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ABSTRACT

Modeling time series dynamics with neural differential equations has become a
major line of research that opened new ways to handle various real-world scenarios
(e.g., missing observations, irregular times). Despite the progress, most existing
methods still face challenges in providing an explainable rationale on temporal
association, which tells how past observations affect future states. To tackle this
challenge, we introduce novel multi-agent based neural stochastic differential
equations and analyze the time series prediction through the lens of cooperative
differential games. Our framework provides an explainable method that can reveal
the underlying temporal relevance of the data and fully utilizes this information to
systemically solve the prediction problem. We develop the gradient descent based
deep neural fictitious play to approximate the Nash equilibrium and theoretical
results assure the convergence. Throughout the experiments on various datasets, we
demonstrate the superiority of our framework over all the benchmarks in modeling
time series prediction by capitalizing on the underlying temporal dynamics without
any inductive bias. An ablation study shows that neural agents of the proposed
framework learn intrinsic temporal relevance to predict accurate time series.

1 INTRODUCTION

The key challenge of time series prediction is understanding how past observations contribute to the
future and building a probabilistic model that intrinsically captures the temporal correlation. A model
is required to differentiate the relative importance of past observations on the future time series such
that the redundant information is well-suppressed during inference. To address this challenge, a series
of previous works followed the philosophy of defining information redundancy by adopting a concept
known as temporal decay (Che et al., 2018; Mei & Eisner, 2017). Such an inductive bias relies on
the belief that the influence of past observations exponentially decreases over time. However, due to
the strong assumption, any method built upon the fixed inductive bias may fail to properly capture
different temporal dynamics in various real-world scenarios.

A promising direction to tackle this challenge is to learn the temporal correlation structure from
data. One candidate for learning the implicit relation is recurrent neural networks (RNNs) which
subsequently encode the past observations into a latent space with a gating mechanism. Due to the
implicitness of latent encoding, the model provides ambiguous explanations on how observations are
related to the prediction. Furthermore, conventional RNNs are incapable of capturing the irregularly
sampled time series, which is common in many real-world applications.

Recently, remarkable advances have been made to model underlying continuous temporal dynamics
utilizing neural differential equations (Chen et al., 2018; Li et al., 2020; Kidger et al., 2020) (NDEs).
For instance, a stream of research (Rubanova et al., 2019; Deng et al., 2021; Schirmer et al., 2022)
has focused on overcoming the initial condition problem of conventional differential equation models
by encoding temporal dynamics into the latent space. A set of past observations are incorporated into
latent representations and fully utilized for time series prediction. However, owing to the inexplicable
relation between temporal states in the latent representations, these methods are still incapable of
showing the explicit rationale that can reveal the impact of observations on the future.

In this paper, we propose a novel framework, which we call CooPredict, built upon a game-theoretic
formalism to model temporal dynamics of time series data. More specifically, we extend the conven-
tional differential equation (DE) to the multi-agent counterpart for decomposing the observational
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(a) Multi-agent Neural SDEs (b) Decision Attention (c) Differential game
Figure 1: Conceptual illustration of the proposed framework: (a) The proposed MaSDE encodes separate initial
conditions and propagate individual decisions over the interval t ∈ [si, T ]. The bold black line indicates the
time series on prediction interval T and dashed green lines are the decisions of neural agents. (b) The separate
decision is integrated by the temporal aggregation. The red crosses show the predictor Λα

t representing the
cooperative prediction. (c) The optimal action profiles α∗ are obtained in the Nash equilibrium.

time series. Each agent individually encodes the impact of a partial observation into an underlying
stochastic trajectory and interacts with each other to extract meaningful information to predict the
future. We formulate the collaboration among agents from the view of cooperative differential
games (Leitmann, 1974; Staatz, 1983; Sexton, 1986) to integrate the individual information and
adaptively balance the importance of each agent. As a result of the differential game, cooperative
agents achieve the Nash equilibrium, and agree to suppress redundant observations and to highlight
the contribution of important observations for accurate prediction. To solve the differential game,
we propose a novel deep learning-based algorithm to conduct the fictitious play. During the process,
our method applies the gradient descent scheme to solve decoupled optimal control problems in a
tractable and parallel way. Furthermore, we provide theoretical foundations upon the Feynman-Kac
formalism for solving optimal control problems and theoretical analysis to guarantee the convergence
of the proposed algorithm.

Unlike the existing methods, our framework explicitly provides a clear explanation of how the past is
related to the future in time series. We validate our method through experiments on multiple synthetic
and real-world datasets that cover various types of temporal dynamics. Our method outperforms
state-of-the-art DE-based methods by capturing the underlying temporal dynamics without any
inductive bias via a novel game-theoretic framework.

2 MULTI-AGENT COOPERATIVE PREDICTION

Problem Setup. Consider a general time series forecasting set-up where each instance of a time series
is defined on the entire time interval [0, T ] comprising of observable past (i.e., O) and target future
intervals (i.e., T). We assume that the irregularly sampled observations are collected at time stamps
O = {s1, . . . , sI} where si ∈ O for i ∈ {1, . . . , I}. Then, we focus on building a probabilistic
model that can predict future values at any time t ∈ T based on the set of past observations in O.

2.1 MULTI-AGENT NEURAL SDES

Suppose we have a set of I number of past observations for a given time series, i.e., {ysi}si∈O. The
primary object of our interest is the set of stochastic processes Xα

t = [X1,α
t , . . . , XI,α

t ] parameter-
ized by multiple control agents α = [α1, . . . , αI ], which is defined as a collection of solutions to the
following multi-agent stochastic differential equations (MaSDEs) (Øksendal & Sulem, 2007)1:

(Xα
t , {ysi}si∈O)︸ ︷︷ ︸

past observations

:

{
dXi,α

t = b(t,Xi,α
t , αi)dt+ σ(t,Xi,α

t )dW i
t ,

Xi,α
t = ysi +

∫ t

si
b(u,Xi,α

u , αi)du+
∫ t

si
σ(u,Xi,α

u )dW i
u.

(1)

MaSDEs

Here, {W i
t } are independent d-dimensional Wiener processes, and b and σ are drift and diffusion

functions, respectively. The control agent αi : [0, T ] × Rd × Θ → Rd, which we refer to as a
neural agent, is modeled as a neural network αi := αi(t,X

i,α
t ; θi) parameterized by θi. Each neural

agent takes input a spatio-temporal tuple (t,Xi,α
t ) and produces infinitesimally successive outputs

1From this point forward, we use boldface letters to denote a collection of objects obtained from multi-agents,
e.g., Xα

t = [X1,α
t , . . . , XI,α

t ], and we omit the dependence on temporal state when clear in the context.
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(t+ dt,Xi,α
t+dt). We define a neural agent’s decision as a continuous stochastic trajectory over the

future interval T, i.e., {Xi,α
t }t∈T. By setting the past observation ysi as the initial condition, the

decision of a neural agent can be considered as an information propagator that can explicitly represent
the impact of the corresponding past observation via the conditional expression p(Xt∈T|ys∈O); see
Figure 1-(a) for a pictorial illustration.

Temporal Aggregation. Since each neural agent can only represent the individual impact of partial
information, we aggregate the individual decisions made by each neural agent to capitalize on the
temporal dynamics available from the entire set of past observations. More specifically, we introduce
the predictor Λα

t that produces the future value at time t as a weighted sum of the individual decisions
as the following:

Λα
t := Aα(t,Xα

t )
⊤Xα

t = Aαi
i (t,Xi,α

t )Xi,α
t +

∑
i ̸=j

A
αj

j (t,Xj,α
t )Xj,α

t . (2)

Here, we introduce the decision attention Aα which provides the relative importance of each
decision, i.e., Aα : T × Rd × Θ → ∆I where ∆I := {a ∈ [0, 1]I |1⊤a = 1} is a I-simplex
and Aα = [Aα1

1 , . . . , AαI

I ]. Given the decision attention, the predictor Λα
t produces a temporally

aggregated decision from the decisions made by the individual agents.

The purpose of decision attention is to differentiate the associated impact of stochastic trajectories
on predicting the future values in a data-driven fashion. It is worth highlighting that the proposed
predictor becomes equivalent to the temporal average suggested by (Park et al., 2022) when the
decision attention assigns uniform weights irrespective of spatio-temporal variable, i.e., Aαi

i = 1/I .

Stochastic Optimal Control. To train neural agents in MaSDEs, we adopt the stochastic optimal
control (Yeung & Petrosjan, 2006; Carmona & Delarue, 2018) as our central methodology to formally
define an objective functional J i. Specifically, each neural agent is given a behavioral rule as follows:

J i(t, x, [αi,α(−i)]) = E
[∫

T
hi
(
s,Xi,α

s ,X(−i),α
s , [αi,α(−i)]

)
ds+Ψi(Xi,α

T )
∣∣∣Xt = x

]
, (3)

where hi
(
t,Xi,α

t ,X
(−i),α
t , [αi,α(−i)]

)
= ∥Λα

t − yt∥2 and Ψi(Xi,α
T ) =

1

2
||Xi,α

T ||
2.

Objective Functional

Here, X(−i),α
s ∈ Rd(I−1) and α(−i) ∈ A are the sets of other agents’ decisions and actions,

respectively. The cost function hi is designed to minimize the distance between the prediction
(i.e.,Λα

t ) and the target time series (i.e., yt). This encourages each neural agent to make contributions
in the temporal aggregation under the goal of accurate time series prediction. The terminal cost
function Ψi regularizes decisions at the terminal state and plays a central role in the Feynman-Kac
formalism to solve the cooperative game. We will further elaborate the details in Section 3.

Given the environment (i.e., the entire interacting objects), each neural agent changes its action to
find a value function Vi that defines the optimal state of actions:

Vi(t, x) = min
αi∈Ai

J i(t, x, [αi,α(−i)]) = min
θi∈Θ

J i(t, x, [αi(·, ·; θi),α(−i)(·, ·;θ(−i))]), (4)

where the optimal control problem in (4) takes arbitrary actions α(−i) made by other agents. To
solve (4), we propose a gradient descent-based method motivated from the fictitious play, which we
will further elaborate in Section 3.

2.2 COOPERATIVE DIFFERENTIAL GAMES

If the past observation ys is highly associated with the future event yt (i.e., p(yt∈T|ys∈O) ↑), it is
reasonable to pay high attention (i.e.,Aα(t, ·) ↑) to capitalize on the observation ys. Unfortunately,
determining the optimal attention is a daunting task as the temporal correlation is intrinsically data-
dependent and not given a priori in general. Hence, the method requires a unified structure that (i) can
systemically extract information from data to adjust the decision attention Aα based on the relative
importance of past observations and (ii) can provide a framework on the coalition of the interacting
agents for the proper coordination.
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To address the above requirements, we propose a novel framework, which we call CooPredict, to
formalize the time series prediction problem as a cooperative differential games between multiple
agents. Cooperative differential games have been extensively studied in many disciplines (Perelman
et al., 2011; Jørgensen et al., 2010; Yeung & Petrosyan, 2012) to investigate the group rationality
of agents sharing the same goal. Inspired by these works, we design a cooperative differential
game that provides cooperative prediction by achieving optimally balanced decision attention among
neural agents whose shared goal is an accurate prediction. The critical point is that the neural
agent supporting a non-informative observation voluntarily sacrifices its own cost (i.e.,Vi ↑) by
decreasing the influence on temporal aggregation so that the impact of other informative observations
(i.e.,Vi ̸=j ↓) can be further emphasized. Such a cooperative behavior is mutually advantageous to
the interacting agents as it ultimately achieves the performance improvement. Figure 1-(c) shows the
conceptual illustration of the proposed cooperative game where the homogeneous decision attentions
are gradually transformed into the equilibrium state achieved by enthusiastic agents following the
group rationality.

2.3 COOPERATIVE PREDICTION VIA NASH EQUILIBRIUM

For a mathematical derivation of the optimal decision states, we introduce an important type of
equilibrium states called Nash Equilibrium as follows:

Definition 1. (Markovian ϵ-Nash Equilibrium) Let us consider a set of closed-feedback type
Markovian controller parameterized by neural networks α∗ := {α∗

i }i∈{1,...,I} that induce value
functions. For the arbitrary actions β taken in action set A, we say that neural agents are in the
ϵ-Nash Equilibrium if the following inequality is satisfied:

J i(t, x, [α∗
i ,α

∗
(−i)]) ≤ J

i(t, x, [βi,α
∗
(−i)]) + ϵi, ∀i ∈ {1, . . . , I}, ϵi > 0, (5)

In the state of equilibrium, any non-optimal action β produces worse cost (with a margin ϵ := {ϵi}i∈I )
than taking the optimal actions α∗. Here, the marginal constant ϵ represents a degree of capacity
for neural agents to achieve the perfect equilibrium. The inequality in (5) describes an optimal
state of interacting agents having no incentive to change their action. While each neural agent
mutually finds the best response to the environment made by the optimal colleagues, the entire cost is
comprehensively minimized and a more accurate prediction can be obtained. Further, the following
relation implies that the equilibrium state achieved in (5) is indeed a result of cooperation:

Jco(t, x,α∗) =

I∑
i

J i(t, x, [α∗
i ,α

∗
(−i)]) ≤

I∑
i

J i(t, x, [α∗
i ,β(−i)]) + I sup

i
ϵi, (6)

where Jco is the objective functional that describes the coalition cost (Yeung & Petrosjan, 2006) of
the cooperative neural agents. The inequality in (6) can be easily shown by the algebraic property of
cost functions as the following:

E
[
hi
(
t,Xi,α

t ,X
(−i),α
t , [α∗

i ,α
∗
(−i)]

)]
= E

[
hj
(
t,Xj,α

t ,X
(−j),α
t , [α∗

j ,α
∗
(−j)]

)]
, i ̸= j. (7)

Fictitious Play. In order to achieve the Nash equilibrium for multi-agents, the previous interest on
considering separate and individual objectives in (4) shifts to an interacting scenario. From this new
perspective, we transform the original value function that only considers insensitive feedback into a
new one that can consider optimal colleagues’ feedback driven by their contribution to the prediction:

Vi(t, x) = min
α∗

i ∈Ai
J i(t, x, [α∗

i ,α
∗
(−i)]), si ∈ O. (8)

Since finding the Nash equilibrium is PPAD hard (Daskalakis et al., 2009; Goldberg, 2011), it is
intractable to directly compute the equilibrium owing to a large number of agents considered in time
series prediction problems of our experiments (i.e., I ≈ 50). Thus, for a tractable computation, we in-
stead rely on an alternative dynamical formulation called fictitious play (Cardaliaguet & Hadikhanloo,
2017). The fictitious play is an iterative procedure that decouples interacting agents and separately
solves the stochastic optimal control. The central idea is first to share public information about the
entire system and then to decouple value functions by solving individual Hamiltonian-Jacobi-Bellman
equations (HJBEs) in Section 3.
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3 DEEP NEURAL FICTITIOUS PLAY

In this section, we suggest the novel deep learning framework for the fictitious play. To this goal, we
start by introducing the set of adjoint equations called the forward-backward stochastic differential
equations (FBSDEs) (Carmona, 2016) as a probabilistic framework to tackle optimal control problems
of obtaining value functions.
Theorem 1. (Non-linear Feynman Kac theorem Pham (2015)). Let us consider closed-feedback type
Markovian controls αt. We define the triplet (Xα

t ,Y
α
t ,Z

α
t ) that constitutes the system of SDEs:

(Xα
t ,Y

α
t ,Z

α
t ) :


dXi,α

t = σ(t,Xi,α
t )dBi

t

dY i,α
t = −Hi(t,Xα

t , F
i,α
t , [αi,α(−i)])dt+ Zi,α

t · dBi
t

Y i,α
T = Ψi(Xi,α

T ), i ∈ {1, . . . , I}
, (9)

FBSDEs

where Hi is the stochastic Hamiltonian system. Then, auxiliary adjoint variables Y i,α
t and Zi,α

t can
be reformulated as follows:{

Y i,α
t = J i(t,Xα

t , [αi,α(−i)]), Zi,α
t = ∇xJ i(t,Xα

t , [αi,α(−i)]),

Hi(t,Xα
t , F

i,α
t , [αi,α(−i)]) =

[
σ(t,Xi,α

t )−TZi,α
t

]
· b(t,Xi,α

t , αi) + hi(t,Xα
t ,α),

(10)

where we denote F i,α
t := F i,α(t,Xi,α

t , αi) = σ(t,Xi,α
t )−T b(t,Xi,α

t , αi) for simplicity.

To solve the optimal control problem, the existing method (Han & Hu, 2020) considers quadratic
linear forms in the forward dynamics and its corresponding global convex Hamiltonian system
(i.e.,∇αiHi = 0). Despite the numerical advantage in obtaining an optimal control, the restricted
form of linear SDEs limits the usage of their method on high-level applications such as time series
prediction. This shortcoming motivates us to utilize neural networks when modeling control agents
for enough expressivity. A critical issue, here, is to approximate the solution to non-convex type
HJBEs that support the neural networks structure. To tackle this issue, we reformulate the equivalent
adjoint problem to find value functions:

θ∗i = argmin
θi

∫
T
dY i,α

t ([θi,θ(−i)])dt, α∗
i := α∗

i (·, ·, θ∗i ). (11)

Instead of searching the analytic solution to HJBEs (i.e.,Ai ≈ ker∇αiHi), the newly suggested
adjoint equation in (11) enables us to apply the gradient descent scheme to find optimal actions.
In this case, our method searches the parameter space to obtain the optimal admissible action
(i.e.,Ai ≈ αi(·, ·;ker∇θH

i[αi(θi)])) meaning that we focus on the local Nash equilibrium.

Deep Neural Fictitious Play. Let us define an entire set of action profiles as αm at stage m ∈
{1, . . . ,M}. Then, our method iteratively conducts the following two-step optimization:

• Information Distribution. At the beginning of the m-th stage, each neural agent publicly share
the information about the entire system (αm−1,Xα,m−1

t ) from the (m− 1)-th stage. In this case,
we can define the decoupled value function for individual neural agents as follows:

Vi,m(t, x) = inf
αi∈Ai

E
[
J i,m(t,Xαm−1

t , [αm−1
i , ᾱm−1

(−i) ])
∣∣Xᾱm−1

t

]
, (12)

where Xᾱm−1

t indicates the set of decisions driven by action profiles ᾱm−1 of the (m − 1)-th
stage. In this step, each neural agent recognizes response of colleagues towards the environment
and makes its relative decision. Note that each agent solves a minimization problem according to
the fixed environment of the previous stage.

• Decoupled Gradient Descent. After defining the decoupled problems in (12), each neural agent
solves its individual adjoint problem in (11) and updates its parameters as

θm+1
i = E

[
θmi − γm

∫
T
∇θidY

i,α
t ([θmi , θ̄m

(−i)])dt

]
, ᾱm

(−i) := αi(·, ·, θ̄m
(−i)), (13)

where γm is a learning rate of the optimizer at the m-th stage. In (13), gradient descent is applied
to minimize the separate cost J i,m while fixing the parameters of colleagues θ̄m

(−i). After solving
(13) for I neural agents in a parallel way, we collect the entire action profiles and update the
public information for the next stage, i.e., αm+1

i ← αm
i (·, ·, θ + dθ).
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Convergence of the Fictitious Play. In the previous contents, we suggest an alternative way to
approximate the Nash equilibrium via the gradient descent scheme. In what follows, we will show
the existence of an action set A related to the marginal constant ϵ := {ϵi}i∈{1,...,I} in the inequality
of (5).
Proposition 1. (informal) There exists a action set α(ϵ) ∈ A where the Markovian ϵ-Nash equilib-
rium in (5) can be achieved. Moreover, the obtained optimal actions αm+1

i i∈{1,··· ,I} ∈ α(ϵ) from
deep neural fictitious play preserves the stochastic optimality and the solution to HJBEs2:

Vt +H(t, ·, Ft, (α
m+1,αm

(·))) +
1

2
Tr(ΣHessVt) = 0, (14)

where H is the stochastic Hamiltonian system, Ft is an adjoint variable related to σ and b, and
HessVt denotes the Hessian of function Vt.

Proposition 1 reveals that the proposed fictitious play preserves the stochastic optimality during the
two-step optimization by showing the existence of local solutions to the decoupled Hamiltonian
systems. The crucial point is that the local action set is related to the capacity of neural agents and
neural networks with a large capacity assures small marginal values ϵ for accurate prediction.
Corollary 1. (Convergence of Predictor) There exist a constant C that is proportional to I , T and
Lipschitz constants Lb, Lα for {bi, αi}i∈{1,...,I} such that the following relation holds:

E
[∫

T

∥∥∥Λαm

s −Λαm∗

s

∥∥∥2 ds] ∝ O(||θm − θm∗
||3C [I,T, Lb, Lα] Σ), (15)

where Σ := supt∈T E
[∥∥σTσ(t, ·)

∥∥
F

]
is the maximal bound with respect to quadratic variations of

neural agents.

Corollary 1 shows that the convergence of the temporal aggregation made by parameterized neural
agents is highly dependent on the dynamics of the gradient descent during the fictitious play. If one
reformulates the proposed cooperative game into the zero-sum type counterpart, the opposed direction
of gradients induced by conflict agents can cause the divergent learning dynamics and unpleasant
results. In other words, the proposed gradient descent based fictitious play fits to the cooperative
scenario where neural agents pursue a shared goal. Appendix A.3 provides the numerical analysis
on the behavior of neural agents under the cooperation/competition to elucidate how the proposed
fictitious play operates in different game scenarios.

4 RELATED WORK

Neural DEs for Time Series. In the pioneering works (Dupont et al., 2019; Rubanova et al., 2019),
the general framework of encoding the complex time series into the latent space was first introduced to
improve the representational power of conventional Neural ODE. Further, latent SDEs (Li et al., 2020)
was proposed to enrich conventional deterministic models by considering a stochastic component (e.g.,
Wiener process). Neural RDE (Morrill et al., 2021) exploited the representation of log-signatures of
successive time series. CLPF (Deng et al., 2021) combined two distinctive ideas, continuous SDE and
normalizing flow, to model continuous latent flows. CRU (Schirmer et al., 2022) extended Kalman
filters to model-based continuous-discrete filters and showed the relation to neural SDEs. Neural
Laplace (Holt et al., 2022) showed novel interpretation on time series modeling by introducing the
Laplace representation that generalizes conventional DEs in the frequency domain. CSDE-TP (Park
et al., 2022) suggested a different perspective by adopting a control-theoretic interpretation of time
series prediction tasks to obtain the optimal paths driven by neural agents. The notable distinction is
that our proposed framework generalizes the equiconcentration of temporal attention in CSDE-TP to
enhance the aggregated information by balancing the relative importance.

Inductive Bias on Temporal States. In probabilistic modeling for time series analysis, existing
methods assumed a strong inductive bias on temporal states. The conditional future state p(T|O)
given past observations {ysi}si∈O is related to the temporal difference between T and O. For
example, GRU-D (Che et al., 2018) suggested a temporal decay module in the recurrent model that
can exponentially decrease the influence of past observations. Another strand of works (Mei & Eisner,

2We abused notation for clarity. Please refer to Section A.2 for precise information.
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BAQD Speech Commands Physionet
Methods MSE ↓ / NLL ↑ MSE ↓ / NLL ↑ MSE ↓ / NLL ↑

RNN-VAE 0.4493 / −1.878 0.5205 / −2.234 0.6494 / −2.878
GRU-D 0.4299 / −1.781 0.4721 / −1.992 0.4403 / −1.832

Latent ODE (RNN-Enc) 0.4058 / −1.660 0.5098 / −2.180 0.5313 / −2.288
Latent ODE (ODE-Enc) 0.3839 / −1.551 0.4950 / −2.106 0.5046 / −2.154
Latent SDE (RNN-Enc) 0.4049 / −1.655 0.5003 / −2.132 0.5301 / −2.282
Latent SDE (ODE-Enc) 0.3806 / −1.534 0.4980 / −2.121 0.4966 / −2.114

NJ-ODE 0.4803 / −2.033 0.5314 / −2.288 0.5167 / −2.214
Res-Flow 0.4379 / −1.821 0.4883/− 2.073 0.4785 / −2.025

GRU-Flow 0.4853 / −2.054 0.4979 / −2.120 0.4417 / −1.840
Neural Laplace 0.3633 / −1.447 0.4547 / −1.918 0.5550 / −2.392

CRU 0.3613 / −1.438 0.4464 / −1.863 0.5081 / −2.172
CSDE-TP 0.3481 / −1.371 0.4460 / −1.861 0.3958 / −1.610

CooPredict 0.2886 / −1.074 0.4128 / −1.695 0.3892 / −1.578

Table 1: Evaluation of Prediction task on the Air Quality/Speech Commands/Physionet datasets. The best results
are highlighted in bold. The second best results are colored blue. Evaluations metrics are scaled by 10−2 and
10−3, respectively.

2017; Zuo et al., 2020; Chen et al., 2020) directly parameterized temporal point processes (e.g.,
Hawkes process) that intrinsically assume the temporal decay with exponential intensity kernels.
More recently, Neural CDE (Kidger et al., 2020) applied the cubic spline that combines information
of temporally adjacent observations to enhance the representational power of the law data. To the
best of our knowledge, we propose the first DE-based framework that fully utilizes the temporal
correlation without making any inductive bias on the temporal states.

5 EXPERIMENTS

Benchmarks. We compared CooPredict against a broad range of DE based continuous dynamical
models. The dynamic models include GRU-D (Che et al., 2018), Latent ODE (Rubanova et al.,
2019), Latent SDE (Li et al., 2020), NJ-ODE (Herrera et al., 2021), Res-Flow (Biloš et al., 2021),
GRU-Flow (Biloš et al., 2021), CRU (Schirmer et al., 2022), Neural Laplace (Holt et al., 2022), and
CSDE-TP (Park et al., 2022). We implemented the benchmarks using open-source codes published by
authors except for Latent SDE whose decoder architecture was replaced from Neural ODE to SDE (Li
et al., 2020). Further details on hyper-parameters and implementation can be found in Appendix A.6.

Experimental Settings. We evaluated the time series prediction performance of CooPredict and the
benchmarks on multiple real-world datasets: BAQD (Zhang et al., 2017), Speech (Warden, 2018),
and Physionet (Silva et al., 2012). More detailed descriptions of these datasets are provided in
Appendix A.6.2. We split each time series in the interval [0, T ] into two sub-intervals: the first 80%
as the observation interval, i.e., O = [0, 0.8T ], and the remaining 20% as the prediction interval,
i.e., T = [0.8T, T ]. We split time series samples into two halves as training/evaluation sets in
Physionet. For BAQD and Speech datasets, we divided time series samples into 80/20 training/testing
splits for training and evaluation, respectively. For fair comparisons, we normalized data features
by utilizing a min-max normalization to ensure all data features lie within a unit cube [0, 1]d. We
used temporally averaged mean square errors (MSEs) and negative log-likelihoods (NLLs) as the
performance metrics. To evaluate the performance of the benchmarks, we followed an identical
protocol suggested by (Rubanova et al., 2019).

5.1 TIME SERIES PREDICTION

Table 1 reports the performance comparison of our method and benchmarks. As can be seen in
the table, our model significantly outperforms all the benchmarks for the evaluated datasets by a
large margin. Notably, most of the existing methods based on latent encoding fail to make accurate
predictions. We argue that the reason for such performance degradation is the absence of the
calibration process of training data. More specifically, in prior works, the past observations are
indiscriminately encoded in the latent space without awareness of temporal uncertainty of irregular
time series. For that reason, the model is vulnerable to the temporally noisy environment during

7
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Figure 2: Qualitative result on BAQD dataset. (Left) Sampled trajectories excluding agents α1 (red) and α35

(green), respectively. The prediction trajectory with full information is highlighted as (blue). (Right) The
decision attention function on the prediction time interval (i.e.,Aα∗

t ).

testing, which may cause a large generalization gap. In contrast, neural agents in our method actively
make cooperative decisions to calibrate the vicious effect of unseen data. If the agent detects harmful
signals, they voluntarily restrain the decision to follow the group rationality (i.e., accurate prediction).
Eventually, the cooperative group robustly suppresses the non-informative temporal dynamics in
the inference. Qualitative analysis on the robustness to out-of-distribution noises is provided in the
following subsection.

When compared to the baseline model, i.e., CSDE-TP, the key distinction of our method is the ability
to discriminate the importance of past observations. More specifically, the baseline model, i.e.,
CSDE-TP, disregards the effect of temporal association in the model design and simply leverages
uniform attention to predict future time series. Contrarily, our method delicately captures the intrinsic
temporal association by learning from data such that the cooperative group adaptively filters out the
impact of redundant and noisy signals. This results in a significant performance improvement over
CSDE-TP (≈ 20%). We further investigate how informative the learned temporal associations is in
the next subsection.

5.2 ABLATION STUDY

In this subsection, we provide ablation studies that model four distinct scenarios each of which
mimics different types of temporal dynamics in real-world time series: decay, impulse, delay, and
noisy observation. For each scenario, we investigate the advantages of the proposed cooperative
prediction and the expressivity of decision attention learned without any induction bias.

(A) Temporal Decay. Figure 2 shows that our decision attention infers temporal decay. The agent α∗
1

voluntarily decreases its own attention so that the observation at the farthest past merely contributes to
the inferred prediction. Such a phenomenon can be clearly observed at the prediction times proximate
to the beginning of the prediction interval showing that the rational group assigns high attention to s35.
Contrarily, the decision attention becomes less distinguishable when predicting the distant future. This
is remarkable since the cooperative agents reach the inductive bias (i.e., p(yt∈T|ys∈O) ∝ e−|t−s|)
a posteriori without any prior knowledge. Furthermore, the performance is drastically worsened
after excluding the agent α∗

35 (green) in the decision-making whereas no meaningful performance
drop can be observed after excluding agent α∗

1 (red), clearly showing that the decision X1,α∗

t is less
informative than others.

Figure 3: Qualitative Result on Gaussian-Impulse Noises.
(B) Temporal Impulse. Modeling physical phenomenon with point processes (e.g., Hawkes process)
is common in many domains including finance for a high-frequency market (Bacry et al., 2015) and
geology for earthquake (Ogata, 1998). In this experiment, we utilized Gaussian-impulse noises to
mimic such discrete noisy events occurring at random times3. Figure 3 illustrates the results on the

3Please refer to Appendix A.6.2 for detailed information.
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proposed decision attention of neural agents. Given impulse signals in the observation interval O,
neural agents accurately restore random peaks. Interestingly, neural agents {α5, α17, α25} that encode
the past impulse signals focus on the times at which impulse noise occurs. In other words, neural
agents emulate stochastic peaks by learning intrinsic temporal correlations (i.e., p(yt∈T|ys∈O), t, s ∼
Pois) between the random occurrence times of the past and the future impulse signals.

Method RMSE ↓

CSDE-TP 0.759
Latent ODE∗ 0.385
Latent SDE 0.366

Coupling-Flow∗ 0.539
Res-Flow∗ 0.350

Neural Laplace∗ 0.282
CRU 0.272

CooPredict 0.214

Table 2: Mackey-Glass DDE.

(C) Temporal Delay. In this experiment, we consider a dynamical
system based on Mackey–Glass DDE (Mackey & Glass, 1977). The
simulated trajectory is highly sensitive to given initial conditions,
which influence the future values in a time-delayed manner. Thus, cap-
turing the long-term temporal dependency is the key for accurate time
series prediction. In Table 2, we compare our method to benchmarks
reported in (Holt et al., 2022) using the same experimental setting. The
result shows that our method outperforms all the evaluated benchmarks
and effectively captures the delayed effect.

(D) Robustness to OOD Noise. To show the robustness of our method
to the out-of-distribution noise unseen during the training time, we set
an experiment suggested in (Deng et al., 2021). During the test time,
we generate a set of time stamps from a Poisson process {τ} ∼ Pois(λ) ∈ O. Then, the original
values at the sampled time stamps are replaced by a constant value in the range of [0.0, 1.0]. We set
the intensity level λ for the Poisson process to 7.0 in all experiments. Figure 4 shows that our method
provides the most robust performance that outperforms the prior works, while other methods often
fail as the noise level increases. This is because our method can compensate for the information loss
by relying on the decisions of the remaining agents. That is, when an observation is regarded as a
noisy signal, our decision attention simply filters out the impact of that observation when predicting
the future values. Contrarily, existing methods (e.g., Latent ODE) are incapable of dealing with the
unseen noises since there is no mechanism that can calibrate the impact of those noisy observations.
Figure 4 highlights that the existing methods lose the expressivity due to increased noise levels while
our method maintains superior performance even under high noise levels.

Figure 4: Robustness to Out-of-distribution Noise.

Learning Temporal Relevance from Data. Based on the investigations of the four scenarios, we
conclude that the proposed neural agents learn different types of temporal dynamics from the data by
cooperatively pursuing the group goal. The rational group filters out the influence of observations
that are redundant for predicting future states. This encourages neural agents to focus more on the
informative signals for accurate predictions by capitalizing on the data statistics.

6 CONCLUSION AND FUTURE WORK

In this paper, we proposed a novel framework for time series prediction as an application of coopera-
tive differential games. The new formulation is built upon the multi-agent dynamics called MaSDEs
where each individual agent encodes the partial information from past observations. Under the shared
goal, neural agents collaborate to achieve the Nash equilibrium which describes the optimal action
states that provide the most accurate future prediction. Theoretical analysis shows the convergence of
the proposed novel fictitious play highlighting the effectiveness of the proposed cooperative game.

Future Work. Beyond the basic form of objective functional, the behavioral rule for neural agents
can be delicately redesigned for a specified goal of interest. For example, one may extend the
proposed framework to the cooperative mean-field game (Carmona & Delarue, 2018) where infinitely
many agents are considered. In this direction, the system can provide mathematical formalism to
understand the individual influences of an infinitely large number of observations. This direction may
open a new way to understand the long-term dependency problem of modern recurrent networks.
Further, we hope this can bring the application of recent studies on mean-field fictitious play (Perrin
et al., 2020; Guo et al., 2019; Min & Hu, 2021) to time series analysis.
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A APPENDIX

A.1 MATHEMATICAL BACKGROUND

In this section, we briefly recall some basic elements of stochastic optimal controls needed in the
paper. We start by introducing the backward stochastic differential equation used in Section 3. In
particular, the adjoint variables (Y i,α

t , Zi,α
t ) are derived from the classical theory of non-linear

Feynman-Kac formula (Carmona & Delarue, 2018):

dY i,α
t = −Hi(t,Xα

t , F
i,α
t , [αi,α(−i)])dt+ Zi,α

t · dBi
t, (A.1)

where the stochastic Hamiltonian system with uncontrolled volatility for i-th agent is defined as
follows:

Hi(t,Xα
t , F

i,α
t , [αi,α(−i)]) =

[
σ(t,Xi,α

t )−TZi,α
t

]
· b(t,Xi,α

t , αi) + hi(t,Xα
t ,α). (A.2)

For simplicity, we define the auxiliary function F having following form:

F i,α(t,Xi,α
t , αi) := σ(t,Xi,α

t )−T b(t,Xi,α
t , αi). (A.3)

Next, we introduce the diriftless stochastic differential equation:

dXi,α
t = σ(t,Xi,α

t )dBi
t. (A.4)

Then, the Girsanov’s theorem gives the following Radon-Nikodym derivative:

dP
dQ

= ε

(∫
σ(t,Xi,α

t )−1b(t,Xi,α
t , αi) · dBi

t

)
T

, (A.5)

where we denote M−T := [M−1]T for any inevitable matrix M . Note that the regularity conditions
(H1) are essential to assure the existence of the Doléans-Dade exponential ε which defines the
stochastic exponential for the (local) martingale dM i

t = F i,α(t,Xi,α
t , αi) · dBi

t:

ε(M i)T := eM
i
t−Mi

0− 1
2 [M

i,Mi]t = e
∫ t
0
F i,α(u,Xi,α

u ,αi)·dBi
u− 1

2

∫ t
0
|F i,α|2(u,Xi,α

u ,αi)du. (A.6)

The second equality holds since M i
0 = 0 and the quadratic variation is calculated as [M i,M i]t =∫ t

0
|F i,α|2ds <∞. Then, by definition, the transformed representation W i

t in following equation is
also a Wiener process with respect to the probability measure P.

W i
t = Bi

t −
∫ t

0

σ(s,Xi,α
s )−T b(s,Xi,α

s , αi)ds = Bi
t −

∫ t

0

F i,α(t,Xi,α
t , αi)ds. (A.7)

Identically, the above relation can be rewritten as following differential form:

dW i
t = −

[
F i,α(t,Xi,α

t , αi)dt− dBi
t

]
. (A.8)

Notably, we can restore the proposed controlled neural SDE from driftless SDE in (A.4) by the
relation between W i

t and Bi
t shown in (A.8).

dXi,α
t = b(t,Xi,α

t , αi)dt+ σ(t,Xi,α
t )dW i

t . (A.9)

This relation gives the explicit form of adjoint dynamics as follows: Y i,α
t :

Y i,α
t = Ψi(Xi,α

T ) +

∫ T

t

Hi(t,Xα
t , F

i,α
t , [αi,α(−i)])ds−

∫ T

t

Zi,α
s · dBi

s

= Ψi(Xi,α
T ) +

∫ T

t

hi(t,Xα
t ,α) +

(
σ(s,Xi,α

s )−TZi,α
s ) · b(s,Xi,α

s , αi)
)
ds−

∫ T

t

Zi,α
s · dBi

s

= Ψi(Xi,α
T ) +

∫ T

t

hi(t,Xα
t ,α)ds+

∫ T

t

Zi,α
s ·

[
F i,α(s,Xi,α

s , αi)ds− dBi
s

]
= Ψi(Xi,α

T ) +

∫ T

t

hi(t,Xα
t ,α)ds−

∫ T

t

Zi,α
s · dW i

s .

(A.10)
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In the last equality, the Brownian motion is changed from Bi
s to W i

s , and the generic form of BSDE
for tuple (P,W i

t ) is presented. Since the third term in last line
∫
Zi,α
s · dW i

s is a martingale with
respect to the measure P, we can identify the conditional expectation with original objective functional
J i in (3) as follows:

J i = E[Y i,α
t |F̃t] = EP

[
Ψi(Xi,α

T ) +

∫ T

t

hi(t,Xα
t ,α)ds|Ft

]
, (A.11)

where F̃t is the augmented filtration according to the Brownian motion Bi
t .

A.2 PROOFS

Assumptions. Throughout the appendix, we make following assumptions for the proof.

(H1) σ−T (t, x, α(·, ·; θ))b(t, x, α(·, ·; θ)) is uniformly bounded, twice differentiable, Lipschitz con-
tinuous.

(H2) The k-th derivatives of neural agents with respect to both spatial and temporal variables are
Lipschitz continuous to the parameter space,

||∇(k)αi(·, x; θ) − ∇(k)αi(·, x; θ̃)|| + ||∂(k)
t αi(t, ·; θ) − ∂

(k)
t αi(t, ·; θ̃)|| ≤ Li||θ − θ̃||.

(A.12)

for all i ∈ {1, . . . , I}, 0 ≤ k ≤ 2, ∀θ, θ̃ ∈ Θ.

(H3) The expectation of Frobenius norm of adjoint variable Zt∈ SymI
+

4 is bounded, E ∥Zt∥F <D2.
Lemma 1. (Grönwall’s Inequality (Jacod & Shiryaev, 2013)) The left inequality induces the inequal-
ity in right-hand side:

B(t) ≤ A+

∫
T
B(s)C(s)ds −→ B(t) ≤ Ae

∫
T C(s)ds. (A.13)

A.2.1 PROOF OF PROPOSITION 1

The first step to showing the convergence of neural agents towards Nash equilibrium is to obtain the
deviation of the adjoint variable Yt during the fictitious play. For this, we first introduce the HJBE of
decoupled SDE system. In particular, the proposed system trains neural agents to solve the individual
decoupled HJBE at each stage m:

Vi,m+1
t + inf

αm
i ∈A

Hi(t, x, F i,αm

t , [αm
i ,αm

(−i)]) +
1

2
Tr(ΣTΣHessVi,m+1) = 0, (A.14)

where the cost functional at the next stage (i.e.,m+ 1) is related to the optimal actions in previous
stage that minimizes the decoupled Hamiltonian in (A.14). Then, one of our interest is to investigate
the deviation of Hamiltonian system:

δHi,m
t = Hi(t,Xαm

t , F i,αm

t , [αm+1
i ,αm

(−i))]︸ ︷︷ ︸
Fictitious Play

−Hi(t,Xα∗

t , F i,α∗

t ,α∗)︸ ︷︷ ︸
Optimal Agents

, (A.15)

where the deviation shows the difference between Hamiltonian systems that are derived by neural
agents lying in optimal and sub-optimal regions, respectively. Similarly, we define the deviations for
both adjoint variables:

δY i,m
t = Y i,m

t − Y i,∗
t , δZi,m

t = Zi,m
t − Zi,∗

t , (A.16)

Following by the notations in (A.16) and the equality (A.10), the deviation for the adjoint variable
(i.e., δY i,m

t ) at stage m can be represented as the following Itô’s differential:

dδY i,m+1
t = −δHi,mdt+ δZi,m+1

t · dBi
t. (A.17)

4The matrix manifolds SymI
+ is the space of semi-positive definite matrices. In this paper, we regard the

Euclidean flat norm (i.e., ∥·∥F ) is inherited to this space.
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Next, we evaluate the squared norm of δY(·)
t to investigate the convergence of objective functional

d
∥∥δYm+1

t

∥∥2 = −2δYm+1
t · δHm

t dt+
∥∥δZm+1

t

∥∥2
F
dt+ 2(δZm+1

t δYm+1
t ) · dBt. (A.18)

Note that the equality in (A.18) follows by Itô’s lemma for squared norm of multi-dimensional
representation At:

d ∥At∥2 = 2At · µAt
dt+ ∥σAt

∥2F dt+ 2AtσAt
· dBt, (A.19)

where µAt and σAt are the terms corresponding to bounded variations and local martingales of
process At, respectively. By taking the expectation on both sides of (A.18), we obtain the following
result:

E
[∥∥δYm+1

t

∥∥2] = E
[∥∥δYm+1

T

∥∥2]+ E
[∫

T
2δYm+1

t · δHm
t −

∥∥δZm+1
t

∥∥2
F
dt

]
≤ 4E

[∥∥δXm+1
T

∥∥2]+ 2E
[∫

T

∥∥δYm+1
t

∥∥2 ∥δHm
t ∥

2
dt

]
− E

[∫
T

∥∥δZm+1
t

∥∥2
F
dt

]
.

(A.20)

Owing to the characteristic of backward SDE (i.e.,Ym
t ), the integral sign is reversed in the second

term in (A.20). The expectation with respect to the local martingale term vanishes as set of Wiener
processes Bt are related to Q. Since BSDE imposes the terminal constraint Ym

T = Ψm, Y∗
T = Ψ∗,

the following result is given by Lipschitzness of Ψ as:

E
[∥∥δYm+1

T

∥∥2] = E
[∥∥Ψm+1 −Ψ∗∥∥2] ≤ 4E

[∥∥δXm+1
T

∥∥2] . (A.21)

This shows the inequality in (A.20). By rearranging the relation and applying Hölder’s inequality we
have

EQ

[∥∥δYm+1
t

∥∥2 + ∥∥δZm+1
t

∥∥2
F

]
≤ 4EQ

[∥∥δXm+1
T

∥∥2]+2EQ

[∫
T

∥∥δYm+1
t

∥∥2 dt]EQ

[∫
T
∥δHm

t ∥
2
dt

]
.

(A.22)
Finally, we apply Grönwall’s inequality in Lemma 1 to above inequality, we obtain

EQ

[∥∥δYm+1
t

∥∥2] ≤ EQ

[∥∥δXm+1
T

∥∥2] e|T| ln 16E[
∫
T∥δH

m
t ∥2dt]. (A.23)

Now, our next step is to bound the right-hand side of (A.23). We start by estimating an upper bound
of the following time averaged mean-squared Hamiltonian (A.1):

E
[∫

T
∥δHm

t ∥
2
dt

]
≤ EP

[∫
T

∥∥δFm
t · δZm+1

t + δhm
t

∥∥2 dt] . (A.24)

For this, we rearrange the Hamiltonian deviation δHm
t by inserting two terms δFm

t · δZm
t and δhm

t .
In this case, Hamiltonian deviation is rewritten as

δHi,m
t = F (t,Xα

t , [α
m+1
i ,αm

(−i)]) · (Z
i,m+1
t − Zi,∗

t )

+ (F (t,Xα
t , [α

m+1
i ,αm

(−i)])− F (t,Xα
t ,α

m)) · Zi,∗
t

+ (F (t,Xα
t ,α

m)− F (t,Xα
t ,α

∗)) · Zi,∗
t

+ hi(t,Xα
t , [α

m+1
i ,αm

(−i)])− hi(t,Xt,α
m) + hi(t,Xα

t ,α
m)− hi(t,Xα

t ,α
∗).

(A.25)

Here, we define the Lipschitz constants of three different objects as follows:

Lip[· · · ] = Cn, {· · · } ∈ {F i,m, σi, hi}, n = 1, 2, 3. (A.26)

By the Lipschitz continuity defined above (A.26), one can obtain the squared norm of the Hamiltonian
deviation:

∥δHm
t ∥

2 ≤ C1 ∥F∥2
∥∥Zm+1

t − Z∗
t

∥∥2
F

+ C1

∥∥αm+1
i − αm

i

∥∥2 · ∥Z∗
t ∥F + C1

I∑
i

∥αm −α∗∥2 ·
∥∥∥Zi,∗

t

∥∥∥
F

+ C3

∥∥αm+1
i − αm

i

∥∥2 + C3 ∥αm −α∗∥2 .

(A.27)
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Consider we have a proper M = C1D1D2 ∨ 2(C1D2 ∨ C3) ∨ 2I(C1D2 ∨ C3) from the definitions
of pre-determined constants C1, C2, C3, D1 and D2. Then, the above inequality can be rewritten in a
compact form:

E
[
∥δHm

t ∥
2
]
≤M

[
E
∥∥αm+1 −αm

∥∥2 + E ∥αm −α∗∥2
]
. (A.28)

Note that the equality
∥∥∥[βi,α

m
(−i)]−αm,∗

∥∥∥ =
∥∥βi − αm,∗

i

∥∥ holds for an arbitrary action β ∈ A.
Finally, we conclude the result (A.28) by showing following inequalities:

E
[∑I

i ∥δZ∗
t ∥

2
F

]
≤ I supi E

[∥∥∥δZi,∗
t

∥∥∥2
F

]
≤ 2ID2,

supt,(α∈A) E
[
∥F (t, x,α)∥2

]
≤ C1E

[∥∥F (0, 0,0)2
∥∥] ≤ D1.

(A.29)

In previous contents, the detailed convergent states of adjoint variable Y ∗
t are not specified. To

continue our discussion from (A.28), we develop a gradient descent-based update rule for train-
ing neural agents. For any neural parameters θ ∈ Θ, we assume that the i-th agent’s action
θi → αi(·, ·; θi) ≜ αi(θi) lies in the compact subset A ∈ A(ϵ) ∈ L2([0, T ] × Rd) (i.e.,∫
||αi(t, x; θi)||2dtdpt(x)dx <∞) for some ϵ > 0. Then, we introduce the following notations:

αm,k
i := αm

i (t, x; θmi (k)), αm,k := {αm,k
i }1≤i≤d, (A.30)

where the auxiliary notation u ∈ R+ is an indicator for gradient descent steps. Similarly, we define
the notations (Y i,m,k,Ym,k) and (Hi,m,k,Hm,k). Let us define the operator B : N+ → L2(T×Rd)

as B[θmi (k)] := αm,k+1
i , and if k > K, then we denote αm+1

i := αm+1,k=0
i . By Lipschitz continuity

of neural agents, we have

∥B[θmi (k)]− αm
i ∥

2
L2 = E

[
∥αm

i (t, x; θmi (k + 1))− αm
i (t, x; θmi (k))∥2

]
≤ L2(i)E

[
∥θmi (k)− θmi (k + 1)∥2

]
≤ L̃2E

[∥∥∥γ∇θiEQ[Y
i,m,k
t |F̃t]

∥∥∥2]
≤ L̃2γ2EẼQ

[∥∥∥∇θiY
i,m,k
t

∥∥∥2 |F̃t

]
≤ L̃2γ2EẼ

[∥∥∇θih
i,m,k

∥∥2 |Ft

]
= L̃2γ2E

[∥∥∇θih
i,m,k

∥∥2] ,

(A.31)

where L̃ = maxi Li. In the fourth inequality, the probability measure for the integration is switched
from Q to P with the Radon-Nikodym dP/dQ. Since the cost function is uniformly bounded with
the vanishing derivative of terminal cost (i.e., ∂θig

i(XT ) = 0), the expectation is well-defined. It is
worth noting that the filtration Ft contains the information of past observations {ysi} as we impose
constraints to satisfy Xi,α

si = ysi almost surely for neural agents.

As a next step, we evaluate the upper bound of mean-squared evaluation as follows:

E
[ ∥∥∇θih

i,m,k
∥∥2 ]

≤ 4E
[∥∥∥⟨Aαm

(t),Xαm

t ⟩ − yt

∥∥∥2 ∥∥∥∇θiA
αm

i (·,·;θm
i )

i (t)X
i,αm

i
t +A

αm
i

i (t)∇θiX
i,αm

i (·,·;θi)
t

∥∥∥2]
≤ 4E

[∥∥hi,m,k
∥∥2 ∥∥∥∇θiA

αm
i (·,·;θm

i )
i (t)X

i,αm
i

t +A
αm

i
i (t)∇θiX

i,αm
i (·,·;θm

i )
t

∥∥∥2] .
(A.32)

Let us assume that there exist representations b̂, α̂ such that b(t,Xt, αi) = b̂(t,Xt)αi(t,Xt; θi) and
Ai(t,Xt; θi) = Â(t)αi(t,Xt; θi). This brings the evaluations of the following two norm bounds:∥∥∥E [∇θiX

i,αm
i

t

]∥∥∥2 ≤ E
[∥∥∥∇θiX

i,αm
i

t

∥∥∥2] ≤ ∫ t

si

E
[∥∥∥b̂(u,Xu)∇θiα

m
i (u,Xu; θ

m
i )
∥∥∥2] du

≤ |T|L̃2E||b̂||2.
(A.33)
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Similarly, we have the gradient norm bound of individual decision attention

E
[∥∥∥∇θiA

αm
i

i

∥∥∥2] = E
[∥∥∥Â∇θiα

m
i (t,Xt; θ

m
i )
∥∥∥2] ≤ E

∥∥∥Â2
∥∥∥ L̃2. (A.34)

For simplicity, suppose that there exists a constant M2 such that each function b̂, Â, ∂tÂ has
expectation norm bound:

E
[
||b̂||2 + ||Â||2 +

∥∥∥∂tÂ∥∥∥2] < M2. (A.35)

The inequality in (A.32) together with evaluations in (A.33), (A.34) yields:

E
[∥∥∇θih

i,m,k
∥∥] ≤ E

[∥∥hi,m,k
∥∥2] 4L̃2M2(1 + |T|). (A.36)

This directly gives the L2-bound of the operator B during the fictitious play over stages according to
the cost function shown in the right-hand side:

∥B[θmi (k)]− αm
i ∥

2
L2 ≤ E

[∥∥hi,m,k
∥∥2] 4L̃4γ2M2(1 + |T|). (A.37)

Let us say that the gradient descent optimizes the neural parameters to achieve small enough values
for cost function for k ≥ K.

K = min
k∈N+

{
k;E

[∥∥hi,m,k
∥∥2] ≤ υi,m

4L̃4γ2M2(1 + |T|)

}
. (A.38)

Following by the definition of constant K, the L2 deviation of neural agent can be bounded as follows:

E
[∥∥αm+1

i − αm
i

∥∥2] := ∥B[θmi (K)]− αm
i ∥

2
L2 ≤ υi,m. (A.39)

If we denote α∗
i = α

m∗
i

i , m∗
i ∈ N+, the following relation holds by triangle inequalities:

EP

[
∥α∗

i − αm
i ∥

2
]
≤ (m∗

i −m) sup
m

υi,m. (A.40)

As υi,m ∨ supm υi,m = supm υi,m for all m ≤ m∗, the expectation of Hamiltonian deviation can be
bounded as a summation of two terms in (A.28):

E
[
∥δHm

t ∥
2
]
≤M(m∗ −m+ 1)υm, (A.41)

where υm = {υi,m+1} and m∗ = {m∗
i }. By inserting above inequality into (A.23) and replacing

m+ 1→ m, we obtain

E
[
∥δYm

t ∥
2
]
≤ E

[
∥δXm

T ∥
2
]
e|T|

2 ln 16M(m∗−m+2)υm . (A.42)

Next, we evaluate the upper-bound of mean-squared decision deviations in (A.42):

EQ

[
∥δXm

T ∥
2
]
≤ L̃2|T| ∥θm − θ∗∥2 . (A.43)

By denoting the deviation of parameters as κm = ∥δθm∥2, we select small enough values υi,m that
is related to the marginal constants ϵi,m:

υm :=
ln ϵm − ln(κm+1L̃

2|T|)
|T|2 ln 16M(m∗ −m+ 2)

, ϵ := sup
{m≤m∗,i∈{1,··· ,I}}

ϵi,m. (A.44)

If the neural agent have large enough capacity to minimize the via gradient descent, these values
assures minimal upper bound of the inequality (A.23). Finally, the non-linear Feynman-Kac theorem,
which is related to the equation (A.10), directly gives the :∥∥∥J i([α∗

i ,α
∗
(−i)])− J

i,m→m∗
([αm

i ,αm
(−i)])

∥∥∥2 ≤ E
[∥∥∥δYm→m∗

t

∥∥∥2] ≤ ϵ, (A.45)
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Since J i(α∗) < J i(αm), our next step is to show the inequality between cost functionals given the
action αm

i obtained from the fictitious play and the the other arbitrary action βi ̸= αm
i :

J i,m→m∗
([αm

i ,αm
(−i)]) ≤ J

i,m→m∗
([βi, α

m
i ]), βi ∈ Ai. (A.46)

Then, by triangle inequality, we obtain inequality that shows the ϵ-Nash equilibrium:

J i([α∗
i ,α

∗
(−i)]) ≤ J

i([βi,α
∗
(−i)]) + ϵi, ∀1 ≤ i ≤ I. (A.47)

The final step of the proof is to show the stochastic optimality according to the defined marginal
constants ϵ. Let θmi (k) : N+ → Θ be the trajectory of the neural parameters of the i-th neural agents
at learning iteration k. Recall the fact that αm

i = αm−1,K
i := B[θmi (K − 1)]. Let us denote that

Ym
t |θ is the adjoint variable given neural parameters θ. We define the closed metric balls {Bk

δmi
}k∈N+

centered at θmi (k) with the radius 0 < δmi such that

Bk
δmi

:= {ϑ ∈ Θ; ∥ϑ− θmi (k)∥ ≤ δkr , θ
m
i (k) is a local minimum of EYm

t |θ}. (A.48)

Next, we consider the sub-sequence {θmi (k̄)}k̄∈N̄ ⊆ {θmi (k)}k∈N , which defines the strictly-
decreasing sequence {EYm

t |θm(k)}k̄∈N̄ an ordered index set N̄ . Then, the admissible set Ai is
defined as follows:

Ai :=


(K̄,m∗)⋃
(k̄,1)

αm
i (·, ·, Bk̄

δmi
); K̄ := max{N̄}

 ⊂ L2(T × Rd), 1 ≤ m ≤ m∗, (A.49)

where K̄ is a maximal element in N̄ . Intuitively saying, the admissible set Ai is a collection of local
metric balls centered at neural parameters of i-th agent updated by gradient descent.

To define the optimal actions of neural agents, let us consider an arbitrary local convex set β ∈ C ⊂ A
where A is the admissible action set for multi-agents defined as follows:

A :=

I⊗
i=1

Ai ⊂ [L2(T × Rd)]⊗I . (A.50)

By the convexity, there exist I pairs {(ωi, βi)}i∈{1,...,I} such that the following equality holds:

(B ◦ · · · ◦ B[θm(k = 0)])︸ ︷︷ ︸
K times

= αm+1
i + ωiβi (A.51)

and βi(·) ̸= 0. Then, the Gâteaux derivative (Carmona, 2016, Theorem 4.12) of adjoint variable Ym
t

is derived as follows:

0 ≤ d

dω
dY i,α

t (αm+1
i + ωiβi) = E

[∫
T
∇αiH

i(t,Xα
t , F

i,α
t , [αm+1

i ,αm
(−i)]) · βidt

]
≤ E

[∫
T

∥∥∥∇αi
Hi(t,Xα

t , F
i,α
t , [αi,α

m
(−i)])|α=αm+1

i +ωiβi

∥∥∥2 · ∥βi∥2 dt
]
.

(A.52)

The first inequality is trivial due to the definition of admissible set Ai. Since ∥β∥2 is nonzero, one
can deduce that∇αH|αm+ωβ ≥ 0. In other words, the action profiles αm are optimal actions and
any arbitrary actions βi ∈ Ci are eventually non-optimal. Hence, we can conclude from the above
result that the inequality in (A.46) holds in the admissible action set. Finally, we conclude this proof
by showing the stochastic optimality is preserved during the fictitious play by the definition of A that
induces the following relation:

Vt +H(t, ·, Ft, (α
m+1,αm

(·))) +
1

2
Tr(ΣHessVt) = 0, (A.53)

where Σ = σTσ. The stochastic optimality is obtained by the Hamiltonian equation (A.53) for every
stages .
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A.2.2 PROOF OF COROLLARY 1

In the proof of the Proposition 1, we have shown the existence of the local action set that assures the
convergence of the fictitious play. In this proof, we show the convergence of predictor Λα

t according
to the action set assuring the local Nash equilibrium. We start by calculating the norm deviation for
the Itô’s differential of the predictor (i.e., δΛα

t ).

E
[
d ∥δΛα

t ∥
2
]
= E

[
2δΛα

t · d [δΛα
t ] + [dδΛα

t ]
T
dδΛα

t

]
≤
∑
j

2E
[(
δAjX

j
t

)
·
(
δAjbj + δXj

t∂tAj + δXj
t [∇Aj ]

Tbj

+
1

2
Xj

tTr[δΣj∇2Aj ]
)
+ δ(∇Aj)

TΣjdt

]
=
∑
j

2E
[
δ(A2

jb
T
j X

j
t )︸ ︷︷ ︸

(a)

+||δXj
t ||2
(
δ(Aj∂tAj)︸ ︷︷ ︸

(b)

+ δ(Aj∇Ajb
T
j )︸ ︷︷ ︸

(c)

+
1

2
Tr[Σj∇2δAj ]︸ ︷︷ ︸

(d)

)
+ (∇δAj)

TΣj︸ ︷︷ ︸
(e)

dt

]
.

(A.54)

We followed by the rules for denoting the object deviation in the previous proof to denote object
deviations combined with the linear operators (∂t,∇,∇2,Tr) on C2(Rd). From the last equality
of (A.54), we estimate the upper bounds of each term.

(a) : E
[∣∣∣δA2

jb
T
j X

j
t

∣∣∣ dt] ≤ E
[
||Â||2||b̂||2

∥∥δαm
j

∥∥2 ∥∥∥δXj
t

∥∥∥2] ≤ TL̃2M3
2κ

2
m. (A.55)

The result directly follows from By the assumption in (A.35), the following evaluation is trivial:

E
[∥∥∥δXj

t

∥∥∥2] = E

[∥∥∥∥∫
T
δbjsds

∥∥∥∥2
]
≤ E

[∫
T

∥∥δbjs∥∥2 ds] ≤ TM2L̃κm. (A.56)

Now, we estimate the two terms (b), (c) that contain spatial and temporal derivatives of decision
attention function in following bracket:

(b) : E [|δAj∂tAj | dt] ≤ E
[∣∣∣Âj · ∂tÂjδαj

∣∣∣+ ∣∣∣Âj · δ∂tαj

∣∣∣ dt] ≤ 2L̃κmM2dt,

(c) : E
[∣∣δAj∇Ajb

T
j

∣∣ dt] = E
[∥∥∥Â∥∥∥2 ∣∣αm

j · ∇αm
j

∣∣ dt] ≤M2E
[∥∥αm

j

∥∥2 ∥∥∇αm
j

∥∥2
F
dt
]

≤M2L̃
2κ2

mdt,
(A.57)

where the basic property of vector gradient∇(v ·u) = (∇v)·u+v ·(∇u) for all v, u ∈ Rd,∇v,∇u ∈
Rd×d is used in the estimation of (c). For the last two terms, i.e., (d), (e), we used the fact that the
deviation of the matrix Σ is not defined because our MaSDEs assume uncontrollable volatility.



(d) :
1

2
E
[
|Tr[Σj∇2δAj ]|dt

]
=

1

2
E
[∣∣∣Tr[ΣjÂj(∇2αm

j −∇2αm∗

j )]
∣∣∣]

≤
∥∥∥Âj

∥∥∥ 1

2
E
[
∥Σj∥F

∥∥∇2δAj

∥∥
F
dt
]

≤ M2κm

2
E
[
∥Σj∥F

]
dt,

(e) : E
[∣∣δ(∇Aj)

TΣj

)∣∣ dt] ≤M2κmE[∥Σj∥F ]dt.

(A.58)
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Note that the first line in (A.58) can be obtained by the trace inequality (i.e.,Tr[AB] ≤ ∥A∥F ∥B∥F ).
By collecting the evaluated terms above, we conclude the proof by showing the following relation:

E
[∫

T
∥δΛα

s ∥
2
ds

]
∝ O

(∥∥∥θm − θm∗
∥∥∥3 IT2L̃3M3

2 sup
t∈T

E [∥Σ∥F ]
)
. (A.59)

A.3 NON-COOPERATIVE GAME

Empirical Study for the Non-cooperation. This section is devoted to answer the following important
question: Why do we consider a cooperative scenario rather than a non-cooperative one? This
question is crucial as the shared goal could have been achieved in a highly competitive and non-
cooperative environment (Ye et al., 2018). For an intuitive explanation, we introduce a specific
scenario where the neural agent becomes adversarial and determines that interfering other agent’s
objectives is the best possible strategy to achieve its own goal. Followed by the definition, the
behavioral rules for the adversarial agent can be summarized by the following equations:

(Adversarial Agent)
{
Vj(t, x) = J j(t, x, [α∗

j ,α(−j)]),

J i(t, x, [α∗
i ,α(−i)]) ≤ J i(t, x, [α∗

i , α
∗
j ,α(−i,−j)]).

(A.60)

The second inequality shows that the adversarial agent (here, the j-th agent) can easily ruin other
agent’s goal although the victim (here, the i-th agent) produces its best response α∗

i to the adversarial
environment. Eventually, one can expect that the competitive group will fail to accomplish the
original goal (i.e., the accurate prediction). To formalize the aformentioned scenario by estimating
the total amount of inefficiency derived from the non-cooperation, we formulate the non-cooperative
game (e.g., min-max) by converting the cooperative behavior into an adversarial one:

ĥj = hj +
∥∥Aαj

j − 1
∥∥2 , min

αj

∥∥Aαj

j − 1
∥∥2 = max

αj

A
αj

j , j ̸= i ∈ {1, . . . , I}. (A.61)

With the adversarial cost ĥj , selfish agents maximize the influence on temporal aggregation by
interfering with opponents. As the symmetric relation in (7) fails to be satisfied, the proposed
framework with cost function in (A.61) is regarded as a non-cooperative game.

Figure A.1: Coalition cost for two scenarios.

To elucidate the importance of cooperation in our
framework of time series prediction, we conduct an
experiment on Mackey-Glass dataset by setting a sin-
gle adversarial agent α1. The red and blue learning
curves in Figure A.1 illustrate the coalition costs dur-
ing the fictitious play over 20 stages produced by
competitive and cooperative groups, respectively. As
one might expect, the cooperative group shows the
stable learning dynamics until it converges to the
agreement on the accurate prediction. This shows that the proposed fictitious play developed in
Section 3 enjoys the desirable characteristic for the accurate time series prediction. Contrarily,
the non-cooperative group under the competition fails to achieve a shared goal and shows that the
adversarial behavior is fatal to the proposed framework regardless of the number of adversaries.
In the optimization perspective, the primal reason for the failure is the instability induced by the
naive approach for the gradient-descent based min-max type optimization. As a remedy, one may
restrict the admissible action sets by considering an additional constraint on neural agents such as PL
condition (Nouiehed et al., 2019) to develop a sophisticated algorithm for convergent result. Yet, it is
an open question whether this theoretical perspective can lead to the accurate time series prediction.

A.4 SUMMARY OF RELEVANT CONCEPTS

The most relevant strand of research about the multi-agent system in the machine learning community
is multi-agent reinforcement learning (MARL) (Foerster et al., 2016). The relevant concepts between
MARL and CooPredict are summarized in Table A.1. However, MARL and CooPredict differ in
that MARL usually assumes model-free in discrete time, while CooPredict assumes model-based in
continuous time.
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Observations {ysi}si∈O
Targets {yt}t∈T

Agents Agents α = [α1, . . . , αI ], αi := αi(·, ·; θi)
Actions Actions αi(t,X

i,α
t ; θi)

States Decisions Xα
t = [X1,α

t , . . . , XI,α
t ] := MaSDEs({ysi}si∈O,α)

Rewards Negative Errors −||Λt − yt||2

Objective functional J i(t,Xα
t ,α)

Value function Vi(t, x) = minα∗
i ∈Ai J i(t, x, [α∗

i ,α
∗
(−i)])

Nash equilibrium J i(t, x, [α∗
i ,α

∗
(−i)]) ≤ J i(t, x, [βi,α

∗
(−i)]) + ϵi

Continuous Bellman HJB Vt +H(t, ·, Ft, (α
m+1,αm

(·))) +
1
2
Tr(ΣHessVt) = 0

Table A.1: Comparison of relevant concepts. The first column stands for RL terminology; the second column
stands for our terminology. In our works, agents and actions are neural networks and infinitesimal output given
spatio-temporal variables (t,Xi,α

t ). Decisions are continuous stochastic trajectories, and errors are L2 loss
between aggregated decisions and targets.

A.5 PSEUDO-CODE OF COOPREDICT

We provide pseudo code for the training procedure of CooPredict via the deep neural fictitious play
described in Section 3 in Algorithm 1 and the inference procedure of CooPredict in Algorithm 2.

Algorithm 1 Pseudo-code for Deep Neural Fictitious Play

Input: Time-series data y = ({ysi}si∈O, {yt}t∈T), Neural Parameters θm=0 = [θ01, . . . , θ
0
I ]

Publicly share the given environment αm=0 = [α0
1(·, ·, θ01), . . . , α0

I(·, ·, θ0I )]
for m = 1 to M(i.e.,The total number of stages) do

Simulate set of decisions with action profiles αm−1 at previous stage with equation (1).
for all i ∈ [1, · · · , I] in parallel do

Fix the environment of the previous stage except agent i.

θm−1 = [θm−1
i , θ̄m−1

(i−1)], αm−1 = [αm−1
i , ᾱm−1

(i−1)]

Solve the decoupled adjoint problem for agent i in equation (13).

Vi,m
t + inf

αm−1
i ∈A

Hi(t, x, F i,αm−1

t , [αm−1
i , ᾱm−1

(i−1)]) +
1

2
Tr(ΣTΣHessVi,m) = 0

θmi = E
[
θm−1
i − γm

∫
T
∇θidY

i,α
t ([θm−1

i , θ̄m−1
(−i) ])dt

]
Collect the updated neural parameters θm = [θm1 , . . . , θmI ]

end for
Update the total environment for the next stage αm ← αm−1(·, ·,θm).

end for
Return Optimal action profiles α∗ = [α∗

1, . . . , α
∗
I ].

Algorithm 2 Pseudo-code for Inference
Input: Held-out time-series data ŷ = ({ŷsi}si∈O, {ŷt}t∈T), Optimal action profiles α∗ = [α∗

1, . . . , α
∗
I ]

Simulate optimal decisions over the future interval T given observations {ŷsi}si∈O.

[X1,α∗

t , . . . , XI,α∗

t ]t∈T = MaSDEs({ŷsi}si∈O,α
∗)

Aggregate individual decisions with decision attention Aα∗
= [A

α∗
1

1 (t,X1,α∗

t ), . . . , A
α∗
I

I (t,XI,α∗

t )]t∈T

[Λα∗
t ]t∈T = [Aα∗

(t,Xα∗
t )⊤Xα∗

t ]t∈T

Return Prediction on future [Λα∗
t ]t∈T over the interval T.
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A.6 IMPLEMENTATION DETAILS

Evaluation. In all experiments with real-world datasets, we train each model for 500 epochs using
the Adam optimizer with a learning rate of 10−3 and batch size of 128. We reported the MSE
and (Gaussian) NLL as suggested in (Rubanova et al., 2019). The performance is evaluated on the
predicted parts of the test dataset. For the evaluation of our method, we evaluate MSEs between the
predictor Λα∗

t and a test data ŷt ∼ ν̂t as follows:

(MSEs) : Es∼O,t∼T,Λα∗
t ∼Q

[∥∥∥ŷt − Λα∗

t |ŷs1
,...,ŷsi

,...,ŷsI

∥∥∥2] , (A.62)

where the predictor is conditioned by the past observations {ŷsi}si∈O of the testing time series. As
neural agents collaborate to minimize the temporally averaged utilities (i.e.,J i ≈

∫
T E||Λs−ys||2ds)

via cooperative differential game, the goal of the proposed cooperative game becomes identical to
forecast the time series ŷt∈T given observations.

A.6.1 NETWORK ARCHITECTURE

In this section, we briefly introduce the network architecture of multi-agent neural SDEs as shown in
Figure A.2. Given the initial condition {y(·)}si∈O, each neural agent takes the spatio-temporal variable
(t,Xi,α

t ) and produces infinitesimally transformed outputs to propagate its own stochastic trajectory.
First, the temporal variable t is embedded into inhomogeneous and non-linear representation as t′ =
(t, sin(t), cos(t)). Note that we adopt the temporal privacy function suggested in (Park et al., 2022)
for further temporal encoding. After the non-linear time embedding, the intermediate representations
(t′, Xi,α

t ) are fed into the novel module referred to as agent identification layer (AIL), which is
defined as follows:

AIL(Xi,α
t , i) := ζi

(
Xi,α

t − E(Xi,α
t )

Std(Xi,α
t )

)
+ ζi, ζi = (i+ 1)/I. (A.63)

Figure A.2: The architecture of MaSDEs.

The AIL is motivated by the adaptive instance nor-
malization (Huang & Belongie, 2017) that adaptively
transforms the statistics of intermediate feature repre-
sentations according to user-guided information (i.e.,
index for neural agent). This encourages each neural
agent to propagate the individual stochastic trajec-
tory and ensures the separated representations. The
outputs from AIL are fed into two subsequent linear
layers with LipSwish (Chen et al., 2019) and produce
values for drift bi and decision attention functions
Aαi

i . In the experiments with real-world dataset, we
identically set the dimension of hidden layers of each
neural agent and the drift network as 128 following
the baseline model (Park et al., 2022). We set the
number of hidden layers as 2 for neural agents and
1 for the drift network. For the attention network,
we used a relatively small dimension (i.e., , 36) with
2 hidden layers across all the experiments. For the
simulation of the stochastic trajectory given the archi-
tecture, we discretize sampled times by applying the
Euler-Maruyama scheme.

A.6.2 DATASET

PhysioNet Challenge 2012, (Silva et al., 2012), contains 8000 multivariate clinical time series
obtained from the intensive care unit (ICU). Each time series has various clinical features of the
patient’s first 48 hours after admission to ICU. We processed the dataset to hourly time series and
eliminated static features so that each time series has a length of 48 with 35 time varying features
(e.g., Albumin, Heart-rate, etc.,). We used half of the time series as the training dataset and the
remaining parts as the test dataset.

21



Under review as a conference paper at ICLR 2023

Speech Commands, (Warden, 2018), consists of one-second audio records of various spoken words
such as “Yes”, “No”, “Up”, and “Down”. Since there are more than 100,000 record samples, we
sub-sampled the dataset on two conflicting classes (i.e., “Right” and “Left”). As a result, 6950
time series records were selected. We pre-processed these time series by computing Mel-frequency
cepstrum coefficients so that each time series has a length of 54 with 65 channels. We used 80% of
selected data as training dataset and the remaining parts as the test dataset.

Beijing Air-Quality, (Zhang et al., 2017; Dua & Graff, 2017), consists of multi-year air quality
recordings across different locations in Beijing. Each sample contains 6-dimensional time series
features of PM2.5, PM10, SO2, NO2, CO, and O3, which are recorded per hour. We segmented data
per two days so that each sample has a length of 48. We combine recordings of 12 different locations
into a single dataset and randomly split 80% of data into the training dataset and 20% of data into the
test dataset.

Gaussian-Impulse Noise. To generate the Gaussian-impulse noise, we first sample the random
time-stamp {t1, t2, · · · } from a homogeneous possion process with intensity level of 8.0. With this
time-stamp, we generate the data Yt over the time interval [0, 48] as follows:

Yt =

{
0.6 + Ut, if {t} ∼ Pois(λ)

Zt, otherwise.
(A.64)

where Ut ∼ Unif[0, 1], Zt ∼ N (0, σ2) and the standard deviation of Gaussian noise is set to 0.1.
Similar to other datasets, we set the observable and the prediction intervals to contain the first 80%
and the last 20% of total points, respectively.

Delayed Differential Equation. In this experiment, we simulated deterministic trajectories of
delayed differential equations (DDEs) as following:

Mackey-Glass DDE:
dyt
dt

=
βy(t−τ)

1 + yn(t−τ)

− γyt, (A.65)

where we set hyper-parameters as τ = 10, n = 10, β = 0.25, γ = 0.1. Among the entire set of
trajectories, we randomly split 80% of data into training dataset, and remaining 10% and 10% into
validation and test dataset, respectively. We follow the identical experiment setting as suggested
in (Holt et al., 2022) where the entire interval is split into two halves, i.e., O = [0, 10] and T =
[10, 20].

A.7 COMPARISONS WITH NON-DE BASED MODEL

Method Test MSE ↓ (×10−2)

Transformer (Vaswani et al., 2017) 0.4476± 0.069
Informer (Zhou et al., 2021) 0.4258± 0.002
Autoformer (Wu et al., 2021) 0.4854± 0.022

CooPredict 0.4136± 0.017

Table A.2: Test MSE (mean ± std) over five runs on the Speech
datasets.

The most significant advantage of using
DE-based methods over non-DE based
methods is the capability of handling ir-
regularly sampled or partially observed
time-series data which is common in
real-world settings such as medicine or
business. In such settings, non-DE-
based counterparts are incapable of ap-
plying without careful consideration of
pre-processing steps such as discretiza-
tion and interpolation. Therefore, we compared CooPredict with the state-of-the-art Transformer-
based time-series forecasting methods on the Speech dataset. We chose the Speech dataset since it
comprises complete time-series observations with regular time intervals which can be favorable for
applying non-DE-based methods and can avoid potential bias due to design choices of pre-processing
steps. As can be seen in Table A.2, CooPredict outperforms its non-DE-based counterparts implying
that our proposed method can be a promising tool for general time-series modeling under both regular
and irregular settings.

A.8 ADDITIONAL QUALITATIVE RESULTS

In this subsection, we illustrate the results of an experiment in Section 5.2 on Mackey-Glass DDE
and provide additional qualitative results on BAQD across overall features of different instances to
show the effectiveness of the proposed method on time series prediction.
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Figure A.3 shows the ground truth trajectories and inferred predictions/attentions results for various
sampled trajectories. Notably, the future trajectory is highly sensitive to initial states, so capturing the
delayed effect of the distant past on the future is required for successful prediction in this dataset.
As can be seen in Figure A.3, our method can adaptively capture the delayed effect and provide
accurate predictions regardless of different histories. Compared to our method, the CSDE-TP provides
worsened performance. In light of this, we can interpret that adjusting the relative impact of given
observations is more effective for generating accurate future predictions than treating them equally.

Figure A.3: Qualitative results for randomly selected trajectories on Mackey-Glass DDE. (Left) Black and blue
lines correspond to the ground truth trajectory ŷt and the prediction Λα∗

t , respectively. (Right) The decision
attention Aα∗

t on the prediction time interval T.

Figure A.4 shows prediction results for all features and learned attentions on the BAQD. We can
observe that our method exhibits attentions similar (but not strictly restricted) to temporal decay
assumption. As can be seen in Figure A.4, the learned decision attention varies depending on the
given observation. We claim that neural agents have a variety of cooperation patterns to generate
accurate prediction. That is, our method flexibly extracts complex and heterogeneous temporal
correlations beyond simple temporal decay assumed by the conventional methods.
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Figure A.4: Additional qualitative results on BAQD dataset. Each row displays the prediction results of
corresponding features. The last row displays the learned decision attention function on the prediction interval T.
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