
Wrong Model, Right Uncertainty: Spatial Associations for Discrete Data with Misspecification

Anonymous Author(s)

Affiliation

Address

email

Abstract

1 Scientists are often interested in estimating an association between a covariate
2 and a binary- or count-valued response. For instance, public health officials are
3 interested in how much disease presence (a binary response per individual) varies
4 as temperature or pollution (covariates) increases. Many existing methods can be
5 used to estimate associations, and corresponding uncertainty intervals, but make
6 unrealistic assumptions in the spatial domain. For instance, they incorrectly assume
7 models are well-specified. Or they assume the training and target locations are i.i.d.
8 — whereas in practice, these locations are often not even randomly sampled. Some
9 recent work avoids these assumptions but works only for continuous responses
10 with spatially constant noise. In the present work, we provide the first confidence
11 intervals with guaranteed asymptotic nominal coverage for spatial associations
12 given discrete responses, even under simultaneous model misspecification and
13 nonrandom sampling of spatial locations. To do so, we demonstrate how to handle
14 spatially varying noise, provide a novel proof of consistency for our proposed
15 estimator, and use a delta method argument with a Lyapunov central limit theorem.
16 We show empirically that standard approaches can produce unreliable confidence
17 intervals and can even get the sign of an association wrong, while our method
18 reliably provides correct coverage.

19

1 Introduction

20 Estimating associations between spatial variables and a binary- or count-valued response is fun-
21 damental across scientific disciplines. For instance, researchers are interested in (a) how much
22 cardiovascular disease (a binary response per individual) increases with air pollution in Chinese
23 cities (Zhao et al., 2015), (b) how the number of hospital admissions (a count-valued response per
24 hospital) increases with temperature in European cities (Michelozzi et al., 2009), and (c) the extent to
25 which ozone exceeding health guidance (a binary outcome) increases with meteorological variables
26 in major cities in Texas (Vizuete et al., 2022). Moreover, quantifying uncertainty in these associations
27 is fundamental for scientific and public health decision-making.

28 There are two natural approaches. (A) We might fit a highly flexible classifier — e.g., a transformer
29 (Vaswani et al., 2017), or gradient-boosted tree (Chen and Guestrin, 2016) — and then apply a post
30 hoc interpretability method (e.g. Lundberg and Lee, 2017; Ribeiro et al., 2016). But data in these
31 applications are often very sparse in space, so we might hope to estimate an association well even
32 when prediction quality could be very poor. (B) We might fit an interpretable model to start. For
33 instance, when the response is continuous, Buja et al. (2019a) argue that a linear model can be used to
34 estimate associations even when the data are highly nonlinear — that is, even when the linear model
35 is (potentially very) misspecified.

36 Additional challenges arise in the applications described, though. Namely, the spatial locations where
 37 we want to draw inferences need not align well with the locations where we have data. E.g., in
 38 example (c) above, scientists have access to sensors across the state but are interested in associations
 39 in major Texas cities. Moreover, neither the training nor target locations are random. E.g., in Texas,
 40 air pollution monitor placement is decided by state and local governments under regulatory constraints
 41 from the United States Environmental Protection Agency. And major Texas cities are not randomly
 42 sampled from a larger population. For continuous responses, Burt et al. (2025a) address these
 43 concerns; they provide confidence intervals that maintain nominal coverage over spatial associations,
 44 even when training and target spatial locations can be nonaligned and nonrandom.
 45 However, their method requires continuous responses with homoskedastic (spatially constant) noise.
 46 In all of the applications discussed above, and many other spatial analyses, the response is binary- or
 47 count-valued, and so the noise is heteroskedastic in space. To instead provide confidence intervals for
 48 binary- or count-valued data, we might naturally think to apply the delta method (van der Vaart, 1998,
 49 Chapter 3) to the estimator from Burt et al. (2025a). However, the delta method requires a consistent
 50 point estimate. In the present work, we show that the point estimate from Burt et al. (2025a) is *not*
 51 generally consistent.
 52 Therefore, we need both a new estimator, as well as a new confidence interval, for the binary- and
 53 count-valued response setting. We provide these in the present work. Along the way, we also provide
 54 an estimator and asymptotically valid confidence intervals for continuous responses with spatially
 55 varying noise. In particular, we suggest a new point estimate inspired by Buja et al. (2019a), Buja
 56 et al. (2019b), Burt et al. (2025b), and Burt et al. (2025a); our estimate starts from a (misspecified but
 57 interpretable) generalized linear model (GLM) but takes into account nonrandom and nonaligned
 58 sampling of spatial locations. We show that in an *infill asymptotic setting*, where we have a sequence
 59 of spatial locations that eventually becomes dense in space but may not be sampled from any
 60 probability measure, our estimator is consistent. This consistency requires adaptivity; we demonstrate
 61 that the estimator of Burt et al. (2025a) and standard GLM point estimates using the training data are
 62 generally not consistent in this setting. We establish asymptotic normality of our estimator under
 63 conditions strictly more general than assuming training locations are sampled from a distribution
 64 supported around target locations. Our approach requires a Lyapunov central limit theorem applicable
 65 to non-identically distributed data. We propose a new, computationally efficient variance estimator
 66 suitable for problems with spatially varying noise and prove its consistency under infill asymptotics.
 67 Combining these results, we propose confidence intervals that can be computed efficiently from the
 68 available data, and prove that these confidence intervals are asymptotically conservative.
 69 Our simulations demonstrate that existing methods can lead to fundamentally incorrect conclusions. In
 70 some cases, all baseline confidence intervals achieve zero empirical coverage and produce associations
 71 with the wrong sign while excluding zero. Our method consistently achieves coverage at or above the
 72 nominal level and never produces wrong-signed associations with confidence intervals excluding zero.
 73 Importantly, one simulation requires extrapolation, demonstrating that even when infill assumptions
 74 are unrealistic, our approach often provides conservative uncertainty estimates.

75 2 Setup and Background

76 We first describe our data and data-generating process. Then we describe our (misspecified) model
 77 and estimand. Our assumed data-generating process and estimand in this section are similar to those
 78 in Burt et al. (2025a). Our estimator, theory, and experiments form our major contributions (in
 79 subsequent sections) and are substantially different from Burt et al. (2025a).

80 2.1 Data-Generating Process

81 The training data consist of N fully observed triples $(S_n, X_n, Y_n)_{n=1}^N$, with spatial location $S_n \in \mathcal{S}$,
 82 covariate $X_n \in \mathbb{R}^P$, and response $Y_n \in \mathcal{Y} \subset \mathbb{R}$. While our motivation and experiments focus
 83 on $\mathcal{Y} = \{0, 1\}$ (binary-valued) or $\mathcal{Y} = \mathbb{N}$ (count-valued), our treatment also handles $Y_n \in \mathbb{R}$. \mathcal{S}
 84 represents geographic space; we assume \mathcal{S} is a metric space with metric $d_{\mathcal{S}}$. We collect the training
 85 covariates in the matrix $X \in \mathbb{R}^{N \times P}$ and the training responses in the N -tuple $Y \in \mathcal{Y}^N$.

86 The target data consist of M pairs $(S_m^*, X_m^*)_{m=1}^M$, with $S_m^* \in \mathcal{S}$, $X_m^* \in \mathbb{R}^P$. The corresponding
 87 responses $\{Y_m^*\}_{m=1}^M$ are unobserved. We collect target covariates in $X^* \in \mathbb{R}^{M \times P}$ and unobserved

88 target responses in a tuple $Y^* \in \mathcal{Y}^M$. Our goal is to use the training data to estimate associations
 89 between covariates and responses at these new target locations.

90 **Similar assumptions to past work.** Our first three assumptions follow Burt et al. (2025a) in allowing
 91 a smooth, nonparametric relationship between spatially varying variables. We start by assuming that
 92 both training and target covariates are fixed functions of spatial location. This assumption is most
 93 natural when covariates represent environmental or meteorological measurements taken at specific
 94 times, or averaged over a time period.

95 **Assumption 1** (Burt et al. (2025a), Assumption 1). *There exists a (deterministic) function $\chi : \mathcal{S} \rightarrow$
 96 \mathbb{R}^P such that $X_m^* = \chi(S_m^*)$ for $1 \leq m \leq M$ and $X_n = \chi(S_n)$ for $1 \leq n \leq N$.*

97 As in Burt et al. (2025a), we assume that the conditional expectation of the response can be written as
 98 $\mathbb{E}[Y_n | X_n, S_n] = g(X_n, S_n)$, for some nonparametric function g . Under Assumption 1, the covariates
 99 are themselves fixed functions of location, so we can define $f : \mathcal{S} \rightarrow \mathbb{R}$, $f(S) = g(\chi(S), S)$. In other
 100 words, f maps each spatial location directly to the expected value of the response at that location.
 101 Importantly, unlike Burt et al. (2025a, Assumption 2), we do not assume homoskedastic, Gaussian
 102 noise; we instead allow spatially varying noise and discrete response variables.

103 **Assumption 2.** *There exists a function $f : \mathcal{S} \rightarrow \mathbb{R}$ such that for all $m \in \{1, \dots, M\}$, $\mathbb{E}[Y_m^* | S_m^*] =$
 104 $f(S_m^*)$ and for all $n \in \{1, \dots, N\}$, $\mathbb{E}[Y_n | S_n] = f(S_n)$. Moreover, $Y_m^* | S_m^*$ and $Y_n | S_n$ are indepen-*
 105 *dent for all $1 \leq m \leq M$ and $1 \leq n \leq N$.*

106 Assumption 3 encodes the idea that nearby points in space have similar expected responses. Intuitively,
 107 it rules out arbitrarily sharp changes in f across very small spatial distances. This pattern is common
 108 in environmental and geostatistical data, where smooth spatial variation is a natural prior belief.

109 **Assumption 3** (Burt et al. 2025a, Assumption 4). *The conditional expectation of the response, f , is an
 110 L -Lipschitz function from $(\mathcal{S}, d_{\mathcal{S}}) \rightarrow (\mathbb{R}, |\cdot|)$. That is, for any $s, s' \in \mathcal{S}$, $|f(s) - f(s')| \leq L d_{\mathcal{S}}(s, s')$.*

111 **New data-generating process assumptions.** Because we do not assume spatially constant Gaussian
 112 errors on the responses, we need assumptions that control the tail behavior of the possible responses.
 113 Our next three assumptions concern higher moments of the response as a function of spatial location.
 114 Specifically, we assume that we can define a conditional variance function and a conditional fourth
 115 central moment function, and that these functions are bounded (and, for the variance, continuous).
 116 These conditions are generally quite mild. For binary responses, these assumptions hold automatically:
 117 the variance is bounded because the outcome is bounded, and continuity of the mean (from
 118 Assumption 3) already implies continuity of the variance. For count and continuous responses, it is
 119 natural to expect that the probability mass or density of the outcome varies smoothly across space.
 120 This intuition is even stronger than required here, since smoothness of the probability distribution
 121 implies continuity of the variance. Finally, for any uniformly bounded response, both the bounded
 122 variance (Assumption 4) and bounded fourth moment (Assumption 6) conditions follow immediately.

123 **Assumption 4.** *There exists a conditional variance function $\rho^2 : \mathcal{S} \rightarrow [0, \infty)$ defined by $\rho^2(s) =$
 124 $\mathbb{E}[(Y(S) - f(S))^2 | S = s]$, and this function is uniformly bounded by a constant B_Y .*

125 **Assumption 5.** *The function ρ^2 from Assumption 4 is continuous on \mathcal{S} .*

126 **Assumption 6.** *There exists a conditional fourth central moment function $\alpha : \mathcal{S} \rightarrow [0, \infty)$ defined by
 127 $\alpha(s) = \mathbb{E}[(Y(S) - f(S))^4 | S = s]$, and this function is uniformly bounded by a constant C .*

128 2.2 Model and Estimand

129 Generalized linear model coefficients describe the direction and magnitude of the associations between
 130 covariates and discrete response variables, and will be our inferential target. A (well-specified) GLM
 131 assumes that — for a covariate-response pair (x, y) — the distribution of the response y has probability
 132 mass function $h(y; \theta) = c(y) \exp(\theta y - \kappa(\theta))$, $\theta = x^T \beta^*$ (Nelder and Wedderburn, 1972; McCullagh
 133 and Nelder, 1989) where θ is the canonical parameter, κ is the cumulant generating function, $c(y)$ is
 134 a base measure, and β^* are the true regression coefficients. κ is convex and infinitely differentiable.
 135 The data log-likelihood is

$$\ell(\beta; Y) = C + \sum_{n=1}^N X_n^T \beta Y_n - \kappa(X_n^T \beta), \quad (1)$$

136 where C is a term that does not depend on β . Under a well-specified model with independent and
 137 identically distributed (i.i.d.) data and mild regularity conditions, the maximum likelihood estimator
 138 obtained by maximizing Eq. (1) converges to the true coefficients β^* (Wald, 1949). In contrast,
 139 when the model is misspecified, maximizing the log-likelihood instead yields the coefficients that
 140 minimize the Kullback–Leibler (KL) divergence between the model and the true data-generating
 141 process (White, 1982). In either case, the estimator is asymptotically normal. We discuss the use of
 142 asymptotic normality to construct confidence intervals for parameters in well-specified GLMs, as
 143 well as other approaches for constructing confidence intervals in GLMs in Appendix B.

144 **Our Maximum Likelihood Estimand.** Our goal is to describe how covariates are associated with
 145 the response variable at the target locations, using data observed at the training locations. Because
 146 these two sets of locations may differ, we define our estimand as the parameter in the (parametric)
 147 GLM family considered that provides the best approximation to the true response process at the target
 148 distribution of locations. This generalizes the least squares approach considered in Burt et al. (2025a)
 149 to other (non-Gaussian) exponential families and follows the general framework of fitting parametric
 150 models as ‘projections’ outlined in Buja et al. (2019b, §2.1). Formally, we define the population
 151 maximum likelihood parameter conditional on the target locations as

$$\beta^{\text{MLE}} = \arg \max_{\beta \in \mathbb{R}^P} \sum_{m=1}^M \mathbb{E}[\log h(Y_m^*; X_m^{*\text{T}} \beta) | S_m^*]. \quad (2)$$

152 In Appendix A, we show that β^{MLE} equivalently minimizes the Kullback–Leibler divergence between
 153 the data-generating process and the GLM family, conditional on the distribution over locations taken
 154 to be the target distribution.

155 **Assumption 7.** *There exists a parameter β^{MLE} solving Eq. (2), and the corresponding population
 156 log-likelihood is strictly concave in an open neighborhood containing β^{MLE} .*

157 Assumption 7 guarantees uniqueness of the estimator and ensures that the Hessian of the log-likelihood
 158 is positive definite at β^{MLE} . In the case of linear models, a necessary and sufficient condition is that
 159 X^* is full-rank (c.f. Burt et al., 2025a, Assumption 4). More generally, it is necessary that X^* is full
 160 rank, though not always sufficient. Intuitively, this condition prevents attempting to estimate more
 161 parameters than there are independent pieces of information at the target sites. In what follows, we
 162 focus on inference — both point estimates and confidence intervals — for individual parameters of
 163 interest, $\beta_p^{\text{MLE}} = e_p^{\text{T}} \beta^{\text{MLE}}$, where $e_p \in \mathbb{R}^P$ is the unit vector selecting the p th component (i.e., with a
 164 single 1 at entry p and 0 elsewhere).

165 3 Inference for Misspecified GLMs Under Infill Asymptotics

166 In this section, we describe our procedure for inference in generalized linear models with misspecification
 167 and nonrandom spatial sampling.

168 **Overview of Inference Strategy.** A desirable property for an estimator is consistency: with enough
 169 training data, the estimator should converge to the estimand, the true underlying quantity of interest.
 170 In our spatial setting, however, it is not just the amount of training data that matters, but also where
 171 the data are located. This naturally leads to the framework of *infill asymptotics*, which considers the
 172 case where increasingly many training points are observed in the neighborhoods of the fixed target
 173 locations. In Section 3.1, we show that existing methods are not necessarily consistent even in this
 174 idealized setting, and propose an estimator that is. While estimating an association consistently is
 175 reassuring for many scientific applications, it is also important to quantify uncertainty about the quality
 176 of this point estimate. In Section 3.2, we use a Lyapunov central limit theorem (for non-identically
 177 distributed data) to show our point estimate is asymptotically normal. This allows us to construct
 178 confidence intervals around our point estimate that are asymptotically valid. These confidence
 179 intervals depend on the (unknown) variance of the response at the target locations. We propose a
 180 computationally efficient estimator for this spatially varying variance, and prove its consistency under
 181 infill asymptotics.

182 3.1 Consistency under Infill Asymptotics

183 We adopt the infill asymptotic framework of, e.g., Cressie (2015, §5.8) and Burt et al. (2025b, §3).

184 **Definition 1** (Infill Asymptotics). *Given a (fixed) set of target locations $(S_m^*)_{m=1}^M$, a sequence of
185 training locations $(S_n)_{n=1}^\infty$ satisfies infill asymptotics with respect to $(S_m^*)_{m=1}^M$ if, for all $1 \leq m \leq M$,
186 and any open neighborhood U_m containing S_m^* , $|\{n \in \mathbb{N} : S_n \in U_m\}| = \infty$.*

187 Intuitively, infill asymptotics requires that around each target location, the training set becomes
188 arbitrarily dense as the sample size grows. In Appendix C we give an example showing that even
189 under favorable conditions — Gaussian noise and smooth response surface — both the point estimate
190 based on 1-nearest-neighbor considered in Burt et al. (2025a) and the ordinary least squares estimate
191 can fail to achieve consistency under infill asymptotics with model misspecification.

192 **A Consistent Estimator under Infill Asymptotics.** We develop an estimator that is consistent
193 under infill asymptotics. Our approach builds on the intuition of Burt et al. (2025a), who proposed
194 borrowing training responses to estimate (unobserved) responses at target locations. However, the
195 key modification we introduce to ensure consistency is to allow the number of neighbors used for
196 borrowing to grow adaptively with the size of the training set. Burt et al. (2025b) relied on a similar
197 adaptive construction to show consistency in the simpler setting of mean estimation.

198 Define the function $\tau : \mathbb{R}^M \rightarrow \mathbb{R}^P$, $\tau(A) = \arg \max_{\beta \in \mathbb{R}^P} \sum_{m=1}^M X_m^{*\top} \beta A_m - \kappa(X_m^{*\top} \beta)$. The
199 estimand (Eqs. (1) and (2)) is $\beta^{\text{MLE}} = \tau(\mathbb{E}[Y^*|S^*])$. Our strategy is to average information from
200 responses near each target point to build an estimator, $\hat{\beta}$, for $\mathbb{E}[Y^*|S^*]$. And then to use $\tau(\hat{\beta})$ as
201 an estimator for β^{MLE} . To instantiate this, we follow Burt et al. (2025a, Definition 10) and use a
202 nearest-neighbor weighting scheme.

203 **Definition 2** (Nearest-Neighbor Weight Matrix). *Given training locations $(S_n)_{n=1}^N$, target locations
204 $(S_m^*)_{m=1}^M$, and a fixed $k_N \in \mathbb{N}$, define the k_N -nearest-neighbor weight matrix by*

$$\Psi_{mn}^{N,k_N} = \begin{cases} 1/k_N & S_n \in \{k_N \text{ closest training locations to } S_m^*\} \\ 0 & \text{otherwise.} \end{cases} \quad (3)$$

205 For definiteness, we assume that, if multiple training locations are equidistant from a target, ties are
206 broken uniformly at random.

207 This yields an estimator that we can calculate from the observed data:

$$\hat{\beta}^{N,k_N} = \tau(\Psi^{N,k_N} Y) = \arg \max_{\beta \in \mathbb{R}^P} \sum_{m=1}^M X_m^{*\top} \beta (\Psi^{N,k_N} Y)_m - \kappa(X_m^{*\top} \beta). \quad (4)$$

208 Burt et al. (2025a) proposed the same estimator with $k_N = 1$, so that each target location borrows
209 information only from its closest training neighbor. While this approach may be adequate empirically
210 when the number of target locations is large, Counterexample 1 shows that it fails to deliver consis-
211 tency under infill asymptotics. Since consistency of $\hat{\beta}_N$ is a prerequisite for establishing asymptotic
212 normality of our estimator, a more robust choice of k_N is required. We propose an adaptive rule for
213 selecting k_N : the key idea is to gradually increase the number of neighbors whenever the current
214 neighbors (including the newly observed training location) are all sufficiently close to the target sites.

215 **Theorem 1.** *Fix any $M \in \mathbb{N}$ and $(S_m^*)_{m=1}^M$. Let $(S_n)_{n=1}^\infty$ be a sequence of points in \mathcal{S} such that
216 infill asymptotics holds with respect to $(S_m^*)_{m=1}^M$. Suppose Assumptions 1 to 4 and 7. With adaptively
217 chosen neighbors as discussed in Theorem D.1, $\hat{\beta}^{N,k_N} \rightarrow \beta^{\text{MLE}}$, where convergence is in probability.*

218 The proof of Theorem 1 as well as a formal characterization of the adaptive scheme for selecting the
219 number of neighbors are provided in Appendix D. Intuitively, the procedure adapts the number of
220 neighbors so that as training data accumulate near the targets, the estimator gradually incorporates
221 more information without sacrificing local accuracy.

222 **Limitations when Extrapolating.** In cases where extrapolation is needed because the training data
223 are not available near the target locations (either because of finite data or because the distribution
224 of training locations is not supported near the target locations), we cannot hope to estimate β^{MLE}
225 arbitrarily well. In particular, we simply do not know how $\mathbb{E}[Y_m^*|S_m^*]$ behaves in the extrapolation
226 setting, and our assumptions together with the data are not strong enough for β^{MLE} to be identified.
227 Our approach therefore focuses on the regime where infill asymptotics holds, which is precisely the
228 setting where consistent estimation is achievable.

229 **3.2 Asymptotically Valid Confidence Intervals**

230 We now focus on quantifying uncertainty around $\widehat{\beta}^{N,k_N}$. Our focus is on the construction of
 231 confidence intervals that are (asymptotically) guaranteed to achieve nominal coverage. Precisely, we
 232 will construct confidence intervals that satisfy the following under our data generating assumptions
 233 and infill asymptotics.

234 **Definition 3** (Asymptotically Conservative Confidence Interval). *For any $1 \leq p \leq P$ and
 235 any $\alpha \in (0, 1)$ a sequence of confidence intervals $(I_{p,N}^\alpha)_{N=1}^\infty$ is asymptotically conservative if
 236 $\lim_{N \rightarrow \infty} \mathbb{P}(\beta_p^{MLE} \in I_{p,N}^\alpha) \geq 1 - \alpha$.*

237 **Asymptotic Normality.** Constructing confidence intervals for arbitrary random variables is challenging.
 238 But constructing confidence intervals for normal random variables is easier, and so we follow
 239 a classical approach to deriving confidence intervals in which we first show that our estimator is
 240 asymptotically normal. We use a Lyapunov central limit theorem together with the delta method (van
 241 der Vaart, 1998, Chapter 3), to show that under the same setup as Theorem 1

$$\begin{aligned} \sqrt{k_N}(\beta^{MLE} - \widehat{\beta}^{N,k_N}) &\rightarrow \mathcal{N}(B, \tau'(\mathbb{E}[Y^*|S^*])^T \Lambda^* \tau'(\mathbb{E}[Y^*|S^*])), \quad (5) \\ B &= \tau'(\mathbb{E}[Y^*|S^*])^T (\mathbb{E}[Y^*|S^*] - \Psi^{N,k_N} \mathbb{E}[Y|S]) \quad \text{and} \quad \Lambda_{mm'}^* = \delta_{mm'} \mathbb{V}[Y_m^*|S_m^*]. \end{aligned}$$

242 Here τ' maps from a point in \mathbb{R}^M to the Jacobian of τ at that point. and $\delta_{mm'}$ is a Kronecker delta,
 243 so Λ^* is diagonal. A formal statement and proof are in Appendix E.4, Theorem E.2. Equation (5)
 244 depends on $\tau'(\mathbb{E}[Y^*|S^*])$, which is not observed. In practice and in our later theory, we use a
 245 (consistent) point estimate for this Jacobian $\tau'(\Psi^{N,k_N} Y)$.

246 **Bounding the Bias.** We need to control the bias, B . After replacing $\mathbb{E}[Y^*|S^*]$ with $\Psi^{N,k_N} Y$ each
 247 coordinate of the bias is a linear combination of evaluations of the conditional expectation of the
 248 response, f , at training and target locations. Burt et al. (2025a, Appendix B.2) showed that such a
 249 linear combination can be bounded in terms of a 1-Wasserstein distance that is efficiently computable.
 250 We provide additional detail in Proposition E.2.

251 **Plug-in Estimate of $\mathbb{V}[Y^*|S^*]$.** We do not have access to $\mathbb{V}[Y_m^*|S_m^*]$ for $1 \leq m \leq M$, which is
 252 needed to compute the variance of the point estimate. We propose a nearest-neighbor approach.

253 **Definition 4** (Nearest-Neighbor Variance Estimator). *For each $1 \leq n \leq N$, let $\zeta^N(n')$ be the index
 254 of the nearest-neighbor of $S_{n'}$ in the other training data $(S_n)_{n=1, n \neq n'}^N$. Define the diagonal matrix
 255 $\Lambda^N \in \mathbb{R}^{N \times N}$, $\Lambda_{nn}^N = \frac{1}{2}(Y_n - Y_{\zeta^N(n)})^2$.*

256 We show in Appendix E.2 that, assuming infill asymptotics, $k_N \Psi^{N,k_N} \Lambda^N \Psi^{N,k_N T} \rightarrow \Lambda^*$. Burt et al.
 257 (2025a) proposed to use $\frac{1}{N} \text{tr}(\Lambda^N)$ to estimate the noise variance in homoskedastic linear regression,
 258 but did not establish its consistency or propose how to handle spatially varying noise.

259 **Statement of Confidence Intervals.** We now have the ingredients to define our confidence interval:

$$I_{p,N}^\alpha = \left[\widehat{\beta}_p^{N,k_N} - z_{\alpha/2} \widehat{\sigma}_p - \tilde{B}_p, \widehat{\beta}_p^{N,k_N} + z_{\alpha/2} \widehat{\sigma}_p + \tilde{B}_p \right], \quad (6)$$

$$\text{with } \widehat{\sigma}_p = \|(\Lambda^N)^{1/2} (\Psi^{N,k_N})^T \tau'(\Psi^{N,k_N} Y) e_p\|_2, \quad \tilde{B}_p = L \sup_{f \in \mathcal{F}_1} \left| \sum_{n=1}^N v_n^N f(S_n) - \sum_{m=1}^M w_m^N f(S_m^*) \right|,$$

260 Here $z_{\alpha/2}$ is the $(1 - \alpha/2)$ quantile of the standard normal distribution; $e_p \in \mathbb{R}^P$ is the p th standard
 261 basis vector; $w^N = X^* \tau'(\Psi^{N,k_N} Y) e_p$; and $v^N = \Psi^{N,k_N} w^N$. The set \mathcal{F}_1 denotes the 1-Lipschitz
 262 functions on $(\mathcal{S}, d_{\mathcal{S}})$. We use $\|\cdot\|_2$ for the Euclidean (ℓ_2) norm on vectors. A classic confidence
 263 interval $[\widehat{\beta}_p^{N,k_N} \pm z_{\alpha/2} \widehat{\sigma}_p]$ uses model-trusting standard errors and does not account for potential
 264 bias due to model-misspecification and nonrandom sampling. Sandwich estimators use standard
 265 errors that are valid under misspecification, but still do not account for potential bias because of the
 266 interaction between misspecification and nonrandom sampling. Our confidence interval, Eq. (6) uses
 267 standard errors that are still valid under misspecification, and accounts for potential bias.

268 **Asymptotic Validity of Confidence Intervals.** We now state our main result, that the confidence
 269 interval in Eq. (6) is conservative under infill asymptotics. We prove Theorem 2 in Appendix E.

270 **Theorem 2.** *Take the setup and assumptions of Theorem 1. Suppose the number of neighbors is
 271 chosen as in Theorem D.1 with $a_t = \frac{1}{\sqrt{t}}$ for $t \in \mathbb{N}$ and Assumptions 5 and 6. Then the confidence
 272 interval defined in Eq. (6) is asymptotically conservative.*

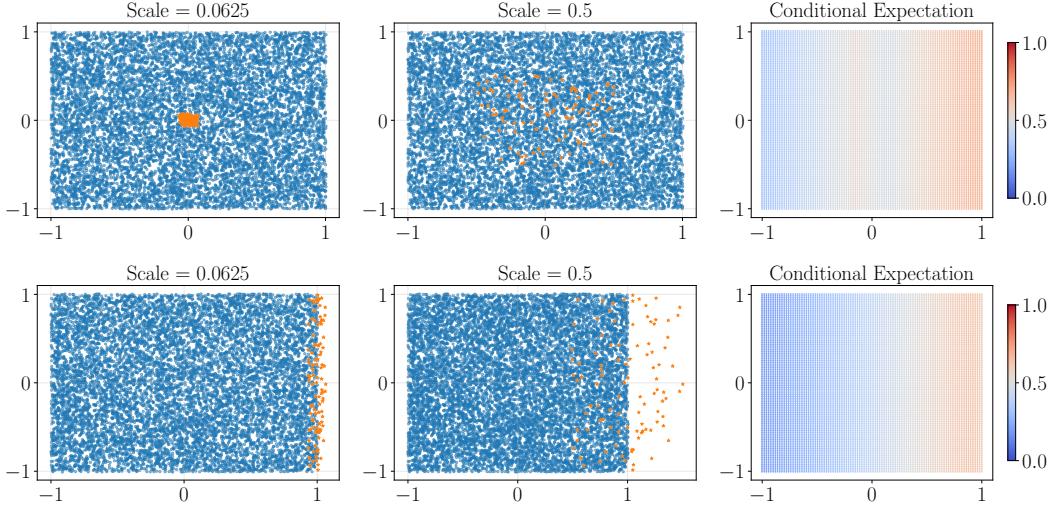


Figure 1: We summarize the data generating processes for the first (top) and second (bottom) simulation study. The left two plots show the distribution of train (blue) and target (orange) locations. The third panel shows the (unobserved) expected response surface.

273 4 Experiments

274 In this section, we present two simulation studies to evaluate the performance of the proposed
 275 method for logistic regression. Throughout, we consider three baselines: logistic regression, logistic
 276 regression using the sandwich covariance estimator (Huber, 1967), and weighted logistic regression
 277 using kernel density estimation (Shimodaira, 2000). While logistic regression is a classic method,
 278 confidence intervals from logistic regression are widely used in scientific applications (e.g. Lee et al.,
 279 2025; Zhang et al., 2023; Ahn et al., 2024). We give more detail on baseline methods in Appendix F.1.

280 **Evaluation Metrics.** We evaluate methods along four complementary dimensions. Our primary
 281 focus is on empirical coverage and the proportion of false positives, since failure on either dimension
 282 undermines the reliability of statistical conclusions. Empirical coverage measures the proportion of
 283 confidence intervals that contain the true parameter value; we regard a method as successful if its
 284 coverage is at or above the nominal level of 0.95. The proportion of false positives measures the
 285 frequency with which a confidence interval excludes 0 but assigns the wrong sign to the parameter;
 286 this rate should remain close to or below the nominal level of 0.05. Conditional on reliability, we
 287 then assess whether methods provide informative conclusions. Two metrics capture this aspect: the
 288 average width of confidence intervals, which should be as small as possible given adequate coverage,
 289 and the proportion of true positives, defined as the fraction of intervals excluding 0 with the correct
 290 sign, which should be as high as possible. Narrow intervals and a high rate of true positives indicate
 291 that a method can identify associations precisely and with confidence.

292 These metrics illustrate the balance between validity and informativeness. A method that always
 293 returns a degenerate interval of width zero (a single point) would appear confident whenever it guesses
 294 the correct sign, yet would completely fail to reflect uncertainty. Conversely, a method that always
 295 returns the entire real line would achieve perfect coverage and no false positives, but would provide
 296 no useful scientific guidance. We therefore regard a method as successful if it achieves coverage near
 297 the nominal rate, maintains a low false positive proportion, and produces intervals that are narrow
 298 enough to support meaningful conclusions — for example, correctly and confidently identifying the
 299 direction of association.

300 **Data-Generating Process.** In both simulations, we simulate 250 datasets according to data-generating
 301 processes described in detail in Appendix F.2 and illustrated in Fig. 1. The two simulations are
 302 intended to highlight contrasting regimes: the first one reflects a setting where the infill asymptotics
 303 assumption is reasonable, whereas for the second one extrapolation is unavoidable. In the latter case,
 304 we anticipate wider confidence intervals, reflecting the inherent difficulty of the task. For our method,

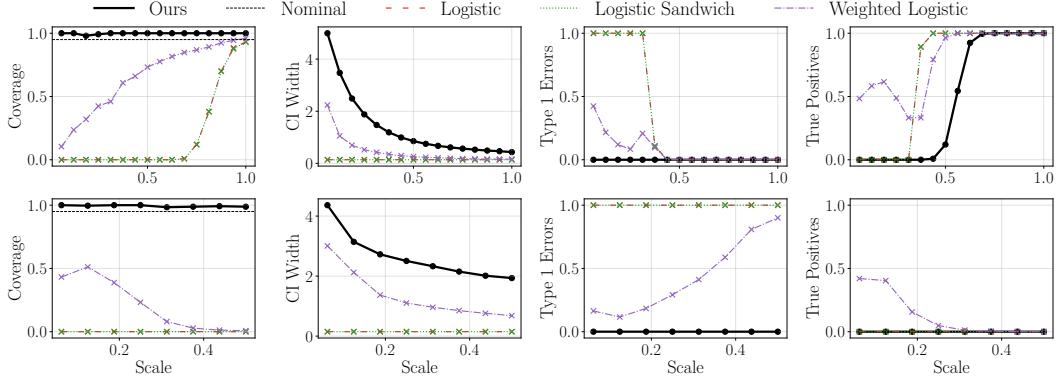


Figure 2: From left to right, coverage average confidence interval width, proportion of false positives and proportion of true positives for each method on the first simulation (top) and the second simulation (bottom). Coverage should be above the nominal level (dashed line in first column), and the proportion of false positives should be below 0.05. Given these properties, we would like confidence intervals that are as narrow as possible, and return many true positives.

305 we set the Lipschitz constant of the conditional expectation function to its true value, $L = 0.25$, in
 306 both simulations.

307 In each experiment, we draw 10000 training locations uniformly from $[-1, 1]^2$. The target locations
 308 are then constructed differently across the two designs. In the first experiment, targets are concentrated
 309 within a subset of the square, determined by a scale parameter, so that the infill property holds. In
 310 the second experiment, targets are concentrated but shifted outside the main support of the training
 311 set, to the right of the square, thereby requiring extrapolation. The two left panels of Fig. 1 depict
 312 the distribution of training and target locations for the infill (top) and extrapolation (bottom) settings.
 313 In both experiments, we use a single covariate equal to the first coordinate of the spatial location.
 314 Responses are generated from a Bernoulli distribution whose conditional expectation varies smoothly
 315 with space. The rightmost panel of Fig. 1 displays this conditional expectation for both designs, with
 316 the precise mathematical forms given in Appendix F.

317 **Results.** We summarize the results across the two simulations in Fig. 2. Our method consistently
 318 achieves coverage at or above the nominal 0.95 level and does not produce false positives. By contrast,
 319 the baseline methods frequently fall far short of nominal coverage: in the second simulation, all
 320 baselines achieve zero coverage for certain instances. This failure is accompanied by high rates of
 321 false positives, meaning the baselines often return intervals that confidently — but incorrectly —
 322 assign the wrong sign to the association.

323 The strength of our method lies in its reliability: it avoids misleading conclusions even in challenging
 324 extrapolation regimes. The cost of this conservativeness is wider confidence intervals and, conse-
 325 quently, a smaller proportion of true positives compared to the baselines. This trade-off is expected,
 326 as our method protects against worst-case bias rather than optimizing for power. Improvements in
 327 power may be possible, but in scenarios dominated by extrapolation, additional assumptions would
 328 be needed to confidently and correctly make inference about the direction of an association.

329 5 Discussion

330 In this work, we developed a new framework for inference on associations in generalized linear
 331 models under spatial misspecification and covariate shift. Through theory and simulations, we show
 332 that our estimator is consistent under infill asymptotics and that our intervals achieve valid coverage,
 333 unlike existing approaches which often fail dramatically. Our method is conservative, avoiding false
 334 positives even in challenging extrapolation settings. Looking ahead, we are particularly interested
 335 in applying our method to real datasets in scientific domains such as environmental monitoring,
 336 epidemiology, and climate science, where robust and reliable inference on spatial associations is
 337 critical.

338 **References**

339 Ahn, T. G., Kim, Y. J., Lee, G., You, Y.-A., Kim, S. M., Chae, R., Hur, Y. M., Park, M. H., Bae, J.-G.,
340 Lee, S.-J., Kim, Y.-H., and Na, S. (2024). Association between individual air pollution (PM10,
341 PM2.5) exposure and adverse pregnancy outcomes in korea: A multicenter prospective cohort, air
342 pollution on pregnancy outcome (APPO) study. *Journal of Korean Medical Science*, 39(13).

343 Billingsley, P. (1995). *Probability and Measure*. John Wiley & Sons, New York, 3rd edition.

344 Buja, A., Brown, L., Berk, R., George, E., Pitkin, E., Traskin, M., Zhang, K., and Zhao, L. (2019a).
345 Models as approximations i: Consequences illustrated with linear regression. *Statistical Science*,
346 34(4):523–544.

347 Buja, A., Brown, L., Kuchibhotla, A. K., Berk, R., George, E., and Zhao, L. (2019b). Models as
348 approximations II: A model-free theory of parametric regression. *Statistical Science*, 34(4):545 –
349 565.

350 Burt, D. R., Berlinghieri, R., Bates, S., and Broderick, T. (2025a). Smooth sailing: Lipschitz-driven
351 uncertainty quantification for spatial association. *arXiv preprint arXiv:2502.06067*.

352 Burt, D. R., Shen, Y., and Broderick, T. (2025b). Consistent validation for predictive methods in
353 spatial settings. In *International Conference on Artificial Intelligence and Statistics*.

354 Chen, T. and Guestrin, C. (2016). XGBoost: A scalable tree boosting system. In *Proceedings of the*
355 *22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*.

356 Cover, T. M. and Thomas, J. A. (2006). *Elements of Information Theory*. Wiley-Interscience, 2nd
357 edition.

358 Cox, D. R. and Snell, E. J. (1989). *The Analysis of Binary Data*. Chapman and Hall.

359 Cramér, H. (1946). *Mathematical Methods of Statistics*. Princeton University Press, Princeton, NJ.

360 Cressie, N. (2015). *Statistics for spatial data*. John Wiley & Sons.

361 Huber, P. J. (1967). The behavior of maximum likelihood estimates under nonstandard conditions. In
362 *Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Volume*
363 *1: Statistics*, pages 221–234. University of California Press.

364 Krantz, S. G. and Parks, H. R. (2013). *Implicit Function Theorem: History, Theory, and Applications*.
365 Birkhäuser Boston.

366 Lee, J. Y., Lee, S., Lamichhane, D. K., Shrestha, S., Kim, E., Oh, J., Lee, W., Park, M.-S., Hong,
367 Y.-C., Park, H., Kim, Y., Ha, M., Ha, E., and Lee, J. H. (2025). Combined effects of traffic-related
368 air pollution, climate factors, and greenness on respiratory disease risk in infants. *Scientific Reports*,
369 15(1):31250.

370 Lundberg, S. M. and Lee, S.-I. (2017). A unified approach to interpreting model predictions. In
371 *Advances in Neural Information Processing Systems*.

372 McCullagh, P. and Nelder, J. (1989). *Generalized Linear Models*. Chapman and Hall/CRC Mono-
373 graphs on Statistics and Applied Probability Series. Chapman & Hall, 2nd edition.

374 Michelozzi, P., Accetta, G., De Sario, M., D’Ippoliti, D., Marino, C., Baccini, M., Biggeri, A.,
375 Anderson, H., Katsouyanni, K., Ballester, F., Bisanti, L., Cadum, E., Forsberg, B., Forastiere,
376 F., Goodman, P., Hojs, A., Kirchmayer, U., Medina, S., Paldy, A., and Group, C. (2009). High
377 temperature and hospitalizations for cardiovascular and respiratory causes in 12 european cities.
378 *American Journal of Respiratory and Critical Care Medicine*, 179:383–389.

379 Nelder, J. A. and Wedderburn, R. W. M. (1972). Generalized linear models. *Journal of the Royal*
380 *Statistical Society: Series A (General)*, 135(3):370–384.

381 Ribeiro, M. T., Singh, S., and Guestrin, C. (2016). "Why should I trust you?" explaining the
382 predictions of any classifier. In *Proceedings of the 22nd ACM SIGKDD International Conference*
383 *on Knowledge Discovery and Data Mining*, pages 1135–1144.

384 Shimodaira, H. (2000). Improving predictive inference under covariate shift by weighting the
 385 log-likelihood function. *Journal of Statistical Planning and Inference*, 90(2):227–244.

386 van der Vaart, A. W. (1998). *Asymptotic Statistics*. Cambridge Series in Statistical and Probabilistic
 387 Mathematics. Cambridge University Press.

388 Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and
 389 Polosukhin, I. (2017). Attention is all you need. In *Advances in Neural Information Processing
 390 Systems*.

391 Venzon, D. J. and Moolgavkar, S. H. (1988). A method for computing profile-likelihood-based
 392 confidence intervals. *Journal of the Royal Statistical Society: Series C (Applied Statistics)*,
 393 37(1):65–80.

394 Vizuete, W., Nielsen-Gammon, J., Dickey, J., Couzo, E., Blanchard, C., Breitenbach, P., Rasool,
 395 Q. Z., and Byun, D. (2022). Meteorological based parameters and ozone exceedances in Houston
 396 and other cities in Texas. *Journal of the Air & Waste Management Association*, 72(9):969–984.

397 Wald, A. (1949). Note on the consistency of the maximum likelihood estimate. *Annals of Mathematical
 398 Statistics*, 20(4):595–601.

399 White, H. (1982). Maximum likelihood estimation of misspecified models. *Econometrica*, 50(1):1–
 400 25.

401 Zhang, X., Zheng, X., Dai, Z., and Zheng, H. (2023). The development and validation of a nomogram
 402 to determine neurological outcomes in cardiac arrest patients. *BMC Anesthesiology*, 23(1):289.

403 Zhao, L., Liang, H., Chen, F.-Y., Chen, Z., Guan, W.-J., and Li, J.-H. (2015). Association between
 404 air pollution and cardiovascular mortality in China: A systematic review and meta-analysis.
 405 *Oncotarget*, 8.

406 A Interpretation of Target Maximum Likelihood

407 In this section, we show that Eq. (2) minimizes the conditional KL divergence from the true data-
 408 generating process over the model class, when the target locations are distributed according to the
 409 discrete measure that assigns equal weight to each target location. This follows the standard argument
 410 that maximum likelihood minimizes a KL divergence, but we reconstruct the argument to emphasize
 411 that in our setting it is conditional on the target locations.

412 **Proposition A.1.** *Suppose Assumptions 1, 2 and 7. Let P^* denote the joint measure of spatial
 413 locations, covariates and responses, with the measure over spatial locations fixed to equal the discrete
 414 measure that assigns equal weight to each target location. For $\beta \in \mathbb{R}^P$, define P^β to be the measure
 415 over spatial locations fixed to equal the discrete measure that assigns equal weight to each target
 416 location, the covariates equal to $\chi(S)$, and the response generated with conditional log likelihood of
 417 the response equal to Eq. (1). Suppose there exists a $\beta \in \mathbb{R}^P$ such that $\text{KL}(P^*, P^\beta) \leq \infty$. Then,
 418 $\beta^{\text{MLE}} = \arg \min_{\beta \in \mathbb{R}^P} \text{KL}(P^*, P^\beta)$.*

419 *Proof.* Let $\Omega = \{\beta \in \mathbb{R}^P : \text{KL}(P^*, P^\beta) < \infty\}$. Ω is non-empty by assumption. And the minimizer
 420 of $\text{KL}(P^*, P^\beta)$ must occur in β as this KL divergence is infinite outside of Ω by definition. Let
 421 $P_{Y_m^*|S_m^*}^*$ denote the conditional distribution of Y_m^* given S_m^* under the data generating process, and
 422 $P_{Y_m^*|S_m^*}^\beta$ denote the conditional distribution of Y_m^* given S_m^* under the generalized linear model with
 423 parameter β . For any $\beta \in \Omega$, and using the chain rule of KL divergence (Cover and Thomas, 2006,
 424 Theorem 2.5.3), and because the measure of P^β and P^* over the locations and covariates is the same
 425 by construction,

$$\text{KL}(P^*, P^\beta) = \frac{1}{M} \sum_{m=1}^M \int \log \frac{dP_{Y_m^*|S_m^*}^*}{dP_{Y_m^*|S_m^*}^\beta} dP_{Y_m^*|S_m^*}^* \quad (\text{A.1})$$

$$= \frac{1}{M} \sum_{m=1}^M \mathbb{E}[-\log h(Y_m^*; X_m^{*\top} \beta) | S_m^*] + C, \quad (\text{A.2})$$

426 where C is the entropy (for discrete Y) or differential entropy (for continuous Y). Minimizing over β

$$\arg \min_{\beta \in \mathbb{R}^P} \text{KL}(P^*, P^\beta) = \arg \min_{\beta \in \Omega} \text{KL}(P^*, P^\beta) = \arg \max_{\beta \in \mathbb{R}^P} \sum_{m=1}^M \mathbb{E}[\log h(Y_m^*; X_m^{\star T} \beta) | S_m^*], \quad (\text{A.3})$$

427 The right hand side is the same as Eq. (2), and so β^{MLE} minimizes a KL divergence to the true data
428 generating process, conditional on the target locations. \square

429 B Alternative Approaches for Confidence Intervals for Well-Specified 430 Generalized Linear Models

431 **Confidence Intervals Based on Asymptotic Normality.** A standard approach for constructing
432 confidence intervals that are valid for large sample sizes follows from the general theory of asymptotic
433 normality of maximum likelihood estimators (MLEs) Cramér (1946); Wald (1949). Informally, if
434 $\hat{\beta}_n$ is the MLE of β^* based on n samples, then under well-specification, $\sqrt{n}(\beta^* - \hat{\beta}_n) \approx \mathcal{N}(0, I_{\beta^*}^{-1})$
435 where I_{β^*} is the Fisher information matrix. In practice, I_{β^*} can be estimated using the observed Fisher
436 information matrix, $(\hat{I}_{\beta, n})_{i,j} = \sum_{n=1}^N \frac{\partial^2 \ell_n(\beta, Y_n)}{\partial \beta_i \partial \beta_j}$, where $\ell_n(\beta; Y_n) = C_n(Y_n) + X_n^T \beta Y_n - \kappa(X_n^T \beta)$
437 is the log-likelihood of a single data point. An asymptotic confidence interval for the p th coefficient
438 β_p^* then takes the form: $\beta_p^* \in \hat{\beta}_p \pm z_{1-\alpha/2} \tilde{\sigma}_p^2$, where $\tilde{\sigma}_p^2$ is the p th diagonal entry of $\hat{I}_{\beta, n}^{-1}$, and $z_{1-\alpha/2}$
439 is the $(1 - \alpha/2)$ -quantile of the standard normal distribution. Even if the model is misspecified,
440 maximum likelihood leads to an asymptotically normal estimator when the data remain i.i.d., though
441 the variance is no longer governed by the Fisher information. In this case, confidence intervals
442 are obtained using a sandwich variance estimator (White, 1982). A detailed treatment of these
443 asymptotics can be found in van der Vaart (1998, Chapter 4). We provide further discussion of
444 alternative confidence interval constructions for well-specified GLMs in Appendix B.

445 **Alternative Approaches for Confidence Intervals in GLMs.** While the asymptotic approximation
446 based on the observed Fisher information, described in Section 2, is widely used, there are other
447 approaches exist for constructing confidence intervals for well-specified generalized linear models.

448 For logistic regression (Cox and Snell, 1989, Chapter 2) describes how to construct confidence
449 intervals that are exact in finite samples. These exact methods are typically more computationally
450 intensive, but can be used to construct confidence intervals that are valid even for small sample sizes.

451 Venzon and Moolgavkar (1988) use the asymptotic χ^2 distribution of the profile log likelihood to
452 construct asymptotic confidence intervals. The extent to which our methods can be adapted to these
453 approaches is an interesting question for future work.

454 C Inconsistency of Point Estimation for Existing Methods

455 In this section, we provide additional details proving the claims in Counterexample 1. We first state
456 the counterexample.

457 **Counterexample 1** (Several Existing Methods are Not Consistent Under Infill Asymptotics for
458 Homoskedastic Linear Models with Gaussian Noise). *Assume Assumptions 2 and 3 with spatial
459 domain $[-0.75, 1]$, two target locations $S_m^* = \pm 0.5$, $f(S) = S^2$ and $\chi(S) = S$. Suppose responses
460 follow $Y^* = f(S^*) + \epsilon$, $\epsilon \sim \mathcal{N}(0, 1)$. Consider least squares linear regression fit without an intercept.
461 Then Assumptions 4 to 6 hold, as does Assumption 7 with $\beta^{\text{MLE}} = 0$. Further, if the training data
462 are uniformly distributed on $[-0.75, 1]$, then infill asymptotics holds almost surely. However, neither
463 the estimator proposed in Burt et al. (2025a) nor the ordinary least square estimator based on the
464 training data converge to 0 in probability.*

465 The first claim we show is that Assumptions 4 to 6 and Assumption 7 hold, with $\beta^{\text{MLE}} = 0$. First,
466 $\rho^2(S) = \mathbb{V}(\epsilon) = 1$, and so Assumptions 4 and 5 hold. Next, the conditional 4th moment is again a
467 constant function of space that is equal to the 4th moment of $\mathcal{N}(0, 1)$, which is 3, and is therefore
468 bounded so Assumption 6 holds. Finally, the log likelihood is

$$\ell(\beta) = C + \frac{1}{2} \mathbb{E}[-(0.25 + \epsilon_1 + 0.5\beta)^2 - (0.25 + \epsilon_2 - 0.5\beta)^2] \quad (\text{C.1})$$

469 Taking derivatives

$$\ell'(\beta) = \frac{1}{2} \mathbb{E}[-(0.25 + \epsilon_1 + 0.5\beta) + (0.25 + \epsilon_2 - 0.5\beta)] = -0.25\beta, \ell''(\beta) = -0.25. \quad (\text{C.2})$$

470 This is (globally) concave by the 2nd derivative test, and has a unique maximum at the solution of
471 $\ell'(\beta) = 0$, which is $\beta = 0$.

472 Our remaining claim is that OLS and the nearest-neighbor method with a single neighbor approach
473 considered in Burt et al. (2025a) are not consistent. The ordinary least squares estimate converges to
474 the solution of the training normal equations,

$$\mathbb{E}[x^2]^{-1} \mathbb{E}[xy] = \mathbb{E}[x^2]^{-1} \mathbb{E}[x^3] \neq 0, \quad (\text{C.3})$$

475 where we used that because the distribution of X is not symmetric about 0, $\mathbb{E}[x^3] \neq 0$.

476 To show that estimator in Burt et al. (2025a) is not consistent, we show its variance does not converge
477 to 0. Because the distribution of S^* is absolutely continuous with respect to Lebesgue measure, with
478 probability 1, for every N , there is a single training location closest to S_1^* and a single training location
479 closest to S_2^* . For all N , the variance of the estimator in Burt et al. (2025a) is then $(0.5^2) * 1 = 0.25$,
480 which does not converge to 0. We conclude this estimator is also not consistent.

481 We conjecture that the consistency of importance weighted approaches depends on continuity of
482 the covariates as a function of space and selection of the bandwidth parameter. We expect that the
483 bandwidth parameter would have to be selected in an adaptive way for consistency to hold.

484 D Proof of Consistency of Point Estimation for our Method

485 In this section, we prove Theorem 1, which shows that our point estimate is consistent under infill
486 asymptotics. We first state a complete version of Theorem 1 that includes an explicit definition for
487 the adaptive choice of neighbors.

488 **Theorem D.1.** Fix any $M \in \mathbb{N}$ and $(S_m^*)_{m=1}^M$. Let $(S_n)_{n=1}^\infty$ be a sequence of points in \mathcal{S} such that
489 infill asymptotics holds with respect to $(S_m^*)_{m=1}^M$. Suppose Assumptions 1 to 4 and 7. Choose any
490 positive sequence $(a_t)_{t=1}^\infty$ that tends to 0. Define the sequence k_N recursively by, $k_1 = 1$ and

$$k_{N+1} = \begin{cases} k_N + 1 & \max_{\substack{1 \leq m \leq M \\ 1 \leq n \leq N+1}} 1\{S_n \text{ is a } k_N + 1 \text{ nearest-neighbor of } S_m^* \in S_{1:N+1}\} d(S_m^*, S_n) \leq a_{k_N} \\ k_N & \text{otherwise.} \end{cases} \quad (\text{D.1})$$

491 Then $\hat{\beta}^{N, k_N} \rightarrow \beta^{MLE}$, where convergence is in distribution.

492 We first show that the sequence of number of neighbors $(k_N)_{N=1}^\infty$ has two desirable properties. First,
493 it tends to infinity. Second, the maximum distance of the k_N nearest-neighbors to each target in
494 location tends to 0 as N increases. The first property is needed for the variance of our estimate to tend
495 to 0, and the second property ensures that the bias in our point estimate goes to 0 as N increases.

496 **Proposition D.1.** Fix any $M \in \mathbb{N}$ and $(S_m^*)_{m=1}^M$. Let $(S_n)_{n=1}^\infty$ be a sequence of points in \mathcal{S} . Then
497 if $(S_n)_{n=1}^\infty$ satisfies infill asymptotics with respect to $(S_m^*)_{m=1}^M$. Choose $(a_t)_{t=1}^\infty$ to be any positive
498 sequence tending to 0. Define the sequence $(k_N)_{N=1}^\infty$ by $k_1 = 1$ and

$$k_{N+1} = \begin{cases} k_N + 1 & R_{N+1, k_N+1} \leq a_{k_N} \\ k_N & \text{otherwise.} \end{cases} \quad (\text{D.2})$$

499 with $R_{N,t} = \max_{1 \leq m \leq M} \max_{1 \leq n \leq N} 1\{S_n \text{ is a } t \text{ nearest-neighbor of } S_m^* \} d(S_m^*, S_n)$ Then the following two
500 properties hold:

501 1. $\lim_{N \rightarrow \infty} k_N = \infty$; and
502 2. $\lim_{N \rightarrow \infty} R_{N, k_N} = 0$.

503 *Proof.* We first show that the sequence $(k_N)_{N=1}^\infty$ is unbounded. Because it is monotone increasing,
504 this implies property 1.

505 Towards contradiction, suppose there exists a least upper bound K such that $k_N \leq K$ for all N .
 506 Because the k_N , we can find a K such that $k_N = K$ for some N , and K . Because k_N is monotone
 507 increasing, it must be the case that for all $N \geq N_0$, $k_N = K$. Therefore, we must have that for all
 508 $N \geq N_0$,

$$R_{N+1, K+1} > a_K > 0. \quad (\text{D.3})$$

509 Otherwise, there would exist an N' such that $k_{N'+1} = K+1$ (by condition 1 in the definition of k_{N+1} ,
 510 contradicting that K is an upper bound on $(k_N)_{N=1}^\infty$. we would have $k_{N'+1} = k_{N'} + 1 = K + 1$.

511 We now show that there exists a \tilde{N} such that for all $N \geq \tilde{N}$, $R_{N, K} \leq a_K$ leading to a con-
 512 tradiction. Because infill asymptotics holds, for $1 \leq m \leq M$, there exists a $N_{a_K, m, K}$ such
 513 that for all $N \geq N_{a_K, m, K}$, there exists at least K training locations in $B(S_m^*, a_K)$. Define
 514 $\tilde{N} = \max_{1 \leq m \leq M} N_{a_K, m, K}$. Then for all $N \geq \tilde{N}$

$$\max_{1 \leq m \leq M} \max_{1 \leq n \leq N} 1\{S_n \text{ is a } K \text{ nearest-neighbor of } S_m^*\} d(S_m^*, S_n) \leq a_K, \quad (\text{D.4})$$

515 because the K nearest-neighbors of S_m^* are all contained in $B(S_m^*, a_K)$ for each $1 \leq m \leq M$. This
 516 is a contradiction, leading to the conclusion that no upper bound on $(k_N)_{N=1}^\infty$ exists, and therefore
 517 property 1 holds.

518 It remains to show that property 2 holds. The sequence $(R_{N, k_N})_{N=1}^\infty$ only (possibly) increases
 519 between pairs $N, N+1$ such that $k_{N+1} = k_N + 1$.

520 For such N , $R_{N+1, k_{N+1}} \leq a_{k_N}$. For any N such that $k_N \geq 2$,

$$R_{N+1, k_{N+1}} \leq \max(R_{N, k_N}, a_{k_N}). \quad (\text{D.5})$$

521 Applying the previous equation to its own right hand side, for any N such that $k_{N-1} \geq 2$,

$$R_{N+1, k_{N+1}} \leq \max(a_{k_{N-1}}, a_{k_N}). \quad (\text{D.6})$$

522 Because $(a_t)_{t=1}^\infty$ tends to 0 and $k_N \rightarrow \infty$, $\lim_{N \rightarrow \infty} \max(a_{k_{N-1}}, a_{k_N}) = 0$. Therefore, R_{N, k_N} is a
 523 non-negative sequence bounded above by a sequence tending to 0, and so $\lim_{N \rightarrow \infty} R_{N, k_N} = 0$. \square

524 We now show that the second condition implies the weaker condition that the average distance of the
 525 k_N nearest-neighbors to each target location tends to 0 as N increases. This is a useful condition
 526 because it implies that the bias in our point estimate goes to 0 as N increases.

527 **Proposition D.2.** *Let $(k_N)_{N=1}^\infty$ be a sequence of numbers of neighbors such that*

528 1. $\lim_{N \rightarrow \infty} k_N = \infty$

529 2. $\lim_{N \rightarrow \infty} \max_{1 \leq m \leq M} \max_{1 \leq n \leq N} 1\{S_n \text{ is a } k_N \text{ nearest-neighbor of } S_m^*\} d(S_m^*, S_n) = 0$.

530 Then $\lim_{N \rightarrow \infty} \max_{1 \leq m \leq M} \frac{1}{k_N} \sum_{n=1}^N 1\{S_n \text{ is a } k_N \text{ nearest-neighbor of } S_m^*\} d(S_m^*, S_n) = 0$.

531 *Proof.* By Hölder's inequality

$$\max_{1 \leq m \leq M} \frac{1}{k_N} \sum_{n=1}^N 1\{S_n \text{ is a } k_N \text{ nearest-neighbor of } S_m^*\} d(S_m^*, S_n) \quad (\text{D.7})$$

$$\leq \max_{1 \leq m \leq M} \max_{1 \leq n \leq N} 1\{S_n \text{ is a } k_N \text{ nearest-neighbor of } S_m^*\} d(S_m^*, S_n). \quad (\text{D.8})$$

532 The result follows from taking a limit on both sides as $N \rightarrow \infty$, using the the left side is nonnegative,
 533 and that the right side tends to 0. \square

534 In showing consistency of our point estimate, we rely on the following lemma, which shows that
 535 the point estimate $\hat{\beta}^{N, k_N}$ is a continuous function of the estimator of the conditional expectation
 536 $\Psi^{N, k_N} Y$, on an open neighborhood containing of the conditional expectation $\mathbb{E}[Y^* | S^*]$.

537 **Lemma D.1.** *Suppose Assumptions 1 to 4 and 7. Define the map $\tau : \mathbb{R}^M \rightarrow \mathbb{R}^P$ by*

$$\tau(A) = \arg \max_{\beta \in \mathbb{R}^P} \sum_{m=1}^M X_m^* \beta A_m - \kappa(X_m^* \beta). \quad (\text{D.9})$$

538 Then τ is well-defined and continuously differentiable on an open neighborhood containing $\mathbb{E}[Y^* | S^*]$.

539 *Proof.* Define the function $F : \mathbb{R}^{2P \times P} \rightarrow \mathbb{R}^P$, $F(C, \beta) = C - X^{*T} \kappa'(X^* \beta)$. The matrix of partial
 540 derivatives of F with respect to β evaluated at β^* is $H_* = X^{*T} \Gamma(X^{*T} \beta^*)^{-1} X^*$ where Γ maps an
 541 element of \mathbb{R}^M to the diagonal matrix with diagonal entries: $\Gamma(a)_{mm} = \kappa''(a_m)$.

542 The implicit function theorem Krantz and Parks (2013, Theorem 3.3.1), together with Assump-
 543 tion 7 implies that there exists a (unique) function η in an open neighborhood containing $C^* :=$
 544 $X^{*T} \mathbb{E}[Y^*|S^*]$ such that for all C in this open neighborhood $F(C, \eta(C)) = 0$. Furthermore, because
 545 the log-likelihood is smooth, η is continuously differentiable in an open neighborhood containing C^* .
 546 By construction $\eta(C^*) = \beta^*$.

547 Define $\tau(A) = \eta(X^{*T} A)$ for all $A \in \mathbb{R}^M$. Let U_{C^*} be an open neighborhood containing C^* , such
 548 that η is well-defined, continuously differentiable on U_{C^*} and $F(C, \eta(C)) = 0$ for all $C \in U_{C^*}$.

549 The map $\alpha \rightarrow X^{*T} \alpha$ is continuously differentiable and surjective. Because composition of continu-
 550 ously differentiable functions is continuously differentiable and there exists an open neighborhood
 551 $V \subset \mathbb{R}^M$ such that $X^{*T} V \subset U_{C^*}$ and so τ is well-defined and continuously differentiable on an
 552 open set containing $\mathbb{E}[Y^*|S^*]$.

553 It remains to show that there is an open neighborhood containing $\mathbb{E}[Y^*|S^*]$ such that $\tau(A) =$
 554 $\arg \max_{\beta \in \mathbb{R}^P} \sum_{m=1}^M X_m^{*T} \beta A_m - \kappa(X_m^{*T} \beta)$. The definition of η implies that, $F(C, \eta(C)) = 0$ for
 555 all C in an open neighborhood of C^* . This in turn implies that for all A in an open neighborhood of
 556 $\mathbb{E}[Y^*|S^*]$,

$$F(X^{*T} A, \eta(X^{*T} A)) = F(X^{*T} A, \tau(X^{*T} A)) = X^{*T} A - X^{*T} \kappa'(X^* \tau(X^{*T} A)) = 0. \quad (\text{D.10})$$

557 This is the first order optimality condition for the maximum in Eq. (D.9). To check second order
 558 optimality, we can inspect the Hessian — which only depends on A through the value of $\tau(A)$.
 559 This is strictly positive definite in β for all A in an open neighborhood of $\mathbb{E}[Y^*|S^*]$, as it is strictly
 560 positive definite in a neighborhood of β^* by Assumption 7, and because we have already shown τ is
 561 continuous. \square

562 The second main ingredient in the proof of Theorem 1 is the following lemma, which shows that the
 563 empirical conditional expectation converges to the true conditional expectation in distribution.

564 **Lemma D.2.** *Suppose Assumptions 1 to 4 and 7. Let $(k_N)_{N=1}^\infty$ be any sequence of numbers of
 565 neighbors such that*

- 566 1. $\lim_{N \rightarrow \infty} k_N = \infty$
- 567 2. $\lim_{m \rightarrow \infty} \max_{1 \leq m \leq M} \frac{1}{k_N} \sum_{n=1}^N 1\{S_n \text{ is a } k_N \text{ nearest-neighbor of } S_m^*\} d(S_m^*, S_n) \rightarrow 0$.

568 Then $\Psi^{N, k_N} Y_N \rightarrow \mathbb{E}[Y^*|S^*]$ in distribution, where Ψ^{N, k_N} is the k_N nearest-neighbor weight matrix
 569 defined in Definition 2.

570 *Proof.* The proof has two steps. First, we show that the expected value of the estimator converges
 571 to $\mathbb{E}[Y^*|S^*]$. This uses the second property of the sequence of number of neighbors $(k_N)_{N=1}^\infty$
 572 together with Assumption 3. Second, we use a weak law of large numbers to show that the empirical
 573 conditional expectation converges in distribution to its expected value.

574 *Step 1.* We first show that $\mathbb{E}[\Psi^{N, k_N} Y_N | S_1, \dots, S_N] \rightarrow \mathbb{E}[Y^*|S^*]$. By the definition of Ψ^{N, k_N}

$$\mathbb{E}[\Psi^{N, k_N} Y_N | S_1, \dots, S_N] = \frac{1}{k_N} \sum_{m=1}^M \sum_{n=1}^N 1\{S_n \text{ is a } k_N \text{ nearest-neighbor of } S_m^*\} \mathbb{E}[Y_N | S_1, \dots, S_N]. \quad (\text{D.11})$$

575 By Assumption 2 and Assumption 3 for any $1 \leq m \leq M$,

$$|\mathbb{E}[(\Psi^{N, k_N} Y_N)_m | S_1, \dots, S_N] - \mathbb{E}[Y_m^* | S_m^*]| \quad (\text{D.12})$$

$$= \left| \frac{1}{k_N} \sum_{n=1}^N 1\{S_n \text{ is a } k_N \text{ nearest-neighbor of } S_m^*\} (f(S_n) - f(S_m^*)) \right| \quad (\text{D.13})$$

$$\leq \frac{L}{k_N} \sum_{n=1}^N 1\{S_n \text{ is a } k_N \text{ nearest-neighbor of } S_m^*\} d(S_m^*, S_n). \quad (\text{D.14})$$

576 By the second property of $(k_N)_{N=1}^{\infty}$

$$\lim_{N \rightarrow \infty} \max_{1 \leq m \leq M} \frac{1}{k_N} \sum_{n=1}^N 1\{S_n \text{ is a } k_N \text{ nearest-neighbor of } S_m^*\} d(S_m^*, S_n) = 0. \quad (\text{D.15})$$

577 Therefore,

$$\lim_{N \rightarrow \infty} \max_{1 \leq m \leq M} |\mathbb{E}[(\Psi^{N,k_N} Y_N)_m | S_1, \dots, S_N] - \mathbb{E}[Y_m^* | S_m^*]| = 0. \quad (\text{D.16})$$

578 We next show that $\Psi^{N,k_N} Y_N \rightarrow \mathbb{E}[Y^* | S^*]$ in distribution. For this we use a weak law of large
579 numbers for triangular arrays. Centering gives us,

$$(\Psi^{N,k_N} Y_N)_m = \frac{1}{k_N} \sum_{n=1}^N 1\{S_n \text{ is a } k_N \text{ nearest-neighbor of } S_m^*\} (Y_n - \mathbb{E}[Y_n | S_n]) \quad (\text{D.17})$$

$$+ \mathbb{E}[(\Psi^{N,k_N} Y_N)_m | S_1, \dots, S_N]. \quad (\text{D.18})$$

580 The random variables $Y_n - \mathbb{E}[Y_n | S_n]$ have mean 0. For each $1 \leq m \leq M$, $N \in \mathbb{N}$ and $1 \leq n \leq N$,
581 define

$$\tilde{Y}_{n,m}^N = \frac{1}{k_N} 1\{S_n \text{ is a } k_N \text{ nearest-neighbor of } S_m^*\} (Y_n - \mathbb{E}[Y_n | S_n]). \quad (\text{D.19})$$

582 For $N \in \mathbb{N}$. The conditional variance of the partial sums is

$$\mathbb{V}\left[\sum_{n=1}^N \tilde{Y}_{n,m}^N\right] = \frac{1}{k_N^2} \sum_{n=1}^N 1\{S_n \text{ is a } k_N \text{ nearest-neighbor of } S_m^*\} \mathbb{E}[(Y_n - \mathbb{E}[Y_n | S_n])^2 | S_n] \quad (\text{D.20})$$

$$\leq \frac{B_Y}{k_N}. \quad (\text{D.21})$$

583 The inequality follows from Assumption 4 and the fact that

$$\sum_{n=1}^N 1\{S_n \text{ is a } k_N \text{ nearest-neighbor of } S_m^*\} = k_N. \quad (\text{D.22})$$

584 Therefore, for each $1 \leq m \leq M$, the sequence $(\tilde{Y}_{n,m}^N)_{n=1}^N$ is a triangular array of independent
585 random variables with mean 0 and variance bounded by $\frac{B_Y}{k_N}$. By the first property of the $(k_N)_{N=1}^{\infty}$
586 sequence, $\mathbb{V}(\sum_{n=1}^N \tilde{Y}_{n,m}^N) \rightarrow 0$ as $N \rightarrow \infty$. By Chebyshev's inequality

$$\mathbb{P}\left(\left|\frac{1}{k_N} \sum_{n=1}^N 1\{S_n \text{ is a } k_N \text{ nearest-neighbor of } S_m^*\} (Y_n - \mathbb{E}[Y_n | S_n])\right| > \epsilon\right) \leq \frac{B_Y}{k_N \epsilon^2}. \quad (\text{D.23})$$

587 Because $\frac{B_Y}{k_N \epsilon^2} \rightarrow 0$ as $N \rightarrow \infty$

$$\frac{1}{k_N} \sum_{n=1}^N 1\{S_n \text{ is a } k_N \text{ nearest-neighbor of } S_m^*\} (Y_n - \mathbb{E}[Y_n | S_n]) \rightarrow 0 \quad (\text{D.24})$$

588 in distribution for each $1 \leq m \leq M$. Therefore, $(\Psi^{N,k_N} Y_N)_m \rightarrow \mathbb{E}[Y_m^* | S_m^*]$ in distribution for each
589 $1 \leq m \leq M$. \square

590 We now show that for any sequence $(k_N)_{N=1}^{\infty}$ that satisfies the two properties described in Proposition
591 D.2, our point estimate $\hat{\beta}^{N,k_N}$ converges in distribution to the maximum likelihood parameter
592 β^{MLE} .

593 **Theorem D.2.** *Suppose Assumptions 1 to 4 and 7. Let $(k_N)_{N=1}^{\infty}$ be chosen as in Theorem 1. Then
594 $\hat{\beta}^{N,k_N} \rightarrow \beta^{\text{MLE}}$, where convergence is in distribution.*

595 *Proof of Theorem 1.* Proposition D.1 and Proposition D.2 imply the selected k_n satisfy the assumptions of Lemma D.2, and so

$$\Psi^{N,k_N} Y_N \rightarrow \mathbb{E}[Y^* | S^*] \quad (\text{D.25})$$

597 in distribution. By Lemma D.1, the map τ is continuous on an open neighborhood containing
598 $\mathbb{E}[Y^* | S^*]$. The continuous mapping theorem implies

$$\hat{\beta}^{N,k_N} = \tau(\Psi^{N,k_N} Y_N) \rightarrow \tau(\mathbb{E}[Y^* | S^*]) = \beta^{\text{MLE}} \quad (\text{D.26})$$

599 in distribution. \square

600 **E Proof of Asymptotic Validity of Confidence Intervals**

601 In this section, we prove Theorem 2. We first prove a lemma that states that, for large N , the
 602 nearest-neighbor sets used in estimation are disjoint for each m . This simplifies our analysis, as
 603 many of the sums involved then consist of independent random variables. We then show that our
 604 variance estimate is consistent, and that our stated bound on the bias is an upper bound on a consistent
 605 estimate of the bias. Next, we prove asymptotic normality of our estimate of $\mathbb{E}[Y^*|S^*]$. Finally, we
 606 use the delta method to prove asymptotic normality of our estimator, and combine this with our earlier
 607 consistency results for the moments to show Theorem 2.

608 **E.1 Preliminary Results**

609 We first show the following lemma, which will be used in several subsequent results. It states that for
 610 large N , the nearest-neighbor sets used for estimating $\mathbb{E}[Y^*|S^*]$ are disjoint.

611 **Lemma E.3.** *Let $(S_n)_{n=1}^N$ be a sequence of points in \mathcal{S} such that infill asymptotics holds with respect
 612 to $(S_m^*)_{m=1}^M$. Suppose that k_N is chosen according to Theorem 1. Then there exists an N_0 such that
 613 for all $N \geq N_0$, and all $1 \leq m, m' \leq M$ with $m \neq m'$ and $1 \leq n \leq N$, $\Psi_{mn}^{N,k_N} \Psi_{m'n}^{N,k_N} = 0$.*

614 *Proof.* Because all the $(S_m^*)_{m=1}^M$ are distinct we can find an $\epsilon > 0$ such that for all $1 \leq m, m' \leq M$,
 615 $m \neq m'$, we have that $d_{\mathcal{S}}(S_m^*, S_{m'}^*) > 2\epsilon$. Proposition D.1, property 2 implies that there exists
 616 an N_0 such that for all $N \geq N_0$ and all $1 \leq m \leq M$, if S_n is a k_N nearest-neighbor of S_m^* , then
 617 $d_{\mathcal{S}}(S_n, S_m^*) < \epsilon$. For all $1 \leq m, m' \leq M$ with $m \neq m'$ and any $1 \leq n \leq N$ the triangle inequality
 618 states

$$d_{\mathcal{S}}(S_n, S_m^*) + d_{\mathcal{S}}(S_n, S_{m'}^*) \geq d_{\mathcal{S}}(S_m^*, S_{m'}^*) > 2\epsilon. \quad (\text{E.1})$$

619 Therefore either $d_{\mathcal{S}}(S_n, S_m^*) > \epsilon$ or $d_{\mathcal{S}}(S_n, S_{m'}^*) > \epsilon$. This implies that for all $N \geq N_0$, S_n
 620 cannot be a k_N nearest-neighbor of both S_m^* and $S_{m'}^*$. We conclude that for all $N \geq N_0$, and all
 621 $1 \leq m, m' \leq M$ with $m \neq m'$ and $1 \leq n \leq N$, $\Psi_{mn}^{N,k_N} \Psi_{m'n}^{N,k_N} = 0$. \square

622 We next show that one point cannot be the nearest-neighbor of many other points in Euclidean
 623 space. This is a key lemma that will be used in the our proof of consistency of our variance estimate.
 624 Lemma E.5. It us used to show that the estimate of the variance does not place too much weight on
 625 any single observation.

626 **Lemma E.4.** *Let $A \subset \mathbb{R}^d$ a finite set. For any $p \in A$, define the set*

$$A_p := \{a \in A : d(a, p) = \min_{a' \in A} d(a, a')\}. \quad (\text{E.2})$$

627 Then $|A_p| \leq H_d$ where H_d is a constant that is independent of the set A and the point p .

628 *Proof.* For a point p and a set A , let $A - \{p\} = \{a - p : a \in A\}$. Then, $A_p = (A - \{p\})_0$. As the
 629 set A is an arbitrary finite set in our statement, we may assume $p = 0$ without loss of generality.

630 We can restrict to cases where $|A_0| \geq 2$. Otherwise the constant $H_d = 2$ suffices. In the case,
 631 $|A_0| \geq 2$, let $a, a' \in A_0$ be distinct points. Without loss of generality, we assume that $\|a\| \leq \|a'\|$
 632 (otherwise rename the points).

633 For any such points, the definition of A_0 implies

$$\|a\| \leq \|a - a'\| \quad \text{and} \quad \|a'\| \leq \|a - a'\|. \quad (\text{E.3})$$

634 We will show that this implies that the angle between a and a' cannot be too small. Using the Hilbert
 635 space structure of \mathbb{R}^d , we can rewrite Eq. (E.3)

$$0 \leq \|a'\|^2 - 2\langle a, a' \rangle \quad \text{and} \quad \|a\|^2 - 2\langle a, a' \rangle. \quad (\text{E.4})$$

636 Define,

$$\theta = \frac{\langle a, a' \rangle}{\|a\| \|a'\|}. \quad (\text{E.5})$$

637 Expanding the squared distance

$$\|a - a'\|^2 = \|a\|^2 + \|a'\|^2 - 2\theta\|a\|\|a'\|. \quad (\text{E.6})$$

638 Then

$$\|a\|^2 - 2\theta\|a\|\|a'\| > 0 \quad (\text{E.7})$$

639 and so, using that $\|a\| \leq \|a'\|$, $\cos(\theta) \leq \frac{1}{2}$. This implies that the normalized vectors $\frac{a}{\|a\|}$ and $\frac{a'}{\|a'\|}$ are
640 at least 60° apart, which in turn implies that they are separated by a distance of at least 1. The number
641 of distinct points satisfying this criterion separation criterion is upper bounded by the 1/2-packing
642 number of the unit sphere embedded in \mathbb{R}^d , which is finite because the sphere is compact. Therefore,
643 there can be at most H_d points in A_0 , where H_d is the 1/2-packing number of the unit sphere
644 embedded in \mathbb{R}^d . \square

645 E.2 Consistency of Variance Estimate

646 Define the sequence of maps $\zeta^N : \{1, \dots, N\} \rightarrow \{1, \dots, N\}$ to map S_n to the index of its nearest-
647 neighbor (not equal to itself). We assume that all S_n are distinct, although random tie-breaking can
648 be used otherwise, with some added complexity needed to handle additional probabilistic arguments.

649 **Lemma E.5.** *Let $(S_n)_{n=1}^N$ be a sequence of points in \mathbb{R}^d such that infill asymptotics holds with
650 respect to $(S_m^*)_{m=1}^M$. Suppose Assumptions 1 to 6. Then $k_N \Psi^{N,k_N} \Lambda^{(\Psi^{N,k_N})^T} \rightarrow \Lambda^*$, where Λ^N is
651 a diagonal matrix with $\Lambda_{nn}^N = \frac{1}{2}(Y_n - Y_{\zeta^N(n)})$ and Λ^* is a diagonal matrix with $\Lambda^* = \mathbb{V}[Y_m^* | S_m^*]$
652 for $1 \leq m \leq M$ and convergence is in distribution.*

653 *Proof.* We write entries in the matrix

$$k_N(\Psi^{N,k_N} \Lambda^N (\Psi^{N,k_N})^T)_{mm'} = k_N \sum_{n=1}^N \Psi_{mn}^{N,k_N} \Psi_{m'n}^{N,k_N} \frac{1}{2}(Y_n - Y_{\zeta^N(n)})^2. \quad (\text{E.8})$$

654 By Lemma E.3, for all N sufficiently large, for $m \neq m'$, we have $\Psi_{mn}^{N,k_N} \Psi_{m'n}^{N,k_N} = 0$. Therefore, for
655 all N sufficiently large, $k_N(\Psi^{N,k_N} \Lambda^N (\Psi^{N,k_N})^T)_{mm'}$ is diagonal, and we need only consider the
656 entries with $m = m'$.

657 We expand the quadratic form in Eq. (E.8), and use the identity $\Psi_{mn}^{N,k_N} = k_N(\Psi_{mn}^{N,k_N})^2$

$$k_N(\Psi^{N,k_N} \Lambda^N (\Psi^{N,k_N})^T)_{mm} = \underbrace{\frac{1}{2} \sum_{n=1}^N \Psi_{mn}^{N,k_N} Y_n^2}_{:=\Gamma_1} + \underbrace{\frac{1}{2} \sum_{n=1}^N \Psi_{mn}^{N,k_N} Y_{\zeta^N(n)}^2}_{:=\Gamma_2} - \underbrace{\sum_{n=1}^N \Psi_{mn}^{N,k_N} Y_n Y_{\zeta^N(n)}}_{:=\Gamma_3}. \quad (\text{E.9})$$

658 We will show that the terms Γ_1 and Γ_2 each converge to $\frac{1}{2}(\mathbb{V}[Y^* | S^*] + \mathbb{E}[Y^* | S^*]^2)$, and Γ_3 converges
659 in distribution to $\mathbb{E}[Y^* | S^*]^2$. Given these results, Slutsky's lemma (van der Vaart, 1998, Lemma
660 2.8), implies completes the proof of the lemma, as each term converges to a constant. For Γ_1 , Γ_2 and
661 Γ_3 , the general proof of convergence will be the same: we first show the expectation converges to
662 the claimed value, and then show that the variance converges to 0. Convergence in distribution is a
663 consequence of the variance tending to 0 and Chebyshev's inequality.

664 The expected value of Γ_1 is

$$\mathbb{E}[\Gamma_1] = \frac{1}{2k_N} \sum_{n=1}^N \mathbb{E}[1\{S_n \text{ is a } k_N \text{ nearest-neighbor of } S_m^*\} Y_n^2] \quad (\text{E.10})$$

$$= \frac{1}{2k_N} \sum_{n=1}^N \mathbb{E}[1\{S_n \text{ is a } k_N \text{ nearest-neighbor of } S_m^*\} (\mathbb{E}[Y_n]^2 + \mathbb{V}[Y_n])]. \quad (\text{E.11})$$

665 Proposition D.1, property 2, implies that $d(S_n, S_m^*) \rightarrow 0$ for all terms such that
666 $1\{S_n \text{ is a } k_N \text{ nearest-neighbor of } S_m^*\} \neq 0$. Using continuity of the mean and variance of the response
667 (Assumptions 3 and 5)

$$\lim_{N \rightarrow \infty} \max_{1 \leq n \leq N} \mathbb{E}[1\{S_n \text{ is a } k_N \text{ near. neigh. of } S_m^*\} ((\mathbb{E}[Y_n]^2 + \mathbb{V}[Y_n]) - (\mathbb{E}[Y_m^*]^2 + \mathbb{V}[Y_m^*]))] = 0. \quad (\text{E.12})$$

668 And so

$$\lim_{N \rightarrow \infty} \frac{1}{k_n} \sum_{n=1}^N 1\{S_n \text{ is a } k_N \text{ nearest-neighbor of } S_m^*\} (\mathbb{E}[Y_n]^2 + \mathbb{V}[Y_n]) = \mathbb{E}[Y_m^*]^2 + \mathbb{V}[Y_m^*]. \quad (\text{E.13})$$

669 We next verify that the variance of Γ_1 tends to 0. Because the Y_n are independent

$$\mathbb{V}\left[\frac{1}{2} \sum_{n=1}^N \Psi_{nm}^{N,k_N} Y_n\right] = \frac{1}{4k_n^2} \sum_{n=1}^N 1\{S_n \text{ is a } k_N \text{ nearest-neighbor of } S_m^*\} \mathbb{V}[Y_n^2]. \quad (\text{E.14})$$

670 Assumption 3 implies that within an open neighborhood of any of the test locations, $\mathbb{E}[Y_n]$ is uniformly
671 bounded. Combining this with Assumptions 4 and 6 for N sufficiently large, there exists a constant K
672 such that $1\{S_n \text{ is a } k_N \text{ nearest-neighbor of } S_m^*\} \mathbb{V}[Y_n^2] \leq 1\{S_n \text{ is a } k_N \text{ nearest-neighbor of } S_m^*\} K$.
673 Therefore,

$$\lim_{N \rightarrow \infty} \mathbb{V}[\Gamma_1] \leq \lim_{N \rightarrow \infty} \frac{K}{4k_N} = 0 \quad (\text{E.15})$$

674 where the last equality used that $\lim_{N \rightarrow \infty} k_N = \infty$ (Proposition D.1, property 1).

675 We now consider Γ_2 (Eq. (E.9)). Because $S_{\zeta^N(n)}$ is the nearest-neighbor of S_n , $d(S_{\zeta^N(n)}, S_n) \leq$
676 $d(S_m^*, S_n) + \min_{n' \neq n} d(S_{n'}, S_m^*)$ and so

$$d(S_m^*, S_{\zeta^N(n)}) \leq d(S_m^*, S_n) + d(S_{\zeta^N(n)}, S_n) = 2d(S_m^*, S_n) + \min_{n' \neq n} d(S_{n'}, S_m^*). \quad (\text{E.16})$$

677 By the infill assumption and Proposition D.1, property 2,

$$\lim_{N \rightarrow \infty} 1\{S_n \text{ is a } k_N \text{ nearest-neighbor of } S_m^*\} (2d(S_m^*, S_n) + \min_{n' \neq n} d(S_{n'}, S_m^*)) = 0. \quad (\text{E.17})$$

678 We can now apply the same argument as we used for Γ_1 to show the expectation of Γ_2 converges:

$$\mathbb{E}[\Gamma_2] = \frac{1}{2} \sum_{n=1}^N \Psi_{nm}^{N,k_N} (\mathbb{E}[Y_{\zeta^N(n)}]^2 + \mathbb{V}[Y_{\zeta^N(n)}]). \quad (\text{E.18})$$

679 Now using Assumption 3, Assumption 5 and that $d(S_{\zeta^N(n)}, S_m^*) \rightarrow 0$, for all terms such that
680 $\Psi_{nm}^{N,k_N} \neq 0$,

$$\lim_{N \rightarrow \infty} \frac{1}{2} \sum_{n=1}^N \Psi_{nm}^{N,k_N} (\mathbb{E}[Y_{\zeta^N(n)}]^2 + \mathbb{V}[Y_{\zeta^N(n)}]) = \frac{1}{2} (\mathbb{E}[Y^*]^2 + \mathbb{V}[Y^*]).$$

681 We now show the variance of Γ_2 tends to 0.

$$\frac{1}{2} \sum_{n=1}^N \Psi_{nm}^{N,k_N} Y_{\zeta^N(n)}^2 = \frac{1}{2} \sum_{n'=1}^N \left(\sum_{n=1}^N \Psi_{nm}^{N,k_N} 1\{n' = \zeta^N(n)\} \right) Y_{n'}^2. \quad (\text{E.19})$$

682 This is a sum of independent terms. We define the weights

$$a_{n',m}^N = \left(\frac{1}{2} \sum_{n=1}^N \Psi_{nm}^{N,k_N} 1\{n' = \zeta^N(n)\} \right). \quad (\text{E.20})$$

683 Then,

$$\mathbb{V}\left[\frac{1}{2} \sum_{n=1}^N \Psi_{nm}^{N,k_N} Y_{\zeta^N(n)}^2\right] = \sum_{n'=1}^N (a_{n',m}^N)^2 \mathbb{V}[Y_{n'}^2] \quad (\text{E.21})$$

684 From the definition of $a_{n',m}^N$, and using Lemma E.4

$$\sum_{n'=1}^N (a_{n',m}^N)^2 = \frac{1}{4} \left(\sum_{n=1}^N \Psi_{nm}^{N,k_N} \sum_{r=1}^N \Psi_{rm}^{N,k_N} 1\{r = \zeta^N(n)\} \right) \quad (\text{E.22})$$

$$\leq \frac{1}{4k_N} \left(\sum_{n=1}^N \Psi_{nm}^{N,k_N} H_d \right) \quad (\text{E.23})$$

$$\leq \frac{H_d}{4k_N}. \quad (\text{E.24})$$

685 Also, for any open neighborhood containing S_m^* , for all N sufficiently large $a_{n'}^N = 0$ unless $S_{n'}$ is
686 contained in this open neighborhood, so that for terms with non-zero coefficient $\mathbb{V}[Y_{n'}^2]$ is uniformly
687 bounded by some constant K by combining Assumptions 3, 4 and 6. Therefore, for all N sufficiently
688 large, $\sum_{n'=1}^N (a_{n'}^N)^2 \mathbb{V}[Y_{n'}^2] \leq \frac{H_d K}{4k_N}$ which tends to 0 because $k_N \rightarrow \infty$ (Proposition D.1, property
689 1).

690 We consider Γ_3 (Eq. (E.9)).

$$\sum_{n=1}^N \Psi_{mn}^{N,k_N} \mathbb{E}[Y_n Y_{\zeta^N(n)}] = \sum_{n=1}^N \Psi_{mn}^{N,k_N} \mathbb{E}[Y_n] \mathbb{E}[Y_{\zeta^N(n)}]. \quad (\text{E.25})$$

691 Because $\mathbb{E}[Y_n], \mathbb{E}[Y_{\zeta^N(n)}] \rightarrow \mathbb{E}[Y_m^*]$ for all n such that $\Psi_{mn}^{N,k_N} \neq 0$, this converges to $\mathbb{E}[Y_m^*]^2$. It
692 remains to show that the variance of Γ_3 converges 0. We expand into variances and covariances,

$$\mathbb{V}\left[\sum_{n=1}^N \Psi_{mn}^{N,k_N} Y_n Y_{\zeta^N(n)}\right] = \sum_{n'=1}^N \sum_{n=1}^N \Psi_{mn}^{N,k_N} \Psi_{mn'}^{N,k_N} \text{Cov}(Y_n Y_{\zeta^N(n)}, Y_{n'} Y_{\zeta^N(n')}). \quad (\text{E.26})$$

693 We can upper bound the covariance term as,

$$|\text{Cov}(Y_n Y_{\zeta^N(n)}, Y_{n'} Y_{\zeta^N(n')})| \quad (\text{E.27})$$

$$\leq (1\{n = n'\} + 1\{n = \zeta(n')\} + 1\{n' = \zeta(n)\} + 1\{\zeta(n) = \zeta(n')\}) \max_{1 \leq n \leq N} \mathbb{V}(Y_n Y_{\zeta^N(n)}). \quad (\text{E.28})$$

694 Because $Y_n, Y_{\zeta^N(n)}$ are independent,

$$\mathbb{V}(Y_n Y_{\zeta^N(n)}) = \mathbb{V}(Y_n) \mathbb{V}(Y_{\zeta^N(n)}) + \mathbb{V}(Y_n) \mathbb{E}[Y_{\zeta^N(n)}]^2 + \mathbb{V}(Y_{\zeta^N(n)}) \mathbb{E}[Y_n]^2. \quad (\text{E.29})$$

695 This is bounded by a constant in a region containing the training locations by Assumptions 3 and 4.
696 Call this constant γ . Then,

$$\mathbb{V}\left[\sum_{n=1}^N \Psi_{mn}^{N,k_N} Y_n Y_{\zeta^N(n)}\right] \quad (\text{E.30})$$

$$\leq \gamma \sum_{n=1}^N \sum_{n'=1}^N \Psi_{mn}^{N,k_N} \Psi_{mn'}^{N,k_N} (1\{n = n'\} + 1\{n = \zeta(n')\} + 1\{n' = \zeta(n)\} + 1\{\zeta(n) = \zeta(n')\}). \quad (\text{E.31})$$

697 We now count the number of non-zero terms in this double sum and show that it is $O(k_N)$. The
698 indicator $n = n'$ contributes exactly k_N non-zero terms; Lemma E.4 implies the indicators $1\{n = \zeta(n')\}, 1\{n' = \zeta(n)\}$ contribute at most $H_d k_N$. Finally,

$$\sum_{n=1}^N \sum_{n'=1}^N \Psi_{mn}^{N,k_N} \Psi_{mn'}^{N,k_N} 1\{\zeta^N(n) = \zeta^N(n')\} \quad (\text{E.32})$$

$$= \sum_{r=1}^N 1\{\exists n : r = \zeta^N(n)\} \sum_{n=1}^N \sum_{n'=1}^N \Psi_{mn}^{N,k_N} \Psi_{mn'}^{N,k_N} 1\{\zeta^N(n) = r\} 1\{\zeta^N(n') = r\} \quad (\text{E.33})$$

$$= \sum_{r=1}^N 1\{\exists n : r = \zeta^N(n)\} \left(\sum_{n=1}^N \Psi_{mn}^{N,k_N} 1\{\zeta^N(n) = r\} \right)^2. \quad (\text{E.34})$$

700 The total number of r that are nearest-neighbors to a point that is a k_N nearest-neighbor of S_m^* cannot
701 exceed k_N . And $\left(\sum_{n=1}^N \Psi_{mn}^{N,k_N} 1\{\zeta^N(n) = r\}\right)^2 \leq \frac{H_d}{k_N}$. Therefore, this final sum is $O(1/k_N)$. We
702 conclude the variance of Γ_3 converges to zero as N tends to infinity. \square

703 E.3 Asymptotic Normality of Estimate of Conditional Expectation

704 We begin by proving that the estimate of the conditional expectation $\Psi^{N,k_N} Y$ is asymptotically
705 normal. We first recall the Lyapunov central limit theorem for triangular arrays.

706 **Theorem E.1** (Lyapunov Central Limit Theorem, Theorem 27.3 Billingsley 1995). *Let*
707 $\{Z_{nt}, \dots, Z_{nt_n}\}$ *be independent random variables for each $n \in \mathbb{N}$, with*

$$\mu_{nt} = \mathbb{E}[Z_{nt}], \quad \sigma_{nt}^2 = \mathbb{V}[Z_{nt}], \quad s_n^2 = \sum_{t=1}^{t_n} \sigma_{nt}^2.$$

708 Assume $s_n^2 \rightarrow \infty$ and $s_n > 0$ for all n . Suppose there exists $\delta > 0$ such that the Lyapunov condition
709 holds:

$$\lim_{N \rightarrow \infty} \frac{1}{s_n^{2+\delta}} \sum_{t=1}^{t_n} \mathbb{E}[|Z_{nt} - \mu_{nt}|^{2+\delta}] = 0.$$

710 Then

$$\frac{\sum_{t=1}^{t_n} (Z_{nt} - \mu_{nt})}{s_n} \rightarrow \mathcal{N}(0, 1).$$

711 That is, the normalized sum converges in distribution to a standard normal random variable.

712 We now prove the following lemma, which involves verifying the Lyapunov condition for entries of
713 $\sqrt{k_N} \Psi^{N,k_N} (Y - \mathbb{E}[Y|S])$.

714 **Lemma E.6.** *Let $(S_n)_{n=1}^N$ be a sequence of points in \mathcal{S} such that infill asymptotics holds with respect
715 to $(S_m^*)_{m=1}^M$. Suppose that k_N is chosen according to Theorem 1. Suppose Assumptions 1 to 4 and 7
716 Then,*

$$\lim_{N \rightarrow \infty} \sqrt{k_N} \Psi^{N,k_N} (Y - \mathbb{E}[Y|S]) = \mathcal{N}(0, \Lambda^*) \quad (\text{E.35})$$

717 where Λ^* is a diagonal matrix with $\Lambda_{mm}^* = \mathbb{V}[Y_m^*|S_m^*]$ for $1 \leq m \leq M$.

718 *Proof.* By Lemma E.3, for N sufficiently large, the rows of Ψ^{N,k_N} are disjoint. Therefore, the entries
719 of $\Psi^{N,k_N} (Y - \mathbb{E}[Y|S])$ are independent for sufficiently large N , and so it suffices to show that each
720 entry of the vector $\sqrt{k_N} \Psi^{N,k_N} (Y - \mathbb{E}[Y|S])$ converges in distribution to a univariate normal random
721 variable.

722 Let $R_m^N = (\sqrt{k_N} \Psi^{N,k_N} (Y - \mathbb{E}[Y|S]))_m$ be the m th entry of the vector $\sqrt{k_N} \Psi^{N,k_N} (Y - \mathbb{E}[Y|S])$,
723 and define $r_{nm}^N = \sqrt{k_N} \Psi_{nm}^{N,k_N} (Y - \mathbb{E}[Y|S])$, so that $R_m^N = \sum_{n=1}^N r_{nm}^N$. The variance of R_m^N is

$$\mathbb{V}[R_m^N] = k_N \sum_{n=1}^N (\Psi_{mn}^{N,k_N})^2 \mathbb{V}[Y_n|S_n] = \sum_{n=1}^N \Psi_{mn}^{N,k_N} \mathbb{V}[Y_n|S_n]. \quad (\text{E.36})$$

724 Assumption 5 and Proposition D.1 imply

$$\sum_{n=1}^N \Psi_{mn}^{N,k_N} \mathbb{V}[Y_n|S_n] \rightarrow \mathbb{V}[Y_m^*|S_m^*]. \quad (\text{E.37})$$

725 If $\mathbb{V}[Y_m^*|S_m^*] = 0$, then $\mathbb{V}[R_m^N] \rightarrow 0$ and so $R_m^N \rightarrow 0$ in distribution, as claimed in this case.
726 Otherwise, we consider the limit

$$\lim_{N \rightarrow \infty} \frac{1}{\mathbb{V}[R_m^N]^4} \sum_{n=1}^N \mathbb{E}[|r_{nm}^N|^4] \quad (\text{E.38})$$

$$= \lim_{N \rightarrow \infty} \frac{1}{(\sum_{n=1}^N \Psi_{mn}^{N,k_N} \mathbb{V}[Y_n|S_n])^4} \sum_{n=1}^N \mathbb{E}[|\sqrt{k_N} \Psi_{nm}^{N,k_N} (Y - \mathbb{E}[Y|S])|^4] \quad (\text{E.39})$$

$$= \lim_{N \rightarrow \infty} \frac{1}{k_N^2 (\sum_{n=1}^N \Psi_{mn}^{N,k_N} \mathbb{V}[Y_n|S_n])^4} \sum_{n=1}^N \Psi_{nm}^{N,k_N} \mathbb{E}[|(Y_n - \mathbb{E}[Y_n|S])|^4] \quad (\text{E.40})$$

727 Assumption 6 implies $\sum_{n=1}^N \Psi_{nm}^{N,k_N} \mathbb{E}[|(Y_n - \mathbb{E}[Y_n|S])|^4] \leq C$, and since $\sum_{n=1}^N \Psi_{mn}^{N,k_N} \mathbb{V}[Y_n|S_n] \rightarrow \mathbb{V}[Y_m^*|S_m^*] \neq 0$ the Lyapunov condition holds. \square

729 **Proposition E.1.** Let $(S_n)_{n=1}^N$ be a sequence of points in \mathcal{S} such that infill asymptotics holds with
730 respect to $(S_m^*)_{m=1}^M$. Suppose that k_N is chosen according to Theorem 1 with $a_t = \frac{1}{\sqrt{t}}$. Suppose
731 Assumptions 1 to 4 and 7 Then,

$$\sqrt{k_N}(\Psi^{N,k_N}Y - \mathbb{E}[Y^*|S^*]) \rightarrow \mathcal{N}(B, \Lambda^*), \quad (\text{E.41})$$

732 for $B \in \mathbb{R}^M$ with $B_m = \sqrt{k_N} \left(\sum_{n=1}^N \Psi_{nm}^{N,k_N} f(S_n) - f(S_m^*) \right)$ and Λ^* is a diagonal matrix with
733 $\Lambda_{mm}^* = \mathbb{V}[Y_m^*|S_m^*]$ for $1 \leq m \leq M$.

734 *Proof.* Adding zero,

$$\sqrt{k_N}(\Psi^{N,k_N}Y - \mathbb{E}[Y^*|S^*]) = \sqrt{k_N}(\Psi^{N,k_N}Y - \mathbb{E}[Y|S]) + \sqrt{k_N}(\Psi^{N,k_N}(\mathbb{E}[Y|S] - \mathbb{E}[Y^*|S^*])). \quad (\text{E.42})$$

735 Lemma E.6 implies that $\sqrt{k_N}(\Psi^{N,k_N}Y - \mathbb{E}[Y|S]) \rightarrow \mathcal{N}(0, \Lambda^*)$. Considering the second term,

736 For all $k_N > 2$,

$$\left| \sqrt{k_N} \left(\sum_{n=1}^N \Psi_{nm}^{N,k_N} f(S_n) - f(S_m^*) \right) \right| \leq L \left(\sum_{n=1}^N \Psi_{nm}^{N,k_N} d(S_n, S_m^*) \right) \quad (\text{E.43})$$

$$\leq L \left(\sum_{n=1}^N \Psi_{nm}^{N,k_N} d(S_n, S_m^*) \right) \quad (\text{E.44})$$

$$\leq \frac{Lk_N}{\sqrt{k_N}} a_{k_N-1}. \quad (\text{E.45})$$

737 Because $a_t = \frac{1}{\sqrt{t}}$, $\frac{Lk_N}{\sqrt{k_N}} a_{k_N-1} \leq 2L$. This implies that this bias term is $O(1)$. \square

738 E.4 Proof of Asymptotic Validity of Confidence Intervals

739 We now prove that the confidence intervals defined in Section 3.1 are asymptotically valid. We first
740 show that the confidence intervals, with linearization around the true parameter, are asymptotically
741 valid. A key lemma along the way is van der Vaart (1998, Theorem 3.1), which is essentially the
742 conclusion of the delta method. We recall this theorem here for convenience.

743 **Lemma E.7 (Delta Method).** Let ϕ be a map defined on a subset $D \subset \mathbb{R}^M \rightarrow \mathbb{R}^P$ that is differ-
744 entiable at θ . Let T_n be random vectors taking values in D . If $r_N(T_N - \theta) \rightarrow T$ for $(r_N)_{N=1}^\infty$ a
745 sequence such that $r_n \rightarrow \infty$, then $r_N(\phi(T_N) - \phi(\theta)) \rightarrow \phi'_\theta(T)$ in distribution.

746 We apply this lemma together with Lemma E.6 to show that the point estimate $\hat{\beta}^{N,k_N}$ is asymptotically
747 normal. After that what will remain is to use consistency of the variance estimate to show that using
748 the estimated variance in place of the true variance yields asymptotically valid confidence intervals,
749 and to use consistency of the point estimate to show that linearization around the point estimate
750 instead of the true parameter yields asymptotically valid confidence intervals.

751 **Theorem E.2 (Asymptotic Normality of Point Estimate).** Let $(S_n)_{n=1}^N$ be a sequence of points in \mathcal{S}
752 such that infill asymptotics holds with respect to $(S_m^*)_{m=1}^M$. Suppose Assumptions 1 to 7. Let $\hat{\beta}^{N,k_N}$
753 be the point estimate defined in Eq. (4). Then,

$$\sqrt{k_N}(\hat{\beta}^{N,k_N} - \beta^{MLE}) \rightarrow \mathcal{N}(\tau'(C^*)B, \tau'(C^*)\Lambda^*\tau(C^*)^T), \quad (\text{E.46})$$

754 where B and Λ^* are as in Proposition E.1

755 *Proof.* We apply Lemma E.7 with $\phi = \tau$ and $T_N = \Psi^{N,k_N}Y$. The point estimate $\hat{\beta}^{N,k_N}$ is given by
756 $\tau(\Psi^{N,k_N}Y)$. The true parameter β^{MLE} is given by $\tau(\mathbb{E}[Y^*|S^*])$. Proposition E.1 implies

$$\sqrt{k_N}(\Psi^{N,k_N}Y - \mathbb{E}[Y^*|S^*]) \rightarrow \mathcal{N}(B, \Lambda^*). \quad (\text{E.47})$$

757 Therefore, we can apply the delta method (Lemma E.7) to conclude that

$$\sqrt{k_N}(\widehat{\beta}^{N,k_N} - \beta^{\text{MLE}}) = \sqrt{k_N}(\tau(\Psi^{N,k_N}Y) - \tau(\mathbb{E}[Y^*|S^*])) \quad (\text{E.48})$$

$$\rightarrow \mathcal{N}(\tau'(C^*)B, \tau'(C^*)\Lambda^*\tau(C^*)^T), \quad (\text{E.49})$$

758 as desired. \square

759 From this, we conclude that,

$$\sqrt{k_N}(\widehat{\beta}_p^{N,k_N} - \beta_p^{\text{MLE}}) \rightarrow \mathcal{N}(e_p^T \tau'(C^*)B, e_p^T \tau'(C^*)\Lambda^*\tau(C^*)^T e_p). \quad (\text{E.50})$$

760 where e_p is the p th standard basis vector in \mathbb{R}^P . Defining $\sigma_p^2 = e_p^T \tau'(C^*)\Lambda^*\tau(C^*)^T e_p$, we can
761 construct the pivotal quantity

$$Z_p = \frac{\sqrt{k_N}(\widehat{\beta}_p^{N,k_N} - \beta_p^{\text{MLE}} - e_p^T \tau'(C^*)B)}{\sqrt{\sigma_p^2}} \rightarrow \mathcal{N}(0, 1). \quad (\text{E.51})$$

762 This gives us the corollary that, when linearized around the true parameter, the confidence intervals
763 are asymptotically valid.

764 **Corollary 1** (Asymptotic Validity of Confidence Intervals Linearized Around True Parameter). *Let
765 $(S_n)_{n=1}^N$ be a sequence of points in \mathcal{S} such that infill asymptotics holds with respect to $(S_m^*)_{m=1}^M$.
766 Suppose Assumptions 1 to 7. Let $\widehat{\beta}^{N,k_N}$ be the point estimate defined in Eq. (4). Then for any
767 $1 \leq p \leq P$,*

$$\lim_{N \rightarrow \infty} \mathbb{P} \left(\widehat{\beta}_p^{N,k_N} - z_{\alpha/2}\sigma_p - \mu \leq \beta_p^{\text{MLE}} \leq \widehat{\beta}_p^{N,k_N} + z_{\alpha/2}\sigma_p - \mu \right) = 1 - \alpha \quad (\text{E.52})$$

768 where $\mu_p = e_p^T \tau'(C^*)B$ and $\sigma_p^2 = e_p^T \tau'(C^*)\Lambda^*\tau(C^*)^T e_p$ for all $1 \leq p \leq P$.

769 Slutsky's lemma implies that we can replace μ_p and σ_p^2 with consistent estimates of the true bias and
770 variance.

771 **Corollary 2** (Asymptotic Validity of Confidence Intervals With Consistent Estimates). *With the
772 same assumptions as in Corollary 1, let $\widehat{\beta}^{N,k_N}$ be the point estimate defined in Eq. (4). Then for any
773 $1 \leq p \leq P$,*

$$\lim_{N \rightarrow \infty} \mathbb{P} \left(\widehat{\beta}_p^{N,k_N} - z_{\alpha/2}\hat{\sigma}_p - \hat{\mu} \leq \beta_p^{\text{MLE}} \leq \widehat{\beta}_p^{N,k_N} + z_{\alpha/2}\hat{\sigma}_p - \hat{\mu} \right) = 1 - \alpha \quad (\text{E.53})$$

774 where $\hat{\mu} = e_p^T \tau'(\Psi^{N,k_N}Y)B$ and $\hat{\sigma}^2 = e_p^T \tau'(\Psi^{N,k_N}Y)\Psi^{N,k_N}\Lambda^N(\Psi^{N,k_N})^T\tau'(\Psi^{N,k_N}Y)^T e_p$ for
775 all $1 \leq p \leq P$.

776 The remaining issue is that, we do not know $\hat{\mu}$, because it depends on the unknown function f . We
777 can bound it using the same approach as in Burt et al. (2025a).

Proposition E.2 (Bounding the bias, Burt et al. (2025a, Proposition 12)).

$$|\hat{\mu}| \leq L \sup_{f \in \mathcal{F}_1} \left| \sum_{m=1}^M w_m f(S_m^*) - \sum_{n=1}^N v_n f(S_n) \right|, \quad (\text{E.54})$$

778 where $w = \tau'(\Psi^{N,k_N}Y)^T e_p$ and $v = \Psi^{N,k_N}w$ and \mathcal{F}_1 is the set of 1-Lipschitz functions. Moreover,
779 this can be computed efficiently by reduction to a 1-Wasserstein distance between empirical measures.

780 *Proof.* The bias term $\hat{\mu}$ is given by

$$\hat{\mu} = \sum_{m=1}^M w_m f(S_m^*) - \sum_{n=1}^N v_n f(S_n). \quad (\text{E.55})$$

781 If $L = 0$, f is constant and bias is 0. Otherwise, $\frac{1}{L}f \in \mathcal{F}_1$, and the inequality follows from
782 Assumption 3. The second part of the proposition is Burt et al. (2025a, Proposition 12). \square

783 **F Additional Experimental Details for Simulation Studies**

784 **F.1 Baseline Methods**

785 We compare the proposed method with three baselines:

- 786 • **Logistic Regression (LR):** Fit a logistic regression model to the training data and evaluate
787 the confidence intervals on the target data using the standard errors from the model.
- 788 • **Logistic Regression with Sandwich Estimator (LR-Sandwich):** Fit a logistic regression
789 model to the training data and use the sandwich estimator to compute the standard errors for
790 the confidence intervals on the target data.
- 791 • **Weighted Logistic Regression (WLR):** Fit a weighted logistic regression model to the
792 training data, where the weights are determined by the ratio of the kernel density estimates
793 of the covariate distribution in the training and target data. The weights are computed as
794 follows:

$$w_i = \frac{\hat{p}_T(X_i)}{\hat{p}_S(X_i)} \quad (\text{F.1})$$

795 where $\hat{p}_T(X_i)$ is the kernel density estimate of the covariate distribution in the target data
796 and $\hat{p}_S(X_i)$ is the kernel density estimate of the covariate distribution in the training data.
797 The kernel density estimates are computed using Gaussian kernels with bandwidths selected
798 using cross-validation. The weighted logistic regression is then fit using the weights w_i .

799 **F.2 Data Generation**

800 **Infill Simulation.** We generate the training locations uniformly on $[-1, 1]^2$. We generate the
801 target locations on $[-\text{scale}, \text{scale}]^2$ for $\text{scale} = \{i/16\}_{i=1}^{16}$. We use a single covariate, X that
802 is equal to the first spatial coordinate. The expected value of the response variable is given by a
803 $1/1 + \exp(-h(X))$, where $h(X)$ is a piecewise linear function,

$$h(X) = \begin{cases} X & \text{if } X < -0.125 \\ 0.875 - X & \text{if } -0.125 \leq X < 0.125 \\ 0.625 + X & \text{if } X \geq 0.125 \end{cases} \quad (\text{F.2})$$

804 The response is a Bernoulli random variable with success probability given by the expected value.
805 We generate 10000 training data points and 100 target locations. The training and target locations,
806 conditional expectation of the response, and observed are shown in Fig. 1.

807 Because the logit of the expected response surface is not linear, logistic regression is misspecified.
808 When the target points are primarily between $[-0.125, 0.125]$, the expected response surface is
809 approximately linear, with a negative slope. On the other hand, over the entire domain, the expected
810 response surface increasing, and should have a positive slope. This means that the logistic regression
811 model will be biased, and the bias will depend on the amount of distribution shift between the
812 training and target data. The amount of distribution shift is controlled by the scale parameter, which
813 determines how far the target locations are from zero.

814 **Extrapolation Simulation.** We generate data as in the previous experiment, except that the target
815 data is now uniformly distributed on $[-j + 1, j + 1] \times [-1, 1]$ for $j \in \{i/16\}_{i=1}^8$. We also define a
816 new function $h(X)$ that is a piecewise linear function with a different slope, defined as follows:

$$h(X) = \begin{cases} X & \text{if } X < 0.875 \\ 0.875 - X & \text{if } X \geq 0.875 \end{cases} \quad (\text{F.3})$$

817 This function has a positive slope for $X < 0.875$ and a negative slope for $X \geq 0.875$. The expected
818 response surface is given by $1/1 + \exp(-h(X))$, and the response is a Bernoulli random variable
819 with success probability given by the expected value. As before we generate 10000 training points
820 and 100 target points. We repeat the process for 250 datasets.