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Abstract

Reward models play a key role in aligning language model applications
towards human preferences. However, this setup creates an incentive for
the language model to exploit errors in the reward model to achieve high
estimated reward, a phenomenon often termed reward hacking. A natural
mitigation is to train an ensemble of reward models, aggregating over
model outputs to obtain a more robust reward estimate. We explore the ap-
plication of reward ensembles to alignment at both training time (through
reinforcement learning) and inference time (through reranking). First, we
show that reward models are underspecified: reward models that perform
similarly in-distribution can yield very different rewards when used in
alignment, due to distribution shift. Second, underspecification results in
overoptimization, where alignment to one reward model does not improve
reward as measured by another reward model trained on the same data.
Third, overoptimization is mitigated by the use of reward ensembles, and
ensembles that vary by their pretraining seeds lead to better generalization
than ensembles that differ only by their fine-tuning seeds, with both out-
performing individual reward models.1 However, even pretrain reward
ensembles do not eliminate reward hacking: we show several qualitative
reward hacking phenomena that are not mitigated by ensembling because
all reward models in the ensemble exhibit similar error patterns.

1 Introduction

To align machine learning systems with human preferences, it is common to use reward
models (RMs), which are finetuned on preference annotations to score potential outputs by
how likely they are to be preferred by human raters (Christiano et al., 2017; Stiennon et al.,
2020). There are many ways to use RMs to align policy models: they can act as training
signals in reinforcement learning (Christiano et al., 2017; Stiennon et al., 2020), they can
select examples for further imitation learning (Gulcehre et al., 2023; Liu et al., 2023; Dong

1These pretrains are available at https://github.com/google-deepmind/reward-ensembles.
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Steak is a high-fat steak, which 
means that it’s a lot of calories 
and fat, but that it makes for a 
good meal. Steak can sit as a side 
dish to a lot of different foods. 
Here’s some popular suggestions: 
- Grilled tomatoes 
- Fried eggs on toast
- [...]

y: sampled response
= +1.85

= -0.86

= -2.03

= -0.88

= -0.10

= -0.40

Reward ensemble is effective

= -1.13 ≈

Reward ensemble is ineffective

Human: I want to make a nice steak dinner, but I don't know the 
difference between the various cuts of steak. Assistant: [...] 
Human: What should we drink with it? Assistant:

x: context

Of course! There are lots of 
different greetings, [...] For 
example, if someone says "goodbye" 
or "thank you," you can use these 
expressions to politely say 
"goodbye" or "thank you," which 
means "thank you" or "thank you 
very much" in Dutch. If someone 
thanks you, you can [...]

y: sampled response
= +2.83

= +1.89

= +2.60

= +2.60

= +2.34

= +2.31= -1.04 <<

Human: I'm going to the Netherlands and would like to learn a 
few common Dutch phrases. Assistant: [...] Human: Could you 
teach me how to say "Goodbye" and "Thank you"? Assistant:

x: context

Figure 1: Left: RM ensembles can attenuate errors made by individual RMs, in this case
the positive r1 for this off-topic response from the policy model π(y | x), which gets a low
true reward (r∗). Right: insufficiently diverse RMs unanimously rate this overly-verbose
and non-responsive reply from π(y | x) as positive, but it too gets a low true reward. Both
examples are real outputs and rewards (represented as normalized Z-scores) from RMs
trained on the HELPFULNESS data of Bai et al. (2022).

et al., 2023; Touvron et al., 2023), or they can be applied at inference time to steer the output
distribution toward higher expected reward (e.g., Yang & Klein, 2021; Gao et al., 2023). Such
procedures create a semi-adversarial dynamic, in which the language model can achieve
high reward by exploiting errors in the RM. Furthermore, while the RM is trained on a fixed
set of human preference data, the process of alignment shifts the distribution of its inputs,
increasing the likelihood of such errors. This phenomenon where the policy language model
exploits reward model errors is often termed reward hacking (Amodei et al., 2016), reward
gaming (Skalse et al., 2022; Pang et al., 2023), or reward over-optimization (Gao et al., 2023).

Reward hacking has been investigated from several perspectives in prior work (e.g.,
Krakovna et al., 2020; Skalse et al., 2022; Pan et al., 2022). Bai et al. (2022) used rein-
forcement learning with human feedback (RLHF) and trained two RMs on non-overlapping
splits of preference data, using one to drive alignment, and the other to measure the quality
of the outputs. They find that RLHF increases performance according to both the driver
and measurement models, but that a performance gap emerges as the policy is allowed to
diverge from the initial distribution. However, both RMs were built on base models trained
on the same pretraining data, which, as we will show, limits their diversity (as hypothesized
by Gleave & Irving (2022)) and thus may understate the effect of reward hacking. Other
work has simulated the relationship between a “true” reward and a learned proxy, showing
that it is possible to over-optimize the proxy to such an extent that the true reward starts
to decrease (Gao et al., 2023; Coste et al., 2023), e.g. by exploiting spurious correlations in
reward model training data (Pang et al., 2023).

In this work, we first analyze RM distribution shift from the perspective of underspecifica-
tion (D’Amour et al., 2022), which occurs when a machine learning pipeline yields reliable
performance on held-out data from the training distribution, but variable performance on
out-of-distribution data. When applied to learning RMs from human preference data, we
show that RMs that agree in-distribution often disagree after alignment-induced policy dis-
tribution shifts. Furthermore, such disagreements are more pronounced when the RMs are
built on different pretrainings, even when that difference is induced merely by varying the
pretraining random seed. These disagreements become increasingly severe when evaluated
on outputs of a policy model that has been aligned to a specific RM. This occurs both when
using RMs in RLHF, as well as when using an inference-time alignment procedure, best-of-n
reranking, where n samples are drawn from the policy and then reranked with a RM.

Motivated by these findings, we systematically investigate reward model ensembles as
a possible remedy for reward hacking. Assuming different models err in different ways,
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ensembling can leverage reward uncertainty across the ensemble during alignment (see
Figure 1, Left). We explore several techniques for aggregating scores across the ensemble,
e.g., taking the median score as a robust estimate of the true reward of the policy. We
also consider two types of ensembles: pretrain ensembles, where different members of the
ensemble differ in the random seed used during the pretraining phase, and finetune ensembles,
where members differ only in the random seed used during finetuning. These ensembles
are then evaluated across several types of policies and preference annotations: dialogue
preferences for a helpful assistant (Bai et al., 2022), summarization quality (Stiennon et al.,
2020), and whether a summary is grounded in its source text (Roit et al., 2023).

We find that ensembles are significantly more robust than individual reward models, and
that pretrain ensembles are particuarly effective. However, reward ensembles are still
susceptible to reward hacking when all members of the ensemble share similar error patterns,
which in turn propagate to the ensemble (see Figure 1, Right). This is exploited and amplified
by policy optimization: for example, summarization models produce outputs that are too
short when tuned for factuality, but too verbose when tuned for summarization quality;
assistant models overuse formulaic answer formats when tuned for helpfulness.

Recent and concurrent related work Coste et al. (2023) argue that reward model ensem-
bles effectively mitigate reward hacking. Our work shares a similar research question,
but differs in several ways, leading to more nuanced conclusions: we investigate both
pretrain and finetune ensembles; we use human-annotated preference data rather than
synthetically-generated labels; and we analyze several real reward hacks, showing that they
are not prevented by ensembles. Subsequent work has explored efficient RM ensembles
through low-rank adaptation (e.g., Zhai et al., 2023) and weight averaging (Ramé et al., 2024),
but exclusively for finetune ensembles. More generally, we can try to optimize the policy
against the worst-case reward in some analytically-computed uncertainty set (Zhu et al.,
2023; Zhang et al., 2024), but this too accounts only for uncertainty due to the finite sample
of preference pairs and not in the representations made available through pretraining.

2 Preliminaries

We now briefly review how reward models are trained (§2.1) and how they are used for
alignment (§2.2). We then describe our setup for studying reward hacking (§2.3).

2.1 Reward Model Training

RMs are typically trained from preference data, (x, y+, y−) ∈ D, where y+ is preferred over
y− for prompt x. Under the Bradley-Terry model (Bradley & Terry, 1952), the probability
that response y2 is preferred over y1 given a reward function r and a prompt x is p(y1 ≺
y2 | x) = σ(r(x, y2) − r(x, y1)), where σ(·) is the sigmoid function. Given a dataset of
preferences, the maximum-likelihood objective is,

J (r) = E(x,y+ ,y−)∼D
[
log p(y− ≺ y+ | x)

]
. (1)

The Bradley-Terry model is underdetermined: for any RM r∗, there is a set of equivalent
models, r′(x, y) = r∗(x, y) + C(x) where C(x) is a prompt-dependent constant, such that
J (r∗) = J (r′). This is problematic for ensembling: if different RMs choose different values
for C(x), then order statistics like median and minimum are meaningless. We therefore
modify the objective by regularizing the sum of rewards per preference pair towards zero:

Jreg(r) = J (r) + η ·E(x,y+ ,y−)∼D
[
(r(x, y+) + r(x, y−))2], (2)

where η is a small positive value, thereby resolving the issue of underdetermination.

Note that RMs can also be trained from “pointwise” data, such as toxicity or factuality
annotations on individual examples (Yang & Klein, 2021; Roit et al., 2023). Such RMs are
not underdetermined and so can be aggregated without adjustment.
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2.2 Aligning Language Models using Reward Models

Best-of-n reranking (BoN) is an inference-time alignment strategy, where given a prompt
x, we sample n generations y1, . . . , yn from a policy language model π(y | x) and return
the generation with highest reward: y∗ = arg maxyk∈{y1,...,yn} r(x, yk). The Kullback–Leibler
(KL) divergence of BoN from the initial policy is upper bounded by log n− n−1

n (Beirami
et al., 2024). BoN tends to outperform more elaborate alignment techniques like RLHF in
the low-KL regime (Gao et al., 2023), albeit with the cost of generating multiple samples at
inference time.

Reinforcement Learning from Human Feedback (RLHF) is an online reinforcement learn-
ing method that trains a policy language model π to maximize expected reward, while
staying close to an initial policy, πsft, which is typically finetuned on supervised data
(prompt-output pairs). Distance from the initial policy is measured with KL divergence,
which leads to the regularized objective

max
π

Ex∼ρ
y∼π

[r(x, y)]− λKL(π‖πsft), (3)

where r is an RM, ρ is a distribution over prompts, and λ is a hyperparameter. Typically, this
objective is optimized using PPO (Schulman et al., 2017), which we also use in this work.

The KL penalty in eq. (3) can limit reward hacking by keeping the policy close to πsft.
However, KL regularization does not directly address reward model errors, and in particular
does not address RM distribution shift when the preference annotations are not sampled
from πsft (as is generally the case). Furthermore, we want to diverge from the reference
policy when we can be confident of improving the expected reward. As we will show
empirically, KL regularization is complementary to the development of more robust reward
models, which yields pareto improvements in the reward-KL tradeoff.

2.3 Experimental Setup

Datasets We consider three tasks. Example instances are provided in Table 12.

• TL;DR: A summarization benchmark where authors summarize their own reddit
posts (Völske et al., 2017; Stiennon et al., 2020), frequently used in research on RLHF and
related methods (Rafailov et al., 2023; Zhao et al., 2023).

• HELPFULNESS: A popular dialogue benchmark (Bai et al., 2022), where given a partial
conversation between a human and a digital assistant the goal is to complete the next
assistant turn (Bai et al., 2022; Rafailov et al., 2023).2

• XSUM/NLI: A summarization benchamark where a policy model trained on
XSum (Narayan et al., 2018) is finetuned to generate summaries that are factually
consistent with the source document (Roit et al., 2023).

Training reward models To examine the effect of pretraining, we pretrain five T5 models
from scratch at the base (220M parameters), large (770M), and XL (3B) scales, using the stan-
dard denoising objective over the C4 corpus (Raffel et al., 2020). The pretrained checkpoints
differ only in their random seed, which controls parameter initialization and the sample
from the pretraining data.

For each task, we finetune each pretrained model five times using different random seeds.
In TL;DR and HELPFULNESS we use the aforementioned preference data. For XSUM/NLI, we
finetune pointwise natural language inference (NLI) models on the ANLI dataset (Nie et al.,
2020). This yields 25 RMs per task and scale (5 pretrain × 5 finetune), making it possible to
evaluate the effect of pretraining and finetuning on underspecification (§3) by constructing
ensembles that differ in either pretrain or finetune seed (§4).

2We use the base dataset (44K examples), where responses are generated from a 52B context-
distilled LM, and split the training set into two: half for training the RM, and half for the policy.
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Model Size TL;DR HELPFULNESS XSum/NLI

T5-BASE 65.8± 0.3 66.7± 0.7 86.7± 0.9
T5-LARGE 69.3± 0.7 68.5± 0.4 88.3± 1.2
T5-XL 71.4± 0.8 69.2± 0.6 91.3± 0.5

T5-XXL 79.5 71.5 92.9

Table 1: Mean in-distribution accuracy of 25 RMs on validation data for TL;DR, HELPFULNESS,
and XSUM/NLI. Standard deviation, indicated with ±, is small in-distribution. The single
T5-XXL RM is used for evaluation purposes only.

Alignment strategy We use the publicly available T5-large (Raffel et al., 2020) as a policy
for the summarization tasks. For HELPFULNESS, which requires substantial background
knowledge, we use the instruction-tuned PALM-2-XXS model (Anil et al., 2023). Before
alignment, we create a finetuned policy πsft through supervised finetuning: We finetune on
annotated summaries from TL;DR and XSUM/NLI for the corresponding tasks, and on the
preferred responses, (x, y+), from the preference data in HELPFULNESS.

In BoN reranking, we rerank sampled output sets of size n ∈ {21, 22, . . . , 25} for HELP-
FULNESS and {21, . . . , 26} for TL;DR. Larger sets lead to higher reward at a cost of more
expensive inference and larger deviation from πsft. In RLHF, we obtain a trade-off between
the KL from πsft and the expected reward by training multiple times, varying the value
of λ. Low values of λ correspond to high KL and high reward, while high values of λ
entail low KL and low reward. For each value of λ we train roughly to convergence using
a predetermined fixed number of steps (all hyperparameter values, including λ and the
number of steps, are in Appendix C). Coste et al. (2023) trade-off KL and reward by tracking
their values during training; however, for any particular value of KL the reward might still
be underoptimized during training (i.e., there can exist a different policy π(y | x) with better
reward, but the same KL(π(y | x)‖πsft(y | x)), which can be found with longer training).

Evaluation The aligned policies are autoevaluated by two metrics: reward and win rate.
Similar to past work (Gao et al., 2023; Coste et al., 2023), we use a larger RM to evaluate the
generalization of models trained with a smaller RM. We train a T5-XXL RM by taking the
publicly available T5-XXL (Raffel et al., 2020) and finetuning it as described above. As shown
in Table 1, T5-XXL outperforms the best T5-XL model on each task. We report both average
reward from the T5-XXL evaluator as well as win rate, which is the fraction of prompts for
which the response sampled from the aligned policy π has higher reward compared to πsft.

Because the T5-XXL autoeval model is trained on the same data as the smaller T5 RMs,
their errors might be correlated. For this reason, we also compute win rate according to a
prompted PALM-2-Large model, which was not exposed to the reward training data but
was instruction-tuned on Flan (Wei et al., 2022). Given a prompt x, we sample a response
ysft from πsft and yrlhf from π. We then ask PALM-2 which response is better, using a
hand-engineered prompt proposed by Rafailov et al. (2023). To avoid position bias, we run
PALM-2 on the two possible orderings (ysft, yrlhf) and (ysft, yrlhf), sample K = 8 outputs for
each order and determine the winner on this prompt through majority voting. This style of
evaluation has become popular (Dubois et al., 2023; Singhal et al., 2023) and was shown to
correlate well with human judgements (Rafailov et al., 2023).

3 Underspecification in Reward Models

We begin by demonstrating that the out-of-distribution performance of individual RMs is
underspecified. Table 1 shows the average in-distribution accuracy across the 25 different
RMs, together with the standard deviation. The low standard deviation highlights that
all 25 reward models achieve similar performance in-distribution. But when we move to
out-of-distribution data, the models diverge. Figure 2 shows the expected reward achieved
by BoN as a function of the number of sampled candidates, n. The dotted green line
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Figure 2: Average reward of the best-of-n output, as judged by: the same RM used for
ranking (self ); RMs fine-tuned from the same pretrain as the ranker (same pretrain); RMs
fine-tuned from different pretrains from the ranker (diff pretrain). The RMs that do not share
a pretrain with the ranker regard the ranker’s preferred outputs as significantly worse.
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Figure 3: Rank correlation of reward scores for TL;DR RMs that share a pretraining seed
and models that do not. RLHF alignment increases disagreements between RMs (lower
correlation), particularly at low values of λ and for RMs that do not share a pretrain.

shows the expected reward of the top-ranked output according to the reranker itself, while
the dashed blue line shows the expected reward of the same output according to RMs
that share a pretrain seed. The solid orange line shows the expected reward according
to RMs that do not share a pretrain seed. Unsurprisingly, the reranker scores its own top
outputs more favorably than the other RMs do. However, the reranker’s outputs are scored
significantly less favorably by RMs which do not share a pretrain with the ranker. RMs that
share a pretrain seed with the ranker model overestimate the true reward of the top-ranked
output—suggesting that finetune ensembles are not sufficiently diverse because of the
shared pretraining state of each of the ensemble’s members. Notably, this gap does not
disappear with scale, as shown in Figure 2.

Moving to alignment, differences in estimated rewards induce different policies from the
BoN strategy. Figure 8 (in the appendix) shows the effects on agreement of the top-ranked
summary when RMs do (crosses) or do not (circles) share pretraining seeds. Different RMs
tend to produce different 1-best outputs, and these differences are linked to the pretraining
seed: for example, two RMs from different pretrains will choose a different best-of-16 output
more than half the time for both TL;DR and HELPFULNESS and in all scales.

Figure 3 analyzes the evolution of agreement of the estimated reward scores when perform-
ing RLHF on TL;DR. For each policy model, we sample five completions for each prompt
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in the validation set at 2000 step intervals during RLHF. We then measure how well pairs
of RMs agree on the ranking of these completions, using Spearman rank correlation. The
correlation is averaged across all pairs of reward models that do and do not share the same
pre-training seed; both sets of RMs include the one used to drive RLHF. As shown in the
figure, RLHF decreases the average correlation, particularly at low levels of regularization.
Furthermore, agreement is substantially lower for pairs of reward models that do not share
the same pretraining seed. This supports our conclusion that reward modeling under
alignment-induced distribution shift is underspecified by the preference annotations.

Overall, our analysis demonstrates that (1) different RMs tend to disagree on out-of-
distribution data, particularly when the RMs have different pretraining seeds; (2) this
propagates to the trained policy model, in the sense that the resulting policy is highly tuned
to the preferences of the specific RM used to drive it; and (3) as a result, the disagreement
between RMs tends to increase during alignment. These findings suggest that reward model
ensembles might mitigate reward hacking, which we turn to next.

4 Reward Model Ensembles

A natural mitigation to reward model underspecification is to ensemble multiple RMs,
under the assumption that different models will have different errors. Aggregating over the
scores of the ensemble members will help when some of the ensemble members erroneously
assign high reward to a bad output.

Building reward model ensembles Given a set of RMs M, we define the reward of
the ensemble to be r(x, y) = agg({rm(x, y)}m∈M), with agg indicating an aggregation
function (Dietterich, 2000; Lakshminarayanan et al., 2017; Raffel et al., 2020; Zaidi et al.,
2021). Intuitively, the aggregation function should be conservative, and return a lower score
when there is disagreement between the ensemble members. We consider the following
simple aggregation functions: MEAN, MEDIAN, and MEAN_MINUS_STD, which subtracts
the standard deviation of the reward from the mean to penalize high variance. We also
experiment with MIN, but overall find it to be inferior to the alternatives.

We evaluate two types of reward ensembles: pretrain ensembles, where each member is
pretrained using a different random seed,3 and finetune ensembles, where members share the
same pretraining seed, but use a different seed when finetuned on the reward data. In all
cases the ensemble contains five individual RMs. Pretrain ensembles are expensive to train,
but are more diverse and hence likely to lead to a more robust reward estimate. (Gleave &
Irving (2022) reported negative results when using reward ensembles and hypothesized
this is due to members sharing the same underlying pretrained model.)

Evaluation We now evaluate RM ensembles across tasks. Figure 4 shows the results in best-
of-n reranking, as measured by an XXL-scale fine-tuned RM. Pretrain ensembles consistently
improve performance over individual RMs, especially for higher values of n for both TL;DR
and HELPFULNESS. Finetune ensembles, conversely, improve performance in some cases
and are comparable in others. For example, on TL;DR a pretrain ensemble with the MEAN
aggregator achieves a win rate of 90% over the SFT outputs at the XL scale, while the win
rate of a finetune ensemble with the same aggregator is 87.3%. The win rate of the average
individual XL-scale RM is 85.3% (see Table 6). For visual clarity, in Figure 4 we show only
two aggregators: MEAN and MEAN_MINUS_STD; see Appendix A for the other aggregators.
In general, differences between aggregators are small, with MEAN usually performing at,
or near, the top. More conservative aggregators (MIN and MEAN_MINUS_STD) come out
slightly ahead of MEAN at the smaller scales on TL;DR, suggesting that high variance may
be a bigger issue in this setting.

Figure 5 shows the KL-reward trade-off of ensemble RMs in RLHF for TL;DR and
HELPFULNESS (evaluated with the finetuned T5-XXL model). In such plots, a better model

3Pretraining does not complete a single epoch over the pretraining data, and thus the data observed
by each member of a pretrain ensemble is different (but sampled from the same distribution).
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Figure 4: In BoN reranking, pretrain ensemble RMs significantly improve output quality, as
measured by a T5-XXL autoeval model. Full numerical results are in Appendix A.
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Figure 5: In RLHF, pretrain ensemble RMs lead to more favorable reward-KL tradeoffs, as
judged by a T5-XXL autoeval model. Each point corresponds to training to convergence at a
particular value of λ. We show MEDIAN ensembles here; for others see Appendix B.

improves reward and/or reduces KL from the SFT policy (Gao et al., 2023; Coste et al.,
2023). As with BoN alignment, pretrain ensembles consistently outperform finetune
ensembles as well as the average individual RM. For clarity, the figure presents results
only for the MEDIAN aggregator for clarity, but these conclusions are supported by full
numerical results across aggregators, shown in Appendix B. RLHF leads to much higher KL
values than BoN. Consequently, we witness explicit reward hacking, in which the T5-XXL
rewards decrease even as the RLHF objective improves. This happens most prominently
for individual models, in many cases for finetune ensembles, and most rarely for pretrain
ensembles—where T5-XXL reward scores decrease only when RLHF uses a T5-Base RM.
Thus, our experiments on real data yield more negative conclusions than Coste et al. (2023)
about the potential of ensembles to eliminate reward overoptimization.

As the T5-XXL autoeval model is trained on the same distribution as the RMs used for
alignment, it may overstate their performance. Thus, we also use a zero-shot autoeval
model, PALM-2-Large (see Section 2.3). Because this evaluation is computationally
expensive, we apply it to only the largest-scale RMs (XL). As shown in Figure 6, ensemble
RMs achieve higher win rates on both tasks and with both alignment techniques. For
best-of-n, pretrain ensembles get significantly higher win rates on TL;DR at n = 64 (p < .001
by a permutation test); on HELPFULNESS the differences between ensembling techniques
are not significant at n = 32. On both tasks, single RMs are significantly worse, p < .001.
For RLHF, pretrain ensembles achieve better or equal win rates at lower KL divergence
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Figure 6: Using a prompted autoevaluator (PALM-2-Flan), ensemble RMs get significantly
better win rates on both TL;DR and HELPFULNESS. Here all RMs are XL-scale.

from the reference policy, with particularly strong performance on HELPFULNESS. Overall,
these results mirror the T5-XXL evaluation, with one interesting difference: the PALM-2
autoeval reveals more reward hacking for RLHF, where win rate decreases with KL. This
suggests that fine-tuned autoevaluators can overestimate performance when trained on
the same preference data as the alignment RMs.

Figure 9 (in the appendix) shows RLHF results for XSUM/NLI. Here ensembles offer
relatively small improvements, and there is little difference between pretrain and finetune
ensembles. We conjecture this is because XSUM/NLI optimizes specifically for factuality.
This allows all models to find simple and similar strategies that lead to high reward (namely,
emitting short responses), and thus ensembling does not lead to large gains in performance.

5 When do Reward Model Ensembles Fail?

Ensembles improve performance according to automatic evaluation metrics, but does this
mean that reward overoptimization is solved? We now investigate five specific “reward
hacks”, and show that they are not prevented by ensembling, because all members agree
that these hacks improve the quality of the outputs.

To demonstrate this, we manually identify five qualitative distribution shifts in which the
post-RLHF policies differ dramatically from both the reference policy and the preference
annotations. Figure 7 and Figure 10 (in the appendix) show the results of this analysis
on all benchmarks with a T5-large RM. The x-axis corresponds to the number of RLHF
training steps, and the y-axis is a statistic of interest (e.g., average output length). We
plot the statistic for the pretrained ensemble (using MEAN as a representative aggregation
function) and for its members. For TL;DR and HELPFULNESS, where the reward model is
trained on preference data, we show the statistic value on the preference data validation
set, conditioned on the label ‘Preferred’ or ‘Rejected’.

• For HELPFULNESS (Figure 7a), outputs tend to be in a list format, which we capture with
a regular expression. The fraction of outputs that have this pattern increases to roughly
50% for three members of the ensemble, and for the ensemble itself. We do not detect
this tendency in the preference data: the fraction of outputs that matches this format is
roughly 8% for preferred and rejected responses.

• For TL;DR (Figure 7b, Figure 10b), RLHF leads to longer summaries (Singhal et al., 2023)
and more extractive outputs, i.e., more copying from the input. Length in characters
grows substantially for the ensemble and its members, where for the ensemble, length
increases by a factor of two. On the preference data, preferred responses are slightly longer
than rejected responses, but much shorter than outputs post-RLHF. We also compute the
longest common subsequence (in characters) between the document and the summary
and find that it doubles after RLHF with an ensemble RM. Although preference data
shows a slight preference for copying, this preference is dramatically amplified by RLHF.

• For XSUM/NLI (Figure 7c, Figure 10c), training for factuality makes summaries shorter
and less specific, as measured by omission of numerical values. All members of the
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Figure 7: Limitations of reward model ensembles. The x-axis is RLHF steps, the y-axis plots
different statistics of the average validation output at that step, and the curves correspond
to the pretrain ensemble (solid blue) and its members (dashed orange). For preference data,
we plot the same statistics conditioned on the preference data label (Preferred vs. Rejected).
The statistics of the “aligned” outputs are far from their values in the preference data.

ensemble exhibit this phenomenon: RLHF leads to rapid decreases in the length of the
outputs and the fraction of outputs that contain numerical values.

These findings illustrate the tendency of different reward models to associate certain fea-
tures with high reward. Policy models can exploit this association, using these features
to produce outputs that are dramatically different from the reward training data, which
achieve (spuriously) high reward for both individual reward models and the ensemble.

Why do reward model ensembles fail to capture uncertainty about these reward hacks?
Prior work has shown that ensembles can provide good uncertainty estimates around the
decision boundary, while underestimating uncertainty for examples far from the training
distribution (Lakshminarayanan et al., 2017). In LM alignment, the policy can shift the
output distribution away from the decision boundary to areas where all reward models
erroneously extrapolate in the same manner. The same phenomenon may occur in other
approaches for uncertainty estimation that are not distance-aware, such as Monte Carlo
Dropout (Gal & Ghahramani, 2016) and Epistemic Neural Networks (Osband et al., 2021).

6 Conclusion

While reward models can improve robustness to alignment-induced distribution shift,
diversity of the ensemble is crucial. Pretrain ensembles are more diverse than finetune
ensembles, and therefore lead to stronger generalization. However, even pretrain ensembles
are not diverse enough: for many reward hacks, all members of the ensemble agree, making
the ensemble as vulnerable as its constituents. To summarize, reward model ensembles
mitigate, but do not eliminate, reward hacking. Future work should examine uncertainty
quantification techniques that are more robust to the type of distribution shift that occurs
during alignment, particularly techniques that explicitly represent distributional shift from
the preference annotations (Chu & Ghahramani, 2005; Tibshirani et al., 2019).

7 Reproducibility

To support reproducibility and enable further work on pretrain ensembles, we have released
all 5× 3 = 15 pretraining checkpoints, covering the T5-BASE, T5-LARGE, and T5-XL scales.
The release can be found at https://github.com/google-deepmind/reward-ensembles.
To our knowledge, this is the first release of multiple T5 checkpoints, following prior work
on BERT (Sellam et al., 2021). All datasets used in this research are public. Appendix C
provides all relevant hyperparameters used during RLHF.
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A Numerical results for best-of-n reranking

Average agreement between reward models are shown in Tables 2-5. Autoevaluation results
are shown in Table 6 and 7.

k diff pretrain same pretrain self

base

1 0.599 0.599 0.599
2 0.915 0.963 0.981
4 1.155 1.243 1.275
8 1.340 1.462 1.507
16 1.486 1.640 1.696
32 1.605 1.787 1.854
64 1.708 1.914 1.991

large

1 0.785 0.785 0.785
2 1.228 1.328 1.368
4 1.556 1.732 1.805
8 1.830 2.069 2.168
16 2.031 2.330 2.454
32 2.203 2.552 2.697
64 2.348 2.744 2.907

xl

1 0.673 0.673 0.673
2 1.159 1.245 1.309
4 1.513 1.663 1.780
8 1.806 2.001 2.157
16 2.023 2.256 2.449
32 2.203 2.463 2.686
64 2.349 2.631 2.881

Table 2: TL;DR best-of-n agreement.

k diff pretrain same pretrain self

base

1 0.662 0.662 0.662
2 1.081 1.144 1.178
4 1.446 1.560 1.621
8 1.609 1.770 1.855
16 1.776 1.972 2.078
32 1.910 2.139 2.267

large

1 0.727 0.727 0.727
2 1.139 1.190 1.231
4 1.492 1.580 1.656
8 1.670 1.791 1.896
16 1.832 1.979 2.112
32 1.962 2.134 2.291

xl

1 0.588 0.588 0.588
2 1.037 1.079 1.134
4 1.441 1.513 1.609
8 1.635 1.731 1.866
16 1.817 1.932 2.098
32 1.963 2.097 2.293

Table 3: HELPFULNESS best-of-n agreement.
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k diff pretrain same pretrain

base

1 1.000 1.000
2 0.811 0.904
4 0.667 0.825
8 0.546 0.756
16 0.447 0.695
32 0.366 0.637
64 0.303 0.589

large

1 1.000 1.000
2 0.780 0.886
4 0.616 0.794
8 0.497 0.720
16 0.394 0.651
32 0.319 0.593
64 0.260 0.546

xl

1 1.000 1.000
2 0.781 0.859
4 0.618 0.743
8 0.503 0.655
16 0.400 0.567
32 0.323 0.497
64 0.262 0.433

Table 4: TL;DR top 1 agreement.

k diff pretrain same pretrain

base

1 1.000 1.000
2 0.805 0.885
4 0.650 0.789
8 0.506 0.695
16 0.406 0.620
32 0.318 0.548

large

1 1.000 1.000
2 0.810 0.874
4 0.656 0.766
8 0.522 0.668
16 0.413 0.579
32 0.324 0.506

xl

1 1.000 1.000
2 0.812 0.860
4 0.666 0.746
8 0.536 0.635
16 0.436 0.547
32 0.345 0.466

Table 5: HELPFULNESS top-1 agreement.
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scale ensemble method reward win rate

base

finetune

mean −0.220 0.700
mean minus std −0.186 0.703
median −0.231 0.700
min −0.177 0.710

pretrain

mean −0.130 0.721
mean minus std −0.086 0.731
median −0.155 0.715
min −0.086 0.727

single RM single RM −0.244 0.685

large

finetune

mean 0.342 0.814
mean minus std 0.343 0.816
median 0.309 0.809
min 0.348 0.813

pretrain

mean 0.549 0.850
mean minus std 0.513 0.847
median 0.510 0.846
min 0.475 0.841

single RM single RM 0.280 0.792

xl

finetune

mean 0.695 0.873
mean minus std 0.644 0.872
median 0.625 0.867
min 0.638 0.868

pretrain

mean 0.831 0.900
mean minus std 0.781 0.895
median 0.757 0.889
min 0.735 0.883

single RM single RM 0.585 0.853

Table 6: TL;DR BoN (n = 64) autoeval results (T5-XXL fine-tuned evaluator).
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scale ensemble method reward win rate

base

finetune

mean 0.635 0.741
mean minus std 0.615 0.735
median 0.627 0.738
min 0.604 0.725

pretrain

mean 0.691 0.752
mean minus std 0.661 0.748
median 0.683 0.749
min 0.624 0.741

single RM single RM 0.600 0.727

large

finetune

mean 0.778 0.776
mean minus std 0.758 0.772
median 0.771 0.770
min 0.738 0.766

pretrain

mean 0.847 0.792
mean minus std 0.802 0.779
median 0.813 0.784
min 0.770 0.776

single RM single RM 0.730 0.759

xl

finetune

mean 0.884 0.805
mean minus std 0.837 0.788
median 0.859 0.790
min 0.814 0.788

pretrain

mean 0.932 0.816
mean minus std 0.876 0.797
median 0.892 0.798
min 0.858 0.792

single RM single RM 0.811 0.779

Table 7: HELPFULNESS BoN (n = 32) autoeval results (T5-XXL fine-tuned evaluator).
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B Numerical results for RLHF

Full RLHF numerical results for HELPFULNESS and TL;DR are shown in Table 8 and Table 9.

Ensemble Method λ Reward xl Reward large Reward base

ft mean 0.010 2.562
ft mean 0.025 2.476 2.204 0.041
ft mean 0.050 2.148 2.089 1.503
ft mean 0.100 1.652 1.591 1.497
ft mean 0.150 1.328 1.258 1.212
ft mean 0.200 1.079 1.032 0.980
ft mean 0.300 0.764 0.688 0.666
ft mean subtract std 0.010 2.478
ft mean subtract std 0.025 2.401 2.188 0.240
ft mean subtract std 0.050 2.118 1.978 1.585
ft mean subtract std 0.100 1.620 1.525 1.432
ft mean subtract std 0.150 1.315 1.207 1.152
ft mean subtract std 0.200 1.089 0.998 0.949
ft mean subtract std 0.300 0.746 0.667 0.648
ft median 0.010 2.466
ft median 0.025 2.425 2.088 0.153
ft median 0.050 2.154 2.051 1.445
ft median 0.100 1.662 1.585 1.489
ft median 0.150 1.318 1.255 1.197
ft median 0.200 1.096 1.022 0.976
ft median 0.300 0.750 0.699 0.676
pt mean 0.010 2.651
pt mean 0.025 2.551 2.293 1.220
pt mean 0.050 2.196 2.099 1.750
pt mean 0.100 1.724 1.498 1.506
pt mean 0.150 1.319 1.225 1.191
pt mean 0.200 1.106 1.014 0.958
pt mean 0.300 0.759 0.643 0.680
pt mean subtract std 0.010 2.688
pt mean subtract std 0.025 2.529 2.293 0.636
pt mean subtract std 0.050 2.167 2.025 1.696
pt mean subtract std 0.100 1.695 1.450 1.342
pt mean subtract std 0.150 1.301 1.188 1.117
pt mean subtract std 0.200 1.099 1.007 0.932
pt mean subtract std 0.300 0.732 0.688 0.641
pt median 0.010 2.611
pt median 0.025 2.540 2.383 1.166
pt median 0.050 2.141 2.064 1.662
pt median 0.100 1.674 1.488 1.537
pt median 0.150 1.365 1.181 1.220
pt median 0.200 1.117 0.973 1.014
pt median 0.300 0.743 0.669 0.661
single RM n/a 0.010 2.245
single RM n/a 0.025 2.321 1.511 -0.349
single RM n/a 0.050 2.024 1.834 1.028
single RM n/a 0.100 1.594 1.478 1.432
single RM n/a 0.150 1.297 1.194 1.148
single RM n/a 0.200 1.069 0.988 0.937
single RM n/a 0.300 0.759 0.661 0.636

Table 8: HELPFULNESS RLHF numerical results.
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Ensemble Method λ Reward xl Reward large Reward base

ft mean 0.010 2.356 1.562 -1.310
ft mean 0.030 2.088 1.659 -0.456
ft mean 0.100 1.073 0.779 -0.389
ft mean 0.300 -0.217 -0.380 -0.785
ft mean 0.500 -0.707 -0.785 -0.964
ft mean subtract std 0.010 2.171 1.579 -1.185
ft mean subtract std 0.030 1.760 1.533 -0.392
ft mean subtract std 0.100 0.811 0.658 -0.359
ft mean subtract std 0.300 -0.303 -0.409 -0.777
ft mean subtract std 0.500 -0.735 -0.791 -0.960
ft median 0.010 2.206 1.480 -1.939
ft median 0.030 1.939 1.596 -0.509
ft median 0.100 0.955 0.809 -0.376
ft median 0.300 -0.265 -0.370 -0.789
ft median 0.500 -0.728 -0.788 -0.963
pt mean 0.010 2.366 2.037 -0.817
pt mean 0.030 1.997 1.852 -0.343
pt mean 0.100 0.964 0.858 -0.366
pt mean 0.300 -0.309 -0.377 -0.776
pt mean 0.500 -0.744 -0.786 -0.962
pt mean subtract std 0.010 2.398 2.019 -0.957
pt mean subtract std 0.030 1.997 1.710 -0.250
pt mean subtract std 0.100 1.002 0.768 -0.328
pt mean subtract std 0.300 -0.277 -0.357 -0.767
pt mean subtract std 0.500 -0.752 -0.774 -0.958
pt median 0.010 2.431 2.009 -0.868
pt median 0.030 2.030 1.903 -0.317
pt median 0.100 1.086 0.850 -0.347
pt median 0.300 -0.308 -0.388 -0.778
pt median 0.500 -0.746 -0.792 -0.962
single RM n/a 0.010 1.728 1.429 -1.784
single RM n/a 0.030 1.590 1.511 -0.458
single RM n/a 0.100 0.787 0.758 -0.397
single RM n/a 0.300 -0.299 -0.387 -0.783
single RM n/a 0.500 -0.736 -0.791 -0.966

Table 9: TL;DR RLHF numerical results.

C Hyperparameters

We provide the hyperparameters for reward model and RLHF training in Table 10 and
Table 11. For reward models, we use the validation set to choose the best checkpoint along
training. For RLHF, we take the last checkpoint.

D Additional results
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Task Parameter value

Helpfulness

Learning rate 10−4

Learning schedule Constant (linear warm-up)
Warm-up steps 500
Dropout 0.05
Batch size 64
η (regularization coefficient) 0.01

TL;DR

Learning rate 10−4

Learning schedule Constant (linear warm-up)
Warm-up steps 1000
Dropout 0.05
Batch size 32
η (regularization coefficient) 0.01

XSum/NLI

Learning rate base/large: 10−3, xl: 3 · 10−3

Learning schedule constant
Warm-up steps -
Dropout 0.01
Batch size base/large: 128, xl: 32

Table 10: Hyper-parameters for reward model training.
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(b) HELPFULNESS

Figure 8: Agreement of the top-ranked output between reward models that do (crosses)
and do not (circles) share pretraining seeds. Underspecification of reward models directly
affects the behavior of the aligned policy. Chance agreement is 1/n.
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Task Parameter value

Helpfulness

Policy learning rate 5 · 10−6

Value learning rate 10−5

Learning schedule Constant (linear warm-up)
Training steps 20000
Warm-up steps 2000
Batch size base/large: 32, xl: 16
input length 1024
output length 256
λ [0.01, 0.025, 0.05, 0.1, 0.15, 0.2, 0.3]

TL;DR

Policy learning rate 5 · 10−6

Value learning rate 10−5

Learning schedule Constant (linear warm-up)
Training steps 20000
Warm-up steps 2000
Batch size 32
input length 1024
output length 128
λ [0.01, 0.03, 0.1, 0.3, 0.5]

XSum/NLI

Policy learning rate 5 · 10−6

Value learning rate 10−5

Learning schedule Constant (linear warm-up)
Training steps 20000
Warm-up steps 2000
Batch size 32
input length 1024
output length 64
λ [0.01, 0.03, 0.05, 0.1, 0.3, 0.5]

Table 11: Hyper-parameters for RLHF.

Task Prompt Output

TL;DR I’ll try to keep this short! **Background** * I’ve always been an on again/off again
(very casual!) jogger, typically doing 3 - 5 k * My knees have always been finicky, and
I went to a physio who thought I had “runner’s knee” [...] I had my baby a year ago,
so all in all I haven’t run for about 1.5 years [...] However, when I run even the tinyiest
bit, or even go on a long walk or a hike, my pelvis gets very sore and tight [...]

I think pregnancy messed with my body,
now I can’t even run even the smallest
amount without pain in my pelvis and
knees. I’m fairly certain the problem isn’t
just that I’m completely out of shape.

Helpfulness Human: Assistant, can you help me find books that have really popular antagonists?
Assistant: Sure! I know many books that feature good antagonists, such as those
in the Lord of the Rings books. Human: Who specifically from Lord of the Rings?
Assistant:

Well, Sauron, for example. If you want, I
can explain who he was.

XSum/NLI The ex-Reading defender denied fraudulent trading charges relating to the Sodje
Sports Foundation - a charity to raise money for Nigerian sport. Mr Sodje, 37, is
jointly charged with elder brothers Efe, 44, Bright, 50 and Stephen, 42. Appearing
at the Old Bailey earlier, all four denied the offence. The charge relates to offences
which allegedly took place between 2008 and 2014. Sam, from Kent, Efe and Bright,
of Greater Manchester, and Stephen, from Bexley, are due to stand trial in July. They
were all released on bail.

Former Premier League footballer Sam
Sodje has appeared in court alongside
three brothers accused of charity fraud.

Table 12: Prompt-output pairs for the three benchmarks we consider. See §2.3.
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Figure 9: XSUM/NLI KL-reward tradeoff for pretrain ensembles, finetune ensembles, and
individual models. Reward is measured with T5-XXL. Both pretrain and finetune ensembles
slightly improve over individual models.
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(a) HELPFULNESS. Fraction of answers containing lists (as matched by a regular expression).
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(b) TL;DR. Left: extractiveness, as measured by average longest common substring between the
summary and the context document. Right: length.
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(c) XSUM/NLI. Left: length. Right: specificity, as measured by fraction of numerical tokens in the
output.

Figure 10: Limitations of reward model ensembles. The x-axis is number of RLHF steps,
the y-axis plots different statistics of the average validation output at that step, and the
curves correspond to the pretrain ensemble (solid blue) and its members (dashed orange).
For preference data, we plot the same statistics conditioned on the preference data label
(Preferred vs. Rejected). On HELPFULNESS (λ = 0.05, top), the ensemble tends to return a list
of items. On TL;DR (center, λ = 0.01), summaries become longer and copy longer spans
from the original document. For XSUM/NLI (λ = 0.03, bottom), responses are short and less
specific, as measured by lack of numerical information. In HELPFULNESS and TL;DR, the
statistics of the “aligned” outputs are far from their values in the preference data.
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