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Abstract
Instruction tuning has been central to the success
of recent vision-language models (VLMs), but it
remains expensive—requiring large scale datasets,
high-quality annotations and large-compute bud-
get. We propose PRioritized cOncept learninG
via Relative Error-driven Sample Selection –
PROGRESS – a data-efficient framework that
enables VLMs to dynamically select what to learn
next based on their evolving needs during train-
ing. At each stage, the model tracks its learning
progress across skills and selects the most infor-
mative samples: those it has not already mastered
and are not too difficult to learn at the current
state of training. This strategy effectively con-
trols skill acquisition and the order in which skills
are learned. Unlike prior works, PROGRESS re-
quires no upfront answer annotations, querying
answers only on a need basis, avoids reliance on
additional supervision from auxiliary VLM, or
compute-heavy gradient computations for data se-
lection. Experiments across multiple instruction-
tuning datasets of demonstrate that PROGRESS
consistently outperforms state-of-the-art baselines
with much less data and supervision.

1. Introduction
Multimodal vision-language models (VLMs) such as GPT-
4V (OpenAI et al., 2024), Gemini (Team et al., 2023),
LLaVA (Liu et al., 2023b;a), and InternVL (Chen et al.,
2024b) demonstrate impressive general-purpose capabilities
across tasks like image comprehension and visual question
answering. Much of this success stems from large-scale
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fine-tuning on high-quality image-text corpora, particularly
visual instruction-tuning (IT) datasets (Zhang et al., 2023;
Xu et al., 2024), which significantly enhance instruction-
following and reasoning abilities.

However, such pipelines are increasingly resource-
intensive—annotation-heavy when relying on human-
labeled supervision (e.g., bounding boxes, object tags) and
monetarily costly when generating instructions via propri-
etary models like GPT-4 (Liu et al., 2023b;a), alongside
significant computational overhead. These factors make
such pipelines increasingly inaccessible to individual re-
searchers and smaller academic labs. More importantly,
it is unclear whether the entirety of these large corpora is
necessary for strong VLM performance.

To this end, we investigate how to select the most infor-
mative visual instruction-tuning (IT) samples based on the
model’s own evolving learning state. We ask: Can VLMs
indicate what they can most effectively learn at a give stage
of training? Inspired by curriculum learning, we develop a
framework in which the model periodically self-evaluates
its current knowledge and identifies the skills it is ready
to acquire next—those that would most benefit its learning
progress. Specifically, we track the relative change in skill
performance across iterations to estimate where learning
improves fastest, encouraging the model to prioritize these
skills. We hypothesize that this enables the VLM to actively
select training samples that are most informative: those that
are not already mastered by the model, and are not too
difficult for the model to learn at its current stage.

Experimental results across multiple instruction-tuning
datasets of varying scale demonstrate that PROGRESS
achieves up to 99–100% of the full-data performance while
using only 16–20% of the labeled training data.

Our contributions are as follows:

• We propose PROGRESS, a dynamic, progress-driven
framework for selecting the most informative samples
during VLM instruction tuning—based on relative im-
provement across automatically discovered skills.

• Our method achieves near full-data performance
using only 16–20% supervision across multiple

1



Learning What Matters: Prioritized Concept Learning via Relative Error-driven Sample Selection

instruction-tuning datasets of varying scale—including
the widely used LLaVA-665k dataset and Vision-Flan
dataset—demonstrating strong data efficiency.

• It generalizes effectively across architectures, showing
strong results on widely used - LLaVA-v1.5-7B, higher-
capacity models like LLaVA-v1.5-13B and newer de-
signs such as Qwen2-VL, while consistently outper-
forming competitive baselines and prior methods.

2. Related Work
Data Efficient Learning for VLMs. Efficient VLM train-
ing often relies on coreset selection using static metrics such
as CLIP-Score (Hessel et al., 2022), or scoring function such
as EL2N (Paul et al., 2021), perplexity (Marion et al., 2023),
or entropy (Coleman et al., 2019), or via learned scoring
networks (Chen et al., 2024a). These approaches typically
perform selection only once before training and fail to adapt
to evolving model needs. Moreover, static scores may miss
key data modes, reducing diversity; harming generalization,
as shown in prior work (Lee et al., 2024).

Other prominent work selects skill-diverse samples using
reference VLMs—auxiliary models that themselves require
large-scale instruction-tuning data to be effective. Meth-
ods like COINCIDE (Lee et al., 2024) select skill-diverse
samples by clustering internal activations from an addi-
tional trained auxiliary VLM (e.g., TinyLLaVA (Zhou et al.,
2024))—requiring full dataset annotations, an additional
trained model, and manual intervention for activation selec-
tion—making them resource-intensive and less scalable.

Gradient-based selection (Wu et al., 2025; Liu et al., 2024b),
while principled, demands high memory and compute (e.g.,
ICONS requires 100+ GPU hours), contradicting the goal
of efficiency. Some also assume access to explicit knowl-
edge of target task distribution in the form of sample(e.g
ICONS (Wu et al., 2025)), which is rarely available in real-
world VLM training.
3. Problem Setting and Overall Framework
Problem Setting. We now formally introduce our data-
efficient learning setting for training VLMs. We denote an
image by I , a question by Q, forming an image-question
pair (I,Q) ∈ U, where U is an unlabeled pool of such
pairs. Unlike previous efficient learning methods, we do
not assume access to the corresponding answers A ∈ A
for all pairs in U, and thus refer to this pool as unlabeled.
The learner is provided with: (1) the unlabeled pool U;
and (2) a fixed answer budget b, specifying the maximum
number of pairs from U for which it can query an answer
A ∈ A and use for training, where |A| = b ≪ |U|. The
goal is to learn a vision-language model VLM(A | I,Q) that
can accurately predict an answer for a new image-question
pair, while only using b selected and labeled samples during
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Figure 1. Comparison with Prior Efficient Learning Methods
for VLMs. Green denote desirable properties for efficient learn-
ing, while Red indicate limitations. PROGRESS satisfies all key
desirable criteria while requiring only 20% data.

training. The central challenge lies in identifying the most
informative (I,Q) pairs to annotate within the constrained
budget b, such that the resulting model trained on these
(I,Q,A) pairs performs comparably to one trained on the
fully labeled dataset.

Overall Framework. Our overall framework is shown in
Figure 2. We employ a two-stage pipeline:

(1) Multimodal Concept Categorization. Given an unla-
beled data pool U containing image-question pairs
(I,Q) ∈ U, we first partition U into a distinct set
of K skills, assigning each sample (I,Q) to a specific
skill. This categorization enables tracking the model’s
progress on individual skills and supports a self-paced
training strategy where the model’s own learning sig-
nals determine which skills to prioritize next.

(2) Prioritized Concept Learning. During training, the
model periodically self-evaluates its knowledge by
comparing its current performance to prior state, iden-
tifying skills where performance improves fastest rel-
ative to prior state. Samples (I,Q) from these skills
are then selected and answer annotations A ∈ A are
queried only for these selected samples.

Our model adaptively selects diverse, informative samples
aligned with evolving learning needs, enabling efficient
training with minimal supervision while controlling both
skill acquisition and learning order.
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Figure 3. Cluster Visualization. Clustering using multimodal
DINO-BERT features yields purer clusters with higher intra- and
lower inter-cluster similarity than unimodal clustering
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Figure 2. Overall Pipeline. The method consists of two stages: (1) Multimodal Concept Categorization clusters unlabeled image-question
pairs into skill groups and (2) Prioritized Concept Learning dynamically selects samples from skills showing the highest learning progress.

3.1. Multimodal Concept Categorization

We begin by identifying diverse skills from the unlabeled
data pool through a fully unsupervised concept categoriza-
tion module that partitions U into K skill clusters using
spherical k-means. Each sample (I,Q) ∈ U is assigned
to a cluster based on cosine similarity from multimodal
concatenated self-supervised DINO (Oquab et al., 2024)
(for image I) and BERT (Devlin et al., 2019) (for text
question Q) features. Jointly leveraging both modalities
yields purer clusters with higher intra-cluster and lower inter-
cluster similarity compared to unimodal partitioning (see
Fig. 3)—enabling accurate tracking of skill-level progress
during training. Unlike COINCIDE (closest best performing
prior work) (Lee et al., 2024), our concept categorization
framework is simpler, unsupervised, and more scalable. CO-
INCIDE requires activations from fully trained additional
VLM, ground-truth answers for full dataset, and human
inspection to select appropriate activations for skill cluster-
ing. In contrast, our categorization is fully automated and
practical, requires no labels, or manual introspection.

3.2. Prioritized Concept Learning: Can VLMs indicate
what they can most effectively learn at a give stage
of training?

Our goal is to guide the VLM to prioritize skills it can most
readily learn and improve upon. Since human intuition
about task difficulty may not align with model’s difficulty
in its feature and hypothesis space (Sachan & Xing, 2016),
we adopt a self-paced strategy where the model’s own learn-
ing progress determines what to learn next. Inspired by
curriculum learning (Kumar et al., 2010; Sachan & Xing,
2016), we select the most informative samples—those that
yield the greatest improvement in the model’s objective (e.g.,
accuracy or loss) relative to its prior state.

Formally, given an unlabeled pool U = {(I,Q)} partitioned
into skill clusters C = {C1, C2, . . . , CK}, we define the
model’s learning state at step t by its accuracy Acc(t)k on
each cluster k, computed over the training data seen by the
model so far. The relative change in performance across

steps quantifies learning progress per skill, which is then
used to guide sample selection. We compute the expected
accuracy improvement for each skill cluster between step t
and t− γ:

∆k =
Acc(t)k − Acc(t−γ)

k

Acc(t−γ)
k + ϵ

(1)

where ϵ ensures numerical stability. The score ∆k captures
how rapidly the model is improving on skill cluster k, serv-
ing as a proxy for sample informativeness. By prioritizing
high ∆k clusters , the model focuses on skills it can improve
on most rapidly—thereby enforcing a self-paced curricu-
lum that dynamically adapts to the model’s learning state
(Sachan & Xing, 2016)—controlling both the acquisition of
skills and the order in which they are learned.

Only selected samples are annotated, forming the labeled
set (I,Q,A) for training. This need-based annotation strat-
egy avoids the costly requirement of full supervision used
in prior coreset methods (such as COINCIDE (Lee et al.,
2024)), offering a more scalable and efficient training.

However, naively selecting samples from only the highest-
improvement cluster can hurt diversity by concentrating on
a narrow skill set and leading to mode collapse—an issue
known to degrade performance in prior work (Lee et al.,
2024). To mitigate this, we propose to sample from multiple
high ∆k clusters in proportion to their relative improvement
using a temperature-controlled softmax:

pk =
exp(∆k/τ)∑K
j=1 exp(∆j/τ)

(2)

Here, pk is the probability of sampling from cluster k, and
τ controls the sharpness of the distribution. Lower τ empha-
sizes top clusters but risks mode collapse by repeatedly sam-
pling from a narrow skill set (higher informativeness, lower
diversity); higher τ promotes broader sampling and better
skill coverage. This balance between informativeness and
diversity is critical for effective and robust learning (see
ablation Fig. 4). The sampling budget at given step t is
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Table 1. Comparison of coreset selection techniques with LLaVA-v1.5-7b on the LLaVA-1.5 dataset using 20% sampling ra-
tio. Methods highlighted in orange require additional reference VLMs and ground-truth labels for coreset selection, while

methods highlighted in light green do not require either. The benchmark results are highlighted with best and second best comparing
models within respective categories with and without additional information.

Method VQAv2 GQA VizWiz SQA-I TextVQA POPE MME MMBench LLaVA- SEED AI2D ChartQA CMMMU Rel. (%)
en cn Wild

0 Full-Finetune 79.1 63.0 47.8 68.4 58.2 86.4 1476.9 66.1 58.9 67.9 67.0 56.4 16.4 22.1 100

1 Self-Sup 74.9 59.5 46.0 67.8 49.3 83.5 1335.9 61.4 53.8 63.3 62.5 52.9 16.1 23.4 94.6
1 Self-Filter 73.7 58.3 53.2 61.4 52.9 83.8 1306.2 48.8 45.3 64.9 60.5 48.7 14.1 19.8 90.1
3 EL2N 76.2 58.7 43.7 65.5 53.0 84.3 1439.5 53.2 47.4 64.9 61.8 49.3 16.5 23.9 93.4
4 SemDeDup 74.2 54.5 46.9 65.8 55.5 84.7 1376.9 52.2 48.5 70.0 60.9 53.5 15.8 24.2 94.1
5 D2-Pruning 73.0 58.4 41.9 69.3 51.8 85.7 1391.2 65.7 57.6 63.9 62.1 52.5 15.3 22.3 94.8
6 COINCIDE 76.5 59.8 46.8 69.2 55.6 86.1 1495.6 63.1 54.5 67.3 62.3 53.3 16.1 24.3 97.8

7 Random 75.7 58.9 44.3 68.5 55.3 84.7 1483.0 62.2 54.8 65.0 61.7 50.2 15.1 21.9 95.0
8 CLIP-Score 73.4 51.4 43.0 65.0 54.7 85.3 1331.6 55.2 52.0 66.2 61.0 49.1 14.3 20.3 90.6
9 Perplexity 75.8 57.0 47.8 65.1 52.8 82.6 1341.4 52.0 45.8 68.3 60.8 48.7 14.5 20.9 91.1
PROGRESS
10 Loss as Obj. 75.7 58.6 49.6 70.1 55.1 86.3 1498.4 62.5 55.5 65.5 63.4 53.3 17.3 23.7 98.4
11 Accuracy as Obj. 75.2 58.8 53.4 69.9 55.1 85.9 1483.2 61.1 54.4 65.5 63.0 52.8 17.3 24.6 98.8

then allocated proportionally to pk, and only the selected
samples are annotated as (I,Q,A) triplets for training.

4. Experiments and Results
Experimental Setup -See Appendix for more details

1. PROGRESS is more effective than existing SOTA in
data efficient learning.

Table 1 (Row 0-11) compares PROGRESS against state-of-
the-art baselines for training LLaVA-v1.5-7B on LLaVA-
665K dataset under a 20% data budget, following stan-
dard settings. PROGRESS achieves the highest relative
performance (98.8%), outperforming all baselines, includ-
ing those requiring access to ground-truth answers for the
entire dataset and additional reference VLMs. In contrast,
PROGRESS uses supervision only on a need basis for 20%
of samples and relies solely on self-supervised features, yet
reaching near-parity with full finetuning. PROGRESS also
ranks among the top two methods on 8 out of 14 benchmarks,
showing strong generalization across diverse tasks—e.g., in-
cluding perception-focussed VQAv2 (75.2), scientific ques-
tions and diagrams (ChartQA:17.3, AI2D:52.8), and object
hallucination POPE (85.9). Notably, it exceeds full-data
performance on VizWiz (53.4 vs. 47.8), SQA-I (69.9 vs.
68.4), MME (1483.2 vs. 1476.9), ChartQA (17.3 vs. 16.4)
and CMMMU (24.6 vs. 22.1). These results demonstrate
effectiveness the PROGRESS as a dynamic and fully auto-
mated alternative for efficient VLM training under limited
supervision.

2. PROGRESS generalizes across datasets (Vision-Flan)
and across architectures (Qwen-2-VL and LLaVA-1.5-
13B) -See Appendix for more details

3. Balancing Diversity and Informativeness

To assess the importance of balancing informativeness and
diversity (Eqn 2), we conduct an ablation study varying
the temperature parameter τ in the softmax used for skill
selection (Eqn 2). As shown in Figure 4, a high temperature
of 1.0 yields the best overall performance (98.8% relative
score), striking an effective balance between prioritizing
high-improvement clusters and maintaining skill diversity.
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Figure 4. Ablation of Soft-
max Temperature. Both
very-low and very-high
temperatures lead to a sig-
nificant performance drop.

As the temperature decreases
(i.e., τ = 0.7, 0.5, 0.3), perfor-
mance consistently degrades,
with the lowest temperature
yielding only 92.8%—a sig-
nificant drop of over 6% in
relative score. This decline
confirms that overly sharp
sampling distributions (low τ )
lead to mode collapse, where
the model repeatedly focuses
on a narrow set of concepts
and fails to generalize broadly.

Thus, we see that enforcing di-
versity helps improve perfor-
mance. However, excessive diversity (τ = 1.2) is also not
good as, in that case, the high-improvement clusters start
losing their clear priority over other clusters.

4



Learning What Matters: Prioritized Concept Learning via Relative Error-driven Sample Selection

5. Conclusion and Limitations
We propose PROGRESS, a dynamic and data-efficient
framework for instruction-tuning VLMs that prioritizes
learning based on progress across unsupervised skill clus-
ters. By selecting samples that are both learnable and timely,
it effectively controls skill acquisition and learning order.
PROGRESS achieves near full-data performance using
only 16–20% supervision, requires no auxiliary VLMs, and
generalizes across architectures and datasets. While effec-
tively orders and prioritizes more informative skills, it ran-
domly samples within selected skills without finer-grained
ranking, and the accuracy-based variant adds inference over-
head (mitigated by a loss-based alternative), PROGRESS
consistently outperforms prior methods with far less super-
vision and greater scalability.
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6. Appendix
6.1. Experimental Setup

Datasets and Models. To demonstrate effectiveness and
generalizability of our approach across different scales of
instruction-tuning (IT) data, we conduct experiments on
two IT datasets: Visual-Flan-191K (Xu et al., 2024) and
the larger-scale LLaVA-665K (Liu et al., 2023b) contain-
ing ∼ 0.6 million samples. For the target VLMs, we use
LLaVA-v1.5-7B (Liu et al., 2023b), following prior works.
Additionally, we use LLaVA-v1.5-13B (Liu et al., 2023b)
to test scalability and Qwen2-VL-7B (Wang et al., 2024) to
test architecture generalization towards newer VLMs.

Implementation Details. Following standard protocol(Lee
et al., 2024), we adopt LoRA (Hu et al., 2021) for training
using the official hyperparameters from LLaVA-1.5. For
the accuracy-based variant, we estimate cluster-wise accu-
racy using an LLM judge that compares the VLM output to
ground-truth answers for samples in given cluster—though
this is not required for our loss-based variant. Our setup
follows standard evaluation protocols from prior work, en-
suring consistency and fair comparison.

Baselines. We compare PROGRESS against strong base-
lines spanning five major categories: (1) scoring function
based methods (CLIP-Score, EL2N(Paul et al., 2021), Per-
plexity (Marion et al., 2023)); (2) deduplication-based se-
lection (SemDeDup (Abbas et al., 2023)); (3) graph-based
methods (D2-Pruning (Maharana et al., 2024)); (4) learned
static selectors (Self-Filter (Chen et al., 2024a)); and (5)
concept-diversity approaches (COINCIDE (Lee et al., 2024),
Self-Sup (Sorscher et al., 2022)). We also include Ran-
dom—a simple yet competitive baseline shown to perform
well due to its diversity—and Full-Finetune, representing
the performance upper bound with full supervision.

Evaluation Benchmark. We evaluate our approach on
a diverse suite of 14 vision-language benchmarks target-
ing different skills: perceptual reasoning (VQAv2 (Goyal
et al., 2017), VizWiz (Gurari et al., 2018)), textual rea-
soning (TextVQA (Singh et al., 2019)), compositional rea-
soning (GQA (Hudson & Manning, 2019)), object hallu-
cinations (POPE (Li et al., 2023b)), multilingual under-
standing (MMBench-cn (Liu et al., 2024a), CMMMU (Ge
et al., 2024)), instruction-following (LLaVA-Bench(Liu
et al., 2023b)), fine-grained skills (MME (Liang et al., 2024),
MMBench-en (Liu et al., 2024a), SEED (Li et al., 2023a)),
and scientific questions and diagrams (SQA-I (Lu et al.,
2022), AI2D (Kembhavi et al., 2016), ChartQA (Masry
et al., 2022)).

Evaluation Metrics. We use standard evaluation metrics
used by previous work to ensure consistency. Specifically,

2Reproduced with official code.
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Table 2. Scalability to Larger Models - Comparison of coreset selection techniques for training larger LLaVA-v1.5-13B on the LLaVA-
665K dataset using 20% sampling ratio.2 Methods highlighted in orange require additional reference VLMs and 100% dataset annotations

for coreset selection, while methods highlighted in light green do not require either. The benchmark results are highlighted with best

and second best models within the respective categories (i.e, with and without utilizing additional information). The best and the second
best relative score are in bold and underlined, respectively.

Method VQAv2 GQA VizWiz SQA-I TextVQA POPE MME MMBench LLaVA- SEED AI2D ChartQA CMMMU Rel. (%)
en cn Wild

LLaVA-v1.5-13B

1 Full-Finetune 80.0 63.3 58.9 71.2 60.2 86.7 1541.7 68.5 61.5 69.5 68.3 60.1 19.3 22.1 100

2 Self-Sup 76.3 60.5 50.0 70.2 52.7 85.4 1463.8 63.7 57.6 64.9 65.2 53.3 17.2 23.2 93.8
3 Self-Filter 75.0 59.8 48.6 69.5 55.8 84.5 1446.9 58.8 51.8 69.1 65.3 52.4 16.9 23.1 92.6
4 EL2N 77.2 59.6 54.8 69.9 56.1 84.1 1531.0 59.3 52.3 65.8 65.7 53.9 17.0 24.4 94.4
5 SemDeDup 75.6 57.5 48.3 70.5 57.7 85.3 1397.6 59.0 51.1 68.7 64.9 53.2 16.8 24.6 92.9
6 D2-Pruning 73.9 60.5 49.8 70.4 55.2 84.9 1463.0 67.3 59.9 66.5 65.9 53.4 16.9 23.5 94.7
7 COINCIDE 77.3 59.6 49.6 69.2 58.0 87.1 1533.5 64.5 56.6 66.4 65.9 52.9 18.4 25.0 95.9

8 Random 76.7 60.5 48.0 68.8 57.7 84.8 1484.9 62.8 55.2 68.6 65.5 57.9 17.1 24.3 95.0
9 CLIP-Score 75.3 52.6 42.2 69.7 57.3 85.4 1426.3 60.4 54.0 68.1 63.3 52.8 17.4 23.7 91.8
10 Perplexity 77.0 58.5 48.2 68.7 54.8 83.1 1508.8 57.5 50.3 68.7 64.7 53.1 17.6 23.8 92.7
PROGRESS
11 Loss as Obj. 76.8 59.7 54.6 70.4 58.0 87.2 1458.3 63.8 56.9 69.9 65.1 58.0 17.9 24.6 96.8
12 Accuracy as Obj. 76.9 58.9 53.0 70.1 57.5 87.1 1497.6 63.9 57.6 67.3 65.4 57.7 18.0 24.5 96.5

we use average relative performance (Lee et al., 2024)to
provide a unified measure for generalization. For each
benchmark, relative performance is defined as: Rel. =( Model Performance

Full Finetuned Performance

)
× 100% This normalization allows

us to normalize for the differences in the difficulty levels of
different benchmarks following previous work.

6.2. Results and Analysis
Scalability to Larger Models. To assess scalability, we use
PROGRESS to train the larger LLaVA-v1.5-13B model un-
der the same 20% data budget, testing whether our method
developed for LLaVA-v1.5-7B transfers effectively to a
higher-capacity model without hyperparameter tuning. As
shown in Table 2, PROGRESS achieves a relative perfor-
mance of 96.8%, outperforming all baselines. Beyond ag-
gregate gains, PROGRESS ranks among the top-2 methods
on 8 out of 14 benchmarks compared with all baselines,
demonstrating strong generalization.

Architectures and Dataset Generalization. In Table 3,
we test generalization of PROGRESS across different VLM
architecture and IT dataset with accuracy as signal. For
architecture generalization, we use newer Qwen2-VL-
7B and train it on the LLaVA-665K dataset using the
same 20% data budget and identical hyperparameters. We
compare PROGRESS with two of the strongest (high-
est performing) established baselines—Random Sampling
and COINCIDE—across multiple multimodal benchmarks.
PROGRESS achieves the highest overall relative perfor-
mance of 100% and ranks first or second on 9 out of 11

benchmarks (Tab. 3, top). For dataset generalization,
we report LLaVA-v1.5-7B on Vision-Flan dataset under
a stricter 16.7% annotation budget to assess generalization
in low-resource settings. PROGRESS achieves the highest
overall relative performance of 99.0%, outperforming CO-
INCIDE (95.8%) and Random (95.0%) and ranks first or
second on 8 out of 11 benchmarks (Tab. 3, bottom). The
scalability and generalization are achieved without requir-
ing any model-specific tuning. These results underscore
the calability and generalization of PROGRESS , making
it a practical solution for efficient training across diverse
architecture and datasets.

How effective is PROGRESS under different sampling
ratios? We show relative performance on the Vision-FLAN
dataset under different sampling ratios (even lower than
16.7 % considered in Tab. 3) in Figure 5. PROGRESS
consistently outperforms strongest baselines - Random and
COINCIDE across different sampling ratios, highlighting
its effectiveness.

6.3. Investigating the effectiveness of different
components of PROGRESS

In this section, we provide further insights into the learning
behaviour of PROGRESS . All experiments use LLaVA-
v1.5-7B and LLaVA-665K dataset with 20% sampling ratio
and accuracy as the objective unless otherwise specified.

How effective is our Selection Policy? We evaluate the ef-
ficacy of PROGRESS (sampling based on relative accuracy

8



Learning What Matters: Prioritized Concept Learning via Relative Error-driven Sample Selection

Table 3. Architecture and Dataset Generalization. For Architecture Generalization, we report Qwen2-VL-7B on the LLaVA-665K
dataset using 20% sampling ratio. For Dataset Generalization, we report LLaVA-v1.5-7B on Vision-Flan dataset using 16.7% sampling
ratio following prior work.

Method VQAv2 GQA VizWiz SQA-I TextVQA POPE MME MMBench LLaVA- SEED Rel. (%)
en cn Wild

Architecture Generalization (Qwen2-VL-7B)

Full-Finetune 77.4 61.7 45.5 81.4 59.7 84.3 1567.9 76.1 75.1 84.8 66.9 100

Random 76.2 60.1 43.6 81.4 58.7 83.7 1556.8 76.8 74.5 81.7 67.6 98.7
COINCIDE 76.7 60.2 45.4 81.7 59.4 83.6 1583.5 77.4 76.2 80.5 67.9 99.6
PROGRESS 76.2 60.5 47.1 82.3 58.0 84.3 1560.1 77.2 72.9 87.1 67.6 100.0

Dataset Generalization (Vision-Flan-191K)

Full-Finetune 69.4 46.0 49.7 59.9 34.1 85.1 1306.1 49.1 51.7 35.7 53.3 100

Random 66.0 43.8 52.2 62.1 39.7 82.7 1072.2 48.7 43.7 40.4 28.7 95.0
COINCIDE 66.3 43.6 51.0 63.8 35.2 81.9 1222.2 56.7 45.5 31.1 37.5 95.8
PROGRESS 65.5 44.0 53.6 62.5 42.0 82.9 1040.9 43.6 47.4 43.2 45.3 99.0

Table 4. Ablation of Selection Policy. Performance comparison of different selection policies with the same warm-up strategy.
Method VQAv2 GQA VizWiz SQA-I TextVQA POPE MME MMBench LLaVA- SEED AI2D ChartQA CMMMU Rel. (%)

en cn Wild

0 Full-Finetune 79.1 63.0 47.8 68.4 58.2 86.4 1476.9 66.1 58.9 67.9 67.0 56.4 16.4 22.1 100

1 Warm-up Only 73.1 55.9 43.8 67.9 54.2 85.4 1410.3 58.5 52.7 64.6 60.5 52.4 16.1 24.5 94.6
2 Random 75.7 59.0 43.8 68.8 54.9 85.6 1414.2 61.9 54.9 66.2 63.3 48.6 17.3 25.2 96.8
3 Easiest 72.0 54.8 50.2 67.1 51.6 85.7 1407.4 57.0 52.6 65.2 59.5 50.1 12.3 22.8 92.3
4 Medium 69.3 52.5 46.0 68.3 50.8 85.4 1307.6 54.6 48.7 62.5 57.7 47.6 14.3 26.1 91.1
5 Hardest 72.8 54.8 52.1 61.3 50.5 85.4 1364.8 37.9 34.5 67.5 54.1 41.4 15.8 25.9 88.5
PROGRESS
6 Loss as Obj. 75.7 58.6 49.6 70.1 55.1 86.3 1498.4 62.5 55.5 65.5 63.4 53.3 17.3 23.7 98.4
7 Accuracy as Obj. 75.2 58.8 53.4 69.9 55.1 85.9 1483.2 61.1 54.4 65.5 63.0 52.8 17.3 24.6 98.8
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Figure 5. Ablation of Sampling Ratio. Relative performance on
Vision-Flan dataset under different sampling ratio.

change - Sec 3.2) by comparing it against other competitive
selection strategies: Random Sampling, Easiest-Sampling
(selecting clusters with highest absolute accuracy at given
time step), Medium-Sampling (selecting moderate accu-
racy clusters), and Hardest-Sampling (selecting lowest ac-
curacy clusters). As shown in Tab. 4, PROGRESS achieves
the highest relative score (98.8%), ranking first on 8 out of
14 benchmarks and second on 4 others.

How important is the order of skill acquisition? Here we
randomly shuffle PROGRESS-selected samples and perform
training —thereby ablating importance of learning order.
We find a 4.1% drop in relative performance, underscoring
the importance of introducing appropriate skills at the right
time.
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