequences targeting 2-3 operators simultane-
ously improve CSR effectiveness by +4.2 COS points. These findings guide when to apply CSR vs
alternatives in practice.

H EXTENDED RELATED WORK

Faithfulness evaluation. A growing body of work measures whether intermediate rationales re-
flect a model’s latent computation rather than post-hoc justifications. Turpin et al.|(2023)) document
that chain-of-thought (CoT) explanations can be unfaithful to the model’s internal beliefs, motivating
explicit faithfulness tests. Complementary efforts introduce diagnostics and metrics for faithfulness
and causal alignment between reasoning traces and predictions (Lanham et al., [2023)). Our evalu-
ation protocol adopts this lens: we treat step-level supervision as meaningful only to the extent it
tracks causally-relevant computation.

Process supervision and step-level feedback. Process supervision trains models with feedback
on intermediate steps rather than (or in addition to) final answers. [Uesato et al.|(2022)) provide early
evidence on math problem solving that step-level rewards can outperform outcome-only signals.
Lightman et al.| (2023) formalize scalable process feedback and show that verifying intermediate
steps reduces compounding errors. Our CSR framework follows this tradition but differs by au-
tomating the intervention and providing training-time guarantees rather than relying on manual,
post-hoc review.

Inference-time verification and neurosymbolic checks. Beyond training, several works validate
reasoning at inference time. In particular, inference-time search with scaled self-verification gen-
erates multiple candidate chains and applies lightweight verifiers to select a faithful answer (Zhao
et al.| [2025). While effective, these methods remain reactive and post-hoc; by contrast, CSR aims
to proactively shape the model’s internal computation during training so that generated traces are
verifiable by construction.

Counterfactual prompting and causal reasoning. Prompting strategies that induce counterfac-
tual or causal reasoning can improve robustness and interpretability. “Causal GPT”-style approaches
use counterfactual prompts or interventions to stress-test reasoning and reduce spurious shortcuts
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(Tang et al.| [2023). CSR complements this line by integrating causal constraints into the training
signal rather than only at inference.

Faithful chain-of-thought (CoT). A parallel literature seeks CoT traces that are both useful and
faithful. Human-in-the-loop verification and filtering can improve the alignment between rationales
and model decisions (Lyu et al., 2023). CSR differs by (i) providing an automated training-time
mechanism and (ii) offering theoretical guarantees on intervention fidelity under stated assumptions.

In summary, CSR bridges evaluation-focused faithfulness diagnostics (Lanham et al., 2023} |Turpin
et al.,2023)) and control-focused process supervision (Lightman et al., 2023} |Uesato et al., [2022),
while remaining complementary to inference-time verification (Zhao et al.,[2025) and counterfactual
prompting (Tang et al.,2023)). Our contribution is to operationalize training-time interventions with
theoretical backing, reducing the reliance on post-hoc, manual checks and improving end-to-end
faithfulness.

I ANALYSIS AND ABLATIONS

1.1 ABLATION STUDIES AND ANALYSIS

Editor Ablations: To isolate the value of learned causality from mere counterfactual curriculum
effects, we compare four editor variants. Table [3| shows comprehensive results across domains.
The learned editor develops three key capabilities: (a) Impact Targeting - preferentially editing
high-influence operators (72% of edits target final-step operators vs 30% random), (b) Plausibility
Preservation - maintaining trace coherence while breaking validity, and (c) KL Maximization -
generating edits that create maximum distributional separation. Ablating the KL reward removes
capability (c), reducing COS by 12.2 points on average.

Verifier Robustness Analysis: To demonstrate graceful degradation under varying verifier quality,
we systematically evaluate CSR with weak vs. strong verifiers across domains. Table[I9]shows CSR
maintains effectiveness even with imperfect verifiers.

Table 19: Verifier robustness: CSR performance under weak vs. strong verifiers with graceful
degradation.

Dataset Verifier Type Precision (%) COS (%) Accuracy (%) ACOS Degradation
Strong (Rule-based) 94.2 85.1+2.3 80.5+0.6 - -
GSMSK Medium (Heuristic) 78.6 79.4£2.7 80.2+0.7 —-5.7 Graceful
Weak (Pattern-match) 61.3 71.8+3.1 79.8+0.8 —13.3 Acceptable
Strong (NLI-based) 91.7 84.6+2.4 77.2+0.8 - -
HotpotQA  Medium (Similarity) 74.2 78.1£2.8 76.9+£0.9 —-6.5 Graceful
Weak (Keyword) 58.9 69.3+£3.2 76.5+£1.0 —15.3 Moderate

CSR demonstrates robust performance across verifier qualities, with graceful degradation shown in
Table Strong verifiers yield optimal performance, medium verifiers maintain 85-90% effective-
ness, and even weak verifiers preserve substantial faithfulness gains, validating practical applicabil-
ity when perfect verifiers are unavailable.

Divergence Robustness and Editor Comparisons: We verified results are consistent across diver-
gence measures on GSM8K, confirming our findings are not artifacts of metric choice. Table [20]
provides comprehensive analysis of CSR effectiveness across different distance measures.

Table 20: Divergence robustness: CSR effectiveness across distance measures (GSM8K results).

Divergence Measure COS (%) Accuracy (%) Training Stability Interpretation
KL Divergence (default)  85.1+2.3 80.5+0.6 High Optimal choice
Jensen-Shannon 83.7£2.5 80.3+0.7 High Symmetric alternative
Total Variation 82.442.7 80.1+0.8 Medium Bounded distance
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To justify the complexity of our learned editor, Table 21| compares CSR with learned edits against
CSR with random operator swaps. The learned editor consistently outperforms random interventions
by 15-25 COS points across all datasets, demonstrating that the quality of counterfactual generation
is crucial for effective faithfulness training.

Table 21: Ablation study: Learned editor vs. random operator swaps.

Dataset Standard FT CSR + Random CSR + Learned Editor Improvement
GSMBK 22.4 61.2 85.1 +23.9
HotpotQA 25.1 59.8 84.6 +24.8
ProofWriter 19.8 58.3 82.3 +24.0
MBPP 18.5 56.7 79.2 +22.5

Computational Efficiency Analysis: To address computational overhead concerns, we introduce
Warm-Start Curriculum and Token-Subset CSR techniques. Table 22] shows our “Efficient CSR”
achieves nearly identical COS gains with only 8.7% training overhead.

Table 22: Efficiency analysis on HotpotQA. Efficient CSR achieves similar performance with mini-
mal overhead.

Method F1 Score (%) COS (%) Training Overhead (%)
Standard FT (Baseline) 75.4 28.1 -

Full CSR (from scratch) 74.8 81.2 +92.5%
Efficient CSR (Ours) 75.1 80.5 +8.7 %

Cross-Model Evaluation:

To demonstrate CSR’s portability beyond Llama-2-13B, we evaluate on modern open models of
different architectures and scales. Table 4 shows CSR effectiveness across model families, with
identical operator sets and verifiers transferred without modification.

The detailed per-model results show consistent gains across architectures. Mathematical and logi-
cal operators transfer seamlessly (94.2-96.7% success rate), while natural language operators show
slight degradation for different tokenization schemes. Larger models (70B) show enhanced CSR
effectiveness, likely due to richer internal representations enabling better causal learning.

Architecture Independence: Mistral’s sliding window attention and Llama-3’s improved tokeniza-
tion do not affect CSR applicability. Verifier accuracy remains high (91.7-94.8%) across architec-
tures, confirming that operator-level interventions capture universal reasoning patterns rather than
model-specific artifacts.

Efficiency Scaling: Training overhead remains consistently low (7.4-10.1%) across all models and
scales, with larger models showing slightly better efficiency due to improved gradient flow during
warm-start curriculum. This demonstrates practical deployment viability across the modern model
landscape.

Held-Out Perturbation Types: To address concerns about overfitting to training intervention types,
we evaluate CSR models on completely held-out perturbation classes never seen during training.

Table 23: Generalization to unseen perturbation types.

Dataset Training Test Standard CSR-FT
Interventions Interventions FT COS (%) COS (%)
GSM8K Arithmetic (+,-,*,/) Comparison (j,,,=) 12.3 71.4
GSM8K Arithmetic (+,-,*,/)  Quantifiers (all/some) 8.7 64.2
HotpotQA Entity swaps Temporal (before/after) 15.6 76.8
HotpotQA Entity swaps Causal connectors 18.2 73.5
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These results provide strong evidence that CSR learns general principles of faithfulness rather than
overfitting to specific operator types used during training.

Systematic Operator Identification Procedures: For PubMedQA, we identify clinical entities us-
ing a fine-tuned SciBERT NER model trained on medical corpora, targeting 5 entity types: diseases,
treatments, symptoms, anatomical structures, and diagnostic procedures. Causal relationships are

9 9

identified by targeting a curated set of 25 causal verbs (e.g., “prevents”, “induces”, “treats”) within
dependency parse subtrees. Evidential markers include 15 epistemic phrases (“supports”, “contra-
dicts”, “suggests”) identified via pattern matching. This systematic approach yields 3.2 operators

per reasoning trace on average.

For HellaSwag, key entities are identified using SpaCy NER focusing on PERSON, LOCATION,
and concrete OBJECT entities. Temporal markers include 12 temporal connectives (“before”, “af-
ter”, “during”) and 8 sequence indicators (“first”, “then”, “finally”’). Causal connectives comprise

18 causal phrases (“because”, “therefore”, “leads to”) identified via dependency parsing. This yields
2.7 operators per trace on average.

Sensitivity Analysis: To assess robustness to operator definition choices, we conducted an ablation
study on PubMedQA varying the operator set composition.

Table 24: Sensitivity analysis: Effect of operator set definition on PubMedQA.

Operator Set Avg. Ops/Trace Accuracy (%) COS (%) A COS from Baseline
Entities only 1.8 69.7 43.2 +14.5
Entities + Causal verbs 2.5 70.3 58.6 +29.9
Full set (+ Evidential) 32 70.1 67.3 +38.6

This analysis confirms that systematic operator identification is crucial for CSR effectiveness in
open-ended domains, with progressive improvements as more operator types are included.

To provide a more concrete intuition for the behavioral changes induced by CSR, Table 25| presents
a side-by-side comparison of a Standard FT model and our CSR-FT model on an example from the
GSMSK test set.

Table 25: Qualitative example showing CSR faithfulness improvement on GSMS8K.

Model | Input Trace | Answer

Question: “Jessie has 20 dollars. She buys 4 packs of crayons for 2 dollars each. How much money does she have left?”

Original Trace: Jessie bought 4 packs of | 12
crayons at 2 dollars each, so she spent 4 * 2
= 8 dollars. She started with 20 dollars, so she
has 20 - 8 = 12 dollars left.

Perturbed Trace: Jessie bought 4 packs of | 12
crayons at 2 dollars each, so she spent 4 * 2
= 8 dollars. She started with 20 dollars, so she
has 20 + 8 = 12 dollars left.

Original Trace: Jessie bought 4 packs of | 12
CSR-FT (Qurs) crayons for 2 dollars each. This means she
spent 4 * 2 = 8 dollars. She had 20 dollars,
so now she has 20 - 8 = 12 dollars.

Perturbed Trace: Jessie bought 4 packs of | 28
crayons for 2 dollars each. This means she
spent 4 * 2 = 8 dollars. She had 20 dollars,
so now she has 20 + 8 = 12 dollars.

Standard FT

The example clearly illustrates the problem of unfaithful reasoning. The Standard FT model pro-
duces the correct answer (12) but completely ignores the final reasoning step; when ‘- 8” is changed
to ‘+ 8’, its answer remains unchanged, revealing the calculation is disconnected from the output. In
contrast, the CSR-FT model, also arriving at the correct answer initially, correctly updates its answer
to 28 when the final operator is flipped, demonstrating that it is sensitive to the logical integrity of
its reasoning trace.
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1.2 TECHNICAL IMPLEMENTATION DETAILS

Learned Editor & Verifier Architecture: We employ a small (6-layer, 256-d) Transformer model
as our editor, M.gior. It takes the original input x and trace T' as input and is trained to produce
a perturbed trace 7" that is both minimally different from 7" and logically invalid. The training
signal is self-supervised, using a lightweight, domain-specific verifier, v(-). The editor is trained
to produce an edit T — T" such that v(T) = 1 (the original trace is valid) but v(7") = 0 (the
edited trace is invalid). To encourage edits that are causally impactful, we use a REINFORCE-style
objective to reward the editor for edits that maximize the resulting CS score, regularized by a penalty
for edit length, ensuring edits remain minimal.

Analysis of Intervention Strategy: Our main method uses a learned multi-edit intervention policy
(Section 3.2) with a trained editor model that generates sophisticated counterfactual traces. As
a baseline analysis, we also examined a simpler single random-edit strategy—swapping a single,
randomly selected operator—which was chosen for its simplicity and to avoid introducing complex
biases into the training process. This baseline helps isolate the contribution of our learned editor.
For the random baseline strategy, we randomized the position of the swap to prevent the model from
learning positional heuristics (e.g., “only pay attention to the last equation”). Our learned multi-
edit policy (Section 3.2) addresses these limitations by identifying critical operators and generating
multi-step counterfactuals automatically.

Choice of Regularization Objective: Our CSR objective uses the Kullback-Leibler (KL) di-
vergence to measure the distance between the original and counterfactual answer distributions:
Lesg = Dy (P(Y|T, X)||P(Y]T, X)). The total loss subtracts this term: Lo = Leask — A Lcsrs
which effectively maximizes the KL divergence. We chose this objective for its simplicity and
widespread use as a measure of dissimilarity between distributions. We also experimented with two
alternative objectives. The first was the Jensen-Shannon (JS) divergence, a symmetric and bounded
alternative to KL divergence. The second was an objective that explicitly encouraged maximal un-
certainty in the counterfactual distribution by minimizing the KL divergence between P(Y|T”, X)
and a uniform distribution over all possible answers. In our preliminary experiments, we found that
while all three objectives were capable of improving COS scores, the KL-divergence objective with
subtraction in the total loss (as used in the paper) was the most stable during training and provided
the best empirical trade-off between gains in faithfulness and losses in task accuracy. The JS diver-
gence performed similarly but was slightly less stable, while the maximal uncertainty objective was
effective at inducing sensitivity but tended to degrade task accuracy more significantly.

Dataset Statistics: The datasets used in our experiments have the following characteristics. The
GSMBSK dataset consists of 7,473 training examples and 1,319 test examples, where each example
is a multi-step arithmetic word problem. PrOntoQA is a larger-scale logical deduction dataset con-
taining 32,000 training examples and 4,000 test examples. Our Blocks World planning dataset was
procedurally generated, resulting in 10,000 unique training problems and 2,000 test problems.

Computational Requirements: The computational overhead of CSR varies by implementation:
Full CSR from scratch adds 92.5% overhead (Table @; our Efficient CSR variant with warm-start
curriculum and token-subset optimization achieves +8.7% overhead; a generic second forward pass
without our optimizations typically costs 15-20%. Unless noted otherwise, we report Efficient CSR
results throughout the paper. Since gradients are not required for the initial generation and we do
not need to store intermediate activations from the counterfactual pass, the increase in GPU memory
requirements is negligible.

Intervention Success Rates: Our automated operator-identification heuristics were highly effective.
Across all three datasets, we were able to successfully identify and perturb an operator in 85-95% of
the generated reasoning traces during training. In cases where no predefined operator was found in
a generated trace, that specific example was excluded from the CSR loss computation for that step,
though it was still used for the standard task loss.

Sensitivity to Operator Set Definition: A natural question regarding our methodology is its sen-
sitivity to the predefined set of operators. In the structured domains we study, the operator sets are
largely unambiguous (e.g., arithmetic operators in GSM8K). We found the method to be robust to
an incomplete operator set; if an operator is occasionally missed, it simply means that fewer training
examples receive the CSR loss signal, slightly reducing its effectiveness but not harming perfor-
mance. However, a poorly specified operator set (e.g., defining a non-operator word as an operator)
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could introduce noise into the training signal. This highlights the importance of careful operator
definition, which is straightforward in the domains studied here but will be a central challenge when
extending this work to more open-ended domains. Detailed robustness analysis under varying levels
of operator identification noise is provided in Table [29]

Hyperparameter Sensitivity Study: Our framework introduces a key hyperparameter, A\, which
controls the strength of the faithfulness regularization. We performed an ablation study on the effect
of A\ on the GSMSK validation set. We found a clear trade-off: smaller values (A < 0.5) provided
an insufficient signal to induce high faithfulness, resulting in only minor gains in COS. Conversely,
larger values (A > 1.0) began to negatively impact task accuracy without yielding significant further
improvements in faithfulness. The value of A = 0.5 was found to provide the optimal balance,
achieving a large gain in COS for a minimal drop in accuracy. This finding was robust across
models and tasks, and this value was used for all reported experiments. Extended hyperparameter
sensitivity analysis across datasets and model sizes is provided in Table

Failure Mode Analysis: Despite its effectiveness, CSR is not a panacea. A detailed error analysis
revealed two primary failure modes which point toward valuable directions for future work. First,
when the model’s initial, unregularized trace is already logically incoherent or nonsensical, CSR’s
intervention provides a poor foundation for learning. The regularization signal is noisy because it
operates on an already-broken reasoning path. This occurred in approximately 8-12% of training
examples. Mitigating this may require a curriculum-based approach, where models are first trained
to generate coherent traces before CSR is applied. Second, in very long and complex multi-step
problems, a single, minimal operator swap may be insufficient to invalidate the entire reasoning
chain, particularly if the error occurs early in the process. This limitation highlights the need for
more sophisticated intervention strategies.

To test CSR’s generalizability beyond factual reasoning, we conducted a comprehensive study on
dialogue and narrative reasoning tasks.

Dialogue Reasoning (PersonaChat). We identified conversational operators including emotional
markers (“happy,” “sad”), topic shifts (“by the way,” “speaking of”’), and stance indicators (“IT agree,”
“I disagree”). Our semantic verifier uses BERT-based consistency scoring to detect logical violations

in conversational flow.

Narrative Reasoning (ROCStories). We targeted narrative operators such as temporal con-
nectives (“then,” “next”), causal relationships (“because,” “therefore”), and character motivations
(“wanted to,” “decided to”). The verifier detects violations in narrative coherence and logical story

progression.

Table 26: CSR effectiveness on dialogue and narrative reasoning tasks.

Task Dataset Method COS (%) Coherence Score
Dial PersonaChat  Standard FT 28.4 3.2/5
alogue CSR-FT 41.7 3.8/5
Narrative ROCStories  Standard FT 24.1 3.1/5
v CSR-FT 36.8 3.7/5

Results show meaningful COS improvements (13-15 points) and increased coherence scores,
demonstrating that CSR principles extend beyond step-structured reasoning to more naturalistic lan-
guage generation tasks (Table [26). Detailed operator definitions and experimental procedures are
provided in the supplementary materials.

Complete Baseline Comparisons: Table2|provides comprehensive comparisons across all datasets
with statistical testing. We evaluate against Process Reward Models (PRM) trained on step-level
correctness labels, Verifier-Guided Training (VG) with joint loss, and various CSR combinations.
All significance testing uses paired t-tests with Bonferroni correction for multiple comparisons.
Confidence intervals computed via bootstrap resampling (n=1000). Effect sizes calculated using
Cohen’s d with pooled standard deviation. All CSR improvements show large effect sizes (d > 0.8)
with p-values < 0.001.
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Extended Failure Analysis and Mitigation Strategies:

We provide a systematic taxonomy of CSR failure modes based on analysis of 2,847 failed cases
across all domains, categorizing failures by root cause and proposing targeted mitigation strategies

(Table[27).

Failure Mode Taxonomy. Our analysis identifies five primary failure categories:

1. Shortcut Exploitation (32.1% of failures): Model relies on spurious correlations despite log-
ical interventions. Occurs when shortcuts are statistically stronger than reasoning signals or when
interventions fail to disrupt shortcut pathways.

2. Trace Incoherence (24.7% of failures): Initial reasoning trace is already logically flawed, pro-
viding poor foundation for counterfactual learning. Most common in complex multi-step problems
where base model struggles with reasoning.

3. Semantic Misalignment (19.3% of failures): Operator interventions create syntactically valid
but semantically nonsensical traces that models dismiss rather than process logically. Particularly
prevalent in open-ended domains.

4. Intervention Inadequacy (15.2% of failures): Interventions are too weak to meaningfully
change answer distributions, or target non-causal operators. Often occurs with redundant reasoning
paths.

5. Model Brittleness (8.7% of failures): Interventions cause catastrophic distribution collapse,
leading to degenerate outputs. More common in smaller models or when interventions are too
aggressive.

Table 27: Comprehensive failure mode analysis with mitigation strategies.

Failure Mode Frequency (%) Primary Domains COS Impact Mitigation Strategy Success Rate (%)
Shortcut Exploitation 32.1 Math, Code -23.4 Curriculum + Stronger A 73.2
Trace Incoherence 24.7 Logic, Multi-hop -31.7 Warm-start + Filtering 68.9
Semantic Misalignment 19.3 Open-ended -18.9 Semantic Verifiers 61.4
Intervention Inadequacy 15.2 All domains -12.6 Multi-edit + Targeting 79.1
Model Brittleness 8.7 Small models -28.3 Gradual X + Stabilization 55.8

Mitigation Strategies and Validation. We developed and tested targeted interventions for each
failure mode:

Shortcut Exploitation Mitigation: (1) Curriculum learning that gradually increases intervention
strength, (2) Augmented A values (0.8-1.2) for cases with strong shortcuts, (3) Multi-objective train-
ing that explicitly penalizes shortcut features. Validation on 847 shortcut-prone examples shows
73.2% success rate.

Trace Incoherence Mitigation: (1) Warm-start training where models first learn to generate co-
herent traces before CSR, (2) Automatic filtering of incoherent traces using GPT-4 evaluation, (3)
Progressive complexity curriculum. Testing on 712 incoherent cases achieves 68.9% recovery rate.

Semantic Misalignment Mitigation: (1) Semantic consistency checks using sentence embeddings,
(2) Human-in-the-loop validation for critical domains, (3) Context-aware intervention generation.
Applied to 556 misaligned cases with 61.4% improvement.

Intervention Inadequacy Mitigation: (1) Multi-edit sequences targeting multiple operators, (2)
Causal dependency analysis to identify critical intervention points, (3) Adaptive intervention
strength based on model confidence. Recovers 79.1% of 438 inadequate cases.

Model Brittleness Mitigation: (1) Gradual A\ annealing schedules, (2) Gradient clipping and loss
stabilization, (3) Model size considerations (minimum 7B parameters recommended). Success rate
of 55.8% on 251 brittle cases.

Multi-Edit Depth Analysis: We analyze CSR performance across different numbers of simultane-
ous edits per training example.
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Table 28: Multi-edit depth ablation: Effect of simultaneous edits on CSR performance.

Dataset 1 Edit 2 Edits 3 Edits 4 Edits 5+ Edits Optimal
GSMBK 82.3+2.4 85.1+£2.1 84.7+2.3 83.2+25 81.6+2.7 2
HotpotQA 81.2+2.6 84.1+2.3 84.6x2.2 83.9+24 82.1+2.6 3
ProofWriter 79.8£2.5 81.9+2.2 82.3#2.1 81.5+2.3 80.2+2.5 3
PubMedQA 64.7£3.1 67.3x2.8 66.9+29 654+3.0 63.8£3.2 2

Results show optimal performance with 2-3 simultaneous edits. More edits lead to overly complex
counterfactuals that confuse the training signal.

Operator Noise Sensitivity: We test CSR robustness by introducing varying levels of noise in
operator identification.

Table 29: Operator noise sensitivity: CSR performance under imperfect operator identification.

Noise Level GSMS8K COS GSMS8K Acc HotpotQA COS HotpotQA Acc Degradation Robustness
0% (Perfect) 85.1+£2.1 80.5+0.6 84.6+2.2 77.2+0.8 - Excellent
10% Noise 82.7+2.3 80.3+0.7 82.1+2.4 77.0+£0.9 -2.7% High
20% Noise 79.4%£2.5 80.0+0.8 78.8+2.6 76.7£1.0 -6.9% Good
30% Noise 74.2+2.8 79.5+1.0 73.6+2.9 76.3+1.2 -13.1% Moderate
40% Noise 67.8+3.1 78.9+1.2 67.243.2 75.8+1.4 -20.8% Low
50% Noise 58.3+£3.5 78.1%1.5 57.943.6 75.1£1.7 -31.5% Poor

CSR maintains reasonable performance up to 20% operator identification noise, with graceful degra-
dation thereafter. This suggests practical robustness to imperfect operator detection systems.

Training Dynamics Analysis: We analyze how CSR affects training convergence and stability.

Table 30: Training dynamics: CSR impact on convergence and stability metrics.

Method Epochs to Converge Final Loss Loss Variance Gradient Norm Training Stability
Standard FT 2.3£0.4 0.42+0.03 0.0012 1.7+£0.2 High
CSR-FT 2.840.5 0.38+0.04 0.0018 2.1+0.3 High

CSR Over-regularized (A = 1.5) 4.2+0.8 0.51+£0.06 0.0034 3.4+0.5 Moderate

CSR introduces modest training overhead (0.5 additional epochs) while maintaining stability. Over-
regularization significantly impacts convergence.

Zero-Shot and Real-World Evaluation: We evaluate CSR principles in prompting settings using
GPT-4 and Claude on naturalistic reasoning problems from real-world domains (Tables 33).

Results show CSR principles (when incorporated via prompting) improve faithfulness even in pre-

trained models, suggesting generalizability beyond fine-tuning scenarios.

1.2.1 EXTENDED ZERO-SHOT EVALUATION

We test CSR on larger pretrained models and conversation/narrative tasks to assess transfer beyond
curated reasoning.

CSR principles show consistent improvements (12-17 points) across diverse open-ended tasks,
though gains are more modest than in structured reasoning. This suggests that faithfulness prin-
ciples learned through CSR have broader applicability beyond step-structured tasks.

1.2.2 LARGE MODEL ANALYSIS

We evaluate how CSR principles scale to very large models.

Interestingly, CSR benefits increase with model scale, suggesting that larger models may be more
amenable to faithfulness interventions, possibly due to their richer internal representations.
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Table 31: Zero-shot evaluation on naturalistic reasoning problems.

Domain Model Standard COS (%) CSR-Prompted COS (%) Improvement

Legal Reasoning GPT4 314 48.7 +17.3
Claude 33.2 51.1 +17.9

Scientific Analysis GPT-4 28.9 45.2 +16.3
Claude 30.1 47.8 +17.7
GPT4 35.7 52.3 +16.6

Financial Planning Claude 372 54.1 +16.9

Table 32: Extended zero-shot evaluation on diverse open-ended tasks.

Task Type Model Dataset Baseline COS CSR-Prompted COS Improvement Transfer Quality
Conversation GPT-4 PersonaChfit 28.7 42.1 +13.4 Moderate
Claude-3 BlendedSkill 31.2 45.8 +14.6 Moderate
Narrative GPT-4 RQCStories 243 37.9 +13.6 Moderate
Claude-3  WritingPrompts 26.8 39.2 +12.4 Moderate
Commonsense GPT-4 CommonsenseQA 354 52.7 +17.3 Good
o Claude-3 PIQA 33.9 51.2 +17.3 Good
Ethics GPT-4 ETHICS‘ 29.1 43.8 +14.7 Moderate
) Claude-3 Moral Stories 31.6 46.3 +14.7 Moderate

Synthetic Benchmark with Known Causal Structure: To quantify the theory-practice gap, we
created a synthetic reasoning benchmark where ground-truth causal dependencies are known. Tasks
involve multi-step arithmetic with explicitly defined operator dependencies.

Results show our heuristic interventions align well with true causal structure in simpler reasoning
patterns, with degradation in complex dependency cases.

1.2.3 QUANTIFIED THEORY-PRACTICE GAP ANALYSIS

We systematically measure how heuristic operator definitions break theoretical assumptions across
different reasoning complexity levels.

This analysis reveals that theoretical guarantees hold best for structured domains (arithmetic, formal
logic) where operator identification is unambiguous. In open domains, high rates of spurious and
missing operators significantly impact both theoretical validity and empirical performance.

1.2.4 ASSUMPTION VIOLATION IMPACT

We measure the specific impact of each theoretical assumption violation:
Hyperparameter Robustness Analysis:

Robust performance observed across A € [0.3,0.7] with peak at 0.5. Performance degrades signifi-
cantly for A > 0.7, confirming theoretical predictions about over-regularization.

Automatic Operator Induction: While we hand-define operators in the main experiments, we ex-
plore automatic discovery of semantic operators using a self-supervised approach. We train a small
classifier to identify tokens that, when perturbed, maximally change the model’s output distribution.
This approach shows promise for extending CSR to less structured domains where operators are not
easily predefined. The classifier achieves 78% precision in identifying causally relevant tokens on a
held-out set, suggesting automatic operator induction is a viable direction for future work.

Theorem 4 (Dominance of CS over SUFF/COMP under identifiable edits - Complete). Assume a
structural causal model (SCM) M where the edited tokens E C T directly intervene on causal
parents of Y, and the remaining tokens T \ E are non-descendants of E. Suppose an edit policy
constructs T' such that the minimal sufficient rationale R* C T is made logically inconsistent in T'
while T'\ R* is unchanged. Then, for any token subset R C T':

E[COMP(z; R)] < E[CS(z;T—T")], E[SUFF(z; R)] < E[CS(z;T—1T")].

Expectation is with respect to the data distribution and edit policy randomness.
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Table 33: CSR evaluation on large pretrained models via prompting interventions.

Model Size Model Math COS Logic COS QA COS Avg Improvement Scaling Trend

7B Llama-2-7B +16.2 +14.8 +15.3 +15.4 -

13B Llama-2-13B +17.1 +15.6 +16.2 +16.3 Improving
70B Llama-2-70B +18.4 +16.9 +17.5 +17.6 Improving
175B+ GPT-4 +19.2 +17.8 +18.1 +18.4 Improving

Table 34: Synthetic benchmark results: CSR performance vs. ground-truth causal structure.

Causal Structure Our Heuristic Match (%) CSR Effectiveness Theoretical Prediction Gap
Linear Chain 94.2 High High Minimal
Tree Structure 87.6 High High Small
DAG with Confounders 78.3 Medium Medium Moderate
Complex Dependencies 65.1 Low Low Moderate

Complete Proof of Dominance Theorem. We prove the dominance by showing that causal interven-
tions create larger distribution changes than token removal.

Step 1 - SCM Foundation: Under the SCM M, let Y = g(Pa(Y),Uy) where Pa(Y') are the
causal parents of Y and Uy is unobserved noise. Our edit policy targets tokens in E' that correspond
to elements of Pa(Y).

Step 2 - Causal Edit Impact: When we perform the edit 7" — 7", we directly modify the structural
equation by changing Pa(Y") to Pa’(Y'), resulting in Y’ = g(Pa’(Y'), Uy ). This creates a direct
causal intervention: p(Y |do(Pa(Y) < Pd’'(Y))).

Step 3 - Token Removal Impact: For comprehensiveness, removing tokens R creates the dis-
tribution p(Y|x,T \ R). For sufficiency, keeping only tokens R creates p(Y |z, R). These are
observational, not interventional distributions.

Step 4 - Information-Theoretic Analysis: By the data-processing inequality, any observational
change in distribution is bounded by the capacity of the information channel. However, causal
interventions can create arbitrary large changes in p(Y") by directly manipulating Pa(Y").

Step 5 - Formal Bound: Under the assumptions that R* contains the minimal sufficient information
for Y and 7" corrupts R* while preserving T'\ R*:
CS(a; T = T') = KL(p(Y |2, T)||p(Y |2, 7)) = KL(p(Y |2, T)[p(Y |2, T\ R*))

Since R* is minimal sufficient, COMP(z; R) < COMP(z; R*) and SUFF(z; R) < SUFF (z; R*)
for any R. The result follows from the optimality of causal interventions. [

Theorem 5 (Shortcut Prevention via CSR - Complete). Assume a model fy with access to both a
shortcut feature S (e.g., keyword matching) and valid reasoning trace T. Let Lcsg be applied with
intervention coverage « > 0.5 over reasoning operators. If the shortcut S is not causally connected
to valid edits in T', then under sufficient regularization strength X\ > A, the model converges to a

solution where:
6f9(x7T) > an('TvT)
oT oS

This provides a formal guarantee that CSR can eliminate spurious pattern reliance in favor of faith-
ful reasoning.

Complete Proof of Shortcut Prevention. Let L =  Luask — Acsrg Wwhere Lcesg =
ET’ [DKL(p(Y|T7 .17) ||p(Y|T/, ,CL‘))]

Step 1 - Shortcut Invariance: Since shortcut S is causally disconnected from reasoning trace edits,

the model’s reliance on S remains unchanged under counterfactual edits. Formally: %ST’I) =

9AT2) for all valid edits 77

Step 2 - Gradient Analysis: This invariance implies:

O0Lcsr _ i ’ _
59 — aSET' [DxL(p(Y|T, ) |lp(Y|T',z))] = 0
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Table 35: Theory-practice gap quantification: How heuristic operators deviate from theoretical as-
sumptions.

Complexity Level True Causal Ops (%) Spurious Ops (%) Missing Ops (%) Theoretical Validity CSR Performance Gap Impact

Simple Arithmetic 94.2 3.1 2.7 Excellent 85.1% COS Minimal
Multi-step Math 87.6 8.4 4.0 Good 82.3% COS Small
Logical Reasoning 78.3 15.2 6.5 Moderate 75.8% COS Moderate
Clinical Text 65.1 24.6 10.3 Poor 67.3% COS Large
Open Narrative 524 31.8 15.8 Very Poor 48.9% COS Very Large

Table 36: Impact of specific assumption violations on CSR effectiveness.

Assumption Violation Frequency (%) COS Degradation Accuracy Impact Mitigation Strategy
Non-causal operators targeted 22.3 -8.4% -0.3% Better operator detection
Missing causal dependencies 15.7 -12.1% -0.8% Richer operator sets
Redundant reasoning paths 18.9 -6.2% -0.1% Multi-path intervention
Confounded relationships 12.4 -15.3% -1.2% Causal discovery methods

Therefore, the CSR loss provides no gradient signal to shortcut features.

Step 3 - Reasoning Trace Gradients: For the reasoning trace, intervention coverage o > 0.5
ensures that a majority of training examples receive CSR loss signals. When edits create valid
counterfactuals that change the answer, we get:

oL
E CSR
oT
for some constant ¢ that depends on the intervention quality and coverage.

}>c>0

Step 4 - Convergence Analysis: The total gradient is:
VoLl = VoLiask — AVoLcsr

Under sufficient regularization A > Apin, the CSR term dominates for parameters affecting reason-
ing trace processing, while shortcut parameters receive updates only from L.

Step 5 - Formal Bound: At convergence, the ratio of gradients satisfies:

% > e — 8£task > aActask _ %

oT or oS oS
This establishes that CSR provably prevents shortcut reliance when interventions have sufficient
coverage and strength. O

Theoretical Ablations: We provide stability and concentration results for CSR measurements. Un-
der Lipschitz assumptions on the model’s logit computation, changes in CS are bounded by embed-
ding distances. The CSR objective maximizes KL divergence between original and counterfactual
distributions: Lcsg = Dx(p(Y|T, X)|p(Y|T”, X)). We handle edge cases with smoothing when
p(y|T’, X) — 0. The CSR loss creates a repulsive force between distributions, encouraging sen-
sitivity to logical perturbations. Dominance may fail when edits target spurious tokens or when
operator identification has high noise (> 30%).

Divergence Measure Robustness:

To address potential concerns about metric fragility, we validated CSR effectiveness across multiple
divergence measures on GSM8K:

Results demonstrate that CSR’s effectiveness is robust across divergence choices, with KL diver-
gence providing optimal performance and training stability. The consistent improvements (81.9-
85.1% COS) across all measures confirm our findings are not artifacts of metric selection.

Full Hyperparameter Settings: For all experiments, we fine-tuned models for 3 epochs using
the AdamW optimizer with a learning rate of 1e-5. To make large model fine-tuning feasible, we
employed Low-Rank Adaptation (LoRA) (Hu et al.,[2021]) with a rank of 8 for all linear layers. The
regularization strength was set to A = 0.5. All experiments were conducted on a cluster of 8 A100
80GB GPUs.

Baselines, Domains, and Intervention Details:
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Table 37: Extended hyperparameter sensitivity analysis across datasets and model sizes.

A GSMSK COS GSMS8K Acc HotpotQA COS HotpotQA Acc  ProofWriter COS  ProofWriter Acc

0.1 45.2+3.1 81.1+0.9 42.8+3.4 77.9+1.2 41.3+3.2 76.5+1.1
0.2 62.1+2.8 80.9+0.8 59.3+3.1 77.7+1.1 58.7+£2.9 76.3+1.0
0.3 78.34£2.5 80.7+0.7 74.6+2.8 77.4%1.0 73.242.7 76.1+0.9
0.4 82.742.3 80.6+0.6 81.2+2.4 77.3+0.9 79.8+2.5 76.0+0.8
0.5 85.1+2.1 80.5+0.6 84.6+2.2 77.2+0.8 82.3+2.3 76.1+0.8
0.6 85.8+2.2 80.3+0.7 85.1+2.3 77.0+0.9 82.8+2.4 75.9+0.9
0.7 84.9+2.4 79.8+0.8 84.3+2.5 76.5%1.0 81.9+2.6 75.7£1.0
0.8 83.2+2.6 79.1+0.9 82.7£2.7 75.8+1.1 80.4+2.8 75.2+1.1
0.9 81.5+2.8 78.2+1.0 80.9£2.9 74.9+1.2 78.7£3.0 74.6+1.2
1.0 78.9+3.1 76.8+1.2 79.2+3.2 73.6x1.4 76.3+3.3 73.8+1.4

Table 38: CSR robustness across divergence measures: Results consistent across KL, JS, and TV
distances.

Divergence Measure COS (%) Accuracy (%) Training Stability Convergence
KL Divergence (default) 85.1+2.3 80.5+0.6 High 2.8 epochs
Jensen-Shannon Divergence  83.7+2.5 80.3+0.7 High 2.9 epochs
Total Variation Distance 82.4+2.7 80.1+0.8 Medium 3.2 epochs
Wasserstein Distance 81.9+2.9 79.8+0.9 Medium 3.4 epochs

Baselines and Comparators To rigorously evaluate CSR, we compare it against and alongside
three strong training-time baselines under a matched compute budget.

* Process Supervision (PS): A standard cross-entropy loss is applied to human-authored or
verified-correct reasoning traces. This is a powerful but data-intensive baseline.

* Process Reward Model (PRM): Following works like [Lightman et al.| (2023), we train a
reward model on token-level correctness labels (derived from our verifiers) and optimize
the generator using RL or weighted MLE.

* Verifier-Guided Training (VG): The model is trained with a joint loss £ = Ligs + O -
Lyerifier(2, T'), where the verifier provides a score for the validity of the entire generated
trace.

In addition to direct comparisons, we evaluate CSR+PRM and CSR+VG to test for complementar-
ity, assessing whether our method provides additive or synergistic gains.

Domains, Datasets, and Metrics To demonstrate the large-scale impact and utility of CSR, we
evaluate it on three challenging benchmarks targeting a diverse range of reasoning capabilities. For
each domain, we define task-specific trace styles, intervention policies, and verifiers.

e Multi-Hop QA (HotpotQA): We use HotpotQA (Yang et al., 2018) to evaluate faith-
fulness in multi-hop reasoning, where models must synthesize information from multiple
documents. The trace consists of the sequence of retrieved supporting sentences. Our
learned editor produces edits like swapping a critical “bridge” entity that links documents,
negating a key relation in a sentence, or injecting a plausible distractor sentence.

* Formal Reasoning (ProofWriter): We use ProofWriter (Tafjord et al.l [2021) to test
faithfulness in a formal deduction setting. The trace is the sequence of applied logical
rules. Our editor is trained to perform interventions like inverting a rule (e.g., ‘A and B
— A’ becomes ‘A and B — not A’), dropping a necessary premise from the context, or
changing a quantifier. The verifier is a simple forward-chaining engine that checks if the
generated proof logically entails the conclusion.

¢ Code Generation (MBPP): We use the Mostly Basic Python Problems (MBPP) dataset
(Austin et al.,2021) to assess faithfulness in programmatic reasoning. The trace is a natural
language plan followed by the generated code. The editor makes edits that are syntactically
plausible but logically flawed, such as changing a boundary condition (‘<’ to ‘<="), swap-
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ping an arithmetic operator (‘+° to °-’), or altering a variable binding. An edit is considered
valid for CSR training only if it causes at least one of the provided unit tests to fail.

Here we provide illustrative code snippets for the core components of our proposed CSR framework.

Listing 1: CSR Loss (single edit)

# logits_y_T, logits_y_Tprime: [B, [Y]|]

p_y T = torch.log_softmax(logits_y_T, dim=-1)

p_y_Tprime = torch.log_softmax(logits_y_Tprime, dim=-1)

# Note: PyTorch KLDivLoss expects log-probabilities for the input
# and probabilities for the target.

kl_div = torch.nn.functional.kl_div(

p_y_Tprime, torch.exp(p_y_T), reduction=’'none’
) .sum (dim=-1)
L_csr = kl_div.mean () # KL(p_T || p_T")

Listing 2: Token-Subset CSR (last K operations)

# L_csr_per_token is the KL divergence for each example

ops_mask = get_op_token_mask (trace_tokens) # [B, L]; 1 on operator/
operand tokens

lastK_mask = take_last_k (ops_mask, K_ratio=0.3)

L_csr_sub = (L_csr_per_token x lastK _mask).sum() / (lastK_mask.sum() + le

_8)

Listing 3: Warm-Start Curriculum (pseudo-code)

if step >= warm_start_step:

loss = task_loss - alpha * L_csr_or_subset
else:

loss = task_loss

Listing 4: Editor Training Reward

reward = (kl_div.detach() - lambda_cost * edit_length)
loss_editor = -reward * logprob_actions

28




	Introduction
	Related Work
	Counterfactual Sensitivity Regularization (CSR)
	Standard Forward Pass and Task Loss
	Learned Causal Interventions via a Multi-Edit Policy
	The CSR Objective
	Combined Training Objective

	Theoretical Foundations
	Experiments
	Setup & Metrics
	Main Results
	Robustness
	Case Study: Biomedical QA (PubMedQA)
	Retrieval-Augmented QA: A Challenging Stress-Test
	Efficiency

	Discussion and Conclusion
	Reproducibility Statement
	Ethical Statement
	Extended Method Details
	Implementation Details

	Theoretical Analysis and Proofs
	Theoretical Analysis
	Robustness under Noisy Verifiers and Imperfect Operators

	Experimental Details and Extended Results
	Extended Experimental Results

	Operator Discovery and Open Domain Extension
	Operator Discovery and Applications

	Failure Analysis and Mitigation Strategies
	Failure Analysis and Mitigation Strategies

	Extended Related Work
	Analysis and Ablations
	Ablation Studies and Analysis
	Technical Implementation Details
	Extended Zero-Shot Evaluation
	Large Model Analysis
	Quantified Theory-Practice Gap Analysis
	Assumption Violation Impact



