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Abstract

Spoken Named Entity Recognition (NER) aims001
to extract entities from speech. The extracted002
entities can help voice assistants better under-003
stand user’s questions and instructions. How-004
ever, current Chinese Spoken NER datasets005
are laboratory-controlled data that collected006
by reading existing texts in quiet environ-007
ments, rather than natural spoken data, and008
the texts used for reading are also limited in009
topics. These limitations obstruct the devel-010
opment of Spoken NER in more natural and011
common real-world scenarios. To address012
this gap, we introduce a real-world Chinese013
Spoken NER dataset (RWCS-NER), encom-014
passing open-domain daily conversations and015
task-oriented intelligent cockpit instructions.016
We compare several mainstream pipeline ap-017
proaches on RWCS-NER. The results indicate018
that the current methods, affected by Automatic019
Speech Recognition (ASR) errors, do not per-020
form satisfactorily in real settings. Aiming021
to enhance Spoken NER in real-world scenar-022
ios, we propose two approaches: self-training-023
asr and mapping then distilling (MDistilling).024
Experiments show that both approaches can025
achieve significant improvements, particularly026
MDistilling. Even compared with GPT4.0,027
MDistilling still reaches better results. We be-028
lieve that our work will advance the field of029
Spoken NER in real-world settings.030

1 Introduction031

As one of the core tasks in Spoken Language Un-032

derstanding, Spoken Named Entity Recognition033

(NER) aims to extract entities like person names034

(PER), locations (LOC), and organizations (ORG)035

from speeches (Tur and De Mori, 2011). The036

extracted entities can help voice assistants better037

grasp the intent behind users’ questions or instruc-038

tions, thereby benefiting various downstream natu-039

ral language processing (NLP) tasks such as infor-040

mation retrieval (Weston et al., 2019) and question041

answering (Chen et al., 2017). While significant ad- 042

vancements have been made in Chinese text-based 043

NER (Yu et al., 2020; Shen et al., 2023), Chinese 044

Spoken NER still faces substantial challenges. The 045

main issue lies in the disparity between current 046

research in Chinese Spoken NER and its applica- 047

tions in real-world scenarios. This gap hinders the 048

application and development of Spoken NER. 049

Firstly, a key challenge is that current Chi- 050

nese Spoken NER datasets do not closely match 051

real-world scenarios. For Chinese Spoken NER, 052

the only significant dataset currently available is 053

Aishell-NER, introduced by Chen et al. (2022). 054

This dataset was built upon the Automatic Speech 055

Recognition (ASR) dataset Aishell-1, which al- 056

ready included paired speech-text data. They uti- 057

lized the MSRA (Levow, 2006) guidelines to anno- 058

tate entities within the text. However, Aishell-NER 059

does not accurately reflect real-life conditions. On 060

the one hand, speeches in Aishell-NER are read- 061

ing speeches recorded in quiet environments. In 062

contrast, in applications like using Siri or other 063

voice assistants, human speech is natural and often 064

includes various background noises and informal 065

expressions like interjections, stutters, and gram- 066

matical errors. On the other hand, the Aishell-NER 067

dataset primarily encompasses topics related to fi- 068

nance and news, whereas conversations in real life 069

cover a broader range of subjects. These differ- 070

ences lead to a gap between the research on Aishell- 071

NER and its applications in real-world scenarios. 072

In this paper, we address the issue of the lack 073

of annotated Spoken NER datasets for real-world 074

scenarios by introducing a real-world Chinese Spo- 075

ken NER dataset, RWCS-NER. It covers two sce- 076

narios: open-domain daily conversation (DC) and 077

task-oriented intelligent cockpit instructions (ICI). 078

RWCS-NER facilitates the evaluation of Spoken 079

NER models in real-world contexts, thereby bridg- 080

ing the gap between Spoken NER researches and 081

its applications. 082
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Secondly, beyond the data shortage, current Spo-083

ken NER models are not specifically tailored for084

real-world scenarios and often underperform in085

such environments. Spoken NER typically follows086

a pipeline process where speech is first converted087

into text by an ASR model, followed by the use of088

an NER model to identify entities within the tran-089

scribed text. Considering the scarcity of annotated090

Spoken NER data, researchers have sought to lever-091

age unlabeled data to help Spoken NER. Pasad092

et al. (2022) successfully used the self-training093

with unlabeled text data to help the NER model094

in pipeline. However, their approach does not fully095

align with real-world conditions. In practice, NER096

is executed on ASR outputs, which inevitably con-097

tain transcription errors from ASR. In contrast, in098

the self-training approach by Pasad et al. (2022),099

the NER models within the pipeline are trained100

on clean texts, devoid of any ASR inaccuracies.101

The discrepancy, known as exposure bias (Ran-102

zato et al., 2015; Zhang et al., 2019), will lead the103

model trained on clean text to struggle with the104

error-prone text from ASR in real-world scenarios.105

Furthermore, in the pipeline workflow, transcrip-106

tion errors from ASR can propagate to the NER107

stage, disrupting the NER model’s ability to ac-108

curately identify entities. This issue is also not109

considered in Pasad et al. (2022).110

To help Spoken NER on texts with ASR errors111

in real-world scenarios, we first introduce self-112

training-asr by conducting self-training on ASR113

outputs to mitigate the exposure bias issue. Fur-114

thermore, to reduce the impact of ASR errors on115

the NER model in the pipeline process, we propose116

a novel mapping then distilling (MDistilling) ap-117

proach. We then evaluate various approaches on118

RWCS-NER. Experiments demonstrate that both119

our self-training-asr and MDistilling approaches120

achieve significant improvements. Notably, MDis-121

tilling effectively alleviates the impact of ASR er-122

rors on NER in the pipeline workflow. Finally,123

we also evaluate ChatGPT (OpenAI, 2023) on124

our RWCS-NER. Results show that GPT4.0 has125

reached performance comparable to that of super-126

vised models on clean texts. But our MDistilling127

is more competitive than GPT4.0 in real-world sce-128

narios where texts come from the ASR model. In129

summary, our work makes the following contribu-130

tions:131

• We introduce a Chinese Spoken NER dataset,132

RWCS-NER, tailored for two real-world scenar-133

ios: open-domain daily conversation and task- 134

oriented intelligent driving. It can be used for 135

evaluating Spoken NER models in actual scenar- 136

ios. We will release our dataset and codes for 137

free at github.com. 138

• We present benchmark results for several main- 139

stream approaches on RWCS-NER, alongside an 140

in-depth analysis of how different ASR errors af- 141

fect NER. These results show that, in real-world 142

settings, the performance of Spoken NER is far 143

from satisfactory, highlighting the necessity of 144

drawing more attention to this field. 145

• To help the Spoken NER models in real-world 146

scenarios, we propose two approaches, i.e., self- 147

training-asr and MDistilling. Results indicate 148

both our approaches achieve significant improve- 149

ments, especially MDistilling. Moreover, even in 150

comparison to GPT4.0, MDistilling maintains its 151

edge in real-world scenarios. 152

2 Related Work 153

2.1 Chinese Spoken NER Datasets 154

Compared to text-based NER, there are fewer 155

datasets for Chinese Spoken NER. In fact, both 156

Sui et al. (2021) and Chen et al. (2022) have anno- 157

tated Chinese datasets based on Aishell-1 (Bu et al., 158

2017). The difference lies in the scope of annota- 159

tion: Sui et al. (2021) annotated entities only for a 160

subset of Aishell-1, whereas Chen et al. (2022) an- 161

notated the entire dataset. In this paper, we opt for 162

the larger-scale annotation from Chen et al. (2022) 163

as the representative Chinese Spoken NER dataset, 164

Aishell-NER. However, both the two datasets are 165

based on the Aishell-1 ASR dataset, where the 166

audios are reading speeches recorded in quiet en- 167

vironment. Additionally, the content in Aishell-1 168

mainly comes from the news and finance domain. 169

These factors prevent Aishell-NER from accurately 170

representing the performance of Spoken NER in 171

real-world settings. Therefore, our focus is on con- 172

structing datasets tailored for real-world scenarios. 173

2.2 Pipeline vs. End-to-end 174

To mitigate the impact of ASR errors on NER in 175

the pipeline process, recent studies have proposed 176

end-to-end approaches that simultaneously gener- 177

ate text and entity labels from speech (Ghannay 178

et al., 2018; Yadav et al., 2020). End-to-end ap- 179

proach integrates special entity markers into the to- 180

ken vocabulary of ASR model to denote the bound- 181
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ary of entities. For instance, in Chen et al. (2022),182

brackets are used to denote LOC entities. The train-183

ing and inference target of the raw ASR model is184

transformed from “I come from New York” to “I185

come from (New York)”. Then, the ASR model186

becomes an end-to-end model, which can generate187

transcribed text from the input speech and identify188

entities within it.189

Although end-to-end model can aviod the error190

propagation problem, its performance is still infe-191

rior to that of the pipeline model (Shon et al., 2022).192

This is because pipeline approaches can leverage193

the powerful representational capabilities of pre-194

trained large language models (LLMs) when per-195

forming NER on texts. Recently, Pasad et al. (2022)196

propose to use unlabeled data to help the end-to-197

end model, which surpasses the pipeline model.198

However, this requires the prior development of199

an enhanced pipeline model using unlabeled data.200

Then they use the pipeline model to predict pseudo201

labels. The end-to-end model then learning from202

these labels to achieve superior performance.203

In summary, while both pipeline and end-to-end204

have their pros and cons, the ability of the pipeline205

approach to leverage LLMs generally allows it to206

achieve commendable performance, making it the207

predominant method in practice. In this paper, we208

focus on investigating the pipeline approach.209

3 Construction of RWCS-NER210

In this section, we detail the construction process of211

our dataset. We consider two typical real-world sce-212

narios: open-domain daily conversation (DC) and213

task-oriented intelligent cockpit instruction (ICI).214

DC typically involves dialogues between individ-215

uals about various topics. In contrast, ICI involve216

interactions between humans and machines, where217

humans interact with machines to accomplish cer-218

tain tasks during driving.219

Our selection of DC is driven by its prevalence in220

the conversation scenarios, encompassing a range221

of spoken expressions like interjections, stuttering,222

and grammatical errors, which are absent in formal223

written text. ICI is chosen due to the rising trend224

of intelligent driving and the increasing reliance on225

speech instructions for controlling in-car devices.226

Effective entity recognition in these speech instruc-227

tions is pivotal for in-car systems to assist users. In228

addition, ICI data is relatively scarce and, to our229

knowledge, no publicly accessible NER dataset for230

intelligent cockpit instruction exists.231

3.1 Data Selection 232

DC. DC is built upon MagicData-RAMC (Yang 233

et al., 2022), an open-source ASR dataset compris- 234

ing daily conversation speeches recorded from na- 235

tive speakers. This dataset preserves a multitude of 236

spoken phenomena in both speech and transcribed 237

text, such as interjections and stutterings. Since 238

entities appear less frequently in some dialogues , 239

we focus on selecting dialogues that have a higher 240

occurrence of entities. 241

Specifically, we employ a Roberta-CRF NER 242

model, which was trained on the MSRA-NER 243

(Levow, 2006), to identify entities in all dialogues. 244

We then filter out dialogues with fewer entities. Af- 245

ter this, we carefully choose dialogues from the 246

remaining set to ensure that the selected conversa- 247

tions cover a variety of topics. Finally, we choose 248

13 dialogues covering 8 distinct topics, totaling 249

1,559 utterances for annotation1. 250

ICI. The ICI dataset is built upon the ICSRC 251

dataset (Zhang et al., 2022), which was recently 252

released for ASR competitions in the intelligent 253

driving. The dataset comprises instructions rele- 254

vant to intelligent driving, such as “turn on the air 255

conditioner”, “navigate to a location”, and “call 256

someone”. 257

Unlike DC, the ICI dataset, being task-driven, 258

exhibits a higher frequency of entities in its in- 259

structions, like location names in navigation in- 260

structions or personal names in “call someone” in- 261

structions. Therefore, we randomly select 3000 262

utterances from ICSRC for annotation. 263

3.2 Annotation Process 264

During the annotation process, we adopt a double- 265

blind procedure, in which each utterance is inde- 266

pendently annotated by two annotators. A third 267

annotator is tasked with comparing the two anno- 268

tations2. If the two annotations are consistent, the 269

annotation is adopted as the final answer. Oth- 270

erwise, the third annotator have to make a final 271

decision. During the annotation process, utterances 272

containing personal information are discarded to 273

protect privacy. We pay the annotators based on 274

the quality and quantity of their annotations. 275

DC. When anotating DC, as in previous stud- 276

ies (Sui et al., 2021; Chen et al., 2022), we focus 277

1Detailed statistics of the selected topics are shown in
Appendix A.

2We build our annotation platform using Doccano.
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on three types of entities: PER, LOC, and ORG.278

We follow the widely recognized MSRA (Levow,279

2006) guidelines for Chinese NER.280

ICI. For ICI, due to its unique smart driving sce-281

nario, we notice that besides the typical entities like282

LOC, PER, and ORG, other entities such as device283

names and song names are also crucial. Recogniz-284

ing these entities can aid the smart driving system285

in accurately executing user’s commands. Addi-286

tionally, we notice that certain entities tend to ap-287

pear in specific types of instructions. For instance,288

song names are commonly found in instructions for289

playing music. Consequently, discerning the type290

of an instruction can substantially assist annotators291

in accurately identifying entities. So, we design a292

new two-step annotation guideline for ICI.293

In the first step, annotators determine the label294

of each instruction based on its function and pur-295

pose. We define five instruction labels: Naviga-296

tion (NAV), Air Conditioning Instructions (AIC),297

Calls (CAL), Music Instructions (MUS), and Oth-298

ers (OTH). For instance, NAV includes user in-299

structions related to directions, such as “navigate300

to a location” or “avoid highways”. OTH refers301

to content that does not belong to the other four302

labels.303

After determining the label of each instruction,304

the second step involves annotators identifying en-305

tity labels. We define seven entity labels in total. In306

addition to the general labels like PER, LOC, and307

ORG, we introduce labels tailored to the intelligent308

driving context: Device Name (DEV), Song Name309

(SON), Music Attribute (M-att), and Air Condi-310

tioning Attribute (A-att). For example, the most311

commonly used devices in speech instructions, i.e.,312

conditioner and music/speaker will be labeled as313

DEV. Detailed descriptions for instruction and en-314

tity labels are shown in Appendix E.315

Finally, in the DC and ICI datasets, we manually316

annotate 2862 and 2291 entities, respectively.317

3.3 Data Analysis318

Inter-annotator consistency. To assess inter-319

annotator consistency, we employ Cohen’s Kappa320

κ (Cohen, 1960) as our metric. The value of κ,321

ranging from 0 to 1, indicates the level of agree-322

ment, with higher values signifying greater consis-323

tency.324

In DC, the κ score of entity labels is 0.82, and in325

ICI, it reaches 0.88, demonstrating relatively high326

inter-annotator agreement. Although it might seem327
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Figure 1: The distribution of labels in DC and ICI.

that the DC, with only three types of entity labels, 328

should have a higher kappa compared to the ICI, 329

which has seven types of entity labels, the reality is 330

actually the opposite. On one hand, the complexity 331

of utterances in DC exceeds that in ICI due to the 332

inclusion of various colloquial expressions. On 333

the other hand, the length of utterances in DC is 334

significantly longer than in ICI. Together, these 335

aspects make annotating DC more challenging than 336

ICI, consequently leading to a lower κ score among 337

annotators. 338

Label distribution. Figure 1 shows the distribu- 339

tion of labels in DC and ICI. Notably, the PER 340

label is especially dominant in DC, constituting 341

51.9% of the labels. This prevalence is attributed to 342

the more unstructured nature of daily conversations 343

as opposed to ICI. During some discussions, it is 344

common for individuals to pause and repeat names 345

when mentioning others, leading to the elevated oc- 346

currence of the PER label in DC. We also observe 347

that the ORG label is less frequent in ICI because 348

organizations are seldom mentioned in driving in- 349

structions. Additionally, we can see that the four 350

new entity labels defined for ICI make up a signifi- 351

cant part, accounting for 42.5% of the labels, with 352

A-att being the most prevalent at 17.2%. 353

In ICI, each instruction is assigned an instruc- 354

tion label. As shown in Figure 1, the four main 355

instruction labels are distributed relatively evenly, 356

collectively constituting 58.9% of all labels. We 357

note that the OTH label comprises 41.1% of the 358

dataset. This prevalence is attributed to the ICI 359

dataset being a subset of the ICSRC dataset (Zhang 360

et al., 2022), which was originally designed for 361

evaluating the speech recognition accuracy of ASR 362

models. The dataset encompasses a substantial 363

amount of non-instructional content, like reading 364

news, all categorized under the OTH label. 365
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4 Our Approach366

4.1 Self-training-asr367

Nowadays, Chinese NER models have made great368

progress on formal text, such as News, thanks to369

the abundant annotated training data. However,370

when it comes to the spoken text, the NER perfor-371

mance drops drastically due to the lack of NER372

annotations for spoken text in real-world scenarios.373

Considering the abundance of unlabeled spoken374

speech-text data, we follow Pasad et al. (2022) and375

propose self-training-asr on these data to help Spo-376

ken NER in real-world scenarios.377

Unlike Pasad et al. (2022), who perform self-378

training using clean, gold text (referred to as self-379

training-gold), we engage in self-training on ASR380

output text. This choice is driven by the fact that,381

in real-world situations, NER models predict on382

ASR outputs, which might have transcription er-383

rors. Models trained solely on gold text would384

struggle to handle texts with ASR-induced noise in385

real-world scenarios. This challenge is known as386

exposure bias (Zhang et al., 2019).387

The core principle of self-training involves using388

the model itself to predict unlabeled data, then treat-389

ing these predictions as pseudo labels. The pseudo390

labels are incorporated back into the labeled data,391

and the model is retrained with this augmented392

dataset. This process can be iterated multiple times393

until model convergence (Yarowsky, 1995; Rotman394

and Reichart, 2019; Xu et al., 2021).395

Specifically, in our self-training-asr we convert396

spoken speeches into transcribed texts using an397

ASR model, and then use the transcribed texts as398

unlabeled data Da. As depicted in Figure 2(a), dur-399

ing the tth iteration, we use the NER model θt−1,400

obtained from the last iteration, to predict on Da,401

resulting in pseudo labels D̂a. These pseudo labels402

are then merged with the source labeled data Ds.403

Then, the NER model is retrained on the merged404

dataset, yielding a new model θt. In the first itera-405

tion, we train an NER model on the Ds as θ0.406

4.2 MDistilling407

While self-training-asr improves the model’s ro-408

bustness in real-world scenarios by training directly409

on transcribed text, it doesn’t explicitly consider410

the impact of errors in ASR outputs on NER pre-411

dictions. In self-training-asr, the NER model pre-412

dicts labels from transcribed text and uses these413

predicted labels to train the next round’s model.414

However, errors in the transcribed text can lead to415

Da

θt−1

D̂a +Ds

θt

×T

(a) Self-training-asr.

Dg θteacher

D̂g Damap

D̂map +Ds

θstudent

(b) MDistilling.

Figure 2: Frameworks of our approaches.

incorrect entities predicted by NER, and learning 416

from these flawed entity labels can further impair 417

the NER model. 418

To analyze the impact of ASR errors on NER, 419

we broadly categorize ASR errors into two types: 420

entity errors and non-entity errors. Entity errors oc- 421

cur within the text of the entities themselves (e.g., 422

the LOC entity “北京 (Beijing)” being transcribed 423

as “北极 (north pole)”), while non-entity errors oc- 424

cur in other parts of the text. Entity errors directly 425

result in the NER model failing to recall the origi- 426

nal entity, which we believe cannot be rescued by 427

the NER model in the pipeline. Therefore, our core 428

idea is mitigating the impact of non-entity errors 429

on NER, aiming to ensure that the NER model can 430

still accurately identify entities as more as possi- 431

ble amidst the existence of non-entity errors. This 432

guides us to propose the MDistilling. As illustrated 433

in Figure 2(b), MDistilling has three stages: 434

Stage 1: Producing Silver Labels. Due to the 435

lack of labeled data for Spoken NER in real-world 436

scenarios, inspired by traditional distillation (Hin- 437

ton et al., 2015), we use a model trained on error- 438

free text as the teacher model θteacher to predict 439

pseudo labels D̂g from the gold Spoken text data 440

Dg. Since θteacher is trained without ASR errors 441

and D̂g is predicted from clean text, we regard D̂g 442

as silver labels unaffected by ASR errors. 443

Stage 2: Mapping. To enable the model to learn 444

correct labels from transcribed error-containing 445

text, we map the silver labels D̂g to the ASR out- 446

puts to get D̂map. We employ the maximum seg- 447

mentation matching method to map labels. For 448

instance, as depicted in Figure 3, given a gold text 449

xg and its ASR output xa, D̂g has two LOC entities 450

“北京” and “中国” in xg. We then find identical 451
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xg : 北京 是 中国 最有名 的城市。

xa : 北极 是 中国 座右铭 的城市。

Figure 3: An example of mapping entities between the
gold text“北京是中国最有名的城市 (Beijing is the
most famous city in China.)” and the wrongly tran-
scribed text. Green boxes denote entities. Red charac-
ters represent errors in transcription.

text strings in xa and label the matched spans with452

corresponding entity labels. Incorrectly transcribed453

entity text like “北极” is disregarded. And the454

wrongly transcribed non-entity text “座右铭” has455

no effect on entity labels. As a result, D̂map re-456

moves entity labels that are irrecoverable due to457

entity errors, retaining only those stemming from458

the silver labels and unaffected by non-entity er-459

rors.460

Stage 3: Distilling. Merge Ds with D̂map to cre-461

ate the augmented labeled dataset. The student462

model θstudent is then trained using this dataset.463

Through this process, not only is the gold knowl-464

edge from the teacher model distilled into the stu-465

dent model, but the student model also gains the466

ability to predict correct labels from noisy text, re-467

ducing the impact of non-entity errors on NER.468

5 Experiments469

5.1 Experimental settings470

Model Settings. We follow the pipeline work-471

flow in this work. The pipeline involves two parts,472

i.e., ASR model and NER model.473

We use the popular conformer-based (Gulati474

et al., 2020) CTC/AED (Hori et al., 2017) model475

as the ASR model. It contains a encoder with 6476

conformer layers and a decoder with 4 transformer477

layers. A 6-gram language model is used during478

decoding to get better hypothesis 3.479

NER has been extensively researched with var-480

ious approaches (Panchendrarajan and Amaresan,481

2018; Yu et al., 2020; Shen et al., 2023). Among482

them, the most prevalent approach is treating NER483

as a sequence labeling task. So, we implement484

a BERT-based (102M) (Devlin et al., 2019) CRF485

model and a stronger RoBERTa-based (325M) (Cui486

et al., 2021) model as our baseline NER models. In487

self-training and MDistilling, we use the RoBERTa488

CRF model as the backbone model.489

3Due to space constraints, we have included the detailed
experimental parameter settings in Appendix C.

Datasets. In training of ASR model, in addition 490

to the speech-text data from our RWCS-NER train- 491

ing sets, we incorporate about 1300 hours of open- 492

source Chinese speech-text data to enhance its per- 493

formance. These extra datasets are merged with 494

the RWCS-NER training sets for ASR model train- 495

ing. Details of the additional open-source ASR 496

data used are provided in Table 6. 497

As for the training of NER model, due to the 498

lack of real-world Spoken NER training sets, most 499

current NER models are trained on well-structured 500

written text. Therefore, we employ the commonly 501

used Chinese NER dataset MSRA (Levow, 2006) 502

from the news domain. It is utilized for fine-tuning 503

BERT and RoBERTa models as NER baseline mod- 504

els. Additionally, it serves as the annotated data 505

from the source domain in the self-training and 506

MDistilling approaches. 507

To evaluate on our RWCS-NER, we split our 508

annotated datasets into development and test sets. 509

The remaining unannotated speech-text data is used 510

as unlabeled training set. Specific details are shown 511

in Table 2. Additionally, we also assess our NER 512

baseline on the MSRA test and Aishell-NER test. 513

Comparison Approaches. In addition to com- 514

paring with BERT and RoBERTa baselines trained 515

only on written news text, we also compare with 516

the self-training-gold method used by Pasad et al. 517

(2022). Furthermore, we conduct comparisons with 518

LLMs, i.e., GPT3.5 and GPT4.0 (Ouyang et al., 519

2022; OpenAI, 2023). The specific settings for 520

GPT experiments can be found in Appendix D. To 521

ensure a fair comparison, we utilize the same ASR 522

model to obtain transcribed text for all methods. 523

Metrics. For NER evaluation, in line with Pasad 524

et al. (2022), we employ Precision (P), Recall (R), 525

and F1 Score as our metrics. 526

For ASR, besides the most commonly used CER, 527

we also apply the Named Entity Accuracy (NEA) 528

metric to to analyze the performance of ASR on 529

entity texts. NEA is defined as the percentage of 530

correctly transcribed named entity phrases. An 531

entity phrase is considered correctly transcribed 532

only if all its characters are accurately converted in 533

the right order. 534

5.2 Main Results 535

Results of Baselines. We first compare the re- 536

sults of BERT and RoBERTa models. To gain a 537

clear perception of the current performance of Spo- 538

ken NER on our RWCS-NER datasets, we also 539

6



Model
DC.Dev DC.Test ICI.Dev ICI.Test

P R F1 P R F1 P R F1 P R F1
On Transcribed Text

BERT 63.82 54.46 58.77 68.63 58.16 62.96 42.02 35.29 38.36 41.42 34.08 37.39
RoBERTa 65.80 55.19 60.03 69.15 58.45 63.35 41.01 34.35 37.39 41.98 35.20 38.29
self-training-gold 67.51 56.19 61.33 71.20 59.69 64.94 40.68 36.47 38.46 42.34 36.88 39.42
self-training-asr 70.96 55.19 62.09 73.04 59.75 65.73 42.22 35.76 38.73 42.52 35.99 38.98
MDistilling 70.48 56.74 62.87 73.73 60.94 66.73 45.96 34.82 39.63 48.07 34.87 40.42
GPT3.5 61.95 46.27 52.97 63.06 47.90 54.45 26.65 34.12 29.93 28.49 35.20 31.49
GPT3.5 few shot 63.49 46.72 53.83 65.08 47.34 54.81 27.91 38.35 32.31 29.89 38.23 33.55
GPT4.0 69.32 47.54 56.40 72.00 52.32 60.60 36.07 31.06 33.38 37.48 33.74 35.52
GPT4.0 few shot 71.52 50.55 59.23 74.39 55.67 63.68 37.15 37.41 37.28 38.52 39.69 39.09

On Gold Text
BERT 81.10 83.24 82.16 82.84 82.37 82.61 79.44 73.65 76.43 80.82 72.76 76.58
RoBERTa 86.24 86.79 86.52 86.61 83.48 84.53 80.98 74.12 77.40 78.56 71.08 74.63
self-training-gold 88.32 88.16 88.24 87.32 84.89 86.09 84.54 79.76 82.08 79.67 76.46 78.03
GPT3.5 73.61 76.23 74.90 72.55 71.49 72.02 55.54 74.35 63.58 59.16 75.67 66.40
GPT3.5 few shot 78.27 71.86 74.93 78.73 71.15 74.75 60.00 82.59 69.50 63.64 83.18 72.11
GPT4.0 86.12 79.69 82.78 85.54 77.15 81.13 77.41 71.76 74.48 80.18 71.19 75.42
GPT4.0 few shot 86.47 83.24 84.83 87.42 82.37 84.82 79.50 83.06 81.24 81.38 85.76 83.52

Table 1: Spoken NER results on our RWCS-NER.

RWCS-NER Labeled Utterance Entity

DC
Train ✗ 93,580 -
Dev ✓ 559 1,098
Test ✓ 1,000 1,764

ICI
Train ✗ 14,878 -
Dev ✓ 1,000 752
Test ✓ 2,000 1,539

Table 2: Split of DC and ICI.

evaluate on the Aishell-NER, which is collected540

by reading texts in ideal scenarios. On Aishell-541

NER, BERT and RoBERTa achieve F1 scores of542

72.22 and 72.89 respectively. However, as we can543

see from the upper part of Table 1, both models544

have significant drops on the DC and ICI domains.545

Specifically, on DC, there is a decline of about 10546

in F1 score, and on ICI, the decline was even more547

pronounced, exceeding 30. This shows that current548

models underperform in real-world scenarios.549

Regarding the self-training-gold, compared to550

the RoBERTa baseline, we observe improvements551

of F1 scores on the DC and ICI test sets by 1.59552

and 1.13 respectively. However, overall, the perfor-553

mance of current spoken NER models in real-world554

scenarios remains unsatisfactory. This underscores555

the challenging nature of our datasets and indicates556

substantial room for improvement in Spoken NER,557

particularly in real-world scenarios.558

Looking into Table 3, we can see that the de-559

crease in real-world scenarios could be mainly at-560

tributed to the ASR model’s difficulty in transcrib-561

ing entity text. Although, the ASR model main-562

Metric Aishell.Test DC.Dev DC.Test ICI.Dev ICI.Test

CER 4.25 13.86 12.98 9.60 10.50
NEA 83.47 63.11 67.97 46.35 46.08

Table 3: CER ↓ and NEA ↑ on Aishell and our datasets.

tains a relatively low error rate across the overall 563

text. However, when it comes to entity text, the 564

ASR model’s accuracy is notably lower, with NEA 565

reaching only 67.97% and 46.08% on DC and ICI, 566

respectively. As mentioned in section 4.2, errors in 567

entity text directly lead to the loss of these entities 568

in NER, and such errors are not correctable within 569

the pipeline workflow. 570

Results of Self-training-asr. To alleviate the ex- 571

posure bias caused by discrepancies between train- 572

ing and prediction, we introduce the self-training- 573

asr approach. From Table 1, we observe that self- 574

training-asr shows improvements over self-training- 575

gold on most datasets. Notably, on the DC test set, 576

there’s an increase of 1 point in the F1. This sug- 577

gests that conducting self-training on transcribed 578

text can effectively make the NER model more 579

adaptable to transcribed text. 580

However, we notice a slight lag in self-training- 581

asr compared to self-training-gold on the ICI test. 582

We attribute this to the poor performance of ASR 583

on ICI, where the impact of ASR errors is particu- 584

larly severe. 585

Results of MDistilling. To minimize the impact 586

of ASR errors, especially non-entity errors, we in- 587

7



Gold or ASR Gold NonNE ASR NonNE
STA MD STA MD

Gold NE 86.76 87.33 84.99 86.89
ASR NE 62.69 62.99 62.09 62.87

Table 4: Effect of different types of errors on NER F1.
STA: self-training-asr; MD: MDistilling.

troduce MDistilling, which trains the model to pre-588

dict correct entities from the transcribed noisy text.589

From Table 1 we can see that, MDistilling demon-590

strates significant improvements than self-training-591

asr. On the DC and ICI test sets, MDistilling’s F1592

scores are higher than those of self-training-asr by593

1 and 1.44 points, respectively.594

On the DC dataset, we notice considerable im-595

provements in both Precision (P) and Recall (R) for596

NER. On the ICI dataset, MDistilling significantly597

enhances the Precision value (by approximately598

4.5), effectively reducing incorrect predictions by599

the model. Although this also results in a slight600

decrease in the Recall value (by about 1), the over-601

all F1 score still demonstrates the effectiveness of602

MDistilling in mitigating the impact of ASR errors.603

5.3 Analysis604

Effect of different error types. As discussed in605

Section 4.2, MDistilling is designed to reduce the606

interference of non-entity errors in transcribed texts607

on NER. Therefore, we conduct a more detailed608

analysis of the effects of non-entity and entity er-609

rors. In Table 4, we categorize the text into entity610

and non-entity sections. Subsequently, we delve611

into understanding how gold entity/non-entity text612

and ASR entity/non-entity text impact NER.613

Comparing the first and second rows of the table,614

we observe a significant drop in NER performance615

when ASR-predicted entity text is used. This indi-616

cates that errors in entity text are the primary con-617

tributors to the decline. Next, we examine the effect618

of non-entity text. Taking self-training-asr as an619

example, the F1 is 86.76 with gold entity and non-620

entity text but drops by 1.77 with ASR-predicted621

non-entity text. In contrast, MDistilling shows622

only a 0.44 of decrease. A similar phenomenon623

is also observed when using ASR-predicted entity624

text. This suggests that non-entity errors also affect625

NER, and the impact on MDistilling is less than626

that on self-training-asr.627

Through the analysis, we find that MDistilling628

effectively mitigates the impact of non-entity er-629

rors. This validates our motivation for proposing630

MDistilling.631

Using gold text vs. transcribed text. Apart 632

from ASR errors, there is also an effect from cross- 633

domain issue arising due to differences between the 634

training and testing domains. Therefore, we con- 635

duct experiments in an ideal scenario using gold 636

text to analyze the impact of cross-domain issues. 637

It also shows the upper bound of Spoken NER in 638

the absence of ASR errors. 639

First, we test on Aishell-NER. BERT and 640

RoBERTa achieve F1 scores of 86.58 and 87.59, 641

respectively. However, as seen in the lower part of 642

Table 1, even in the absence of ASR errors, both 643

models underperform on our DC and ICI datasets. 644

The F1 scores decrease by 4 and 10 points on the 645

DC and ICI test sets, respectively. Hence, even in 646

an ideal scenario without ASR errors, the cross- 647

domain issue also affects the performance of Spo- 648

ken NER in real-world scenarios. 649

5.4 Comparison with LLMs 650

In experiments with GPT, we task GPT with identi- 651

fying entities and their types in input sentences. 652

From the results in Table 1, it is evident that 653

GPT3.5 falls behind compared to supervised mod- 654

els. GPT4.0, in ideal scenarios, achieves compa- 655

rable results to supervised models, and it even sur- 656

passes them on the ICI test. However, in real-world 657

scenarios, GPT4.0 still lags behind our MDistill- 658

ing, indicating that ASR errors also significantly 659

impact GPT models. Considering the expensive 660

cost of GPT4.0, our MDistilling proves to be a 661

better choice in real-world scenarios. 662

6 Conclusion 663

In this paper, we present RWCS-NER, a Chinese 664

Spoken NER dataset designed for real-world sce- 665

narios, focusing on daily conversation and intelli- 666

gent driving. To boost the performance of NER 667

in the pipeline, especially when dealing with ASR 668

noise, we introduce two novel approaches: self- 669

training-asr and MDistilling. We compared our ap- 670

proaches with mainstream pipeline models, includ- 671

ing ChatGPT, on RWCS-NER. Our findings indi- 672

cate that both our approaches, particularly MDistill- 673

ing, significantly enhance performance. However, 674

on the whole view, these approaches still leaves 675

room for improvement on RWCS-NER. Our work 676

contributes to the advancement of Chinese Spoken 677

NER by providing new data and approaches, aim- 678

ing to spotlight the importance of Spoken NER in 679

real-world applications. 680
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Limitations681

In this paper, we have only annotated development682

and test sets to evaluate the performance of Chinese683

Spoken NER in real-world scenarios. Given that684

Chinese Spoken NER data is still in short supply,685

we plan to release more higher-quality dataset in686

the future.687

On the other hand, while the pipeline approach688

currently shows clear advantages in Spoken NER,689

end-to-end approach also possess potential, such as690

easier deployment. Therefore, we will also explore691

improving the performance of end-to-end approach692

in real-world scenarios in our future work.693
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Appendices 870

A Statistics of the Topics in DC 871

When selecting dialogues from MagicData-RAMC, 872

to ensure that the dataset covers a broader range 873

of topics, we also take into consideration the top- 874

ics of the dialogues. As a result, the DC dataset 875

encompasses the following eight topics.

Topic Utterance Token Duration (min)
Family Life 71 2,698 11.5
Military 94 6,956 27.5
Humanities 154 18,169 73.2
Digital Devices 98 6,370 23.8
Sports 312 13,912 50.3
Art 546 19,752 77.6
Entertainment 271 7,317 26.1
Politics & Law 13 7,150 27.7
Total 1,559 82,324 317.7

Table 5: Statistics of the DC dataset.
876

B Datasets Used for Training ASR 877

Models 878

When training the ASR model, in addition to uti- 879

lizing the unlabeled training sets corresponding to 880

DC and ICI datasets, we have also incorporated 881

additional open-source ASR data. The datasets we 882

used are listed in Table 6. 883
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Dataset Duration (h) Address
Aishell 178 openslr.org/33
ST-CMDS 110 openslr.org/38
Primewords 99 openslr.org/47
aidatatang 200 openslr.org/62
MagicData 755 openslr.org/68
Total 1,342

Table 6: Datasets used for training ASR models.

ASR NER
encoder blocks 6 encoder dropout 0.33
decoder blocks 4 scorer dropout 0.2
hidden size 512 scorer hidden size 800
learning rate 2e-3 learning rate 5e-4
batch size 16 batch size 64
warmup steps 25000 warmup steps 1500
epoch 80 epoch 20
ctc weight 0.3 self-training T 5
beam size 15
length Penalty -3
log Mel 80
window size 25ms
window shift 10ms
gram of LM 6

Table 7: Parameter settings.

C Parameter Settings884

For ASR models, we follow the most popular set-885

tings, including 80-dimensional log Mel filterbank886

features as input, 6-gram language model for de-887

coding among others. We build the ASR model888

based on the WeNet toolkit (Yao et al., 2021). We889

set the random seed to 777 to train the ASR model890

only once.891

For the BERT and RoBERTa NER models, two892

linear layers are added on top of the encoder to893

compute the emission scores in CRF. We choose894

seeds randomly to run NER models for 2 times895

and report the best results. The detailed parameter896

settings are shown in Table 7.897

D Details about GPT3.5 and GPT4.0898

When evaluating the performance of GPT-3.5 and899

GPT-4.0, we utilized OpenAI’s API. The prompt900

we used is formed as follows: You are an excellent901

linguist. Your task is to identify person entities,902

location entities, and organization entities in the903

given sentences. Return the answers in the follow-904

ing format: person: A B, location: C, organization:905

D. Separate each entity type with a space. If there906

are no entities of a particular type, return an empty907

string. And the specific versions of GPTs we used908

are gpt-3.5-turbo-1106 and gpt-4-1106-preview.909

k-shot P R F1
0-shot 73.61 76.23 74.90
1-shot 78.27 71.86 74.93
2-shot 78.22 68.67 73.13
3-shot 76.30 62.75 68.87

Table 8: Effect of k in ICL few-shot.

In conducting few-shot experiments on GPT, 910

we employ an in-context learning (ICL) approach 911

(Dong et al., 2022). Initially, we utilize the NER 912

model obtained through self-training-gold to make 913

predictions on unlabeled data, resulting in D̂e. Dur- 914

ing testing, for a given input sentence x, we com- 915

pute the similarity between x and each sentence Êi 916

in Ê based on OpenAI’s embedding model. When 917

selecting k-shot ICL examples, we consider not 918

only the semantic similarity of sentences but also 919

the quantity of entities contained in Êi. Specifi- 920

cally, the criterion for selecting examples, denoted 921

as vx,i, is defined as follows: 922

vxi = sx,i + 0.1×Ni (1) 923

Here, sx,i represents the semantic similarity be- 924

tween x and Êi, and Ni denotes the number of 925

entities in Êi. Finally, we select the top k examples 926

based on the highest vx,i values for use in the ICL. 927

To determine the value of k, we conduct exper- 928

iments using GPT-3.5 on the dev set of DC. The 929

experimental results are presented in Table 8. We 930

observe that a larger value of k does not necessarily 931

yield better results. We attribute this to the fact that 932

when selecting more examples in ICL, those con- 933

taining entities constitute a minority. GPT is taught 934

to predict fewer entities, resulting in a decrease in 935

recall. We speculate that choosing examples with 936

more entities but relatively lower semantic simi- 937

larity might alleviate this issue. However, this is 938

not the primary focus of this work, and we plan to 939

explore it further in future research. In the end, we 940

set k = 1 for all few-shot experiments. 941

E Definition of Labels in ICI 942

Due to the specific task-oriented nature of ICI, we 943

devise a new two-step guideline. In the first step, 944

we assign instruction labels to each utterance based 945

on the objective of the instruction. In the second 946

step, we identify entities within the instructions. 947

We define a total of four instruction labels, and in 948

addition to PER, ORG, and LOC, we introduce 949
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Labels Meaning Example
Instruction Labels

NAV Instructions related to the point of interest to the user.
帮我导航到图书馆

Navigate me to the library

AIC Instructions related to the air conditioner.
把温度调到十度

Set the temperature to ten degrees

CAL Instructions related to contacting someone.
给李先生发条短信说...

Send a message to Mr. Li saying...

MUS Instructions related to music or speaker settings.
播放周杰伦的歌

Play Jay Chou’s song

OTH Instructions that do not belong to above four categories.
告诉我明天的天气

Tell me tomorrow’s weather
Entity Labels

DEV Device names.
把（空调）的调到十度

Set the (air conditioner) to ten degrees

SON Song names.
播放（我心永恒）

Play (My Heart Will Go On)

M-att Attributes related to music or speakers.
把（音量）调到最大

Set the (volume) to maximum

A-att Attributes related to air conditioner.
打开（制热模式）

Turn on the (heating mode)

Table 9: The definition of labels in ICI. Entities corresponding to the entity labels are enclosed in parentheses.

four new entity labels. The specific meanings and950

examples of these labels are outlined in Table 9.951
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