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TikTok and the Art of Personalization:
Investigating Exploration and Exploitation on Social Media Feeds

Anonymous Author(s)

ABSTRACT
Recommendation algorithms for social media feeds often function
as black boxes from the perspective of users. We aim to detect
whether social media feed recommendations are personalized to
users, and to characterize the factors contributing to personaliza-
tion in these feeds. We introduce a general framework to examine
a set of social media feed recommendations for a user as a timeline.
We label items in the timeline as the result of exploration vs. ex-
ploitation of the user’s interests on the part of the recommendation
algorithm and introduce a set of metrics to capture the extent of
personalization across user timelines. We apply our framework
to a real TikTok dataset and validate our results using a baseline
generated from automated TikTok bots, as well as a randomized
baseline. We also investigate the extent to which factors such as
video viewing duration, liking, and following drive the personal-
ization of content on TikTok. Our results demonstrate that our
framework produces intuitive and explainable results, and can be
used to audit and understand personalization in social media feeds.

ACM Reference Format:
Anonymous Author(s). 2023. TikTok and the Art of Personalization: In-
vestigating Exploration and Exploitation on Social Media Feeds. In Pro-
ceedings of Make sure to enter the correct conference title from your rights
confirmation emai (WebConf ’24). ACM, New York, NY, USA, 9 pages. https:
//doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Social media platforms traditionally provided their end-users with
content that was ordered chronologically and came from users’
connections. However, in recent years, these platforms have started
employing recommendation systems to select the content shown
on their audience feeds. Moreover, these algorithmic feeds are per-
sonalized for the end-users to ensure that the users will be served
with the content they are most likely interested in.

At the same time, with the rapid rise of the TikTok platform,
we are witnessing an extremely popular trend centered around
short format videos (30-60 seconds) on social media platforms. The
combination of these short videos, paired with an algorithmically
driven feed, can potentially cause adverse effects on users since
the recommendation algorithm makes several short format content
recommendations over a short period. In recent years, researchers
have raised concerns that excessive personalization of algorithmic
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social media feeds can potentially trap people in filter bubbles and
echo chambers [21]. This can lead to a variety of harms ranging from
driving young users to depression and self-harm to creating highly
polarized, radicalized, and ideologically fragmented societies [7, 14,
22].

In response, policymakers stepped in to address these growing
concerns. In fact, the recently passed EU legislation, the Digital
Services Act (DSA) [5] emphasizes the importance of algorithmic
transparency and calls for audits of algorithmic feeds. Hence, there
is a pressing need to investigate these feeds to understand the extent
of personalization and the possible effects this personalization can
have on users.

To bridge this gap, with an emphasis on short-format videos, our
work focuses on analyzing and auditing TikTok’s personalized so-
cial media feed that combines short-format content and algorithmic
recommendations. We focus on the following research questions:

• RQ1: Given a sequence of content recommendations from
a user’s feed, how can we detect which recommendations
are the result of personalization?

• RQ2: How do certain factors influence the extent of user
personalization on TikTok?

We propose and validate a framework that allows us to model
and assess the extent of user personalization on users’ social me-
dia feeds. Particularly, given a set of social media feed attributes
that include content, user, and engagement attributes, we design
and implement a framework to assess which video recommenda-
tions are the result of personalization (i.e., exploit recommendations)
and which are not (i.e., explore recommendations). We validate and
demonstrate the applicability of our framework on a dataset of
real traces from TikTok users collected by [24], as well as other
baselines, including traces obtained from automated accounts on
TikTok and a randomized baseline.
Contributions. The contributions of this work are two-fold. First,
the proposed framework is flexible and can be used to audit any
personalized social media feed, including those of other short for-
mat video sites like Instagram and YouTube Shorts and those of
traditional content feed sites like Facebook and Twitter. Also, we
believe our framework can be used as part of algorithmic trans-
parency and auditing systems that aim to provide feedback to users
on how personalized their feeds are and the underlying reasons for
getting recommended specific content.

Second, our methods applied to TikTok’s For You feed shed
light on its recommendation algorithm. We find, for example, that
the algorithm exploits users’ interests in between 30% and 50%
of all recommended videos in the first thousand videos of users’
tenure on TikTok. We introduce the notion of a personalization
score and observe that this score can indeed estimate the extent of
personalization in users’ feeds. We also examine personalization
factors on TikTok, and our results show that liking and following
are the primary drivers of content personalization for users.
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Broader Perspective and Ethical Considerations. We obtained
approval from our institution’s Ethical Board Review Committee
before conducting any data collection/analysis. We emphasize that
the real-world traces dataset, obtained by previous work by Zannet-
tou et al. [24], was collected after obtaining explicit consent from
the participants before data donation. Additionally, the video meta-
data collection focuses on publicly accessible videos at the time of
data collection (i.e., we do not have any data about deleted videos
or videos from uploaders with private accounts). When conducting
our data analysis, we follow standard ethical guidelines [15] like
not attempting to de-anonymize participants and performing our
analysis on aggregate. We believe our work ultimately benefits
end-users of social media platforms by supporting transparency
and algorithmic auditing.

2 BACKGROUND & RELATEDWORK
TikTok is a social media platform with increasing popularity; in
2022, TikTok was the most downloaded mobile application world-
wide with 672M downloads [19]. TikTok heavily relies on two
features that make the platform stand out from other social media
platforms; short-format videos and an algorithmic recommender
system that offers an endless stream of video recommendations to
users. TikTok offers many traditional social networking features
such as: 1) users can follow other users, thus forming a social net-
work, and 2) users can engage with a video by liking it, commenting
on it, sharing it, or marking it as a favorite video. Recently, reports
have emerged (e.g., [9, 17]) that indicate TikTok’s recommendation
algorithm is very effective in inferring users’ interests and making
recommendations that the users eventually like or engage with.
Previous Work. A substantial body of work leverages automated
accounts and qualitative analyses to understand and analyze Tik-
Tok’s algorithmic recommendations. Boeker and Urman [2] explore
the effect of various features on the TikTok algorithm personaliza-
tion. Using automated accounts (i.e., bots), they investigate how
features such as the like/follow features, region, language, and how
much time users spent on specific content, affect the extent of per-
sonalization. Overall, they find that the follow feature exerts the
most influence on the extent of personalization, followed by the
like feature. Journalistic investigative efforts from the Wall Street
Journal [18] created over 100 automated accounts to understand
what features (i.e., follow, like, share, watch time) affect algorithmic
recommendations on TikTok. Their investigation finds that one of
the signals alone, the watch time (i.e., time a user spends on a video),
provides a strong signal to the algorithm and substantially affects al-
gorithmic recommendations. They find that for automated accounts
that expressed an interest in problematic content such as depression
(as determined by the watch time the user spent on video with such
content) often lead users down an algorithmic rabbit hole of prob-
lematic content. Klug et al. [6] undertake a mixed-methods analysis
of TikTok’s algorithm and find that videos with high engagement
are more likely to be recommended by the algorithm. At the same
time, they find that using very popular hashtags (e.g., #foryou)
does not increase the likelihood of a video being recommended
by the algorithm. Bandy and Diakopoulos [1] explore the role of
TikTok’s recommendation algorithm in promoting call-for-action
videos with a case study on the Tulsa rally. Their analysis shows

that the amplification of call-for-action videos is not systematic and
is rather likely due to the videos having an increased engagement.
Lee et al. [8] undertake a qualitative analysis of 24 interviews with
TikTok users, aiming to explore how algorithmic personalization
affects users’ perceptions. Their work highlights that TikTok users
can identify parts of their identity via the algorithmic recommen-
dation of the “For You” page and that their behavior can shape the
algorithm’s ability to reflect their diverse interests. Simpson and
Semaan [16] perform an interview study by recruiting 16 LGBTQ+
TikTok users, aiming to understand these users’ interactions and
encounters on TikTok; they find that TikTok’s algorithm creates
contradictory identity spaces that reaffirm LGBTQ+ identities while
simultaneously violating intersections of user identities.
Remarks. Previous work attempted to demystify algorithmic rec-
ommendations by heavily relying on traces obtained exclusively
from automated accounts or through the lens of users’ responses.
While these previous efforts yield important insights, we argue
that traces from automated accounts may lack the authenticity
and diversity of traces from real users. Additionally, these efforts
are limited as user self-reports might introduce biases or discrep-
ancies in the results [3, 12, 23]. In our work, we overcome these
challenges and analyze algorithmic recommendations through the
lens of traces from real TikTok users. At the same time, we com-
plement our analysis with traces from automated accounts that act
as baselines for our analyses. To the best of our knowledge, our
framework is the first that focuses on understanding the interplay
between exploration and exploitation in TikTok recommendations.
Additionally, we propose a general framework that can be applied
to other algorithmic-powered social media feeds.

3 DATASETS
This section describes the two datasets used in our analysis. We use
a dataset that includes traces from real TikTok users and a dataset
that includes traces from automated bots.

3.1 Dataset from Real Users
Our dataset of traces from real TikTok users, is based on previous
work by Zannettou et al. [24]. The authors relied on the EU’s Gen-
eral Data Protection Regulation (GDPR), particularly the right of
access by data subjects. They implemented a privacy-preserving
data donation system and recruited 347 TikTok users that donated
their TikTok traces. Each trace provides a comprehensive view of
the user’s actions on TikTok, including the user’s viewing history,
like history, search history, follow history, etc. (see [24] for a com-
prehensive list of all the fields included in the datasets). Additionally,
for each video referenced in the traces from real-world TikTok users,
the authors collected additional metadata, as the traces from TikTok
include only video identifiers. To do this, they used an unofficial
Python wrapper for the TikTok API [20], which allowed them to
collect metadata for each video, including the video description, the
video hashtags, statistics about the video, etc. Overall, the dataset
includes 4.9M videos viewed 9.2M times by 347 recruited TikTok
users. Note, that only 4.1M videos have associated video metadata
(the rest of the videos were either deleted or the uploader made
their account private, by the time of the data collection).
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Table 1: Overview of bot configurations for obtaining the bot
traces. The table shows the probabilities of the bots watching
a video till the end (Watch), skipping a video (Skip), liking a
video (Like), and following the video creator (Follow).

P(𝑊𝑎𝑡𝑐ℎ) P (𝑆𝑘𝑖𝑝 ) P (𝐿𝑖𝑘𝑒 ) P (𝐹𝑜𝑙𝑙𝑜𝑤 )

Bot 1 0 1 0 0
Bot 2 1 0 0 0
Bot 3 0.5 0.5 0 0
Bot 4 1 0 0.5 0.5
Bot 5 0.5 0.5 0.5 0.5

3.2 Dataset from Automated Bots
We complement our real-world user traces dataset with a bot
dataset, which we refer to as simulated-bot, that comprises Tik-
tok’s For You recommendations for a set of automated accounts on
TikTok. Our dataset consists of traces generated by five automated
bots; for each bot, we create a new TikTok account, and we use a
random date of birth and a unique email address. No other personal
information, such as gender or location is provided when creat-
ing the accounts. Each account is controlled by an automated bot
with a pre-defined policy that dictates the bot’s behavior. Table 1
reports the policies of our bots. We implement the bots and their
policies using the PlayWright framework [13]. Each bot visits Tik-
Tok’s For You feed via TikTok’s Web interface and watches 1,000
videos according to the bot’s pre-defined policy. Also, we perform
a video metadata collection for each video that a bot encounters
using an unofficial Python wrapper for the TikTok API [20]. The
video metadata collection is done in real-time, ensuring we obtain
video metadata for all videos in our dataset. We run our bot dataset
collection between December 28, 2022, and January 17, 2023.

4 RQ1: DETECTING USER PERSONALIZATION
This section presents our modeling framework for detecting videos
resulting from user personalization.

4.1 Social Media Feed Attributes
We begin by describing three broad categories of data attributes that
we use: content, user, and engagement. These attributes are readily
extracted from most social media feed data and form the basis of
our framework to investigate the extent of user personalization
in a social media feed. Note that the attributes we describe are
not an exhaustive list of all the possible attributes but an intuitive
and comprehensive set we curate that applies to most social media
feeds.
Content Attributes. Given a set of 𝑁 chronologically ordered
recommendations 𝑅 = {𝑟1, 𝑟2, 𝑟3, . . . , 𝑟𝑁 } each recommendation
item 𝑟𝑖 has a set of attributes that provide details about its content.
• Recommendation Index: For any set of 𝑁 chronologically ordered

recommendations 𝑅 = {𝑟1, 𝑟2, 𝑟3, . . . , 𝑟𝑁 }, the recommendation
index, 𝑖 ∈ Z+ (i.e., 1 ≤ 𝑖 ≤ 𝑁 ) is the index of each recommenda-
tion item in sequential order.

• A set of𝑀 hashtags included in the recommendation’s descrip-
tion 𝐻 = {ℎ1, ℎ2, ℎ3, . . . , ℎ𝑀 }.

• A user, 𝑢𝐶 that created the content that is recommended. For
example, on user-generated video platforms, this corresponds to
the video uploader.

User Attributes. Each user, 𝑢 has a set of attributes that pertain to
macroscopic user behaviors such as the accounts that are followed
and the user’s topics of interest.
• A set of𝐾 other users,𝑈𝐹 = {𝑢1, 𝑢2, 𝑢3, . . . , 𝑢𝐾 } that are followed.
• A set of 𝑋 interests, 𝐼𝑃 = {ℎ1, ℎ2, ℎ3, . . . , ℎ𝑋 } as determined by

the most popular hashtags in all recommendations to user 𝑢.
• A set of 𝑌 interests, 𝐼𝐷 = {ℎ1, ℎ2, ℎ3, . . . , ℎ𝑌 } as determined by

hashtags that user 𝑢 specifies directly with the platform.
Engagement Attributes. For every recommendation item - user
pair (𝑟𝑖 , 𝑢), we have a set of attributes that provide information
about user 𝑢’s engagement with the recommendation item, 𝑟𝑖 . We
use the subscript 𝑟𝑖 , 𝑢 to denote the engagement attributes of the
recommendation item - user pair.
• Timestamp: The timestamp, 𝜃𝑟𝑖 ,𝑢 when the recommended item
𝑟𝑖 was viewed by the user 𝑢.

• Engagement Duration: The duration (in seconds), 𝑡𝑟𝑖 ,𝑢 the user 𝑢
engaged with (watched for videos) the recommended item 𝑟𝑖 .

• Liking: We use a boolean, liked𝑟𝑖 ,𝑢 to denote whether the user
𝑢 liked the recommended item 𝑟𝑖 , and if liked𝑟𝑖 ,𝑢 = True, we
record the timestamp the item was liked.

• Following: We use a boolean, followed𝑟𝑖 ,𝑢 to denote whether
the content creator of recommended item 𝑟𝑖 is followed by the
user 𝑢, and if followed𝑟𝑖 ,𝑢 = True, we record the timestamp the
creator was followed.

• Sharing: We use a boolean, shared𝑟𝑖 ,𝑢 to denote whether the
item 𝑟𝑖 was shared by the user 𝑢, and if shared𝑟𝑖 ,𝑢 = True, we
record the timestamp 𝑟𝑖 was shared.

• Favoriting: We use a boolean, favorited𝑟𝑖 ,𝑢 to denote whether
the item 𝑟𝑖 was favorited by the user 𝑢, and if favorited𝑟𝑖 ,𝑢 =

True, we record the timestamp 𝑟𝑖 was favorited.

4.2 Exploitation vs. Exploration Framework
Given a user 𝑢 and a set of 𝑁 chronologically ordered recommen-
dations 𝑅𝑢 = {𝑟1, 𝑟2, 𝑟3, . . . , 𝑟𝑁 }, we aim to demystify which recom-
mendations are the result of user personalization and which are
not. We define an exploitation recommendation as a recommen-
dation that is personalized based on the user’s inferred interests
or previous actions. On the other hand, we define an exploration
recommendation as a recommendation that is not the result of user
personalization, but due to the algorithm trying to explore if the
user might like a specific – and often new or different – topic.

We assume that certain items recommended to a user are re-
lated to prior user actions or items recommended to that user. We
model a user 𝑢’s trace of viewing history as a timeline where each
item 𝑟𝑖 , has an associated timestamp 𝜃𝑟𝑖 ,𝑢 for user 𝑢. We evaluate
the extent of personalization of each item-user pair (𝑟𝑖 , 𝑢) i.e., the
degree of personalization of each recommended item at a specific
point in time. To do this, we leverage content, user, and engagement
attributes to determine whether (and the extent to which) a recom-
mended item 𝑟𝑖 for user 𝑢 is related to previously recommended
items 𝑟 𝑗 in 𝑢’s feed, where 𝜃𝑟 𝑗 ,𝑢 < 𝜃𝑟𝑖 ,𝑢 .

4.2.1 Global and Local Features. We define a set of features, 𝐹 =

{𝑓1, 𝑓2, . . . , 𝑓𝑛}, derived from the attributes available in a user’s
3
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recommended item timeline. Our framework is flexible and readily
generalizable, as it allows the addition or removal of features based
on the use case.

We use these features, 𝐹 to evaluate the connectedness of items
in each user’s timeline by specifying an activation condition for
each feature; i.e., if the condition specified by the feature is satisfied
for an item, then we mark the corresponding item as activated. Our
framework defines features such that the activation condition labels
an item as an exploit recommendation.

Local features model relationships between items within a spe-
cific temporal window of size𝑊 . For example, for item-user pair
(𝑟𝑖 , 𝑢), the local feature likes_hashtag_local considers preced-
ing items 𝑟 𝑗 in the temporal window𝑊 , 𝑟 𝑗 ∈ {𝑟𝑖−1, . . . , 𝑟𝑖−𝑊 }, and
activates the item 𝑟𝑖 if liked𝑟 𝑗 ,𝑢 = True and 𝑟 𝑗 has a hashtag in
common with 𝑟𝑖 . In other words, in this example, we label a rec-
ommendation item, 𝑟𝑖 as exploit if the user liked a previous item
(within𝑊 ) that shares a hashtag with 𝑟𝑖 .

Global features are general attributes that capture personaliza-
tion at a macroscopic scale for a particular user. For example, for
item-user pair (𝑟𝑖 , 𝑢), the global feature following_global con-
siders all previously recommended items 𝑟 𝑗 , such that 𝜃𝑟 𝑗 ,𝑢 < 𝜃𝑟𝑖 ,𝑢
in 𝑢’s feed that have following𝑟 𝑗 ,𝑢 = True, and activates the item
𝑟𝑖 if 𝑟 𝑗 has a hashtag in common with 𝑟𝑖 . In other words, in this
example, we label a recommendation item, 𝑟𝑖 as exploit if a user
followed the recommended item’s creator anytime before they were
recommended 𝑟𝑖 .

4.2.2 Labeling Recommendations. For each recommended item-
user pair in a user 𝑢’s timeline we consider a set of 𝑑 features
𝐹 = {𝑓1, 𝑓2, . . . , 𝑓𝑑 }.
• We label item-user pair (𝑟𝑖 , 𝑢) as an Exploit recommendation if

any of the local or global features, 𝐹 = {𝑓1, 𝑓2, . . . , 𝑓𝑑 } for that
recommendation item satisfy the activation condition for (𝑟𝑖 , 𝑢).

• If none of the features 𝐹 = {𝑓1, 𝑓2, . . . , 𝑓𝑑 } used result in (𝑟𝑖 , 𝑢)
being activated, then that item-user pair is marked as an Explore
recommendation.

4.2.3 Personalization Metrics. We define three metrics in our anal-
ysis which serve as quantitative measures to study the extent of
user personalization in a social media feed. We assume the recom-
mendation labeling method outlined above using a set of features
𝐹 = {𝑓1, 𝑓2, . . . , 𝑓𝑑 } to label each item-user pair, (𝑟𝑖 , 𝑢) in user 𝑢’s
timeline as exploit or explore.
User exploit fraction. Given a set of recommendations for a cer-
tain user, 𝑢 a recommendation index, 𝑖 and a window𝑊 , we define
the user’s exploit fraction at recommendation index 𝑖 to be the frac-
tion of items in the window𝑊 that are marked as exploit recom-
mendations. Consider items 𝑟 𝑗 ∈ {𝑟𝑖−1, . . . , 𝑟𝑖−𝑊 } recommended
to user 𝑢, and let 𝑁𝑢𝑖 correspond to the number of 𝑟 𝑗 ’s that are
labelled exploit. Then for the recommendation index, 𝑖 we denote
the user exploit fraction as 𝛼ui = Nui

W
Mean exploit fraction.Given a set of𝑚 users, their corresponding
recommendation feeds, and a recommendation index, 𝑖 , another
quantity of interest is the mean user exploit fraction, which we
define as the arithmetic mean of the exploit fractions of all𝑚 users
in the set, at recommendation index 𝑖 . We denote the mean user
exploit fraction by 𝛼 i = 1

m
∑m
u=1 𝛼ui

Personalization score.We introduce the concept of a personaliza-
tion score, where the core idea is to ascertain “how personalized” a
specific recommendation item 𝑟𝑖 is for a user 𝑢. Given an item-user
pair, (𝑟𝑖 , 𝑢), and𝑚 total user timelines, we estimate the extent of
personalization, 𝜌 (𝑟𝑖 , 𝑢). This is achieved by calculating the number
of user timelines in which the recommended item 𝑟𝑖 , when inserted
at recommendation index 𝑖 , would have the same label (Explore
or Exploit) as it did for user 𝑢. Assuming that item 𝑟𝑖 is marked
Exploit (or Explore) and has the same label Exploit (or Explore) in
𝑘 other user timelines when inserted at recommendation index 𝑖 ,
we then define the personalization score for item-user pair (𝑟𝑖 , 𝑢)
as: 𝜌 (ri, u) = 1 − k

m . Note that the personalization score is not a
symmetric measure, in general. Intuitively we expect items labeled
exploit to have a higher personalization score, assuming they were
tailored recommendations, since these items would have a lower
probability of being marked as exploit in other user timelines. In
contrast, we expect the personalization score of items labeled ex-
plore to be low, since these items are likely to also be marked as
explore in other user timelines.

4.2.4 Framework Specification. Here, we describe the parameters
used to specify our modeling framework.
(1) A set of𝑚 users for whom we have data about their timeline of

recommended items with social media feed attributes specified.
(2) The sample size, 𝑁 . We include the first 𝑁 chronologically

ordered recommendation items from a user’s feed.
(3) A temporal window of size𝑊 , that measures the local features

by considering up to𝑊 recommendation items in the past.
(4) The interest radii, 𝑋 and 𝑌 , which define how many of the top

interests (hashtags) of each user we consider.
(5) A set of 𝑑 features, 𝐹 = {𝑓1, 𝑓2, . . . , 𝑓𝑑 } that have been pre-

selected to model user personalization in the feed.

4.3 Feature Selection and Framework
Evaluation

In this section, we discuss our baselines, feature selection technique,
and how we evaluate our framework.

4.3.1 Baselines. Intuitively, in a randomized set of 𝑁 recommenda-
tions {𝑟1, 𝑟2, 𝑟3, . . . , 𝑟𝑁 }, there is no user personalization since the
recommended items are (ideally) unrelated to each other. However,
our features could be activated due to inherent noise in the data -
for example, several random videos might have certain common
hashtags. Consequently, we use a randomized baseline to select the
features that minimize the noise as measured by randomized data.
Also, we use a second baseline to evaluate our framework’s results
and explanatory power. We describe the two baselines here.
Randomization by recommendation index. We use𝑚 real user
traces to create our first randomized baseline; for each recommen-
dation index, we randomly permute all items at that index across
all user timelines. We use these 𝑚 randomized user traces as a
baseline for feature selection. In practice, we repeat the above ran-
domization several times, and report results averaged across all the
random samples. We refer to this randomized baseline dataset as
index-randomized.
Automated bot traces.We generate automated bot timelines us-
ing the bots described in Section 3.2. We use these bot traces to
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Table 2: Sample social media feed features for item-user pair (𝑟𝑖 , 𝑢), with creator 𝑢𝐶 , and temporal window𝑊 .

Feature Activation condition for item-user pair (𝑟𝑖 ,𝑢 ) to be marked exploit

generic_hashtag_local 𝑟𝑖 has a hashtag in common with any preceding item in the temporal window𝑊 , 𝑟 𝑗 ∈ {𝑟𝑖−1, . . . , 𝑟𝑖−𝑊 }.
generic_creator_local 𝑟𝑖 has the same creator, 𝑢𝐶 as any preceding item in the temporal window𝑊 , 𝑟 𝑗 ∈ {𝑟𝑖−1, . . . , 𝑟𝑖−𝑊 }.
likes_hashtag_local 𝑟𝑖 has a hashtag in common with any item in the temporal window𝑊 , 𝑟 𝑗 ∈ {𝑟𝑖−1, . . . , 𝑟𝑖−𝑊 } and liked𝑟 𝑗 ,𝑢 = True.
likes_creator_local 𝑟𝑖 has the same creator, 𝑢𝐶 as any item in the temporal window𝑊 , 𝑟 𝑗 ∈ {𝑟𝑖−1, . . . , 𝑟𝑖−𝑊 } and liked𝑟 𝑗 ,𝑢 = True.
watched_hashtag_local 𝑟𝑖 has a hashtag in common with any item in the temporal window𝑊 , 𝑟 𝑗 ∈ {𝑟𝑖−1, . . . , 𝑟𝑖−𝑊 } and 𝑡𝑟 𝑗 ,𝑢 ≥ 100%.
watched_creator_local 𝑟𝑖 has the same creator, 𝑢𝐶 as any item in the temporal window𝑊 , 𝑟 𝑗 ∈ {𝑟𝑖−1, . . . , 𝑟𝑖−𝑊 } and 𝑡𝑟 𝑗 ,𝑢 ≥ 100%.
shares_hashtag_local 𝑟𝑖 has a common hashtag with any item in the temporal window𝑊 , 𝑟 𝑗 ∈ {𝑟𝑖−1, . . . , 𝑟𝑖−𝑊 } and shared𝑟 𝑗 ,𝑢 = True.
shares_creator_local 𝑟𝑖 has the same creator, 𝑢𝐶 as any item in the temporal window𝑊 , 𝑟 𝑗 ∈ {𝑟𝑖−1, . . . , 𝑟𝑖−𝑊 } and shared𝑟 𝑗 ,𝑢 = True.
favoriteVideos_hashtag_global 𝑟𝑖 has at least one hashtag in common with any prior item 𝑟 𝑗 in 𝑢’s feed that has favorited𝑟 𝑗 ,𝑢 = True.
favoriteVideos_creator_global 𝑟𝑖 has a creator in common with any prior item 𝑟 𝑗 in 𝑢’s feed that has favorited𝑟 𝑗 ,𝑢 = True.
following_global 𝑟𝑖 has at least one hashtag in common with any prior item 𝑟 𝑗 in 𝑢’s feed that has following𝑟 𝑗 ,𝑢 = True

inferred_interests_global 𝑟𝑖 has at least one common hashtag with 𝐼𝑃 = {ℎ1, . . . , ℎ𝑋 }, the 𝑋 most popular hashtags in all recommendations to 𝑢.

help validate the explanatory power of our results by comparing
our results in terms of personalization metrics with those of the au-
tomated bots. Intuitively, we expect these traces to display a higher
degree of personalization than the randomized baseline but a lower
degree than real user data. We refer to the bot baseline dataset as
simulated-bot.

4.3.2 Feature Selection. We assume we have a set of 𝑛 features
𝐹 ′ = {𝑓1, 𝑓2, . . . , 𝑓𝑛}, and the goal is to choose the top-𝑑 features
𝐹 = {𝑓1, 𝑓2, . . . , 𝑓𝑑 } to label each item-user pair, (𝑟𝑖 , 𝑢) in user 𝑢’s
timeline as exploit or explore. We define the signal-noise ratio of
a feature (or set of features) to be the ratio of the feature’s mean
exploit fraction in real user data to the mean exploit fraction in the
randomized user traces. We use the signal-noise ratio to measure
feature importance in the following feature selection process.
(1) We examine the recommendation item and user data, and con-

sider the different content, user, and engagement attributes to
compile a comprehensive list of 𝑛 potential global and local fea-
tures, 𝐹 ′ = {𝑓1, 𝑓2, . . . , 𝑓𝑛} for labeling recommendation items.
For reference, we specify a sample set of features applicable to
a (TikTok) video recommendation feed in Table 2.

(2) Consider each feature 𝑓𝑎 ∈ 𝐹 ′ and label each item-user pair,
(𝑟𝑖 , 𝑢) as exploit or explore using only this feature 𝑓𝑎 . We then
observe the mean exploit fraction, 𝛼𝑖 for each recommendation
index 𝑖 ∈ 1, . . . , 𝑁 . We repeat the experiment for the𝑚 random-
ized user timelines in index-randomized, since the 𝛼𝑖 in the
randomized timelines captures the noise-floor of feature 𝑓𝑎 .

(3) Rank the features in descending order of their signal-noise ra-
tio and note their mean exploit fraction in index-randomized.
From these feature rankings, we choose the top 𝑑′ ≤ 𝑛 features
with the highest signal-noise ratio that are below a suitable
noise threshold, 𝜏 in index-randomized. The noise thresh-
old, 𝜏 can be chosen by inspecting the distribution of 𝛼𝑖 in
index-randomized across all features.

(4) For each of the 𝑑′ subsets of 𝑑′ − 1 features we label each item-
user pair, (𝑟𝑖 , 𝑢) as exploit or explore if any of the features in
the subset considered are satisfied. Again, we observe the mean
exploit fraction, 𝛼𝑖 for each recommendation index 𝑖 ∈ 1, . . . , 𝑁
and repeat the same for index-randomized. We then rank the
subsets by signal-noise ratio and recursively remove features

until we have a set of top-𝑑 features 𝐹 = {𝑓1, 𝑓2, . . . , 𝑓𝑑 }. Note
that we don’t specify 𝑑 in our procedure, but choose a 𝑑 that
gives the best trade-off between model complexity and signal-
noise ratio.

4.3.3 Evaluating Results. We leverage the bot dataset, simulated-bot
generated from automated bots to evaluate our framework and the
efficacy of the model. For each recommendation index, we compare
the mean exploit fraction from our framework with the mean ex-
ploit fraction in simulated-bot. Since the automated bots make
randomized choices with independent probabilities, intuitively we
expect our metrics to reveal a lower level of personalization associ-
ated with the bot-simulated data.

4.4 Experimental Setup for TikTok
Here, we describe how we configure our framework to assess user
personalization on TikTok video recommendation social feeds. Due
to space constraints we describe how we preprocessed the TikTok
dataset in Appendix A.

4.4.1 Instantiating the Framework for TikTok.
• From our TikTok dataset of 347 users, we filter out users with

fewer than 1000 recommendations, and consequently consider
video feed recommendations for𝑚 = 220 users, such that we
have 𝑁 = 1000 chronologically ordered video recommendations
𝑅𝑢 = {𝑟1, 𝑟2, . . . , 𝑟1000} for each user 𝑢.

• We use a temporal window of size𝑊 = 50, and an interest radius
𝑋 = 𝑌 = 25 such that we consider the top-25 hashtags for each
user in both the popular hashtag set 𝐼𝑃 = {ℎ1, ℎ2, ℎ3, . . . , ℎ25} and
the specified hashtag set 𝐼𝐷 = {ℎ1, ℎ2, ℎ3, . . . , ℎ25}. We performed
a sensitivity analysis to tune these parameter values for our
TikTok dataset.

• Using the feature selection technique outlined previously, we
select the following set of 𝑑 = 7 features that have the best signal-
noise ratio, 𝐹 = {generic_creator_local,
likes_hashtag_local, likes_creator_local,
watched_hashtag_local, watched_creator_local,
favoriteVideos_hashtag_global, following_global}.

• We create𝑚 = 220 timelines, with items in each user’s timeline
corresponding to the video-user pairs, (𝑟𝑖 , 𝑢) for that user. Then
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Figure 1: Mean user exploit fraction 𝛼𝑖 with standard deviations, for real Tiktok users and baseline datasets.

we label each (𝑟𝑖 , 𝑢) based on the methodology presented above
and the set of 𝑑 = 7 features.

4.5 Results and Discussion
We use our framework and label all videos in the𝑚 = 220 user time-
lines as exploit or explore recommendations, and we compute each
user’s exploit fraction for each recommendation index between
𝑖 ∈ 1, . . . , 1000. Then, we aggregate our analysis across the𝑚 = 220
individual users and obtain the mean user exploit fraction, averaged
across all users in the TikTok dataset, for each recommendation
index. We repeat the same procedure for the randomized baseline,
index-randomized and the bot traces, simulated-bot. We visual-
ize the mean user exploit fraction for the datasets in Figure 1.

First, we observe that the mean exploit fraction, 𝛼𝑖 for both
real-tiktok and both baselines, initially increases steadily for the
first few videos. We attribute the steady increase to (a) the temporal
window𝑊 , since the first few videos recommended to a user do not
have a full window of past videos and hence exhibit a lower exploit
fraction; and (b) potentially to TikTok’s algorithm ability to infer
user interests and behavior, hence exploiting the users’ interests to
a greater extent.

The mean user exploit fraction is relatively stable for recommen-
dation indices with 𝑖 > 100. For index-randomized, this implies
that the level of noise captured remains constant over time which
is an expected result in a randomized timeline. This is also the
expected result for simulated-bot since the automated bot traces
represent timelines derived from random user behaviors. For the
real user timelines, the stability of 𝛼𝑖 indicates that the TikTok
recommendation algorithm recommends videos to users with a
relatively constant level of personalization.

4.5.1 Comparison with Baselines. We validate our results using
data from the automated bot traces, simulated-bot. We observe
that the mean exploit fraction, 𝛼𝑖 ≥ 50%, for real-tiktok dataset
across most of the 1000 recommendation indices and differs signif-
icantly from that of both baseline traces. In contrast, we observe
that the mean exploit fraction of the baselines is on average 31%
for simulated-bot and 20% for index-randomized. Since the bots
perform user behaviors randomly, intuitively we expect these time-
lines to have a lower degree of personalization than real users. This
is evident from Figure 1, where we observe that the automated
bot traces have only about 60% of exploit videos compared to real
user traces. Under the assumptions of our framework, we observe

Figure 2: Distribution of Personalization scores for Explore
and Exploit labeled videos.

Figure 3: Scatterplot of Personalization scores vs. Hashtag
counts for Explore and Exploit labeled videos.

that the TikTok algorithm attempts to personalize (exploit) a little
over half the videos recommended to users. Accounting for the
noise level of around 20% in index-randomized, we conclude that
TikTok’s algorithm exploits real users’ interests in between 30%
and 50% of all recommended videos in the first thousand videos of
the users’ tenure on TikTok.

4.5.2 Distribution of Personalization Scores. We compute the per-
sonalization score for the labeled videos in real-tiktok, and plot
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the distribution of the scores in Figure 2. We observe that most
exploit videos have a high personalization score (with a mean of
0.83), indicating that these videos are indeed specifically targeted
and personalized to the users they are recommended to. Thus, when
our framework identifies a item-user pair (𝑟𝑖 , 𝑢) as an exploit recom-
mendation, we can be confident that the exploit recommendation is
actually the result of personalization in relation to the other users’
timelines. On the other hand, we observe that most videos that are
labeled explore have a much lower personalization score (with a
mean of 0.08). This indicates that these videos are likely not per-
sonalized to the users they are recommended to since they are also
often labeled as explore recommendations for other users.

We also investigate the distribution of personalization scores
for exploit/explore videos with respect to the viewing duration,
video popularity, and hashtag counts. We observed no correlation
between personalization scores and video viewing and video pop-
ularity. However, we observe that exploit (explore) videos with
fewer hashtags tend to have a higher (lower) personalization score
(see Figure 3). This makes intuitive sense, since videos with more
hashtags are often more generic [10], and hence harder to person-
alize, whereas videos with fewer hashtags often have more specific
content that could be readily personalized to certain users.

5 RQ2: TIKTOK PERSONALIZATION FACTORS
In this section, we investigate the effect of different personalization
factors on TikTok. We selected these personalization factors based
on prior related work by Boeker and Urman [2], and the social
media feed attributes available in our TikTok dataset. We examine
two distinct user groups: the top quartile (TQ) and bottom quartile
(BQ) of the mean user exploit fraction 𝛼𝑖 , as computed in Section 4
on the real-tiktok dataset. We then examine the distributions of
the factors to characterize the extent of personalization observed
in each user group. Since 𝛼𝑖 is influenced by some of these factors,
intuitively we expect the distributions to vary between the two
groups. By comparing the difference in distributions of the factors
between the groups, we elicit the importance of each factor on user
personalization.

5.1 Experimental Setup
We first follow the experimental setup described in Section 4.4 to
instantiate the model on the real-tiktok dataset. Then, we run
our framework to label videos as exploit or explore. For each user,
we calculate the user’s exploit fraction, which is simply the number
of exploit videos divided by the total videos recommended to that
user, i.e., 𝑁 = 1000. Next, we create two groups of users: 1) Top
Quartile, TQ: users that are in the top quartile of the mean user
exploit fraction (40 users with a mean user exploit fraction of 0.74);
and 2) Bottom Quartile, BQ: users that are in the bottom quartile
of the mean user exploit fraction (40 users with a mean user exploit
fraction of 0.31).

For each user group, for each factor, we compare the distribution
of that factor between the two user groups. Inspired by Boeker and
Urman [2], we consider: 1) Video watch percentage: The mean
video viewing duration percentage across all videos recommended
to a user. 2) Early skip rate: The fraction of videos in the user’s
timeline skipped over very early, i.e., within 1 second. 3) Fraction

Table 3: Factors influencing user personalization on TikTok.
We report mean values for the BQ and TQ groups, 𝑝-values for
the 𝑡 tests, and the impact level of each factor.

Personalization Factor BQ TQ 𝑝-value Impact

Watch Percentage 84% 93% 0.03 Medium
Early Skip Rate 0.09 0.11 0.14 Low
Fraction Liked 0.03 0.14 10−5 High
Fraction from Following 0.02 0.3 10−14 High

liked:The fraction of liked videos in the user’s timeline. 4) Fraction
from following: The fraction of videos in the user’s timeline that
were uploaded by a creator that the user was following.

5.2 Results
We compare the distributions of each personalization factor across
both the BQ and TQ user groups. Table 3 shows the different per-
sonalization factors studied in this section, and the level of impact
each of these factors has in terms of driving the extent of content
personalization for a user. We include violin plots to show the dis-
tributions of each factor in Figure 4, and also run the Student’s
𝑡-test for statistical significance for each factor. We assign the level
of impact to be “high,” “medium,” or “low” as characterized by the
difference in distributions of the factor between the two user groups
(a lower p-value corresponds to a higher impact level).
Video watch percentage.We observe a moderate difference be-
tween the BQ and TQ user groups in terms of their mean video watch
percentage across all videos in these users’ timelines. The TQ user
group has a mean watch percentage of 93%, whereas the BQ group
has a mean watch percentage of 84%. The 𝑡-test yielded a 𝑝-value
of 0.03 indicating that there is a significant difference between the
two groups (at the 0.95 confidence level). Additionally, we visually
observe that the tail of the BQ distribution goes well below 50%,
whereas the tail of the TQ distribution does not.
Early skip rate. We observe a marginal difference between BQ
and TQ user groups in terms of the fraction of videos skipped over
quickly, across all videos in users’ timelines. The TQ has a mean
early skip rate of 0.11, whereas BQ has a mean skip rate of 0.09. We
observe outliers in both distributions, and 𝑡-test 𝑝-value of 0.14.
Fraction liked. We observe a significant difference between BQ
and TQ user groups in terms of the fraction of videos liked. The
TQ group liked 14% of videos on average, whereas the BQ group
liked 3% of videos on average. Comparing the distributions from
the violin plots in Figure 4c, we observe that the TQ group has a
significantly higher fraction of liked videos above 0.2, whereas the
BQ group (aside from a couple of outliers) lies entirely below this
threshold. The 𝑡-test yielded a 𝑝-value of 10−5 indicating a very
significant difference in distributions
Fraction from following. We observe a significant difference
between the BQ and TQ user groups in terms of the videos in a
user’s timeline that were uploaded by a creator that the user was
following. Visually, the distributions in Figure 4d differ greatly. We
observed a 𝑝-value of 10−14 from the 𝑡-test, indicating a significant
difference in distributions between the two groups.
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Figure 4: Violin plots showing the distributions of personalization factors between the TQ and BQ user groups.

6 CONCLUDING DISCUSSION
In this work, we proposed a framework that models personaliza-
tion on social media feeds. We applied our framework to real data
obtained from TikTok users and data obtained using automated
accounts on TikTok, demonstrating our framework’s applicability
and validity. Our analysis shows that on TikTok, when considering
the first one thousand videos in each user’s timeline, the recom-
mendation algorithm exploits the user interests in 30%-50% of the
recommendation videos; this finding indicates that the TikTok al-
gorithm opts to recommend a large number of explore videos in an
attempt to either infer better the user interests or maximize user
retention by recommending many videos that are outside of the
user’s (known) interests. Also, our analysis of the personalization
factors finds that the most important aspects that affect the degree
of personalization are following other TikTok accounts and liking
videos. Our results (based on real TikTok user data) are in-line
and confirm the results from Boeker and Urman [2], which made
similar observations based on automated accounts. Our framework
can assist various interested stakeholders in further understanding
personalization on the Web. We elaborate on these use cases and
the implications of our work below.
For Platforms: Aiding Transparency Efforts. Policymakers are
currently demanding online platforms to provide end-users with ex-
planations on why they are getting recommended specific content.
We argue that our framework can be used to generate fine-grained
explanations that can be used to inform the users why they are
getting recommended specific content. For instance, assuming that
the user liked a lot of videos with the #sports, a possible expla-
nation could be “In the past 50 videos, you liked 20 videos with
the #sports, so we inferred you liked sports content.” We believe
that our framework is a substantial step toward providing tools
and techniques that can be used by online platforms to generate
informative and precise explanations to end-users, hence being
compliant with emerging regulations like the DSA [5].
For Users: Insights into User Algorithmic Personalization.
Our framework can act as the backbone for future systems that end-
users can leverage to extract insights into how personalized their
social media feeds are. We envision that it is possible to implement
an easy-to-use system where end-users can request their data from
online platforms using the right of access by the data subject as
described in the EU’s General Data Protection Regulation [4]. Then,
they can input their data into this system, which will leverage our
framework to assess user personalization and then visualize to the

end users the extent of their personalization, which recommenda-
tion items are the result of personalization and which are not, as
well as extract insights into what the online platform knows about
them, through the lens of the content recommendations.
For Policymakers and Researchers: Auditing Platforms and
Algorithms.We argue that our framework can assist policymakers
and researchers in auditing online platforms and the effects of AI-
based recommendation algorithms. Our framework is an important
leap towards understanding the extent of personalization on other
emerging platforms like YouTube shorts and Facebook/Instagram
Reels. Such audits are of paramount importance, and policymakers
can use the audit results to assess how compliant online platforms
are with emerging regulations and act accordingly.
Limitations & Future Work. First, the sample of real traces from
TikTok users is not necessarily representative; this is an inherent
challenge that exists when undertaking studies that aim to recruit a
small number of users from huge online platforms like TikTok. Nev-
ertheless, we argue that the proposed framework and insights have
merit and demonstrate that the degree of personalization varies
across TikTok users. The fact that our findings match those of prior
work that studied bot-based traces on TikTok [2] also increases
our confidence. We note that the set of features we use is not an
exhaustive list of all possible features but an intuitive set we cu-
rate to model the “relatedness” of items in most social media feeds.
Consequently, we acknowledge that in some cases, our framework
would only serve as a lower bound for the extent of personalization.
Another limitation is that our analysis and results are agnostic to
changes in the recommendation algorithm done by the platform
over time. In this work, we audited the personalization of users
regardless of when they started using TikTok. In the future, we
plan to perform longitudinal audits to understand how the algo-
rithm changes over time. Finally, our work lacks ground truth data
on recommendation content that results from user personaliza-
tion, another inherent challenge when performing such audits. To
overcome this challenge, we use the notion of randomization and
assume that there should be little personalization in randomized
traces, hence evaluating our framework in this way.
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A PREPROCESSING TIKTOK
RECOMMENDATIONS

We performed data preprocessing steps on the real users’ TikTok
video traces to model the sequence of recommended item-user pairs.
Specifically, we filter out generic hashtags, we cluster hashtags into
“topics” using word embeddings and clustering techniques, as well
as extract the most popular hashtags for each user that act as the
global interests of the user. We elaborate on our preprocessing steps
below.
(1) Filter generic hashtags. On TikTok, there are certain “generic”
hashtags that creators add to almost all videos in an attempt to
influence the recommendation algorithm. Such generic hashtags in-
clude #foryoupage, #fyp, and #viral. These hashtags do not provide
meaningful information and will likely affect our labeling of rec-
ommended videos as exploit or explore. Therefore, it is paramount
to remove these common hashtags and ensure that our framework
considers only meaningful hashtags. We follow a similar method
to [2], inspect individual timelines, and filter out the most common
hashtags for each user. Removing these generic hashtags helps en-
sure that videos are only related via meaningful hashtags specific
to the videos’ content.
(2) Word2Vec hashtag clustering. We use a heuristic fuzzy clus-
tering method and Word2Vec [11] similarity to cluster sets of hash-
tags into similar “topics” to combine hashtags into comprehensive
and concise groups and enable better matching of hashtags in prac-
tice. To do this, we first train a Word2Vec model, using Continuous
Bag of Words, on all the video descriptions referenced in the en-
tire dataset of real user traces (see Section 3.1). For training the
Word2Vec model, we exclude words/hashtags that appear less than
10 times in the entire dataset and use a context window of 7.1 Then,
we use the cosine similarities of the Word2Vec embeddings of all
the hashtags in our dataset. We then iteratively assign hashtags to
the nearest cluster or create a new cluster based on the similarity of
that hashtag with pre-existing clusters. For example the hashtags
{#bieber, #biebertiktok, #belieber, #bieberforever} were all clustered
into the same hashtag group. We use cluster centers to represent
all hashtags in a particular cluster.
(3) Extract popular hashtags. For each user, 𝑢 we perform a term
frequency-inverse document frequency (TF-IDF) analysis on the
set of all hashtags corresponding to all videos recommended to
that user (after removing the generic hashtags). Then, we compute
the top-k hashtags (topics) of interest, as determined by the most
relevant hashtags across all recommendations made to that user.

1We increase the context window to 7 instead of the default 5, because on TikTok
several videos include a long list of hashtags.
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