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Abstract

Job-shop scheduling problem (JSP) is a mathematical optimization problem widely1

used in industries like manufacturing, and flexible JSP (FJSP) is also a common2

variant. Since they are NP-hard, it is intractable to find the optimal solution for3

all cases within reasonable times. Thus, it becomes important to develop efficient4

heuristics to solve JSP/FJSP. A kind of method of solving scheduling problems5

is construction heuristics, which constructs scheduling solutions via heuristics.6

Recently, many methods for construction heuristics leverage deep reinforcement7

learning (DRL) with graph neural networks (GNN). In this paper, we propose a new8

approach, named residual scheduling, to solving JSP/FJSP. In this new approach,9

we remove irrelevant machines and jobs such as those finished, such that the states10

include the remaining (or relevant) machines and jobs only. Our experiments show11

that our approach reaches state-of-the-art (SOTA) among all known construction12

heuristics on most well-known open JSP and FJSP benchmarks. In addition, we13

also observe that even though our model is trained for scheduling problems of14

smaller sizes, our method still performs well for scheduling problems of large sizes.15

Interestingly in our experiments, our approach even reaches zero gap for 49 among16

50 JSP instances whose job numbers are more than 150 on 20 machines.17

1 Introduction18

The job-shop scheduling problem (JSP) is a mathematical optimization (MO) problem widely used in19

many industries, like manufacturing (Zhang et al., 2020; Waschneck et al., 2016). For example, a20

semiconductor manufacturing process can be viewed as a complex JSP problem (Waschneck et al.,21

2016), where a set of given jobs are assigned to a set of machines under some constraints to achieve22

some expected goals such as minimizing makespan which is focused on in this paper. While there are23

many variants of JSP (Abdolrazzagh-Nezhad and Abdullah, 2017), we also consider an extension24

called flexible JSP (FJSP) where job operations can be done on designated machines.25

A generic approach to solving MO problems is to use mathematical programming, such as mixed26

integer linear programming (MILP) and constraint satisfaction problem (CSP). Two popular generic27

MO solvers for solving MO are OR-Tools (Perron and Furnon, 2019) and IBM ILOG CPLEX28

Optimizer (abbr. CPLEX) (Cplex, 2009). However, both JSP and FJSP, as well as many other MO29

problems, have been shown to be NP-hard (Garey and Johnson, 1979; Lageweg et al., 1977). That30

said, it is unrealistic and intractable to find the optimal solution for all cases within reasonable times.31

These tools can obtain the optimal solutions if sufficient time (or unlimited time) is given; otherwise,32

return best-effort solutions during the limited time, which usually have gaps to the optimum. When33

problems are scaled up, the gaps usually grow significantly.34

In practice, some heuristics (Gupta and Sivakumar, 2006; Haupt, 1989) or approximate methods35

(Jansen et al., 2000) were used to cope with the issue of intractability. A simple greedy approach is to36
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use the heuristics following the so-called priority dispatching rule (PDR) (Haupt, 1989) to construct37

solutions. These can also be viewed as a kind of solution construction heuristics or construction38

heuristics. Some of PDR examples are First In First Out (FIFO), Shortest Processing Time (SPT),39

Most WorK Remaining (MWKR), and Most Operation Remaining (MOR). Although these heuristics40

are usually computationally fast, it is hard to design generally effective rules to minimize the gap to41

the optimum, and the derived results are usually far from the optimum.42

Furthermore, a generic approach to automating the design of heuristics is called metaheuristics, such43

as tabu search (Dell’Amico and Trubian, 1993; Saidi-Mehrabad and Fattahi, 2007) , genetic algorithm44

(GA) (Pezzella et al., 2008; Ren and Wang, 2012), and PSO algorithms (Lian et al., 2006; Liu et al.,45

2011). However, metaheuristics still take a high computation time, and it is not ensured to obtain the46

optimal solution either.47

Recently, deep reinforcement learning (DRL) has made several significant successes for some48

applications, such as AlphaGo (Silver et al., 2016), AlphaStar (Vinyals et al., 2019), AlphaTensor49

(Fawzi et al., 2022), and thus it also attracted much attention in the MO problems, including chip50

design (Mirhoseini et al., 2021) and scheduling problems (Zhang et al., 2023). In the past, several51

researchers used DRL methods as construction heuristics, and their methods did improve scheduling52

performance, illustrated as follows. Park et al. (2020) proposed a method based on DQN (Mnih et al.,53

2015) for JSP in semiconductor manufacturing and showed that their DQN model outperformed GA54

in terms of both scheduling performance (namely gap to the optimum on makespan) and computation55

time. Lin et al. (2019) and Luo (2020) proposed different DQN models to decide the scheduling action56

among the heuristic rules and improved the makespan and the tardiness over PDRs, respectively.57

A recent DRL-based approach to solving JSP/FJSP problems is to leverage graph neural networks58

(GNN) to design a size-agnostic representation (Zhang et al., 2020; Park et al., 2021b,a; Song et al.,59

2023). In this approach, graph representation has better generalization ability in larger instances60

and provides a holistic view of scheduling states. Zhang et al. (2020) proposed a DRL method61

with disjunctive graph representation for JSP, called L2D (Learning to Dispatch), and used GNN62

to encode the graph for scheduling decision. Besides, Song et al. (2023) extended their methods63

to FJSP. Park et al. (2021b) used a similar strategy of (Zhang et al., 2020) but with different state64

features and model structure. Park et al. (2021a) proposed a new approach to solving JSP, called65

ScheduleNet, by using a different graph representation and a DRL model with the graph attention for66

scheduling decision. Most of the experiments above showed that their models trained from small67

instances still worked reasonably well for large test instances, and generally better than PDRs. Among68

these methods, ScheduleNet achieved state-of-the-art (SOTA) performance. There are still other69

DRL-based approaches to solving JSP/FJSP problems, but not construction heuristics. Zhang et al.70

(2022) proposes another approach, called Learning to Search (L2S), a kind of search-based heuristics.71

In this paper, we propose a new approach to solving JSP/FJSP, a kind of construction heuristics, also72

based on GNN. In this new approach, we remove irrelevant machines and jobs, such as those finished,73

such that the states include the remaining machines and jobs only. This approach is named residual74

scheduling in this paper to indicate to work on the remaining graph.75

Without irrelevant information, our experiments show that our approach reaches SOTA by outper-76

forming the above mentioned construction methods on some well-known open benchmarks, seven77

for JSP and two for FJSP, as described in Section 4. We also observe that even though our model78

is trained for scheduling problems of smaller sizes, our method still performs well for scheduling79

problems of large sizes. Interestingly in our experiments, our approach even reaches zero gap for 4980

among 50 JSP instances whose job numbers are more than 150 on 20 machines.81

2 Problem Formulation82

2.1 JSP and FJSP83

A n ×m JSP instance contains n jobs and m machines. Each job Jj consists of a sequence of kj84

operations {Oj,1, . . . , Oj,kj}, where operation Oj,i must be started after Oj,i−1 is finished. One85

machine can process at most one operation at a time, and preemption is not allowed upon processing86

operations. In JSP, one operation Oj,i is allowed to be processed on one designated machine, denoted87

by Mj,i, with a processing time, denoted by T
(op)
j,i . Table 1 (a) illustrates a 3× 3 JSP instance, where88

the three jobs have 3, 3, 2 operations respectively, each of which is designated to be processed on89
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one of the three machines {M1,M2,M3} in the table. A solution of a JSP instance is to dispatch all90

operations Oj,i to the corresponding machine Mj,i at time τ
(s)
j,i , such that the above constraints are91

satisfied. Two solutions of the above 3x3 JSP instance are given in Figure 1 (a) and (b).92

Table 1: JSP and FJSP instances

(a) A 3× 3 JSP instance

Job Operation M1 M2 M3

Job 1
O1,1 3
O1,2 5
O1,3 4

Job 2
O2,1 2
O2,2 4
O2,3 3

Job 3 O3,1 3
O3,2 2

(b) A 3× 3 FJSP instance

Job Operation M1 M2 M3

Job 1
O1,1 3 2
O1,2 3 5
O1,3 4 3

Job 2
O2,1 2
O2,2 4
O2,3 3

Job 3 O3,1 3 4
O3,2 2 2

(a) (b) (c) (d)

Figure 1: Both (a) and (b) are solutions of the 3x3 JSP instance in Table 1 (a), and the former has the
minimal makespan, 12. Both (c) and (d) are solutions of the 3x3 FJSP instance in Table 1 (b), and the
former has the minimal makespan, 9.

While there are different expected goals, such as makespan, tardiness, etc., this paper focuses on93

makespan. Let the first operation start at time τ = 0 in a JSP solution initially. The makespan of the94

solution is defined to be T (mksp) = max(τ
(c)
j,i ) for all operations Oj,i, where τ

(c)
j,i = τ

(s)
j,i + T

(op)
j,i95

denotes the completion time of Oj,i. The makespans for the two solutions illustrated in Figure 1 (a)96

and (b) are 12 and 15 respectively. The objective is to derive a solution that minimizes the makespan97

T (mksp), and the solution of Figure 1 (a) reaches the optimal.98

A n × m FJSP instance is also a n × m JSP instance with the following difference. In FJSP,99

all operations Oj,i are allowed to be dispatched to multiple designated machines with designated100

processing times. Table 1 (b) illustrates a 3 × 3 FJSP instance, where multiple machines can be101

designated to be processed for one operation. Figure 1 (c) illustrates a solution of an FJSP instance,102

which takes a shorter time than that in Figure 1 (d).103

2.2 Construction Heuristics104

An approach to solving these scheduling problems is to construct solutions step by step in a greedy105

manner, and the heuristics based on this approach is called construction heuristics in this paper. In106

the approach of construction heuristics, a scheduling solution is constructed through a sequence of107

partial solutions in a chronicle order of dispatching operations step by step, defined as follows. The108

t-th partial solution St associates with a dispatching time τt and includes a partial set of operations109

that have been dispatched by τt (inclusive) while satisfying the above JSP constraints, and all the110

remaining operations must be dispatched after τt (inclusive). The whole construction starts with S0111

where none of operations have been dispatched and the dispatching time is τ0 = 0. For each St, a set112

of operations to be chosen for dispatching form a set of pairs of (M , O), called candidates Ct, where113

operations O are allowed to be dispatched on machines M at τt. An agent (or a heuristic algorithm)114

chooses one from candidates Ct for dispatching, and transits the partial solution to the next St+1. If115

there exists no operations for dispatching, the whole solution construction process is done and the116

partial solution is a solution, since no further operations are to be dispatched.117
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(a) S0 (b) S1 (c) S2

(d) S3 (e) S4 (f) S5

(g) S6 (h) S7 (i) S8

Figure 2: Solution construction, a sequence of partial solutions from S0 to S8.

Figure 2 illustrates a solution construction process for the 3x3 JSP instance in Table 1(a), constructed118

through nine partial solutions step by step. The initial partial solution S0 starts without any operations119

dispatched as in Figure 2 (a). The initial candidates C0 are {(M1, O1,1), (M3, O2,1), (M1, O3,1)}.120

Following some heuristic, construct a solution from partial solution S0 to S9 step by step as in the121

Figure, where the dashed line in red indicate the time τt. The last one S9, the same as the one in122

Figure 1 (a), is a solution, since all operations have been dispatched, and the last operation ends at123

time 12, the makespan of the solution.124

For FJSP, the process of solution construction is almost the same except for that one operation have125

multiple choices from candidates. Besides, an approach based on solution construction can be also126

viewed as the so-called Markov decision process (MDP), and the MDP formulation for solution127

construction is described in more detail in the appendix.128

3 Our Approach129

In this section, we present a new approach, called residual scheduling, to solving scheduling problems.130

We introduce the residual scheduling in Subsection 3.1, describe the design of the graph representation131

in Subsection 3.2, propose a model architecture based on graph neural network in Subsection 3.3 and132

present a method to train this model in Subsection 3.4;133

3.1 Residual Scheduling134

In our approach, the key is to remove irrelevant information, particularly for operations, from states135

(including partial solutions). An important benefit from this is that we do not need to include all136

irrelevant information while training to minimize the makespan. Let us illustrate by the state for the137

partial solution S3 at time τ3 = 3 in Figure 2 (d). All processing by τ3 are irrelevant to the remaining138

scheduling. Since operations O1,1 and O2,1 are both finished and irrelevant the rest of scheduling,139

they can be removed from the state of S3. In addition, operation O2,2 is dispatched at time 2 (before140

τ3 = 3) and its processing time is T
(op)
2,1 = 4, so the operation is marked as ongoing. Thus, the141

operation can be modified to start at τ3 = 3 with a processing time 4− (3− 2). Thus, the modified142

state for S3 do not contain both O1,1 and O2,1, and modify O2,2 as above. Let us consider two more143

examples. For S4, one more operation O2,2 is dispatched and thus marked as ongoing, however, the144

time τ4 remains unchanged and no more operations are removed. In this case, the state is almost the145

same except for including one more ongoing operation O2,2. Then, for S5, two more operations O3,1146
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and O2,2 are removed and the ongoing operation O1,2 changes its processing time to the remaining147

time (5-3).148

For residual scheduling, we also reset the dispatching time τ = 0 for all states with partial solutions149

modified as above, so we derive makespans which is also irrelevant to the earlier operations. Given150

a scheduling policy π, T (mksp)
π (S) is defined to be the makespan derived from an episode starting151

from states S by following π, and T
(mksp)
π (S, a) the makespan by taking action a on S.152

3.2 Residual Graph Representation153

In this paper, our model design is based on graph neural network (GNN), and leverage GNN to154

extract the scheduling decision from the relationship in graph. In this subsection, we present the155

graph representation. Like many other researchers such as Park et al. (2021a), we formulate a partial156

solution into a graph G = (V, E), where V is a set of nodes and E is a set of edges. A node is either a157

machine node M or an operation node O. An edge connects two nodes to represent the relationship158

between two nodes, basically including three kinds of edges, namely operation-to-operation (O → O),159

machine-to-operation (M → O) and operation-to-machine (O → M ). All operations in the same160

job are fully connected as O → O edges. If an operation O is able to be performed on a machine161

M , there exists both O → M and M → O directed edges. In (Park et al., 2021a), they also let all162

machines be fully connected as M → M edges. However, our experiments in section 4 show that163

mutual M → M edges do not help much based on our Residual Scheduling. An illustration for graph164

representation of S3 is depicted in Figure 3 (a).165

(a) Graph for S3 (b) Graph embedding (c) Score function

Figure 3: Graph representation and networks.

In the graph representation, all nodes need to include some attributes so that a partial solution S at166

the dispatching time τ can be supported in the MDP formulation (in the appendix). Note that many of167

the attributes below are normalized to reduce variance. For nodes corresponding to operations Oj,i,168

we have the following attributes:169

Status ϕj,i: The operation status ϕj,i is completed if the operation has been finished by τ , ongoing if170

the operation is ongoing (i.e., has been dispatched to some machine by τ and is still being processed171

at τ ), ready if the operation designated to the machine which is idle has not been dispatched yet and172

its precedent operation has been finished, and unready otherwise. For example, in Figure 3 (a), the173

gray nodes are completed, the red ongoing, the yellow ready and the white unready. In our residual174

scheduling, there exists no completed operations in all partial solutions, since they are removes for175

irrelevance of the rest of scheduling. The attribute is a one-hot vector to represent the current status176

of the operation, which is one of ongoing, ready and unready. Illustration for all states S0 to S8 are177

shown in the appendix.178

Normalized processing time T̄
(op)
j,i : Let the maximal processing time be T

(op)
max = max∀j,i(T

(op)
j,i ).179

Then, T̄ (op)
j,i = T

(op)
j,i /T

(op)
max. In our residual scheduling, the operations that have been finished are180

removed in partial solutions and therefore their processing time can be ignored; the operations that181

has not been dispatched yet still keep their processing times the same; the operations that are ongoing182

change their processing times to the remaining times after the dispatching time τt. As for FJSP, the183

operations that has not been dispatched yet may have several processing times on different machines,184

and thus we can simply choose the average of these processing times.185
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Normalized job remaining time T̄
(job)
j,i : Let the rest of processing time for job Jj be T

(job)
j,i =186 ∑

∀i′≥i T
(op)
j,i′ , and let the processing time for the whole job j be T

(job)
j =

∑
∀i′ T

(op)
j,i′ . In practice,187

T
(job)
j is replaced by the processing time for the original job j. Thus, T̄ (job)

j,i = T
(job)
j,i /T

(job)
j . For188

FJSP, since operations Oj,i can be dispatched to different designated machines Ml, say with the189

processing time T
(op)
j,i,l , we simply let T (op)

j,i be the average of T (op)
j,i,l for all Ml.190

For machine nodes corresponding to machines Ml, we have the following attributes:191

Machine status ϕl: The machine status ϕl is processing if some operation has been dispatched to192

and is being processed by Ml at τ , and idle otherwise (no operation is being processed at τ ). The193

attribute is a one-hot vector to represent the current status, which is one of processing and idle.194

Normalized operation processing time T̄
(mac)
l : On the machine Ml, the processing time T

(mac)
l is195

T
(op)
j,i (the same as the normalized processing time for node Oj,i) if the machine status is processing,196

i.e., some ongoing operation Oj,i is being processed but not finished yet, is zero if the machine status197

is idle. Then, this attribute is normalized to T
(op)
max and thus T̄ (mac)

l = T
(mac)
l /T

(op)
max.198

Now, consider edges in a residual scheduling graph. As described above, there exists three relationship199

sets for edges, O → O, O → M and M → O. First, for the same job, say Jj , all of its operation200

nodes for Oj,i are fully connected. Note that for residual scheduling the operations finished by the201

dispatching time τ are removed and thus have no edges to them. Second, a machine node for Ml is202

connected to an operation node for Oj,i, if the operation Oj,i is designated to be processed on the203

machine Ml, which forms two edges O → M and M → O. Both contains the following attribute.204

Normalized operation processing time T̄
(edge)
j,i,l : The attribute is T̄

(edge)
j,i,l = T

(op)
j,i /T

(op)
max. Here,205

T
(op)
j,i = T

(op)
j,i,l in the case of FJSP. If operation Oj,i is ongoing (or being processed), T (op)

j,i is the206

remaining time as described above.207

3.3 Graph Neural Network208

In this subsection, we present our model based on graph neural network (GNN). GNN are a family209

of deep neural networks (Battaglia et al., 2018) that can learn representation of graph-structured210

data, widely used in many applications (Lv et al., 2021; Zhou et al., 2020). A GNN aggregates211

information from node itself and its neighboring nodes and then update the data itself, which allows212

the GNN to capture the complex relationships within the data graph. For GNN, we choose Graph213

Isomorphism Network (GIN), which was shown to have strong discriminative power (Xu et al., 2019)214

and summarily reviewed as follows. Given a graph G = (V, E) and K GNN layers (K iterations),215

GIN performs the k-th iterations of updating feature embedding h(k) for each node v ∈ V:216

h(k)
v = MLP (k)((1 + ϵ(k))h(k−1)

v +
∑

u∈Nb(v)

h(k−1)
u ), (1)

where h
(k)
v is the embedding of node v at the k-th layer, ϵ(k) is an arbitrary number that can be217

learned, and Nb(v) is the neighbors of v via edges in E . Note that h(0)
v refers to its raw features for218

input. MLP (k) is a Multi-Layer Perceptron (MLP) for the k-th layer with a batch normalization219

(Ioffe and Szegedy, 2015).220

Furthermore, we actually use heterogeneous GIN, also called HGIN, since there are two types of221

nodes, machine and operation nodes, and three relations, O → O, O → M and M → O in the222

graph representation. Although we do not have cross machine relations M → M as described above,223

updating machine nodes requires to include the update from itself as in (1), that is, there is also one224

more relation M → M . Thus, HGIN encodes graph information between all relations by using the225

four MLPs as follows,226

h(k+1)
v =

∑
R

MLP
(k+1)
R ((1 + ϵ

(k+1)
R )h(k)

v +
∑

u∈NR(v)

h(k)
u ) (2)

where R is one of the above four relations and MLP
(k)
R is the MLP for R. For example, for S0 in227

Figure 2 (a), the embedding of M1 in the (k + 1)-st iteration can be derived as follows.228

h
(k+1)
M1

= MLP
(k+1)
MM ((1 + ϵ

(k+1)
MM )h

(k)
M1

) +MLP
(k+1)
OM (h

(k)
O1,1

+ h
(k)
O1,2

+ h
(k)
O1,3

) (3)
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Similarly, the embedding of O1,1 in the (k + 1)-st iteration is:229

h
(k+1)
O1,1

= MLP
(k+1)
OO ((1 + ϵ

(k+1)
OO )h

(k)
O1,1

+ h
(k)
O1,2

+ h
(k)
O1,3

) +MLP
(k+1)
MO (h

(k)
M1

) (4)

In our approach, an action includes the two phases, graph embedding phase and action selection phase.230

Let h(k)
G denote the whole embedding of the graphs G, a summation of the embeddings of all nodes,231

h
(k+1)
v . In the graph embedding phase, we use an HGIN to encode node and graph embeddings as232

described above. An example with three HGIN layers is illustrated in Figure 3 (b).233

In the action selection phase, we select an action based on a policy, after node and graph embedding234

are encoded in the graph embedding phase. The policy is described as follows. First, collect all235

ready operations O to be dispatched to machines M . Then, for all pairs (M , O), feed their node236

embeddings (h(k)
M , h(k)

O ) into a MLP Score(M,O) to calculate their scores as shown in Figure 3 (c).237

The probability of selecting (M , O) is calculated based on a softmax function of all scores, which238

also serves as the model policy π for the current state.239

3.4 Policy-Based RL Training240

In this paper, we propose to use a policy-based RL training mechanism that follows REINFORCE241

(Sutton and Barto, 2018) to update our model by policy gradient with a normalized advantage242

makespan with respect to a baseline policy πb as follows.243

Aπ(S, a) =
T

(mksp)
πb (S, a)− T

(mksp)
π (S, a)

T
(mksp)
πb (S, a)

(5)

In this paper, we choose a lightweight PDR, MWKR, as baseline πb, which performed best for244

makespan among all PDRs reported from the previous work (Zhang et al., 2020). In fact, our245

experiment also shows that using MWKR is better than the other PDRs shown in the appendix. The246

model for policy π is parametrized by θ, which is updated by ∇θlogπθAπθ
(St, at). Our algorithm247

based on REINFORCE is listed in the appendix.248

4 Experiments249

4.1 Experimental Settings and Evaluation Benchmarks250

In our experiments, the settings of our model are described as follows. All embedding and hidden251

vectors in our model have a dimension of 256. The model contains three HGIN layers for graph252

embedding, and an MLP for the score function, as shown in Figure 3 (b) and (c). All MLP networks253

including those in HGIN and for score contain two hidden layers. The parameters of our model, such254

as MLP, generally follow the default settings in PyTorch (Paszke et al., 2019) and PyTorch Geometric255

(Fey and Lenssen, 2019). More settings are in the appendix.256

Each of our models is trained with one million episodes, each with one scheduling instance. Each257

instance is generated by following the procedure which is used to generate the TA dataset (Taillard,258

1993). Given (N , M ), we use the procedure to generate an n×m JSP instance by conforming to259

the following distribution, n ∼ U(3, N), m ∼ U(3, n), and operation count kj = m, where U(x, y)260

represents a distribution that uniformly samples an integer in a close interval [x, y] at random. The261

details of designation for machines and processing times refer to (Taillard, 1993) and thus are omitted262

here. We choose (10,10) for all experiments, since (10,10) generally performs better than the other263

two as described in the appendix. Following the method described in Subsection 3.4, the model is264

updated from the above randomly generated instances. For testing our models for JSP and FJSP,265

seven JSP open benchmarks and two FJSP open benchmarks are used, as listed in the appendix.266

The performance for a given policy method π on an instance is measured by the makespan gap G267

defined as268

G =
T

(mksp)
π − T

(mksp)
π∗

T
(mksp)
π∗

(6)

where T (mksp)
π∗ is the optimal makespan or the best-effort makespan, from a mathematical optimization269

tool, OR-Tools, serving as π∗. By the best-effort makespan, we mean the makespan derived with a270
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Table 2: Average makespan gaps for TA benchmarks.
Size 15×15 20×15 20×20 30×15 30×20 50×15 50×20 100×20 Avg.

RS 0.148 0.165 0.169 0.144 0.177 0.067 0.100 0.026 0.125
RS+op 0.143 0.193 0.159 0.192 0.213 0.123 0.126 0.050 0.150
MWKR 0.191 0.233 0.218 0.239 0.251 0.168 0.179 0.083 0.195
MOR 0.205 0.235 0.217 0.228 0.249 0.173 0.176 0.091 0.197
SPT 0.258 0.328 0.277 0.352 0.344 0.241 0.255 0.144 0.275
FIFO 0.239 0.314 0.273 0.311 0.311 0.206 0.239 0.135 0.254
L2D 0.259 0.300 0.316 0.329 0.336 0.223 0.265 0.136 0.270
Park 0.201 0.249 0.292 0.246 0.319 0.159 0.212 0.092 0.221
SchN 0.152 0.194 0.172 0.190 0.237 0.138 0.135 0.066 0.161

sufficiently large time limitation, namely half a day with OR-Tools. For comparison in experiments,271

we use a server with Intel Xeon E5-2683 CPU and a single NVIDIA GeForce GTX 1080 Ti GPU.272

Our method uses a CPU thread and a GPU to train and evaluate, while OR-Tools uses eight threads273

to find the solution.274

4.2 Experiments for JSP275

For JSP, we first train a model based on residual scheduling, named RS. For ablation testing, we276

also train a model, named RS+op, by following the same training method but without removing277

irrelevant operations. When using these models to solve testing instances, action selection is based278

on the greedy policy that simply chooses the action (M,O) with the highest score deterministically,279

obtained from the score network as in Figure 3 (c).280

For comparison, we consider the three DRL construction heuristics, respectively developed in (Zhang281

et al., 2020) called L2D, (Park et al., 2021b) by Park et al., and (Park et al., 2021a), called ScheduleNet.282

We directly use the performance results of these methods for open benchmarks from their articles.283

For simplicity, they are named L2D, Park and SchN respectively in this paper. We also include some284

construction heuristics based PDR, such as MWKR, MOR, SPT and FIFO. Besides, to derive the285

gaps to the optimum in all cases, OR-Tools serve as π∗ as described in (6).286

Now, let us analyze the performances of RS as follows. Table 2 shows the average makespan gaps287

for each collection of JSP TA benchmarks with sizes, 15×15, 20×15, 20×20, 30×15, 30×20, 50×15,288

50×20 and 100×20, where the best performances (the smallest gaps) are marked in bold. In general,289

RS performs the best, and generally outperforms the other methods for all collections by large290

margins, except for that it has slightly higher gaps than RS+op for the two collections, 15 × 15 and291

20 × 20. In fact, RS+op also generally outperforms the rest of methods, except for that it is very292

close to SchN for two collections. For the other six open benchmarks, ABZ, FT, ORB, YN, SWV293

and LA, the performances are similar and thus presented in the appendix. It is concluded that RS294

generally performs better than other construction heuristics by large margins.295

4.3 Experiments for FJSP296

Table 3: Average makespan gaps for FJSP open benchmarks
Method MK LA(rdata) LA(edata) LA(vdata)

RS 0.232 0.099 0.146 0.031
RS+op 0.254 0.113 0.168 0.029
DRL-G 0.254 0.111 0.150 0.040
MWKR 0.282 0.125 0.149 0.051
MOR 0.296 0.147 0.179 0.061
SPT 0.457 0.277 0.262 0.182
FIFO 0.307 0.166 0.220 0.075

For FJSP, we also train a model based on residual scheduling, named RS, and a ablation version,297

named RS+op, without removing irrelevant operations. We compares ours with one DRL construction298

heuristics developed by (Song et al., 2023), called DRL-G, and four PDR-based heuristics, MOR,299
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MWKR, SPT and FIFO. We directly use the performance results of these methods for open datasets300

according to the reports from (Song et al., 2023).301

Table 3 shows the average makespan gaps in the four open benchmarks, MK, LA(rdata), LA(edata)302

and LA(vdata). From the table, RS generally outperforms all the other methods for all benchmarks303

by large margins, except for that RS+op is slightly better for the benchmark LA(vdata).304

5 Discussions305

In this paper, we propose a new approach, called residual scheduling, to solving JSP an FJSP problems,306

and the experiments show that our approach reaches SOTA among DRL-based construction heuristics307

on the above open JSP and FJSP benchmarks. We further discusses three issues: large instances,308

computation times and further improvement.309

Figure 4: Average makespan gaps of JSP instances with different problem sizes.

First, from the above experiments particularly for TA benchmark for JSP, we observe that the average310

gaps gets smaller as the number of jobs increases, even if we use the same model trained with311

(N,M) = (10, 10). In order to investigate size-agnostics, we further generate 13 collections of JSP312

instances of sizes for testing, from 15 × 15 to 200 × 20, and generate 10 instances for each collection313

by using the procedure above. Figure 4 shows the average gaps for these collections for RS and L2D,314

and these collections are listed in the order of sizes in the x-axis. Note that we only show the results315

of L2D in addition to our RS, since L2D is the only open-source among the above DRL heuristics.316

Interestingly, using RS, the average gaps are nearly zero for the collections with sizes larger than 100317

× 15, namely, 100 × 15, 100 × 20, 150 × 15, 200 × 15 and 200 × 20. Among the 50 JSP instances318

in the five collections, 49 reaches zero gaps. A strong implication is that our RS approach can be319

scaled up for job sizes and even reach the optimal for sufficient large job count.320

Second, the computation times for RS are relatively small and has low variance like most of other321

construction heuristics. Here, we just use the collection of TA 100x20 for illustration. It takes about322

30 seconds on average for both RS and RS+op, about 28 for L2D and about 444 for SchN. In contrast,323

it takes about 4000 seconds with high variance for OR-tools. The times for other collections are listed324

in more detail in the appendix.325

Table 4: Average makespan gaps for FJSP open benchmark.
Method MK LA(rdata) LA(edata) LA(vdata)

RS 0.232 0.099 0.146 0.031
RS+100 0.154 0.047 0.079 0.007
DRL-G 0.254 0.111 0.150 0.040

DRL+100 0.190 0.058 0.082 0.014

Third, as proposed by Song et al. (2023), construction heuristics can further improve the gap by326

constructing multiple solutions based on the softmax policy, in addition to the greedy policy. They327

had a version constructing 100 solutions for FJSP, called DRL+100 in this paper. In this paper, we328

also implement a RS version for FJSP based on the softmax policy, as described in Subsection 3.3,329

and then use the version, called RS+100, to constructing 100 solutions. In Table 4, the experimental330

results show that RS+100 performs the best, much better than RS, DRL-G and DRL+100. An331

important property for such an improvement is that constructing multiple solutions can be done in332

parallel. That is, for construction heuristics, the solution quality can be improved by adding more333

computation powers.334
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