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Abstract

Gesture synthesis is a vital realm of human-computer interaction, with wide-ranging
applications across various fields like film, robotics, and virtual reality. Recent
advancements have utilized the diffusion model to improve gesture synthesis. How-
ever, the high computational complexity of these techniques limits the application
in reality. In this study, we explore the potential of state space models (SSMs).
Direct application of SSMs in gesture synthesis encounters difficulties, which
stem primarily from the diverse movement dynamics of various body parts. The
generated gestures may also exhibit unnatural jittering issues. To address these, we
implement a two-stage modeling strategy with discrete motion priors to enhance
the quality of gestures. Built upon the selective scan mechanism, we introduce
MambaTalk, which integrates hybrid fusion modules, local and global scans to
refine latent space representations. Subjective and objective experiments demon-
strate that our method surpasses the performance of state-of-the-art models. Our
project is publicly available at https://kkakkkka.github.io/MambaTalk/.

1 Introduction

Gesture synthesis is a critical area of research in human-computer interaction (HCI), which has very
broad application prospects, such as film, robotics, virtual reality, and digital human development [24].
The task is challenging due to the variable correlation between speech and gestures, as the same
spoken content can elicit markedly different gestures among speakers. Meanwhile, the generated
gestures should synchronize with the speaker’s rhythm, emotional cues, and intentions [31, 1, 8, 42].

Recent works in co-speech gesture generation have shown great progress [11, 46, 67, 66, 2, 62].
By introducing new datasets [71] and more modalities [70, 33], previous work achieved end-to-end
gesture generation based on RNN-based models [11, 46]. With the success of transformer in nature
language processing [58] and video sequence modeling [26, 27, 75], recent works [8, 43, 55] leverage
the power of attention mechanism to generate more expressive gestures that better synchronize with
speech. By further combining emotional and style related features, EMoG [69] achieve better quality
gesture generation. With the development in human recognition model [37], EMAGE [32] proposes a
masked audio-gesture modeling strategy to enhance unified holistic gesture synthesis. Recently, with
the development of diffusion model in generative tasks [39, 20, 40], the latest works [74, 2, 62, 7, 65]
have applied the diffusion model to gesture synthesis, significantly improving the diversity of
generated gesture. DiffuseStyleGesture [63] presents a diffusion model-based approach for generating
diverse co-speech gestures by incorporating cross-local attention and self-attention mechanisms, and
utilizing classifier-free guidance for style control. DiffuseStyleGesture+ [66] further considers the
text modality as an additional input and utilizes channel concatenation to merge the text feature
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with the audio feature. Deichler et al. [9] also incorporates the text modality as an additional input
and employs contrastive learning to enhance the features. However, the exploration of generation
for co-speech gesture sequences with low latency remains relatively uncharted, constraining its
application in dynamic, interactive environments. RNN-based models often struggle with the long-
term forgetting issue [54, 29], which impairs their ability to generate long sequences of gestures
effectively. Additionally, these models may produce gestures that lack variability, tending towards an
average representation [36]. Transformer-based models depend heavily on subtle positional encoding
to capture the order of input elements [44, 50, 73]. Meanwhile, their computational complexity,
which grows quadratically with the length of the input sequence, poses a challenge for generating long
sequences of gestures. For the diffusion-based model, the intricate sampling strategy and iterative
process lead to high computational expenses [48], which hinder their broad adoption in gesture
generation scenarios.
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Figure 1: Our two-stage method for co-speech gesture generation with selective state space models.
In the first stage, we construct discrete motion spaces to learn specific motion codes. In the second
stage, we develop a speech-driven model of the latent space using selective scanning mechanisms.

State space models (SSMs) have recently shown significant potential in addressing challenges
related to modeling sequences with low latency [12]. Inspired by continuous state space models
from control systems and enhanced by HiPPO initialization [13], SSMs [16] show promise in
addressing long-term forgetting issue. These advancements have been integrated into large-scale
representation models [38, 41]. Some pioneering works have applied SSMs for tasks like language
understanding [38, 41], content-based reasoning [12], and visual recognition [35, 57]. In our work,
we further explore the potential of SSMs in co-speech gesture synthesis. We observe that directly
applying the selective scan mechanism from Mamba [12] to gesture generation as a sequence
modeling model would result in jittery outputs. To refine the generated gestures, we propose a
two-stage modeling strategy. In the first training stage, we enhance the discrete motion priors derived
from VQVAEs [53] by integrating velocity and acceleration losses. In the second stage, by utilizing
motion priors from VQVAEs, we introduce individual learnable queries for different body parts,
thereby alleviating the jittering issue. Meanwhile, considering that the direct application of Mamba
encounters the challenge of limb movements across different body parts tending to average out, we
propose a hybrid scanning approach in the second stage to enhance the motion representation in the
latent space. Specifically, we refine the design of spatial and temporal modeling within latent spaces
by introducing a local-to-global modeling strategy and integrating attention mechanisms along with a
selective scanning approach into the framework’s design. Considering the significant differences in
deformation and movement patterns among different body parts [32], we propose local and global
scan modules for refining the latent space representations of the movements across various body parts.
These approaches enable dynamic interaction and iterative refinement of different body parts while
maintaining low latency, leading to more diverse and rhythmic gestures. Our contributions can be
summarized as below:

• We are the first to explore the potential of the selective scan mechanism for co-speech gesture
synthesis, achieving a diverse and realistic range of facial and gesture animations.

• We introduce MambaTalk, an innovative framework that integrates hybrid scanning modules (e.g.,
local and global scan). The integration enhances the latent space representations for gesture
synthesis, thereby refining the distinct movement patterns across various body parts.

• Extensive experiments and analyses demonstrate the effectiveness of our proposed method.
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2 Related Work

2.1 Co-speech Gesture Generation

Co-speech gesture generation aims to automatically generate gestures based on speech input. Existing
approaches can be broadly categorized into three groups: (i) Rule-based methods: These methods
rely on pre-defined rules and gesture libraries to generate gestures based on speech features [23, 56].
While offering interpretable results, they require significant manual effort in creating gesture datasets
and defining rules. (ii) Statistical models: These approaches leverage data-driven techniques to learn
mapping rules between speech and gestures, often employing pre-defined gesture units [22, 25]. While
overcoming the limitations of manual rule creation, these methods still rely on handcrafted features.
(iii) Deep learning methods: Recent advancements in deep learning have enabled neural networks
to capture the complex relationship between speech and gestures directly from raw multimodal
data [70, 33, 68, 32]. This progress has established deep learning approaches, particularly recurrent
neural networks (RNNs) [70, 33, 61], transformers [4, 45], and diffusion models [2, 74, 51, 72, 21,
6], as the prevailing paradigm for co-speech gesture generation. However, each of these models
suffers from certain limitations that hinder their performance. RNNs inherently process sequences
in a serial manner, where each timestep’s computation depends on the output of the previous
timestep. This limits their ability to efficiently handle long sequences and introduces cumulative
latency. Meanwhile, RNNs lack inherent parallelism, further restricting their potential for high-speed
computation. Transformers consider all positions within a sequence at every timestep, resulting in
high computational complexity, especially for long sequences. While diffusion models significantly
enhance the diversity of generated outputs, the sampling process is computationally expensive. To
overcome these limitations, our method investigates the capacity of selective state space models in
the field of gesture synthesis. To the best of our knowledge, we are the first to apply selective state
space models to the task of gesture generation.

2.2 Selective State Space Models

State Space Models (SSMs) are a novel class of models recently integrated into deep learning for state
space transformation [15, 10]. As foundational models evolve, various subquadratic-time architectures
have emerged, including linear attention, gated convolution, recurrent models, and structured state
space models (SSMs), aimed at mitigating the computational inefficiencies of Transformers when
dealing with lengthy sequences. However, these advancements have yet to match the performance of
attention mechanisms in critical modalities like language processing.

SSMs draw inspiration from continuous state space models in control systems and, when combined
with HiPPO initialization [13], as seen in LSSL [16], show promise in tackling long-range depen-
dency issues. However, the computational and memory demands of the state representation render
LSSL impractical for real-world use. To address this, S4 [15] suggests normalizing the parameters
into a diagonal structure. This has led to the emergence of various structured SSMs with diverse
configurations, such as complex-diagonal structures [17, 14], multiple-input multiple-output (MIMO)
support [49], diagonal-plus-low-rank decomposition [19], and selection mechanisms [12]. These
models have been incorporated into large-scale representation models [38, 41].

These models primarily focus on the application of SSMs to long-range and sequential data like
language and speech, for tasks such as language understanding [38, 41], content-based reasoning [12],
and pixel-level 1-D image classification [15]. Recently, some pioneering work [35, 57, 59] have
explored their application in visual recognition. We further demonstrate that by incorporating the
selective scan mechanism from mamba [12] and the discrete motion priors from VQVAEs [53], our
proposed MambaTalk is capable of matching the performance of existing popular holistic gesture
synthesis models, highlighting the potential of MambaTalk as a powerful gesture synthesis model.

3 Method

We aim to synthesize sequential 3D co-speech gestures from speech signals (e.g., audio and text)
using selective state space models. However, simply applying such a model to gesture synthesis leads
to severe gesture jittering issues. We also found that maintaining performance is challenging due
to the significant variations in movement patterns exhibited by different body parts. To overcome
these challenges, we suggest modeling the gesture space using the acquired discrete motion patterns.
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Subsequently, we propose to develop speech-conditioned selective state space models within this
framework. This approach is designed to enhance the model’s robustness against uncertainties that
arise from cross-modal discrepancies. As shown in Figure 2, our framework consists of two stages:
(i) modeling the discrete gestures and facial motion spaces (§3.2) and (ii) learning speech-conditioned
selective state space models (§3.3) to generate 3D co-speech gestures.
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Figure 2: We propose a two-stage method for co-speech gesture generation. We first train multiple
VQ-VAEs for face and different parts of body reconstruction. This step learns discrete motion priors
through multiple codebooks. In the second stage, we train a speech-driven gesture generation model
in the latent motion space with local and global scan modules.

3.1 Preliminaries

Selective State Spaces Model. In our approach, we adopt the Selective State Spaces model
(Mamba [12]) that incorporates a selection mechanism and a scan module (S6). This model is
designed to make sequence modeling, as it dynamically selects salient input segments for prediction,
thereby enhancing its focus on pertinent information and improving overall performance. Unlike the
traditional S4 model, which uses time-invariant matrices A, B, C, and scalar ∆, Mamba introduces
selection mechanism that allows for the learning of these parameters from the input data using
fully-connected layers. This adaptability enables model to better generalize and perform complex
modeling tasks. Mamba operates by defining the state space with structured matrices that introduce
specific constraints on the parameters, facilitating efficient computation and data storage. For each
batch and each dimension, the model processes the input xt, hidden state ht, and output yt at each
time step t. We have h0 = B̄0x0 when t = 0. When t > 0, the model’s formulation is as follows:

ht = Ātht−1 + B̄txt,

yt = Ctht,
(1)

where Āt, B̄t, and Ct are matrices and vectors that are updated at each time step, allowing the model
to adapt to the temporal dynamics of the input sequence. With discretization, let ∆ denote the
sampling interval, exp(∆A) denote the matrix exponential, the transformation of the system’s state
over one time step can be represented as follows:

Ā = exp(∆A),

B̄ = (∆A)−1(exp(∆A)− I) ·∆B,

ht = Āht−1 + B̄xt,

(2)
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where (∆A)−1 denotes the inverse of matrix ∆A, I denotes the identity matrix. The scan module
within Mamba is designed to capture temporal patterns and dependencies across multiple time steps
by applying a set of trainable parameters or operations to each segment of the input sequence. In our
framework, Mamba serves as a sequence modeling tool for decoding gesture actions across different
parts of the body. By modifying the decoder’s input and the range of features, we leverage Mamba to
model local body features and global characteristics separately. These operations are learned during
training and help the model to process sequential data.

3.2 Discrete Gestures and Facial Motion Spaces

To ensure visual realism in motion animations from speech signals, we learn extra motion priors to
depict accurate movements and natural expressions. Building on this concept, we propose a method
to represent the gesture motion space using multiple discrete codebooks.

Motion Quantization. Considering the substantial variations in deformation magnitude and period-
icity among various body parts, our approach involves learning multiple codebooks tailored for the
reconstruction of distinct body parts. For illustrative purposes, we detail the formulation of a single
codebook. Denotes C as the dimensionality of each latent vector, N as the number of vectors in the
codebook, for the codebook Z =

{
zk ∈ RC

}N
k=1

, we employ a set of allocated items {zk}k∈S to
represent the holistic gesture motion Mt. Here, S represents the chosen index sets. The element-wise
quantization function Q(·) maps each item ẑt in Ẑ to its closest match zk in the codebook Z:

Zq = Q(Ẑ) := argmin
zk∈Z

∥ẑt − zk∥2 , (3)

where the codebook entries act as the foundational motion elements within the discrete motion
space. To establish this, we follow [64, 32] to pre-train a CNN-based Vector Quantized-Variational
Autoencoder (VQ-VAE), which comprises an encoder E, a decoder D, and a context-rich codebook
Z . This is done through the self-reconstruction of gesture motions.

The sequence of motions M1:T is initially transformed into a temporal feature representation Ẑ =

E(M1:T ) ∈ RT ′×H×C , where H represents the count of gesture components, T ′ indicates the
quantity of temporal units encoded (with P = T

T ′ frames per unit). Subsequently, we derive the
quantized motion sequence Zq ∈ RT ′×H×C by quantization function Q(·). This function Q maps
each element in Ẑ to its closest corresponding entry within the codebook Z:

Zq = Q (E (M1:T )) , M̂1:T = D (Zq) . (4)

Training objectives. For the training of the quantized autoencoder, we employ motion-level losses to
mitigate the jittering issue of generated gestures, along with two intermediate losses at the code level:

LVQ =Lrec(M, M̂) + Lvel(M
′, M̂′) + Lacc(M

′′, M̂′′)

+
∥∥∥sg(Ẑ)− Zq

∥∥∥2
2
+
∥∥∥Ẑ− sg (Zq)

∥∥∥2
2
,

(5)

where M′ and M′′ means the velocity and acceleration of motion, sg(·) denotes a stop-gradient
operation, Lrec are Geodesic [52] loss and the last two terms are designed to refine the codebook
entries. For facial motions, we utilize MSE loss for both velocity (Lvel) and acceleration (Lacc) loss.
For body motions, we use L1 loss as Lvel and Lacc . Additionally, for the foot contact loss, we employ
MSE loss as the loss function. These terms work by minimizing the distance between the codebook Z

and the embedded features Ẑ. Given that the quantization function (Equation 3) is non-differentiable,
we utilize the straight-through gradient estimator [53] to propagate the gradients.

3.3 Speech-Driven Selective State Spaces Gesture Synthesis Model

Overall Framework. Utilizing the acquired discrete motion prior, we establish a cross-modal
mapping from speech inputs to target motion codes, enabling the generation of realistic co-speech
gesture motions. In our approach to speech-driven gesture synthesis, we utilize audio sequences
A = {a1, . . . , aN} and text sequences T = {t1, . . . , tN} as inputs to guide the generation of co-
speech gestures G = {g1, . . . , gN}. Here, N signifies the total frame count, and gi ∈ R55×6+100+4+3
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denotes 55 pose joints in Rot6D, R100 FLAME parameters, R4 foot contact labels, R3 global
translations for the i-th frame. The gesture synthesis model, comprising audio encoders EA and text
encoders ET and multiple selective state space models DB for different parts of the body, is trained
on the discrete motion space, conditioned on the speech, as shown in Figure 2.

Speech Feature Extraction. For audio feature extraction, two CNN-based audio feature extrac-
tion networks are employed to respectively extract amplitude and onset features. Specifically,
we integrate amplitude and onset features along the channel dimension to obtain audio features
fA = {fa1, ..., faN}. For processing speech input words, we employ pre-trained FastText [5]
to obtain word embeddings, which are then refined by linear projections to produce text features
fT = {ft1, ..., ftN}. We further fuses features from the input modalities (e.g., audio and text
features). The speaker embeddings sid are first combined with audio and text features through
additive operation. By concatenating feature vectors along the channel dimension, we further apply
linear transformations to determine the weight factors, and then integrating the features through an
element-wise summation. The process can be formalized as:

wT = σ(WT · [fA + sid · 1, fT + sid · 1]),
wA = σ(WA · [fA + sid · 1, fT + sid · 1]),
f̄T = wT ⊙ fA + (1− wT )⊙ fT ,

f̄A = wA ⊙ fA + (1− wA)⊙ fT ,

(6)

where σ denotes the softmax operation, ⊙ denotes the Hadamard product, and WT and WA represent
linear mapping matrices used to adjust the dimensions of merged features. f̄T and f̄A denote the
fused features.

Local and Global Scans. Recognizing the diverse deformations and motion patterns in various body
parts, we propose using multiple local scan modules to model the movements of different body parts
(e.g., face, hand, upper and lower body) with fused multi-modal features from previous modules. To
enhance the generalization of the model, we have incorporated additional learnable queries to foster
the queries’ ability to learn motion patterns. As shown in Figure 2, the queries (Q) are integrated
with the input’s multi-modal features through a multi-head cross attention mechanism (FMHCA). This
allows the queries to learn the most relevant information from the speech input. The process can be
formally defined as follows:

fface = FMHCA(Qface, f̄T , f̄A), (7)
where fface denotes the feature of facial motion. This formulation can be applied similarly to obtain
fhand, fupper, and flower by substituting the corresponding query vectors Qhand, Qupper, and
Qlower respectively. Utilizing the extracted perceptual features from various body parts, we proceed
to employ Mamba to extract temporal features from the sequence, which can be formalized as belows:

Fface = Mamba(fface), (8)

where Fface corresponds to the temporal features of facial motion. The same approach is applied to
generate temporal features for the hand, upper body, and lower body by inputting their respective
perceptual features fhand, fupper, and flower into the corresponding Mamba modules.

By acquiring the distinctive features of various body parts, we improve the perception of motion
patterns among them using a global scan module. Initially, we combine the features along the
sequence dimension. Subsequently, by utilizing self-attention mechanism(FMHSA), we model the
global information across different sequence tokens. These refined features are fed into Mamba to
extract temporal perceptual information, which can be fomulized as below:

Fparts = [Fface, Fhand, Fupper, Flower]

fmixed = FMHSA(Fparts),

fglobal = Mamba(fmixed),

(9)

where [] denotes the concatenation operation of Fface, Fhand, Fupper and Flower in the dimension of
the sequence. The extracted latent features are then fed into their respective VQ-Decoders to produce
the final motion predictions.

Training Objectives. The model’s training objectives are composed by a composite loss function
that harmonizes reconstruction and cross-entropy losses. This design aims to augment the accuracy
of motion generation, encompassing the face, hands, upper and lower body. The latent reconstruction
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loss, represented by Lreclatent, is quantified using the Mean Squared Loss (MSELoss). Here, zi
corresponds to the true latent vectors, while ẑi are the vectors reconstructed by the model. The latent
reconstruction loss is expressed as:

Lreclatent =
1

N

N∑
i=1

∥zi − ẑi∥2, (10)

where N denotes the number of frames. Concurrently, to encourage diversity in the generated
motions, we optimize the cross-entropy loss for latent code class classification Lcls. Specifically, we
employ the Negative Log Likelihood Loss (NLLLoss), where yi represents the true class labels for
each sample, and ŷi denotes the model’s predicted class labels. This loss is calculated as the negative
sum of the logarithm of the predicted probabilities for the correct classes:

Lcls = − 1

N

N∑
i=1

C∑
c=1

yic log(ŷic), (11)

where N signifies the total number of frames, C is the total number of classes, and yic is a binary
indicator of whether class c is the correct label for sample i. The total loss L is a weighted sum of the
categorical and latent reconstruction losses, with α and β serving as balance hyper-parameters:

L = αLcls + βLreclatent, (12)

where α = 1 and β = 3 for hands, upper and lower body motion. For facial motion, we set α = 0
and β = 3. By optimizing the total loss, the model is trained to generate diverse gesture results.

4 Experiments

4.1 Experiments Setting

We train and evaluate on the BEATX-standard dataset proposed by [32]. BEATX-standard contains
60 hours of data with high finger quality for 25 speakers (12 female and 13 male). The dataset
comprises 1762 sequences, each with an average duration of 65.66 seconds. Each sequence includes
a response to a daily inquiry. We split datasets into 85%/7.5%/7.5% for the train/val/test set.

4.2 Implementation Details

We utilize the Adam optimizer with a learning rate of 2.5× 10−4. To maintain stability, we apply
gradient norm clipping at a value of 0.99. In the construction of the VQVAEs, we employ a uniform
initialization for the codebook, setting the codebook entries to feature lengths of 512 and establishing
the codebook size at 256. The numerical distribution range for the codebook initialization is defined
as [−1/codebook_size, 1/codebook_size). The codebook is solely updated during the first stage,
and in the second stage of training for the speech-to-gesture mapping, the codebook remains frozen.
The VQVAEs are trained for 200 epochs, with a learning rate of 2.5× 10−4 for the first 195 epochs,
which is then reduced to 2.5× 10−5 for the final 5 epochs. During the second stage, the model is
trained for 300 epochs. All experiments are conducted using one NVIDIA A100 GPU.

4.3 Metrics

To evaluate the realism of body gestures, we employ Fréchet Gesture Distance (FGD) [70] to measure
the proximity of the distribution between the ground truth and generated gestures. Subsequently,
Diversity [28] is quantified by computing the average L1 distance across multiple gesture clips. The
synchronization between speech and motion is achieved using Beat Constancy (BC) [30]. For facial
motions, we assess positional accuracy by calculating the vertex Mean Squared Error (MSE) [60].
Additionally, the difference between the ground truth and the generated facial vertices is measured
using the vertex L1 difference (LVD) [68]. More details about metrics and efficiency analysis are
provided in the supplementary materials.

4.4 Quantitative Results

As shown in Table 1, our method attains the highest BC, with a significant increase of 14.3% when
compared to the previously top-performing method, which underscores the superior capability of
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MambaTalk in discerning and correlating audio-motion beats. Furthermore, our method performs
competitively with EMAGE in terms of FGD, and much better than others. This emphasizes the high
quality and naturalness of our generated movements, showing the ability of MambaTalk to capture
real motion dynamics. This also demonstrates the authenticity of our generated motions, affirming the
successful capture of inherent motion characteristics. Some results are marked as “-” because these
methods can not generate facial movements. Moreover, our method outperforms previous methods in
terms of MSE and LVD, with substantial improvements of 36% and 14%, respectively. These two
enhancements highlight the superior accuracy and fidelity of our method in capturing fine-grained
details, affirming its efficacy in synthesizing realistic and authentic facial motions.

Table 1: Quantitative results on BEATX. FGD (Frechet Gesture Distance) multiplied by 10−1, BC
(Beat Constancy) multiplied by 10−1, Diversity, MSE (Mean Squared Error) multiplied by 10−7, and
LVD (Learned Vector Distance) multiplied by 10−5. The best results are in bold.

Methods Venue FGD ↓ BC ↑ Diversity ↑ MSE ↓ LVD ↓
Non-facial Gesture Synthesis

S2G [11] ICRA 2019 28.15 4.683 5.971 - -
Trimodal [70] TOG 2020 12.41 5.933 7.724 - -
HA2G [34] CVPR 2022 12.32 6.779 8.626 - -
DisCo [31] ACMMM 2022 9.417 6.439 9.912 - -
CaMN [33] ECCV 2022 6.644 6.769 10.86 - -
DiffStyleGesture [63] IJCAI 2023 8.811 7.241 11.49 - -

Holistic Gesture Synthesis

Habible et al. [18] IVA 2021 9.040 7.716 8.21 8.614 8.043
TalkShow [68] CVPR 2023 6.209 6.947 13.47 7.791 7.771
EMAGE [32] CVPR 2024 5.512 7.724 13.06 7.680 7.556
MambaTalk (Ours) NeurlPS 2024 5.409 7.930 13.07 7.512 7.496

4.5 Qualitative Analysis

User Study. We conducted a user study to assess the visual quality of the generated co-speech 3D
gestures. For each method under comparison, we produced 10 gesture samples, which were then
converted into video clips for evaluation by 39 participants. In each evaluation session, participants
were presented with 20 seconds video clips generated by various models. They were instructed to
assess the clips across the following dimensions: (i) naturalness, (ii) appropriateness, (iii) synchrony
and (iv) smoothness. For naturalness, they evaluated the similarity of the generated gestures to those
made by humans, paying attention to the authenticity and smoothness of the movements. In terms of
appropriateness, they considered the alignment of the gestures with the spoken content, taking into
account both the explicit meaning and the underlying semantics. For synchrony assessment, they
examined the timing of the gestures in relation to the speech rhythm, audio, and facial expressions
to ensure a harmonious and integrated performance. For smoothness, they assessed the gestures for
any abrupt stops or unnatural jerks that might indicate a lack of fluidity in motion. We mainly com-
pared two state-of-art methods with our proposed method (with and without VQVAE): CaMN [33],
EMAGE [32], and the ground truth. As presented in Table 2, our method’s average scores are higher
than previous methods.

Visualization. As depicted in Figure 3, our approach yields gestures that exhibit enhanced rhythmic
alignment and a more natural appearance. For instance, when conveying “we were”, our method
instructs the subject to hold both hands in front of the chest, a nuanced detail absent in both CaMN
and EMAGE’s outcomes, where either one or both arms hang down. Additionally, when representing
“no place to”, our method aligns with the ground truth by extending both arms upwards, whereas
CaMN and EMAGE have their arms tucked in next to the body. In the case of “up”, our generated
result raises the right arm in alignment with the semantics of movement. In the context of “moving
around” where our left and right arm swings may differ from the ground truth, the overall movement
remains consistent.

Interestingly, for “sound of gunfire”, a difficult semantic for the model to learn, our method still
generates the result of the character’s right hand clenched in a fist and the arm bent to indicate a tense
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Table 2: User study results on naturalness (human likeness), appropriateness (the degree of consistency
with the speech content), synchrony (the level of synchronization with the speech rhythm) and
smoothness (the fluency of actions). The rating score range is 1-5, with 5 being the best. “Avg.”
denotes the average scores. ↑ indicates the higher the better.

Methods Naturalness↑ Appropriateness↑ Synchrony↑ Smoothness↑ Avg.

CaMN [33] 3.08 3.34 3.25 3.50 3.29
EMAGE [32] 3.85 4.04 3.89 4.21 3.99
Oursw/o VQVAE 1.24 1.24 1.18 1.29 1.24
Ours 4.04 4.00 3.91 4.35 4.08
Ground Truth 4.57 4.54 4.23 4.63 4.50

Ground 

Truth

CaMN

EMAGE

Ours

we were … sound of gunfire … and a police … no place to … right up to …moving around …is horrible …

Figure 3: Visualization of the gestures generated by CaMN, EMAGE and our method. Unreasonable
results are indicated by red boxes and reasonable ones by green boxes.

situation. For the emotion of fear expressed by “is horrible”, the result of our method is similar to the
ground truth, with the character’s hands hanging down and face facing downward, which is a visual
representation of the psychological state of panic and fear. In addition, as illustrated in Figure 3, our
generated motions exhibit not only diverse characteristics, such as the range of motion and which
hands to use, but also a high degree of consistency with the ground truth.

4.6 Ablation Study

Effect of VQVAEs. We confirm the significant role of the VQVAEs. As shown in Table 2 and
Table 3, the integration of VQVAEs is essential for the functionality of our approach, contributing
to the generation of gestures that exhibit smoother transitions and a more human-like quality. As
demonstrated in Table 3, the removal of the VQVAEs (“−VQVAEs”) from the model is also associated
with performance decline, manifesting reduction in FGD, BC, Diversity, MSE and LVD.

Effect of Local Scan. We validate the effectiveness of the local scan. The ablation study is divided
into two segments: (i) multi head cross attention and (ii) Mamba models for different part of bodys.
As shown in Table 3, incorporating multi head cross attention enhances our method’s capability to
generate gestures with higher diversity and beat constancy. The incorporation of the Mamba from
local scan generate gestures characterized by greater diversity and beat constancy. Concurrently,
there is an observed improvement in the FGD of the generated gestures.
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Table 3: Ablation study on different components of our proposed method. ↓ denotes the lower
the better, and ↑ denotes the higher the better. FGD multiplied by 10−1, BC multiplied by 10−1,
Diversity, MSE multiplied by 10−7, and LVD multiplied by 10−5.

Method FGD ↓ BC ↑ Diversity ↑ MSE ↓ LVD ↓
Ours 5.409 7.930 13.072 0.751 7.496
− VQVAEs 12.051 7.447 8.462 1.316 9.235
− Local Scan (FMHCA) 7.554 7.139 11.473 0.805 7.553
− Local Scan (Mamba) 7.979 7.761 10.596 0.772 7.622
− Global Scan (FMHSA) 5.739 7.491 12.415 0.758 7.609
− Global Scan (Mamba) 6.267 7.823 12.047 0.825 7.707

Effect of Global Scan. We validate the effectiveness of the global scan, as listed in Table 3,
the incorporation of global scan improves the overall performance of our method. For the multi
head self attention module in global scan, the incorporation of multi-head self attention acquires
improvement of Diversity and a degradation for FGD. Additionally, the ablation results demonstrate
that incorporating Mamba enhances global scan’s capability to generate gestures with higher diversity
and beat constancy. The FGD of generated gestures is better at the same time.

Table 4: Ablation study on different audio encoders. ↓ denotes the lower the better, and ↑ denotes the
higher the better. FGD multiplied by 10−1, BC multiplied by 10−1, Diversity, MSE multiplied by
10−7, and LVD multiplied by 10−5.

Method FGD ↓ BC ↑ Diversity ↑ MSE ↓ LVD ↓
Ours 5.409 7.930 13.072 0.751 7.496
Whisper [47] 6.791 7.515 12.617 0.537 6.445
Wav2vec2 [3] 5.343 7.956 13.164 0.973 8.452

Effect of Different Audio Encoder. To validate the effectiveness of the audio encoder, we replace
the CNN-based audio encoder with pre-trained Whisper [47] and Vav2Vec2 [3], as listed in Table 4.
Unlike CNN-based audio encoders that are randomly initialized and trained from scratch, when using
Whisper and Wav2Vec2, we initialize the encoder using pre-trained weights and fix the parameters of
the feature extractor. We observe a notable enhancement in facial generation when utilizing Whisper,
however, the body generation results were subpar. In contrast, while Wav2Vec2 demonstrates some
improvement in body generation, it results in a substantial decline in facial generation quality.

5 Conclusion

In this study, we propose a framework to employ the state space models in gesture synthesis. To
alleviate the problem of jitter in gesture synthesis, we have implemented discrete motion priors, which
enhance the effectiveness of the selective scan mechanism and lead to smoother results. We further
incorporate the selective state space models with attention mechanisms to enhance the refinement of
motion features in latent space. These modules capture the subtle movements and deformations of
various body parts, thereby enhancing the overall quality of the generated gestures. By utilizing a
linear time series modeling strategy with selective state space, our method achieves high-quality full
body gesture generation with low latency.
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A Appendix / Supplemental material

A.1 More visualization results

Figure 4 presents the facial motion results generated by our method, showcasing the generation of
facial expressions and movements with a high level of realism. Our method effectively synchronizes
with the phonetic articulation of speech content, accurately reflecting the physical demands of
pronunciation. For instance, when uttering “walking”, “came” or “bus”, our approach ensures that
the mouth’s movements, such as opening, correspond closely with the actual phonetic requirements.
Other methods do not consistently achieve this level of accuracy in aligning with the phonetic
and physical nuances of speech. Our method adeptly handles the subtleties of mouth closure and
elongation required for sounds such as “in”, closely aligning with the ground truth, whereas other
approaches may exhibit inconsistencies in this regard. Moreover, in instances of silence, all methods,
including ours, demonstrate a good capacity to learn and maintain the mouth’s closed position,
effectively reflecting the underlying patterns of speech and silence. Since CaMN does not specifically
target the generation of facial movements, it results in a lack of variation in facial expressions
throughout the process.

Ground 
Truth

Ours

EMAGE

CaMN

... walking home ... ... that was in ... ...card came ... ...... ... at the bus stop ...
  /ˈwɔːkɪŋ/                  /ɪn/           /keɪm/ ......              /bʌs/

Figure 4: Visualization of the facial motions generated by CaMN, EMAGE and our method. Unrea-
sonable results are indicated by red and gray boxes and reasonable ones by green boxes.

As illustrated in Figure 5, our methodology generates gestures that demonstrate improved rhythmic
synchronization and a more lifelike appearance, effectively capturing the essence of the speaker’s
rhythmic patterns. For example, in the expression “actually” our method guides the individual to
bring the hands inward in front of the chest, a subtle gesture not observed in the results produced by
CaMN and EMAGE, where the arms are either hang limply at the sides or are splayed downward.
Furthermore, in the depiction of “on the way back” our approach accurately reflects the ground truth
by slightly bending down and raising one hand, while EMAGE cannot respond accurately to this and
remains standing.

Furthermore, our approach accurately captures the semantic essence of movements. For instance,
in response to the cue “hug” our method generates an inward-circling motion of the arms, aligning
perfectly with the ground truth, which is a nuanced semantic element that other methodologies
neglect. Similarly, in scenarios such as “so small”, the result of our method is similar to the ground
truth, with the character’s hand moving inward. This attention to detail ensures semantic consistency,
which is lacking in other approaches where actions are not aligned with the intended meaning.
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Ground 
Truth

Ours

EMAGE

CaMN

... actually last year... on the way back ...who was ... ... like 4 or 5 years ... ... is so small...... warm hug and ...

Figure 5: Visualization of the gestures generated by CaMN, EMAGE and our method. Unreasonable
results are indicated by red boxes and reasonable ones by green boxes.

A.2 Efficiency Analysis

We leverage the linear computational complexity of Mamba and the sequence compression capability
of VQVAE within our framework, which helps in reducing computational complexity. Although
there are some specialized acceleration solutions, faster solutions are necessary because when the
model is integrated into the system, there is not only a delay in generating gestures, but also delays
in other modules. Therefore, to evaluate the efficiency of our pipeline, we conducted a series of
measurements, focusing on the runtime of individual components. We measured the runtime of
various components on the NVIDIA A100 GPU in our method over three runs and presented the
average results in Table 5. We also compare our method’s inference time with diffusion-based
methods. The average computation time was determined based on the generation of a 31 second
motion sequence, to showcase our model’s low latency capabilities. The total inference time of our
method is much slower than state-of-the-art diffusion-based method [63]. The result confirm that
our pipeline is well-suited for applications requiring low latency gesture generation like interactive
systems, where responsiveness is paramount.

Table 5: The time cost for generating one second (average) of gestures using the method’s modules.

Modules Run Time(s)

Diffusion-based method

DiffStyleGesture [63] 0.64365± 0.0086

Our method

Audio Encoders 0.00217± 0.0006
Text Encoders 0.00480± 0.0001
Local Scan 0.00219± 0.0004
Global Scan 0.00676± 0.0003
Face VQDecoder 0.00073± 0.0001
Hand VQDecoder 0.00077± 0.0001
Upper VQDecoder 0.00106± 0.0001
Lower VQDecoder 0.00068± 0.0001
Total Time 0.01917± 0.0018
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A.3 Evaluation on BEAT dataset

To evaluate the generalisable benefit of our method, we conduct experiments on a large-scale
multimodal dataset known as BEAT (Body-Expression-Audio-Text) [33]. This dataset encompasses
76 hours of multimodal data collected from 30 speakers engaging in conversations across four different
languages while expressing eight distinct emotions. The dataset includes conversational gestures,
facial expressions, emotional cues, and semantic content, along with annotations for audio, text, and
speaker identity. To facilitate a fair comparison, we follow CaMN [33] and employ approximately 16
hours of speech data from English speakers. Furthermore, we implement the conventional approach
of partitioning the dataset into distinct training, validation, and testing subsets, ensuring consistency
with the data partitioning scheme utilized in prior research to uphold the integrity of the comparison.

To facilitate a fair comparison, we employ a total of N = 34 frame clips with a stride of 10 during the
training process. The first four frames serve as seed poses, while the model is trained to generate the
subsequent 30 poses, which collectively represent a duration of 2 seconds. Our models incorporate
47 joints from the BEAT dataset, comprising 38 hand joints and 9 body joints. As listed in Table 6,
our method demonstrates a significant improvement compared to the CaMN (baseline), which also
validates the generalisable benefits of our approach.

Table 6: Comparison with state-of-the-art method in the term of FGD, SRGR and BeatAlign. All
methods are trained on BEAT datasets. ↓ denotes the lower the better while ↑ denotes the higher the
better. The best results are in bold.

Methods FGD ↓ SRGR ↑ BeatAlign ↑
Seq2Seq [71] 261.3 0.173 0.729
Speech2Gesture [11] 256.7 0.092 0.751
MultiContext [70] 176.2 0.195 0.776
Audio2Gesture [28] 223.8 0.097 0.766
CaMN [33] 123.7 0.239 0.783
TalkShow [68] 91.00 - 0.840
MambaTalk (ours) 51.3 0.256 0.852

A.4 Limitations

Currently, our approach to gesture synthesis involves using distinct modules to animate various
body parts, which naturally introduces some latency. Developing a single, unified model capable
of capturing the wide-ranging and intricate deformations and motion patterns characteristic of
different body parts can be addressed in future research. This enhancement is anticipated to lower
computational overhead and substantially reduce the processing time, thereby improving the real-time
capabilities of the pipeline and ensuring a smoother and more responsive gesture generation system.

Meanwhile, exploring more robust audio representations or combining various types of pre-trained
audio encoders could significantly enhance the quality of gesture generation. Our findings indicate
that certain encoders, such as Whisper, are particularly effective for modeling facial movements,
while others, like Wav2Vec2, are better suited for modeling body movements. This approach will
further improve the overall performance of the method.

In addition, the issue of gesture diversity among speakers and across different cultures remains
unaddressed. Addressing this gap is essential for improving the cross-cultural validity and expanding
the applicability of gesture-based applications in diverse global contexts.

A.5 Pseudo Code

The local scanning procedure is illustrated in Algorithm 26. We attain local modeling of various
body segments by individually processing actions within distinct regions. The approach to global
scanning parallels this methodology; however, the key distinction lies in the simultaneous processing
of motion representations across multiple body parts.
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Algorithm 1 Local Scanning Process
Require: token sequence Tl−1 : (B, M, D)
Ensure: token sequence Tl : (B, M, D)
1: /* model motions in different body regions separately T′

l−1 */
2: T′

l−1 : (B, M, D)← SelfAttention(Tl−1)

3: zface : (B, M, E)← Linearface(T
′face
l−1 )

4: zupperbody : (B, M, E)← Linearupperbody(T
′upperbody
l−1 )

5: zlowerbody : (B, M, E)← Linearlowerbody(T
′lowerbody
l−1 )

6: zhand : (B, M, E)← Linearhand(T
′hand
l−1 )

7: /* process with different direction */
8: for o in {face, upperbody, lowerbody, hand} do
9: x′

o : (B, M, E)← SiLU(Conv1do(x))
10: Bo : (B, M, N)← LinearBo (x

′
o)

11: Co : (B, M, N)← LinearCo (x′
o)

12: /* softplus ensures positive ∆o */
13: ∆o : (B, M, E)← log(1 + exp(Linear∆o (x′

o) +Parameter∆o ))
14: /* shape of ParameterAo is (E, N) */
15: Ao : (B, M, E, N)←∆o

⊗
ParameterAo

16: Bo : (B, M, E, N)←∆o

⊗
Bo

17: yo : (B, M, E)← SSM(Ao,Bo,Co)(x
′
o)

18: end for
19: /* get gated yo */
20: y′

face : (B, M, E)← yface
⊙

SiLU(zface)
21: y′

upperbody : (B, M, E)← yupperbody
⊙

SiLU(zupperbody)
22: y′

lowerbody : (B, M, E)← ylowerbody
⊙

SiLU(zlowerbody)
23: y′

hand : (B, M, E)← yhand
⊙

SiLU(zhand)
24: /* residual connection */
25: Tl : (B, M, D)← LinearT(y′

face + y′
upperbody + y′

lowerbody + y′
hand) +Tl−1

26: Return: Tl

A.6 Evaluation Metrics

To evaluate the realism of body gestures, we employ Fréchet Gesture Distance (FGD)[70] to measure
how close the distribution between the ground truth and generated body gestures is.

FGD(g, ĝ) = ∥µr − µg∥2 +Tr
(
Σr +Σg − 2 (ΣrΣg)

1/2
)
, (13)

where µr and Σr denote the mean and covariance of the latent feature distribution zr for real human
gestures g, while µg and Σg correspond to the mean and covariance of the latent feature distribution
zg for the synthesized gestures ĝ. We employ an encoder based on a Skeleton CNN (SKCNN) and a
Full CNN-based decoder, constituting our autoencoder’s pretrained network. This network is trained
on both the BEATX-Standard and BEATX-Additional datasets. The preference for SKCNN over a
Full CNN encoder stems from its superior performance in capturing gesture features, evidenced by a
reduced reconstruction MSE loss of 0.095, as opposed to 0.103.

Subsequently, Diversity[28] is quantified by computing the average L1 distance across multiple body
gesture clips. Higher Diversity signifies greater variance within the gesture clips. We compute the
average L1 distance across various N motion clips using the following equation:

Diversity =
1

2N(N − 1)

N∑
t=1

N∑
j=1

∥∥∥pit − p̂jt

∥∥∥
1
, (14)

where pt denotes the positions of joints in frame t. We assess diversity across the entire test dataset.
Moreover, when calculating joint positions, translation is zeroed, indicating that L1 Diversity is
exclusively concentrated on local motion dynamics.

The synchronization between the speech and motion is conducted using Beat Constancy (BC)[30].
BC indicates a more precise synchronization between the rhythm of gestures and the audio’s beat.
We define the onset of speech as the audio’s beat and identify the local minima of the upper body

18



joints’ velocity (excluding fingers) as the motion’s beat. The synchronization between audio and
gesture is determined using the following equation:

BC =
1

g

∑
bg∈g

exp

(
−minba∈a ∥bg − ba∥2

2σ2

)
, (15)

where g and a represent the sets of gesture beats and audio beats, respectively.

Turning focus to facial aspects, we gauge the positional accuracy through the calculation of vertex
Mean Squared Error (MSE)[60]. This metric quantifies the average squared difference between the
predicted facial landmarks and their corresponding ground truths, providing a clear indication of the
facial model’s accuracy:

MSE =
1

n

n∑
i=1

(fi − f̂i)
2, (16)

where n denotes the number of vertices, fi represents the ground truth position of the i-th vertex, f̂i
denotes the predicted position of the i-th vertex. The sum is taken over all vertices to compute the
average error.

Additionally, the disparity between the ground truth and the generated facial vertices is measured by
the vertex L1 difference (LVD)[68], which measures the synchronization between speech and facial
expression.

LVD =
1

n

n∑
i=1

∥∥∥f ′
i − f̂ ′

i

∥∥∥
1
, (17)

where n denotes the number of vertices, f ′
i represents the ground truth speed of the i-th vertex. f̂ ′

i
denotes the speed of the i-th vertex in the generated facial expression. The sum is taken over all
vertices to compute the average absolute difference.

A.7 Ethical Considerations in Crowdsourcing Research

This section provides additional details about the user study for qualitative analysis. For our user study,
we have randomly selected ten videos generated by different methods, each containing 20-second
video clips. For each participant, we paid compensation that exceeded the local average hourly wage.

The screenshot of our user study website is illustrated in the Figure 6, which displays the template
layout presented to the participants. In addition to the main trials, participants were also subjected to
several catch trials. These trials involved displaying Ground Truth videos and videos with distorted
motion. Participants who failed to score the GT videos higher and the distorted motion videos lower
were considered unresponsive or inattentive and their data was not included in the final evaluation.
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Figure 6: The screenshots of user study website for participants.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Overall, the abstract and introduction provide a concise yet comprehensive sum-
mary of the paper’s objectives, methods, and findings, accurately reflecting its contributions
and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Yes, we discuss the limitations in section A.4 in the Appendix part.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: By adhering to the principles mentioned in the Guidelines, we ensures that
each theoretical result is underpinned by a full set of assumptions and complete, correct
proofs, thus reinforcing the credibility and reliability of the paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: In Section 4. Experiments in the main text, we report all the experiments
setting, implementation details and metrics, which disclose all the information needed to
reproduce the main experimental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The code is available.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: In Section 4. Experiments in the main text, we report all the experiments
setting and implementation details, facilitating readers’ understanding of the results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report the error bars in Section A.2 Efficiency Analysis.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We report the computer resources in Section 4.2 Implementation Details, and
show model runtimes in detail in Section A.2 Efficiency Analysis.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes, we do.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The work we perform makes no society impact. It is only an academic study.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We properly cite the original owners of code, data and models.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification: Yes, we provide the details in appendix A.5 Ethical Considerations in Crowd-
sourcing Research.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [Yes]
Justification: Yes, we do.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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