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ABSTRACT

Gradient normalization and soft clipping are two popular techniques for tackling
instability issues and improving convergence of stochastic gradient descent (SGD)
with momentum. In this article, we study these types of methods through the lens
of dissipative Hamiltonian systems. Gradient normalization and certain types of
soft clipping algorithms can be seen as (stochastic) implicit-explicit Euler dis-
cretizations of dissipative Hamiltonian systems, where the kinetic energy function
determines the type of clipping that is applied. We make use of dynamical systems
theory to show in a unified way that all of these schemes converge to stationary
points of the objective function, almost surely, in several different settings: a) for
L−smooth objective functions, when the variance of the stochastic gradients is
possibly infinite b) under the (L0, L1)−smoothness assumption, for heavy-tailed
noise with bounded variance and c) for (L0, L1)−smooth functions in the em-
pirical risk minimization setting, when the variance is possibly infinite but the
expectation is finite.

1 INTRODUCTION

In this article we consider the optimization problem

min
q∈Rd

F (q), (1)

where F : Rd → R is an objective function. A common case in mathematical statistics and machine
learning is the empirical risk minimization setting, where F is a weighted sum of loss functions:

F (q) =
1

N

N∑
i=1

fi(q), (2)

with fi(q) = `(h(xi, q), yi). Here, {(xi, yi)}Ni=1 is an underlying data set of feature-label pairs in
the feature-label space X × Y , h(q, ·) is a model with model parameters q such as a neural network
or a regression function, and ` is a loss function. A common approach within the machine learning
community for solving problems of the type given by (1) is to employ stochastic gradient descent
(SGD) (Robbins & Monro, 1951). The solution to (1) is approximated iteratively with a stochastic
approximation to the gradient of the function defined by (2):

qk+1 = qk − αk∇f(qk, ξk). (3)

Here αk is the learning rate and ξk is a random variable that accounts for the stochasticity. A
common choice is to take a random subsetBξk ⊂ {1, . . . , N} of the indices of the objective function
defined by (2) and choose

∇f(q, ξk) =
1

|Bξk |
∑
i∈Bξk

∇fi(q), (4)

where |Bξk | denotes the cardinality ofBξk . This is attractive whenN is very large and |Bξ| � N , as
it is less computationally expensive than gradient descent. It also tends to escape local saddle points
(Fang et al., 2019) - an appealing property as many machine learning problems are non-convex.
Among the variations of SGD is the popular SGD with momentum. Its deterministic counterpart
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was first introduced in the seminal work of Polyak (1964). A common form of this algorithm is
expressed as an update in two stages

pk+1 = βkpk − αk∇f(qk, ξk)

qk+1 = qk + αkpk+1
(5)

where p0 = 0 and βk > 0 is a momentum parameter. The usage of the momentum update makes
the algorithm less sensitive to noise. Indeed, by an iterative argument, we obtain that pk+1 =

−
∑k
i=0

(∏k
j=i+1 βj

)
αi∇f(qi, ξk). That is, pk+1 is an average of the previous gradients where βk

determines how much we value information from the preceding stages.

Notwithstanding the benefits of stochastic gradient algorithms, they frequently suffer from instabil-
ity problems such as exploding gradients (Pascanu et al., 2013; Bengio et al., 1994) and sensitivity
to the choice of learning rate (Owens & Filkin, 1989). A way to mitigate these issues is to employ
gradient clipping (Goodfellow et al., 2016; Pascanu et al., 2012) or gradient normalization. Gradient
normalization was introduced in Poljak (1967) in the deterministic and a stochastic version appears
already in Andradóttir (1990). A normalized version of the algorithm determined by (3) is given by

qk+1 = qk − αk
∇f(qk, ξk)

‖∇f(qk, ξk)‖2
.

In practice a small number ε > 0 is added in the denominator to ensure that the update does not
become infinitely large.

Gradient clipping was first introduced in Mikolov (2013). In so-called hard clipping, the gradient is
simply rescaled if it is larger than some predetermined threshold. Soft clipping, on the other hand,
makes use of a differentiable function for rescaling the gradient (Zhang et al., 2020a). It was recently
shown that hard clipping algorithms suffer from an unavoidable bias term (Koloskova et al., 2023);
a term in the convergence bound that does not decrease as the number of iterations increases. This
is one reason why soft clipping is preferable.

1.1 GRADIENT NORMALIZATION, MOMENTUM AND HAMILTONIAN SYSTEMS

In this article, we study gradient normalization and soft clipping of stochastic momentum algorithms
from the perspective of Hamiltonian systems. As a first step, we note that if we take βk = 1 −
γαk with γ > 0, we can view the scheme given by (5) as an approximate implicit-explicit Euler
discretization of the equation system

ṗ = −∇F (q)− γp,
q̇ = p.

(6)

The system 6 is nearly Hamiltonian (Glendinning, 1994); taking

H(p, q) = F (q) + ϕ(p), (7)

with ϕ(p) = 1
2‖p‖

2
2, we can write it on the form

ṗ = −∇qH(p, q)−∇q̇R(q̇),

q̇ = ∇pH(p, q),
(8)

where ∇p,∇q denote the gradients with respect to p and q respectively and R(q̇) = γ
‖q̇‖22

2 is a
Rayleigh dissipation function that accounts for energy dissipation (viscous friction) of the system.
Note that this choice of R yields ∇q̇R(q̇) = γ∇pH(p, q), which will always be the case in this
paper. Thus, for a Hamiltonian of the form 7, (8), reads

ṗ = −∇F (q)− γ∇ϕ(p),

q̇ = ∇ϕ(p).

We notice that any fixed point of this system is a stationary point of F , since (q̇, ṗ) = 0 implies that
∇F (q) = 0. The dissipation term is often included as an extra term in the Euler-Lagrange equations

∇q̇L(q, q̇)− d

dt
L(q, q̇) = ∇q̇R(q̇),

2
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where L(q, q̇) = ϕ∗(q̇) − F (q) is the Lagrangian, and ϕ∗ is the convex conjugate of ϕ, compare
Proposition 51.2 and Ex. 51.3 in Zeidler (1985). The physical interpretation is that q is the position of
a particle in a potential field F (q) with kinetic energy given by ϕ∗(q̇) (in the case when ϕ(p) =

‖p‖22
2

we have ϕ∗(q̇) =
‖q̇‖22

2 ). In many scenarios, such as in this case, it happens that the friction tern is
proportional to the velocity (Goldstein et al., 2014). A ball rolling on a rough incline (Wolf et al.,
1998; Bideau et al., 1994)) or on a tilted plane coated with a viscous fluid (Bico et al., 2009) could
for instance be modelled in this fashion, giving weight to the analogy of the heavy ball (Polyak,
1964). See also Goodfellow et al. (2016), for a further discussion on this.

In this paper, we consider generalizations of the algorithm defined by (5) to equations of the type
(8) where F is an L-smooth, coercive function and ϕ is a convex, coercive and L-smooth function.
The scheme we consider is given by

pk+1 = pk − αk∇f(qk, ξk)− αkγ∇ϕ(pk),

qk+1 = qk + αk∇ϕ(pk+1),
(9)

where p0 = 0, q0 is arbitrary, and {ξk}k≥0 is a sequence of independent, identically distributed
random variables. We show that this scheme converges almost surely to the set of stationary points
of F . If we take ϕ(x) =

‖x‖22
2 in (9), we get (5). Taking ϕ(x) =

√
‖x‖22 + ε, ε > 0, gives us a

gradient normalization scheme, where both the gradient and the momentum variables are rescaled:

pk+1 = pk − αk∇f(qk, ξk)− αkγ
pk√

‖pk‖22 + ε
,

qk+1 = qk + αk
pk+1√

‖pk+1‖22 + ε
.

(10)

Other conceivable choices are

i) Relativistic kinetic energy: ϕ(x) = c
√
‖x‖22 + (mc)2. (Franca et al., 2020)

ii) Non-relativistic kinetic energy: ϕ(x) = 1
2 〈x,Ax〉+〈b, x〉+c, whereA is a positive definite,

symmetric matrix, b ∈ Rd and c ∈ R. (Goldstein et al., 2014)

iii) Gradient rescaling: ϕ(x) = c
√
‖x‖22 + ε, for c, ε > 0.

iv) Soft clipping: ϕ(x) =
√

1 + ‖x‖22.

v) The symmetric LogSumExp-function: ϕ(x) = ln
(∑d

i=1 e
xi + e−xi

)
, which can be seen

as an approximation of the `∞-norm (Sherman, 2013).

vi) Half-squared `p-norm: ϕ(x) = 1
2‖x‖

2
p, for p ∈ [2,∞).

Examples i), iii) and iv) are analytically similar, but give rise to different behaviours in the algorithm
given by (9). We refer the reader to Beck (2017); Peressini et al. (1993), for verifying that the
functions above satisfy the assumptions in Section 5.2.

2 CONTRIBUTIONS

Making use of Hamiltonian dynamics, we consider a large class of stochastic optimization algo-
rithms (9) for large-scale optimization problems, for which we perform a rigorous convergence
analysis. Our assumptions on the dissipation term ϕ are fairly permissive, and thus the class of algo-
rithms covers both interesting cases like normalized SGD with momentum and various soft-clipping
methods with momentum, as well as novel methods. Our analysis shows that the iterates generated
by any method in this class are finite almost surely, and that they converge almost surely to the set of
stationary points of the objective function F . This means that the methods “always” work in prac-
tice, in contrast to what can be guaranteed by analyses that show convergence in expectation. These
results are valid in many applications, due to fairly weak assumptions on the optimization problem.
The exact assumptions are listed in Section 5 but essentially consist of either

• L-smooth objective functions and stochastic gradients with possibly infinite variance, or

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

• (L0, L1)-smooth objective functions and heavy-tailed stochastic gradients with bounded
variance, or

• (L0, L1)-smooth objective functions arising in the empirical risk minimization setting and
stochastic gradients with possibly infinite variance but bounded expectation.

In particular, we do not assume convexity of the objective function F in any of the cases.

3 OUTLINE

In Section 4, we briefly discuss some results that are related to the analysis in this paper. The main re-
sults and analysis is presented in Section 5, with conclusions in Section 6. The details of the analysis
can be found in Appendix A. This depends on some auxiliary results listed in Appendix B. Finally,
Appendix C presents a few numerical experiments that illustrate the behaviour of the methods.

4 RELATED WORKS

In the first subsection we consider other formulations of SGD with momentum and how the formula-
tion in this paper relates to them. In the second subsection we summarize work in optimization and
statistics which make use of Hamiltonian dynamics. Next, we discuss the approach we use for show-
ing almost sure convergence of the methods. Finally, we discuss the central (L0, L1)−smoothness
condition on the objective function.

4.1 MOMENTUM ALGORITHMS

The implementations of SGD with momentum in the libraries Tensorflow (Abadi et al., 2015) and
Pytorch (Paszke et al., 2019) are equivalent to (5) after a transformation of the learning rate:

pk+1 = βkpk − αk∇f(qk, ξk)

qk+1 = qk + pk+1.

Typically the momentum parameter βk is a fixed number. The update (5) resembles the (hard-
clipped) scheme proposed in Mai & Johansson (2021):

pk+1 = clipr ((1− βk)pk − βk∇f(qk, ξk)) ,

qk+1 = qk + αkpk+1,

where clipr is a projection operator that projects the argument onto a ball of radius r at the origin.
The algorithm (5) is also reminiscent of Stochastic Primal Averaging (SPA) (Defazio, 2021):

pk+1 = pk − ηk∇f(qk, ξk),

qk+1 = (1− ck+1)qk + ck+1pk+1.

In Theorem 1 in Defazio (2021) it is shown that this is equivalent to SGD with momentum version
pk+1 = βkpk +∇f(qk, ξk),

qk+1 = qk − αkpk+1,

if one takes ηk+1 = ηk−αk
βk+1

and ck+1 = αk
ηk

. The SPA algorithm can be seen as a randomized
implicit-explicit Euler discretization of the equation system

ṗ = −∇F (q),

q̇ = p− q,
which after a change of variable is equivalent with (6) for γ = 1. Under the rather strong as-
sumptions that the noise is almost surely bounded (which does not hold for, e.g., Gaussian noise),
so-called mixed-clipped SGD with momentum was studied in Zhang et al. (2020a):
pk+1 = βpk − (1− β)∇f(qk, ξk),

qk+1 = qk −
[
νmin

(
η,

γ

‖pk+1‖2

)
pk+1 + (1− ν) min

(
η,

γ

‖∇f(qk, ξk)‖2

)
∇f(qk, ξk)

]
,

Here, 0 ≤ ν ≤ 1 is an interpolation parameter.

A drawback with the previously mentioned analyses is that the convergence results are obtained in
expectation, which means that there is no guarantee that a single path will converge.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

4.2 HAMILTONIAN DYNAMICS

Hamiltonian dynamics, in its energy conserving form, has been well-explored in the Markov chain
Monte Carlo field, compare Leimkuhler & Matthews (2015). In Livingstone et al. (2017), various
kinetic energy functions ϕ are considered for equation (8) without the dissipation term∇q̇R(q̇).

The algorithm (9) was studied in the context of stochastic differential equations and Langevin dy-
namics in Stoltz & Trstanova (2018), where the noise is assumed to be Gaussian. In general, this is
however a restrictive assumption in the stochastic optimization setting.

The specific update (10) bears resemblance to deterministic time integration- and optimization
schemes studied in Franca et al. (2020), that arise as discretizations of the system

ṗ = −∇qH(p, q)− γp,
q̇ = ∇pH(p, q),

(11)

where the dissipation term γp emanates from Bateman’s Lagrangian L(q, q̇) = eγt(ϕ∗(q̇)−F (q)),
see Bateman (1931). A similar point of view is also taken in Franca et al. (2021), but where so-called
Bregman dynamics is employed. In the (deterministic) optimization setting this was studied in Mad-
dison et al. (2018), where strictly convex kinetic energy functions ϕ are considered. A stochastic
gradient version is analysed in Kapoor & Harshvardhan (2021) for strongly convex objective func-
tions F .

However, the stochastic optimization algorithm has not been studied for non-convex problems, and
an analysis for merely convex (and not strictly convex) kinetic energy functions is lacking.

4.3 ALMOST SURE CONVERGENCE

The analysis in this paper is based on the ODE method, emanating from Ljung (1976). The particular
proof strategy is due to Kushner & Clark (1978), and is based on linear interpolation of the sequence
of iterates. The technique was extended to piecewise constant interpolations in Kushner & Yin
(2003). The approach relies on the assumption that the iterates generated by the algorithm are finite
almost surely; an assumption that has to be verified independently.

A similar analysis of the SGD with momentum was performed in Gadat et al. (2018). It was extended
in Barakat et al. (2021), to a class of schemes that encompasses (5). The analytical approach is
slightly different and does not cover the normalization- and clipping algorithms that we analyze in
this article.

We also note that one can employ an analysis similar to that in e.g. Bottou et al. (2018), along with
martingale results like that in Robbins & Siegmund (1971) to obtain almost sure convergence of a
subsequence of the iterates. This is for instance the case in Sebbouh et al. (2021) where almost sure
convergence guarantees of the type min0≤k≤K‖∇F (qk)‖2 → 0 almost surely for SGD and SGD
with momentum are established. These types of results are weaker than those obtained in this paper,
since they cannot guarantee that the whole sequence of iterates {qk}k≥0 converges to a stationary
point.

4.4 (L0, L1)−SMOOTHNESS

The (L0, L1)−smoothness assumption was introduced in Zhang et al. (2020b) as a more appropriate
measure of smoothness for certain machine learning problems. It is shown in Zhang et al. (2020b)
that the iteration complexity of clipped SGD is bounded, under the assumption that the stochastic
gradients are bounded almost surely. The latter is a very restrictive assumption that is not fulfilled
even by Gaussian noise. In Zhang et al. (2020a) a clipped algorithm with momentum is shown to
converge in expectation to a stationary point under the same strong assumptions on the noise. Similar
assumptions are also encountered in e.g. Crawshaw et al. (2022); Li et al. (2024). 1 Koloskova et al.
(2023) analyses clipped SGD under Assumption 4.ii), but do not obtain a convergence guarantee
due to an unavoidable bias (Koloskova et al., 2023). Recently are Wang et al. (2023a) and Faw et al.
(2023) obtained convergence guarantees for versions of AdaGrad Norm under the weaker affine

1Li et al. (2024) also considers the slightly more general case of sub-Gaussian noise.
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variance-assumption. These results are however only with a certain probability, and there is always
some set of positive measure on which the algorithm may not converge.

The convergence guarantees that we obtain in Theorem 5.6 under Assumption 4.i) and Assumption
3.ii) is stronger in the sense that it converges for every path. We also stress the fact that Assumption
3.ii) is relatively weak since it covers all heavy-tailed distributions with finite variance (Rolski et al.,
2009). This includes for instance the large class of sub-Weibull distributions, which generalizes
sub-Gaussian and sub-exponential distributions (Vladimirova et al., 2020).

5 ANALYSIS

We first give a brief overview of the analysis in Section 5.1. In Section 5.2 we describe the setting
and in Section 5.3 we give a more detailed outline of the theorems and the proofs. The proofs of the
results are given in Appendix A.

5.1 BRIEF OVERVIEW

The analysis is split into two parts.

In the first, we show that the iterates of the scheme defined by (9) are finite almost surely, if the
objective function F and the convex kinetic energy function ϕ are L-smooth and coercive, or if F
is (L0, L1)−smooth and the variance is finite. This is done by constructing a Lyapunov function
with the help of the Hamiltonian H , and then appealing to the classical Robbins–Siegmund theorem
(Robbins & Siegmund, 1971).

In the second, we show that given that the iterates defined by (9) are bounded, they converge almost
surely to a stationary point of F . We make use of a modification of the ODE method, compare
Kushner & Yin (2003). Since the scheme is implicit-explicit, we cannot directly apply e.g. Theorem
2.1 in Kushner & Yin (2003). The assumptions that we make on the noise are also much less
restrictive that in Kushner & Yin (2003), which in our case would correspond to the stochastic
gradients being uniformly bounded in expectation.

Essentially, the idea is to

i) Introduce a pseudo time tk =
∑k−1
i=0 αi and construct piecewise constant interpolations

P0(t) and Q0(t) of {pk}k≥0 and {qk}k≥0 from (9).
ii) Show that the time shifted processes Pk(t) = P0(tk + t) and Qk(t) = Q0(tk + t) are

equicontinuous in the extended sense (Kushner & Yin, 2003) and that Pk(t) and Qk(t)
asymptotically satisfies (8).

iii) At last, make use of the underlying dynamics of (8) to conclude that {qk}k≥0 converges
almost surely to a stationary point of F .

5.2 SETTING

Let (Ω,F ,P) be a probability space, and {ξk}k≥0 be a sequence of independent, identically dis-
tributed random variables. We further let Fk denote the σ−algebra generated by ξ0, . . . , ξk−1. By
Eξk [X] we denote the conditional expectation of a random variable X with respect to Fk. For a set
A ⊂ Rd, we let Nδ(A) = {x : infa∈A ‖x− a‖ < δ}.

5.2.1 BASIC ASSUMPTIONS

We make the following basic assumptions on f , F and ϕ:
Assumption 1. The objective function F is differentiable and satisfies:

i) (Coercivity) lim‖x‖2→∞ F (x) =∞.

ii) (Proper) There is a number F∗ > −∞ such that F (x) ≥ F∗, ∀x ∈ Rd.

iii) (Locally finite cardinality) Let Λ = {q : ∇F (q) = 0}. For every compact set K ⊂ R, the
set F (Λ) ∩K has finite cardinality.

6
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Further, the stochastic gradient∇f is an unbiased estimator of∇F , i.e.

iv) E [∇f(x, ξ)] = ∇F (x).

Remark 5.1. Assumption 1.i) implies that the sublevel sets {x : F (x) ≤ c} are bounded, compare
Proposition 11.12 in Bauschke & Combettes (2011).
Remark 5.2. Assumption 1.iii) is slightly more general than the assumption that F (Λ) has finite
cardinality, which one often sees; compare e.g. Benaı̈m (1996). We make use of it in Lemma 5.17,
in order to show that the sublevel sets of the Hamiltonian are locally asymptotically stable. Since it
is meant to rule out pathological behaviour, it is not obvious how to verify it in practice. However,
we note that in many cases the function has isolated equilibria which means that the assumption is
satisfied.

Assumption 2. The kinetic energy function ϕ is differentiable and satisfies:

i) (Lipschitz continuous ∇ϕ) There is a constant λ > 0 such that ‖∇ϕ(y) − ∇ϕ(x)‖2 ≤
λ‖x− y‖2, for all x, y ∈ Rd.

ii) (Convexity) For all x, y ∈ Rd, it holds that ϕ(y)− ϕ(x) ≤ 〈∇ϕ(y), y − x〉.

iii) (Coercivity) lim‖x‖2→∞ ϕ(x) =∞.

iv) (Proper) For all x ∈ Rd, it holds that ϕ(x) ≥ ϕ∗ > −∞.

Remark 5.3. Asumption 1.i), 1.ii), 2.iii) and 2.iv) together implies that the Hamiltonian H(p, q) =
F (q) + ϕ(p) is coercive as a function of q and p.

In addition to these basic assumptions, we consider three different settings.

5.2.2 SETTING 1

In the first setting,∇F is Lipschitz continuous but the stochastic gradients can have large variance.

Assumption 3. The objective function F and the stochastic gradient∇f further satisfy:

i) (Lipschitz-continuous ∇F ) There is a constant L > 0 such that ‖∇F (y) − ∇F (x)‖2 ≤
L‖x− y‖2, for all x, y ∈ Rd.

ii) (Locally bounded variance) V [∇f(x, ξ)] ≤ κ (F (x)− F∗) + τ‖∇F (x)‖22 + σ2,

where κ, σ, τ ≥ 0.

Assumption 3.i) implies that the inequality F (y)−F (x) ≤ 〈∇F (x), y− x〉+ L
2 ‖x− y‖

2
2 holds for

all x, y ∈ Rd, compare Lemma 1.2.3 in Nesterov (2018). Assumption 3.ii) was first introduced in
Khaled & Richtárik (2020) where it was called as ”expected smoothness”. It is weak in the sense that
it allows for infinite variance in the case that either the gradient or the objective function becomes
infinitely large. The condition is similar to e.g. the ”affine noise variance” in Wang et al. (2023b)
and the ”affine variance” in Faw et al. (2023).

5.2.3 SETTING 2

Alternatively, we consider the following setting, where we require less regularity of F but instead
restrict the variance of the stochastic gradient.

Assumption 4. The objective function F and the stochastic gradient∇f further satisfy:

i) ((L0, L1)−smoothness) There exists L0, L1 such that for all x, y ∈ Rd, if ‖x− y‖2 ≤ 1
L1

,
then

‖∇F (x)−∇F (y)‖ ≤ (L0 + L1‖∇F (y)‖2) ‖x− y‖2.

ii) (Bounded variance) V [∇f(x, ξ)] ≤ σ2,

iii) (Bounded∇ϕ) There exists ∆ > 0 such that ‖∇ϕ(x)‖2 ≤ ∆ for all x ∈ R.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Here V [∇f(x, ξ)] = E
[
‖∇f(x, ξ)‖22

]
− ‖∇F (x)‖22.

Remark 5.4. By Lyapunov’s inequality, compare p. 230 in Shiryaev (2016), it follows from As-
sumption 4.ii) that E [‖∇f(x, ξ)−∇F (x)‖2] ≤ σ.

Assumption 4.ii) sometimes called heavy-tailed noise assumption in the literature (Gorbunov et al.,
2020; Koloskova et al., 2023). It covers all zero-mean, heavy-tailed distributions with finite second
moment, compare Rolski et al. (2009). In particular, it also includes the large class of sub-Weibull
distributions (Vladimirova et al., 2020), which generalizes random variables of sub-Gaussian and
sub-Exponential distribution.

5.2.4 SETTING 3

Assumption 4.ii) may be restrictive in some cases, compare (Gurbuzbalaban et al., 2021). Therefore
we also consider the the empirical risk minimization setting when the objective function is on the
form (2), f(·, ξ) is (L0, L1)−smooth and ∇f(·, ξ) is given by (4). In this setting, we can further
lower the assumptions on the noise to merely finite expectation:
Assumption 5. The objective function satisfies 4.i) and ∇ϕ satisfies 4.iii). The objective function
F and the stochastic gradient∇f further satisfy:

i) (Empirical risk minimization) The objective function and the stochastic gradient is of the
form (2) and (4), where each for i, it holds that infq∈Rd fi(q) > −∞.

ii) (Bounded expectation) The stochastic gradients satisfy E [‖∇f(x, ξ)−∇F (x)‖2] ≤ σ.

iii) (f(·, ξ) is (L0, L1)−smooth) The stochastic functions f(·, ξ) are (L0, L1)−smooth.
Remark 5.5. We observe that SGD with momentum, corresponding to (5), requires ϕ(x) = ‖x‖2/2,
which does not satisfy Assumption 4.iii). It is thus only covered by the analysis in Setting 1. In
Setting 2 and 3, we have a weaker regularity assumption on F , and this requires us to instead
pose stricter requirements on the methods. Overall this indicates that for (L0, L1)−smooth cost
functionals, clipping methods are a better option than SGD.

5.2.5 BOOK-KEEPING ASSUMPTIONS

The following assumption on the step sizes αk is standard and originates from Robbins & Monro
(1951). Informally, the step sizes must go to zero in order to counter the stochasticity, but do so
slowly enough that we have time to reach a stationary point.
Assumption 6 (Step sizes). The step size sequence {αk}k≥0 satisfies α0 = 0 and {αk}k≥0 ∈
`2(R)\`1(R).

Our analysis shows convergence to the set of stationary points of ∇F . Under the following addi-
tional assumption, we get convergence to a unique stationary point:
Assumption 7. The stationary points of F are isolated.

5.3 OUTLINE OF PROOF

The proofs of the results in this section can be found in Appendix A. The main theorem is an
extension of the approach in Kushner & Yin (2003):
Theorem 5.6. Let Assumptions 1, 2 and 6 be satisfied, as well as either Assumption 3, 4 or 5. Then
{qk}k≥0 converges almost surely to the set of stationary points of the objective function F . If we
additionally assume that Assumption 7 holds, the convergence is to a unique stationary point.

The following result is a direct consequence of Theorem 5.6:
Corollary 5.7 (Convergence in expectation). Let Assumptions 1, 2, 6 and 7 be valid. Further, let the
Hamiltonian be on the form (7) and let the sequences{pk}k≥0 and {qk}k≥0 be generated by (9).
Then it holds under that

lim
k→∞

E
[
‖∇F (qk)‖θ2

]
= 0,

where θ = 1 under Assumption 3 and θ = 1
2 under Assumption 4 or 5.
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Our proof strategy consists of two parts. In the first part we show that the sequences {pk}k≥0 and
{qk}k≥0 are finite almost surely:

Theorem 5.8 (Finiteness of {pk}k≥0 and {qk}k≥0). Let Assumptions 1, 2 and 6 be valid, as
well as either Assumption 3, 4 or 5. Further, let the Hamiltonian be on the form (7) and let the
sequences{pk}k≥0 and {qk}k≥0 be generated by (9). Then {pk}k≥0 and {qk}k≥0 are finite almost
surely. Moreover, it holds that supk≥0 E [F (qk)] <∞.

In the second part of the analysis, we closely follow the ODE method approach as outlined in Kush-
ner & Yin (2003): We start with introducing a pseudo time tk =

∑k−1
i=0 αi, and define two piecewise

constant, (stochastic) interpolation processes defined by

P0(t) = p0I(−∞,t0](t) +

∞∑
k=0

pkI[tk,tk+1)(t),

Q0(t) = q0I(−∞,t0](t) +

∞∑
k=0

pkI[tk,tk+1)(t).

(12)

We next consider the shifted sequence of processes {Pk}k≥0 and {Qk}k≥0, defined by

Pk(t) = P0(tk + t),

Qk(t) = Q0(tk + t).
(13)

We note that {Pk}k≥0 and {Qk}k≥0 are stochastic processes; they depend on ω ∈ Ω2 through the
stochasticity of the sequences {pk}k≥0 and {qk}k≥0. For brevity we will refrain from writing out
the dependence on ω.

The next step is to introduce the concept of extended equicontinuity (Kushner & Yin, 2003; Freise,
2016):

Definition 5.9 (Extended equicontinuity). A sequence of Rd-valued functions {fk}k≥0, defined on
(−∞,∞) , is said to be equicontinuous in the extended sense if {|fk(0)|}k≥0 is bounded and for
every T and ε > 0 there is δ > 0 such that

lim sup
k→∞

sup
0<|t−s|≤δ, t,s∈[0,T ]

|fk(t)− fk(s)| ≤ ε. (14)

Following Freise (2016), we show that the process {Zk}k≥0 = {(Pk, Qk)}k≥0, where {Pk}k≥0 and
{Qk}k≥0 defined by (13), is equicontinuous in the extended sense:

Lemma 5.10 (Equicontinuous in the extended sense). Consider {Zk}k≥0 = {(Pk, Qk)}k≥0 where
the sequences {Pk}k≥0 and {Qk}k≥0 are defined by (13) (equivalently, by (37)). Suppose that
{pk}k≥0 and {qk}k≥0 are defined by (9), and that the Hamiltonian is on the form (7). Further,
let Assumptions 1, 2 and 6 be valid, as well as either Assumption 3, 4 or 5. Then {Zk}k≥0 is
equicontinuous in the extended sense, almost surely.

We can then appeal to the extended/discontinuous Arzelà–Ascoli theorem (Kushner & Yin, 2003;
Freise, 2016; Droniou & Eymard, 2016), to conclude that {Zk}k≥0 has a subsequence that converges
to a continuous function z:

Theorem 5.11 (Discontinuous Arzelà–Ascoli theorem). Let {fk}k≥0 be a sequence of functions,
defined on Rd, that is equicontinuous in the extended sense. Then there is a subsequence {fnk}nk≥0

of {fk}k≥0, that converges uniformly on compact sets to a continuous function.

For a proof see, e.g. Theorem 6.2 in Droniou & Eymard (2016) or Theorem 12.3 in Billingsley
(1968).

With this established, we proceed to show that {Zk}k≥0 is an asymptotic solution3 to (8); i.e. asymp-
totically {Pk}k≥0 and {Qk}k≥0 satisfy (8). More precisely we show

2Here ω is an outcome and Ω is the sample space of the underlying probability space (Ω,F ,P).
3By Grönwall’s inequality (compare e.g. Ethier & Kurtz (1986)) this is equivalent to (12) being an asymp-

totic pseudotrajectory (Benaı̈m, 1999) to (8).
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Lemma 5.12 (Asymptotic solutions). With the same assumptions and notation as in Lemma 5.10,
we can write

Pk(t) = Pk(0)−
∫ t

0

∇F (Qk(s))ds− γ
∫ t

0

∇ϕ(Pk(s))ds+Mk(t) + µk(t),

Qk(t) = Qk(0) +

∫ t

0

∇ϕ(Pk(s))ds+ νk(t) + κk(t),

(15)

where the functions {Mk}k≥0, {µk}k≥0, {νk}k≥0 and {κk}k≥0 converge to 0 uniformly on compact
sets almost surely.

It follows that any limit point of {Zk}k≥0 satisfies

P (t) = P (0)−
∫ t

0

∇F (Q(s))ds− γ
∫ t

0

∇ϕ(P (s))ds

Q(t) = Q(0) +

∫ t

0

∇ϕ(P (s))ds.

(16)

The limits we can extract by appealing to Theorem 5.11 are continuous. Thus it follows from (16)
and the fundamental theorem of calculus that they are differentiable and satisfy (8).
Remark 5.13. The functions {µk}k≥0 and {νk}k≥0 are essentially what is left when we have rewrit-
ten the sums in (12) as integrals. The functions {Mk}k≥0 account for the difference between
∇F (qk) and ∇f(qk, ξk) and κk(t) for the implicit discretization in the second equation of (9).
Remark 5.14. The convergence ”uniformly on compact sets almost surely” is to be understood as
uniformly on compact sets in t and almost surely in ω. For example, for the sequence {Mk}k≥0 we
have that for any compact set K ⊂ R, limk→∞ supt∈K‖Mk(t)(ω)‖2 = 0 for almost all ω ∈ Ω.

We recall the definition of a locally asymptotically stable set (Borkar, 2008; Kushner & Yin, 2003):

Definition 5.15 (Locally asymptotically stable set). A set A is said to be Lyapunov stable if for any
ε > 0, there exists a δ > 0 such that every trajectory initiated in the Nδ(A) remains in Nε(A). It is
locally asymptotically stable if every such path ultimately goes to A.

With this in mind, we show the following theorem, which is essentially an adaptation of Theorem
5.2.1 in Kushner & Yin (2003).
Theorem 5.16. Under the same assumptions and notation as in Theorem 5.6, let A be a locally
asymptotically stable set for (8). If there exists a compact set in the domain of attraction of A that
{zk}k≥0 visits infinitely often, then zk → A almost surely:

lim
k→∞

inf
a∈A
‖zk − a‖`2(R2d) = 0, a.s. (17)

The next step is to prove the following, which gives us specific locally asymptotically stable sets:
Lemma 5.17. Consider the same assumptions and notation as in Theorem 5.6. For each c, if the set
{z : H(z) ≤ c} is non-empty, it is a locally asymptotically stable set for the solutions to (8).

In particular, the set A = {z : H(z) ≤ lim infkH(zk)} is locally asymptotically stable. By
the properties of lim inf , we can also find a compact set which zk enters infinitely often, and we
can therefore apply Theorem 5.16 to conclude that zk → A. The final step is to show that this
convergence in fact implies convergence to the set of stationary points of H , and therefore that qk
converges to the set of stationary points of F . Under Assumption 7 we can additionally conclude
that the convergence is to a unique equilibrium.

6 CONCLUSIONS

In this paper, we have shown that the stochastic Hamiltonian descent algorithm (9), arising as a
stochastic explicit-implicit Euler discretization of (8), under weak assumptions converges almost
surely to the set of stationary points of the objective function F . In the terminology of Robbins &
Monro (1951), this means that the estimator determined by {qk} is a strongly consistent estimator
of a stationary point of F . (Here, the designated asymptoticity is with respect to the number of
iterations instead of the sample size.) Similarly, the result in Corollary 5.7 is akin to {qk}k≥0 being
an asymptotically unbiased estimator of a stationary point q∗.

10
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A ANALYSIS

As explained in Section 5.3, the two main steps of the convergence analysis are to first prove that pk
and qk are finite almost surely, and then to use this a priori result to show that they in fact converge.
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A.1 THE SEQUENCES {pk}k≥0 AND {qk}k≥0 ARE FINITE ALMOST SURELY

We first prove Theorem 5.8:
Theorem 5.8 (Finiteness of {pk}k≥0 and {qk}k≥0). Let Assumptions 1, 2 and 6 be valid, as
well as either Assumption 3, 4 or 5. Further, let the Hamiltonian be on the form (7) and let the
sequences{pk}k≥0 and {qk}k≥0 be generated by (9). Then {pk}k≥0 and {qk}k≥0 are finite almost
surely. Moreover, it holds that supk≥0 E [F (qk)] <∞.

The proof relies on the Robbins-Siegmund theorem:
Theorem A.1 ((Robbins & Siegmund, 1971)). Let (Ω,F ,P) be a probability space and F1 ⊂
F2 ⊂ . . . be a sequence of sub-σ-algebras of F . For each k = 1, 2, . . . let Vk, βk, Xk and Yk be
non-negative Fk-measurable random variables such that

E [Vk+1|Fk] ≤ Vk(1 + βk) +Xk − Yk.
Then

lim
k→∞

Vk = V (18)

exists and is finite and
∑
k Yk <∞ on the set{

ω :
∑
k

βk <∞,
∑
k

Xk <∞

}
.

We first consider Setting 1, i.e. with Assumption 3. We note that V = H(p, q)− F∗ − ϕ∗ is a Lya-
punov function, since the system is nearly Hamiltonian; V̇ (t) = 〈∇pH(p, q), ṗ〉+〈∇qH(p, q), q̇〉 =
−γ〈∇pH(p, q),∇pH(p, q)〉 < 0. The strategy is now to introduce a corresponding (almost) dis-
crete Lyapunov function Vk = H(pk, qk) − F∗ − ϕ∗ = F (qk) − F∗ + ϕ(pk) − ϕ∗. We can then
use L-smoothness of F and the convexity of ϕ to bound the difference Vk+1 − Vk by α2

kVk plus
higher-order terms of αk, whereupon we can appeal to Theorem A.1 to conclude that {pk}k≥1 and
{qk}k≥1 are finite a.s.

Proof of Theorem 5.8 in Setting 1. Let Vk = H(pk, qk)− F∗ − ϕ∗. Then we have that

Vk+1 − Vk = F (qk+1)− F (qk) + ϕ(pk+1)− ϕ(pk). (19)

By L-smoothness of F and convexity of ϕ, this is less than or equal to

〈∇F (qk), qk+1 − qk〉+
L

2
‖qk+1 − qk‖22 + 〈∇ϕ(pk+1), pk+1 − pk〉.

We insert (9) into the previous expression to obtain that it is equal to

αk〈∇F (qk)−∇f(qk, ξk),∇ϕ(pk+1)〉+
Lα2

k

2
‖∇ϕ(pk+1)‖22 − αkγ〈∇ϕ(pk+1),∇ϕ(pk)〉

=: I1 + I2 + I3.

We add and subtract αk〈∇F (qk)−∇f(qk, ξk),∇ϕ(pk)〉 to the first term:

I1 = αk〈∇F (qk)−∇f(qk, ξk),∇ϕ(pk)〉+ αk〈∇F (qk)−∇f(qk, ξk),∇ϕ(pk+1)−∇ϕ(pk)〉.
When we take the conditional expectation (w.r.t. the sigma algebra generated by ξ1, . . . , ξk−1) of
I1, the first term is 0 by the unbiasedness of the gradient and the independence of {ξk}:

Eξk [I1] = αkEξk [〈∇F (qk)−∇f(qk, ξk),∇ϕ(pk+1)−∇ϕ(pk)〉] .
Using Assumption 2.i), we can bound I3 as

I3 = −αkγ〈∇ϕ(pk+1),∇ϕ(pk)〉 ≤ αkγ

2
‖∇ϕ(pk+1)−∇ϕ(pk)‖22 ≤

αkγλ
2

2
‖pk+1 − pk‖22.

After taking the expectation of (19), we thus get the bound

Eξk [Vk+1]− Vk ≤ αkEξk [〈∇F (qk)−∇f(qk, ξk),∇ϕ(pk+1)−∇ϕ(pk)〉]

+
Lα2

k

2
Eξk

[
‖∇ϕ(pk+1)‖22

]
+
αkγλ

2

2
Eξk

[
‖pk+1 − pk‖22

]
=: I ′1 + I2 + I ′3.

(20)
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We now make use of Cauchy–Schwarz inequality along with the Lipschitz continuity of ∇ϕ to
bound I ′1 as

I ′1 ≤ αkλEξk [‖∇F (qk)−∇f(qk, ξk)‖2‖pk+1 − pk‖2] .

We insert (9) into the previous expression, and make use of Young’s inequality for products, ab ≤
a2

2 + b2

2 , to obtain that

I ′1 ≤ α2
kλEξk [‖∇F (qk)−∇f(qk, ξk)‖2‖∇f(qk, ξk) + γ∇ϕ(pk)‖2]

≤ α2
k

2
λEξk

[
‖∇F (qk)−∇f(qk, ξk)‖22

]
+
α2
k

2
λEξk

[
‖∇f(qk, ξk) + γ∇ϕ(pk)‖22

]
.

Making use of the inequality

‖x− y‖22 ≤ 2‖x‖22 + 2‖y‖22, (21)

we can further bound I ′1 by

I ′1 ≤
α2
k

2
λEξk

[
‖∇F (qk)−∇f(qk, ξk)‖22

]
+ α2

kλEξk
[
‖∇f(qk, ξk)‖22

]
+ α2

kλγ
2Eξk

[
‖∇ϕ(pk)‖22

]
.

At last we make use of Assumption 3.ii) to get that

I ′1 ≤
α2
k

2
λ
(
κ(F (qk)− F∗) + τ‖∇F (qk)‖22 + σ2

)
+ α2

kλ
(
κ(F (qk)− F∗) + (1 + τ)‖∇F (qk)‖22 + σ2

)
+ α2

kλγ
2Eξk

[
‖∇ϕ(pk)‖22

]
.

We now turn our attention to the term I2 in (20). Adding and subtracting ∇ϕ(pk) and making use
of Assumption 2.i) we get that

I2 ≤
Lα2

k

2
Eξk

[
‖∇ϕ(pk+1)−∇ϕ(pk)‖22

]
+
Lα2

k

2
Eξk

[
‖∇ϕ(pk)‖22

]
≤ Lλ2α2

k

2
Eξk

[
‖pk+1 − pk‖22

]
+
Lα2

k

2
‖∇ϕ(pk)‖22

≤ Lα4
kλ

2Eξk
[
‖∇f(qk, ξk)‖22

]
+

(
Lα4

kγ
2λ2 +

Lα2
k

2

)
‖∇ϕ(pk)‖22,

where we have made use of (9) and (21) in the last step. Making use of Assumption 2.i) again we
obtain that

I2 ≤ Lα4
kλ

2
(
κ(F (qk)− F∗) + (1 + τ)‖∇F (qk)‖22 + σ2

)
+

(
Lα3

kγ
2λ2 +

Lα2
k

2

)
‖∇ϕ(pk)‖22.

In a similar way, we find that

I ′3 ≤ α3
kγλ

2
(
κ(F (qk)− F∗) + (1 + τ)‖∇F (qk)‖22 + σ2

)
+ α3

kγ
3λ2‖∇ϕ(pk)‖22.

Gathering up the terms, we get that

Eξk [Vk+1]− Vk ≤
(
α2
kλ

2
+ α2

kλ+ Lα4
kλ

2 + α3
kγλ

2

)
σ2

+ α2
kκλ

(
3

2
+ Lα2

kλ+ αkγλ

)
(F (qk)− F∗)

+

(
α2
kλτ

2
+ α2

kλ(1 + τ) + Lα4
kλ

2(1 + τ) + α3
kγλ

2(1 + τ)

)
‖∇F (qk)‖22

+

(
α2
kγ

2λ+ Lα4
kλ

2γ2 +
Lα2

k

2
+ α3

kγ
3λ2

)
‖∇ϕ(pk)‖22.
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Making use of Lemma B.6, we see that

Eξk [Vk+1]− Vk

≤
(
α2
kλ

2
+ α2

kλ+ Lα4
kλ

2 + α3
kγλ

2

)
σ2

+

(
α2
kκλ

(
3

2
+ Lα2

kλ+ αkγλ

)
+ 2L

(
α2
kλτ

2
+ α2

kλ(1 + τ) + Lα4
kλ

2(1 + τ) + α3
kγλ

2(1 + τ)

))
(F (qk)− F∗)

+

(
α2
kγ

2λ+ Lα4
kλ

2γ2 +
Lα2

k

2
+ α3

kγ
3λ2

)
(ϕ(pk)− ϕ∗).

(22)

Now define

C1(αk) = σ2

(
α2
kλ

2
+ α2

kλ+ Lα4
kλ

2 + α3
kγλ

2

)
and let C2(αk) be the maximum of the terms in front of F (qk)−F∗ and ϕ(pk)−ϕ∗. It follows that

Eξk [Vk+1]− Vk ≤ C1(αk) + C2(αk)Vk. (23)

Since C1 and C2 only contain second-order terms of αk (and by assumption
∑∞
k=1 α

2
k < ∞), we

have that
∞∑
k=0

C1(αk) <∞,
∞∑
k=0

C2(αk) <∞.

We can thus make use of the Robbins–Siegmund theorem with βk = C2(αk), Xk = C1(αk) and
Yk = 0 to conclude that Vk tends to a non-negative, finite, random variable V almost surely. Since
F and ϕ are assumed to be coercive, this implies that {pk}k≥1 and {qk}k≥1 are finite almost surely.
For the second claim of the proof, we define

Sk =
Vk∏k−1

j=0 (1 + C2(αj))
.

By (23), we have that

Eξk [Sk+1] ≤ Sk +
C1(αk)∏k

j=0(1 + C2(αj))
≤ Sk + C1(αk).

Taking the expectation and, summing from 0 to K − 1, we see that

E [SK ] ≤ S0 +

K−1∑
k=0

C1(αk).

We multiply both sides of the previous inequality with
∏K−1
k=0 (1 + C2(αk))

E [VK ] ≤
K−1∏
k=0

(1 + C2(αk))

(
S0 +

K−1∑
k=0

C1(αk)

)

≤ e
∑K−1
j=0 C2(αk)) ·

(
S0 +

K−1∑
k=0

C1(αk)

)
,

where we have used the fact that 1 + x ≤ ex in the second step. Letting K tend to infinity on the
left hand side and using the fact that

∑∞
k=0 C2(αk)) <∞ we see that the last claim of the theorem

also holds:

sup
k

E [Vk] <∞.
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We now give a proof of Theorem 5.8 in Setting 2, i.e. with Assumption 4.

Proof of Theorem 5.8 in Setting 2. By Assumption 4.i) it holds for ‖xk − xk+1‖ ≤ 1
L1

that

F (xk+1)− F (xk) ≤ 〈∇F (xk), xk+1 − xk〉+
L0 + L1‖∇F (xk)‖

2
‖xk+1 − xk‖2. (24)

Since

qk+1 − qk = αk∇ϕ(pk+1) (25)

we get for large enough k that

‖qk+1 − qk‖ = αk‖∇ϕ(pk+1)‖ ≤ αk∆ ≤ 1

L1
, (26)

by Assumption 4.iii). If we insert (25) into (24), we get

F (qk+1)− F (qk) ≤ 〈∇F (qk), qk+1 − qk〉+
L0

2
‖qk+1 − qk‖2 +

L1

2
‖∇F (qk)‖‖qk+1 − qk‖2.

(27)

By (26), we get that

F (qk+1)− F (qk) ≤ αk〈∇F (qk),∇ϕ(pk+1)〉+
L0

2
α2
k∆2 +

L1

2
‖∇F (qk)‖α2

k∆2. (28)

By Assumption 2.ii) we have that

ϕ(pk+1)− ϕ(pk) ≤ 〈∇ϕ(pk+1), pk+1 − pk〉
= −αk〈∇ϕ(pk+1),∇f(qk, ξk)〉 − αkγ〈∇ϕ(pk+1),∇ϕ(pk)〉

With H(p, q) = F (q) + ϕ(p) and Vk = H(pk, qk)− F∗ − ϕ∗ as in the previous proof we thus get
that

Vk+1 − Vk ≤ αk〈∇F (qk),∇ϕ(pk+1)〉+
L0

2
α2
k∆2 +

α2
kL1

2
‖∇F (qk)‖∆2

− αk〈∇ϕ(pk+1),∇f(qk, ξk)〉 − αkγ〈∇ϕ(pk+1),∇ϕ(pk)〉,

which can be rewritten as

Vk+1 − Vk ≤ αk〈∇F (qk)−∇f(qk, ξk),∇ϕ(pk+1)〉+
L0

2
α2
k∆2 +

α2
kL1

2
‖∇F (qk)‖∆2

− αkγ〈∇ϕ(pk+1),∇ϕ(pk)〉.

We add and subtract∇ϕ(pk) in the first scalar product:

Vk+1 − Vk ≤ αk〈∇F (qk)−∇f(qk, ξk),∇ϕ(pk+1)−∇ϕ(pk)〉
+ αk〈∇F (qk)−∇f(qk, ξk),∇ϕ(pk)〉

+
L0

2
α2
k∆2 +

α2
kL1

2
‖∇F (qk)‖∆2 − αkγ〈∇ϕ(pk+1),∇ϕ(pk)〉.

(29)

The second scalar product disappears due to the unbiasedness of ∇f(qk, ξk) and the fact that ξk is
independent of qk and pk. We now focus on the first scalar product in (29). Taking the conditional
expectation and using Cauchy–Schwarz inequality, we see that

αkEξk [〈∇F (qk)−∇f(qk, ξk),∇ϕ(pk+1)−∇ϕ(pk)〉]
≤ αkEξk [‖∇F (qk)−∇f(qk, ξk)‖‖∇ϕ(pk+1)−∇ϕ(pk)‖]

Using the Lipschitz continuity of∇ϕ, this can be further bounded as

α2
kλEξk [‖∇F (qk)−∇f(qk, ξk)‖‖∇f(qk, ξk)− γ∇ϕ(pk)‖]
≤ α2

kλEξk [‖∇F (qk)−∇f(qk, ξk)‖ (‖∇f(qk, ξk)‖+ γ‖∇ϕ(pk)‖)] .
(30)
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We now add and subtract ∇F (qk) inside the ‖∇f(qk, ξk)‖−term and make use of the triangle
inequality to bound the previous expression by

α2
kλEξk [‖∇F (qk)−∇f(qk, ξk)‖ (‖∇F (qk)−∇f(qk, ξk)‖+ ‖∇F (qk)‖+ γ∆)]

= α2
kλEξk

[
‖∇F (qk)−∇f(qk, ξk)‖2 + ‖∇F (qk)−∇f(qk, ξk)‖‖∇F (qk)‖

+ γ∆‖∇F (qk)−∇f(qk, ξk)‖]
where we also have used the assumption that ‖∇ϕ(pk)‖ ≤ ∆. Now, the first term can by Assump-
tion 4.ii) be bounded by

Eξk
[
‖∇F (qk)−∇f(qk, ξk)‖2

]
≤ σ2.

By Remark 5.4, we can bound the second term as follows

Eξk [‖∇F (qk)−∇f(qk, ξk)‖‖∇F (qk)‖] ≤ σ‖∇F (qk)‖,
since ξk is independent of ‖∇F (qk)‖. Likewise, we can bound the last expectation by σ. Thus, we
arrive at the bound

αkEξk [〈∇F (qk)−∇f(qk, ξk),∇ϕ(pk+1)−∇ϕ(pk)〉] ≤ α2
kλ
(
σ2 + σ‖∇F (qk)‖+ γ∆σ

)
.
(31)

We can bound the last inner product of (29) using Lemma B.1 in Zhang et al. (2020a), taking µ = 0:

−αkγ〈∇ϕ(pk+1),∇ϕ(pk)〉 ≤ −αkγ‖∇ϕ(pk)‖2 + αkγ‖∇ϕ(pk+1)−∇ϕ(pk)‖‖∇ϕ(pk)‖
≤ α2

kγλ2‖∇f(qk, ξk)− γ∇ϕ(pk)‖∆.
By Remark 5.4 we thus get

− αkγEξk [〈∇ϕ(pk+1),∇ϕ(pk)〉]
≤ α2

kγλ∆ (Eξk [‖∇f(qk, ξk)‖] + γ‖∇ϕ(pk)‖)
≤ α2

kγλ∆
(
Eξk [‖∇f(qk, ξk)−∇F (qk)‖] + ‖∇F (qk)‖2 + γ‖∇ϕ(pk)‖

)
≤ α2

kγλ∆ (σ + ‖∇F (qk)‖2 + γ∆) .

(32)

Inserting (31) and (32) into (29), we get that

Eξk [Vk+1]− Vk ≤ α2
kλ
(
σ2 + σ‖∇F (qk)‖+ γ∆σ

)
+
L0

2
α2
k∆2

+
α2
kL1

2
‖∇F (qk)‖∆2 + α2

kγλ∆ (σ + ‖∇F (qk)‖2 + γ∆)

(33)

From Lemma B.6, we can bound the ‖∇F (qk)‖−terms, and obtain the bound

Eξk [Vk+1]− Vk ≤ α2
kλ

(
σ2 + σ

(
2L1(F (q)− F∗) +

L0

L1

)
+ γ∆σ

)
+
L0

2
α2
k∆2

+
α2
kL1

2

(
2L1(F (q)− F∗) +

L0

L1

)
∆2

+ α2
kγλ∆

(
σ +

(
2L1(F (q)− F∗) +

L0

L1

)
+ γ∆

)
.

(34)

We now define

C1(αk) = α2
kλσ2L1 + α2

kL
2
1∆2 + α2

kγλ∆2L1,

C2(αk) = α2
kλσ

2 + α2
kλσ

L0

L1
+ α2

kλγ∆σ + α2
kL0∆2 + α2

kγλ∆σ + α2
kγλ∆

L0

L1
+ α2

kγ
2λ∆2.

We see that
Eξk [Vk+1]− Vk ≤ C1(αk)(F (qk)− F∗) + C2(αk)

≤ C1(αk)(H(pk, qk)− F∗ − ϕ∗) + C2(αk),
(35)

where we have used the fact that ϕ(pk) − ϕ∗ ≥ 0. Since
∑
k≥0 Ci(αk) < ∞ for i = 1, 2, we can

appeal to the Robbins–Siegmund theorem to conclude that limk→∞ Vk exists and is finite almost
surely. Since F and ϕ are coercive this implies that supk‖pk‖ < ∞ and supk‖qk‖ < ∞ almost
surely.
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Proof of Theorem 5.8 in Setting 3. Let F∗ be as in Lemma B.7. By Lemma B.7, we have that the
right-hand side of (30) can be bounded by

α2
kλEξk [‖∇F (qk)−∇f(qk, ξk)‖] (2L1N(F (qk)− F∗) + γ∆) .

By Assumption 5.ii) this can in its turn be bounded by

α2
kλσ (2L1N(F (qk)− F∗) + γ∆) .

The rest of the proof proceeds exactly like that of Setting 2 (with suitable modifications of the
constants in the bound (35)).

A.2 ALMOST SURE CONVERGENCE, NOTATION

To prove convergence, we start with rewriting the processes (13) on a form that is more reminiscent
of the integral equations (16). As in Kushner & Yin (2003), we use the convention that

k∑
i=n

ai = 0, if k = n− 1 (the empty sum),

k∑
i=n

ai = −
n−1∑
i=k+1

ai, if k < n− 1.

By introducing the function

m(t) =

{
j, tj ≤ t < tj+1,

0, t ≤ 0,
(36)

we can write (13) as

Pk(t) = pk +

m(tk+t)−1∑
i=k

(pi+1 − pi),

Qk(t) = qk +

m(tk+t)−1∑
i=k

(qi+1 − qi).

(37)

Using the fact that pk = Pk(0) and qk = Qk(0), along with the update (9), we can rewrite (37) as

Pk(t) = Pk(0)−
m(tk+t)−1∑

i=k

αi∇F (qi) +Mk(t)− γ
m(tk+t)−1∑

i=k

αi∇ϕ(pi),

Qk(t) = Qk(0) +

m(tk+t)−1∑
i=k

αi∇ϕ(pi+1),

(38)

where

Mk(t) =

m(tk+t)−1∑
i=k

αiδMi (39)

and δMi = ∇f(qi, ξi)−∇F (qi).

In the next section, we show that the process {Mk}k≥0 converges uniformly on compact sets, almost
surely, to 0.

A.3 CONVERGENCE OF THE SEQUENCE {Mk}

The following lemma is and adaptation of part 1 of the proof of Theorem 2.1 from Kushner & Yin
(2003):
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Lemma A.3 (Convergence of {Mk(t)}k≥0). Suppose that Assumption 1, 2 and 6 holds, along with
either Assumption 3, 4 or 5. Then, the sequence {Mk(t)}k≥0 converges uniformly on compact sets
almost surely to 0. More precisely, for any T it holds that

lim
k→∞

sup
t∈[0,T ]

‖Mk(t)‖2 = 0, (40)

almost surely.

Proof of Lemma A.3. Closely following the proof of Theorem 2.1 in Kushner & Yin (2003): We let
Fj = σ(ξ1, . . . , ξj). By definition, we have that

Mk(t) =

m(tk+t)−1∑
i=k

αiδMi,

where δMi = ∇f(qi, ξi)−∇F (qi). Define

M̃j =

j∑
i=k

αiδMi.

We will show that M̃j is a martingale sequence. We first note that

E
[
M̃j+1|Fj

]
= M̃j ,

by Assumption 1.iv) and the fact that the noise is independent. Next, we demonstrate that

E
[
‖M̃j+1‖2

]
<∞, (41)

Note that

E
[
‖M̃l‖22

]
= E

[
‖

l∑
i=k

αiδMi‖22

]
= E

 l∑
i=k

α2
i ‖δMi‖22 + 2

l∑
i=k

i−1∑
j=k

αiαj〈δMi, δMj〉


= E

[
l∑

i=k

α2
i ‖δMi‖22

]
,

where we have used the fact that for j < i

E [〈δMi, δMj〉] = E [E [〈δMi, δMj〉|Fj ]] = E [〈E [δMi|Fj ] , δMj〉] = 0,

since Mj is Fj-measurable and E [δMi|Fj ] = 0 (recall that ξi is independent of Fj). In the case
that Assumption 4.ii) holds we therefore have that

E
[
‖δMi‖22

]
<∞. (42)

If instead Assumption 3.ii) holds, we have that

E
[
‖δMi+1|Fi‖22

]
≤ κ(F (qk)− F∗) + (1 + τ)‖∇F (qk)‖22 + σ2.

Under Assumption 3.i) or 4.i) we get from Theorem 5.8 that the expectation of the right-hand side
is finite4, in which case (42) also holds. Hence M̃j satisfies (41) and it is thus a martingale.

We now show that (40) holds. For any interval [0, T ], we have that

sup
t∈[0,T ]

‖Mk(t)‖2 = sup
k≤j≤l

‖M̃j‖2,

where l = m(tk+T ). By Doob’s submartingale inequality (Kushner & Yin, 2003; Williams, 1991),
we have for every µ > 0 that

P

(
sup
k≤j≤l

‖M̃j‖2 ≥ µ

)
≤

E
[
‖M̃l‖22

]
µ2

.

4Under assumption 3.i) we can use Lemma B.6 to bound the gradient with 2L(F (qk) − F∗) which is
bounded in expectation by Theorem 5.8.
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which implies that

P

(
sup
k≤j
‖M̃j‖2 ≥ µ

)
≤ C

∞∑
i=k

α2
i

and hence

lim
k→∞

P

(
sup
k≤j
‖M̃j‖2 ≥ µ

)
= 0.

By Theorem 1 in Section 2.10.3 of Shiryaev (2016), the sequence M̃j converges almost surely to 0,
i.e. there is a set U such that P(U) = 0 and for every ω ∈ U c we have that (40) holds.

A.4 EQUICONTINUITY OF THE SEQUENCES {Pk}k≥0 AND {Qk}k≥0

Lemma 5.10 (Equicontinuous in the extended sense). Consider {Zk}k≥0 = {(Pk, Qk)}k≥0 where
the sequences {Pk}k≥0 and {Qk}k≥0 are defined by (13) (equivalently, by (37)). Suppose that
{pk}k≥0 and {qk}k≥0 are defined by (9), and that the Hamiltonian is on the form (7). Further,
let Assumptions 1, 2 and 6 be valid, as well as either Assumption 3, 4 or 5. Then {Zk}k≥0 is
equicontinuous in the extended sense, almost surely.

To show Lemma 5.10, we make use of an equivalent definition of extended equicontinuity:
Lemma A.4 (Equivalent definition of extended continuity). A sequence of functions {fk}k≥0, fk :
R → Rd is equicontinuous in the extended sense if and only if {|fk(0)|}k≥0 is bounded and for
every T and ε > 0 there is a null sequence (ak)k≥0 (that is, limk→∞ ak = 0) such that

sup
0<|t−s|≤δ, t,s∈[0,T ]

|fk(t)− fk(s)| ≤ ε+ ak. (43)

Proof of Lemma A.4. By definition (14) is equal to

lim
k→∞

bk ≤ ε

with

bk := sup
j≥k

sup
0<|t−s|≤δ, t,s∈[0,T ]

|fj(t)− fj(s)|.

Define

ak = max{0, bk − ε}.

Then (ak)k≥0 satisfies all the requirements; ak is clearly positive and by continuity of the function
max{0, x} it holds that

lim
k→∞

ak = max{0, lim
k→∞

bk − ε} = 0,

as limk→∞ bk − ε ≤ 0. Furthermore, we have that

sup
0<|t−s|≤δ, t,s∈[0,T ]

|fk(t)− fk(s)| ≤ bk ≤ ε+ ak,

for every k and thus we have shown that (43) follows from (14). We now show the converse. Suppose
that (43) holds. Taking the supremum of (43) we obtain

sup
j≥k

sup
0<|t−s|≤δ,t,s∈[0,T ]

|fj(t)− fj(s)| ≤ ε+ sup
j≥k

aj .

We finally take the limit with respect to k

lim
k→∞

sup
j≥k

sup
0<|t−s|≤δ, t,s∈[0,T ]

|fj(t)− fj(s)| ≤ ε+ lim
k→∞

sup
j≥k

aj =: ε+ lim sup
k→∞

ak.

But as limk→∞ ak exists by assumption and is equal to 0, we have lim supk→∞ ak = limk→∞ ak =
0. We thus conclude that (14) holds.
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We now turn to the proof of Lemma 5.10.

Proof of Lemma 5.10. Closely following Lemma 2 in Freise (2016): We want to show that the se-
quence {Zk}k≥0 = {(Pk, Qk)}k≥0, where {Pk}k≥0 and {Qk}k≥0 are defined by (13), is equicon-
tinuous in the extended sense.

First, we note that the sequences {Pk(0)} and {Qk(0)} are finite except on a set of measure 0, since
by Theorem 5.8 supk‖pk‖2 <∞ and supk‖qk‖2 <∞ almost surely.

By Lemma A.4 an equivalent charaterization of extended equicontinuity is that for every ε > 0,
there is a sequence {ak}k≥0 such that limk→∞ ak = 0 and a δ > 0 such that

sup
|t−s|<δ, t,s∈[0,T ]

‖Zk(t)− Zk(s)‖`2(R2d) ≤ ε+ ak, a.s. (44)

By (38), we have that

‖Pk(t)− Pk(s)‖2 ≤ C(ω)

m(tk+t)−1∑
i=m(tk+s)

αi + ‖Mk(t)‖2 + ‖Mk(s)‖2, (45)

where C(ω) = supi‖∇F (qi) − γ∇ϕ(pi)‖2. By the boundedness of pk and qk along with the
continuity of∇F and∇ϕ, we have that C(ω) <∞, a.s. The sum on the right-hand side of (45) can
be rewritten as

m(tk+t)−1∑
i=m(tk+s)

αi = tm(tk+t) − tm(tk+s).

By definition of m, (36), we have that

tm(tk+t) ≤ tk + t.

Thus

tm(tk+t) − tm(tk+s) ≤ tk + t− tm(tk+s). (46)

But we also have

tm(tk+s) ≤ tk + s < tm(tk+s)+1,

and hence the right-hand side of (46) can be rewritten and bounded as follows

tk + t− (tk + s) + (tk + s)− tm(tk+s) ≤ (t− s) + tm(tk+s)+1 − tm(tk+s).

Now, tm(tk+s)+1 − tm(tk+s) = αm(tk+s)+1 and hence we see that

‖Pk(t)− Pk(s)‖2 ≤ C(ω)
(
|t− s|+ αm(tk+s)+1

)
+ ‖Mk(t)‖2 + ‖Mk(s)‖2.

Let ε be greater than 0. There are now two cases. If C(ω) = 0, (43) clearly holds for any δ > 0. If
C(ω) 6= 0, then take δ > 0 so small that C(ω)δ < ε. We then have

sup
|t−s|<δ, t,s∈[0,T ]

‖Pk(t)− Pk(s)‖2

≤ sup
|t−s|<δ,t,s∈[0,T ]

(
C(ω)(|t− s|+ αm(tk+s)+1) + ‖Mk(t)‖2 + ‖Mk(s)‖2

)
< ε+ C(ω)αm(tk)+1 + 2‖Mk(T )‖2.

By Lemma A.3, limk→∞‖Mk(T )‖2 = 0 a.s. and we see that (43) in Lemma A.4 holds almost
surely. A similar argument yields an analogous bound for Qk, and by the equivalence of norms on
R2d, we obtain (44).

In the next section, we show that the processes {Pk}k≥0 and {Qk}k≥0 can be written as solutions
to the integral equations corresponding to (8), plus terms that converge uniformly on compact sets
to 0 as k tends to∞.
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A.5 ASYMPTOTIC SOLUTION

Lemma 5.12 (Asymptotic solutions). With the same assumptions and notation as in Lemma 5.10,
we can write

Pk(t) = Pk(0)−
∫ t

0

∇F (Qk(s))ds− γ
∫ t

0

∇ϕ(Pk(s))ds+Mk(t) + µk(t),

Qk(t) = Qk(0) +

∫ t

0

∇ϕ(Pk(s))ds+ νk(t) + κk(t),

(15)

where the functions {Mk}k≥0, {µk}k≥0, {νk}k≥0 and {κk}k≥0 converge to 0 uniformly on compact
sets almost surely.

Proof of Lemma 5.12. We start with showing that the sum

−
m(tk+t)−1∑

i=k

αi∇F (qi)

in Equation (38) can be rewritten as

−
∫ t

0

∇F (Qk(s))ds+ µ1,k(t),

where Qk(t) is defined by (13) and {µ1,k}k≥0 is a sequence of functions that tends to 0 uniformly
on compact intervals. Consider

Ik := −
∫ t

0

∇F (Qk(s))ds.

Then, since tk + s belongs to a single interval [ti, ti+1),

Ik = −
∫ t

0

(
∇F (q0)I(−∞,t0)(tk + s)−

∞∑
i=0

∇F (qi)I[ti,ti+1)(tk + s)

)
ds

= −
∫ t

0

(
∇F (q0)I(−∞,t0−tk)(s)−

∞∑
i=0

∇F (qi)I[ti−tk,ti+1−tk)(s)

)
ds.

The term t0−tk is always less than or equal to 0. Hence the first term disappears as we are integrating
from 0 to t. For i < k, we have that ti+1 − tk ≤ 0. We can therefore start the sum at i = k, as
earlier terms will not contribute to the integral. Thus,

Ik = −
∫ t

0

( ∞∑
i=k

∇F (qi)I[ti−tk,ti+1−tk)(s)

)
ds.

Now suppose tj − tk ≤ t < tj+1 − tk. We split up the previous integral as follows:

Ik = −
∫ tj−tk

0

(
j−1∑
i=k

∇F (qi)I[ti−tk,ti+1−tk)(s)

)
ds−

∫ t

tj−tk
∇F (qk)I[tj−tk,tj+1−tk)(s)ds

= −
j−1∑
i=k

∇F (qi)αi −∇F (qj) (t− tj + tk) ,

where we have used that
∫ tj−tk

0
I[ti−tk,ti+1−tk)(s)ds = αi. Using the fact that m(t + tk) = j

(where m(t) is defined by (36)), we can rewrite this further as

−
m(tk+t)−1∑

i=k

∇F (qi)αi − µ1,k(t),
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where µ1,k(t) = ∇F (qm(tk+t))
(
t− tm(tk+t) + tk

)
. The function µ1,k is piecewise linear and 0

at t = tj − tk. The gradient ∇F is Lipschitz-continuous by assumption, and thus there is some
positive random variable C(ω), finite almost everywhere, such that

‖∇F (qm(tk+t))‖2 ≤ C(ω) <∞,

since by Theorem 5.8 supk‖qk‖2 <∞. Hence, it holds that

‖µ1,k(t)‖2 ≤ C(ω)|αm(tk+t)|.
Now, for fixed T , we have that limk→∞ supt∈[0,T ] αm(tk+t) = 0 since limk→∞ αk = 0, and thus
µ1,k converges to 0 uniformly on compact intervals. Hence, it holds that

−
∫ t

0

∇F (Qk(s))ds = −
m(tk+t)−1∑

i=k

∇F (qi)αi + µ1,k(t),

where

µ1,k(t) = ∇F (qm(tk+t))(tm(tk+t) − t− tk).

In a similar fashion we obtain that

−
m(tk+t)−1∑

i=k

αi∇ϕ(pi) = −
∫ t

0

∇ϕ(Pk(s))ds+ µ2,k(t),

where {µ2,k}k≥0 converges uniformly on compact sets to 0. Letting µk = µ1,k + γµ2,k, we obtain
the expression in the first line of (15).

We now turn our attention to the second line of (15). By an argument analogous to the previous, we
can write the second line of (38) as

Qk(t) = Qk(0) +

∫ t

0

ϕ(Pk+1(s))ds+ νk(t),

where νk converges uniformly on compact sets to 0. We can rewrite the integral on the right-hand
side as ∫ t

0

∇ϕ(Pk+1(s))ds =

∫ t

0

∇ϕ(Pk+1(s))−∇ϕ(Pk(s))ds︸ ︷︷ ︸
:=κk(t)

+

∫ t

0

∇ϕ(Pk(s))ds.

The norm of κk(t) can be bounded as follows:

‖κk(t)‖2 ≤
∫ t

0

λ‖Pk+1(s))− Pk(s)‖2ds =

∫ t

0

λ‖Pk(αk + s)− Pk(s)‖2ds,

where we have used the Lipschitz continuity of∇ϕ and the fact that Pk+1(s) = Pk(αk + s). Since
{Pk(t)}k≥0 is equicontinuous in the extended sense by Lemma 5.10, there is for each T and ε > 0
a δ > 0 such that

lim sup
k→∞

sup
|t−s|<δ, t,s∈[0,T ]

‖Pk(αk + s)− Pk(s)‖2 ≤ ε. (47)

What remains is to show is that {κk}k≥0 converges uniformly on compact sets to 0. For any T , we
have that

lim
k→∞

sup
t∈[0,T ]

‖κk(t)‖2 ≤ lim
k→∞

∫ T

0

λ‖Pk(αk+1 + s)− Pk(s)‖2ds

since the integrand is positive. By Theorem 5.8, we can bound ‖Pk(αk+1 + s) − Pk(s)‖2 ≤
2 supt∈R‖Pk(t)‖2 < ∞. Thus, we can use the Lebesgue dominated convergence theorem and take
the limit inside the integral:

lim
k→∞

sup
t∈[0,T ]

‖κk(t)‖2 ≤
∫ T

0

lim
k→∞

λ‖Pk(αk+1 + s)− Pk(s)‖2ds

By (47), we can make the integrand arbirarily small by choosing k so large that αk+1 ≤ δ.
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A.6 CONVERGENCE TO A LOCALLY ASYMPTOTICALLY STABLE SET

The goal of this section is to show
Theorem 5.16. Under the same assumptions and notation as in Theorem 5.6, let A be a locally
asymptotically stable set for (8). If there exists a compact set in the domain of attraction of A that
{zk}k≥0 visits infinitely often, then zk → A almost surely:

lim
k→∞

inf
a∈A
‖zk − a‖`2(R2d) = 0, a.s. (17)

We start with showing the following help-lemma:
Lemma A.6. In the same context as Theorem 5.16, for each δ > 0 there is a subsequence {znk}k≥0

of {zk}k≥0 such that that {znk}k≥0 ⊂ Nδ(A).

Proof of Lemma A.6. Since {znk}k≥0 ⊂ K, and K is compact, we can find a further subsequence
{zn′k}k≥0 that tends to z0 ∈ K. Let {Zn′k}k≥0 be the sequence of shifted interpolations associated
with {zn′k}k≥0. This family is equicontinuous in the extended sense by Lemma 5.10, and thus it has
a subsequence {Zn′′k }k≥0 converging to a function z(·) which is a solution to (8) by Lemma 5.12,
and satisfies z(0) = z0. Since z0 is in the domain of attraction of A, it holds that

lim
t→∞

inf
a∈A
‖z(t)− a‖`2(R2d) = 0.

Choose T δ
2

so large that

inf
a∈A
‖z(t)− a‖`2(R2d) <

δ

2
(48)

for all t ≥ T δ
2

. Then, we have

inf
a∈A
‖Zn′′k (t)− a‖`2(R2d) ≤ ‖Zn′′k (t)− z(t)‖`2(R2d) + inf

a∈A
‖z(t)− a‖`2(R2d)

< ‖Zn′′k (t)− z(t)‖`2(R2d) +
δ

2
.

Since {Zn′′k } converges uniformly on compact sets to z, we can choose N δ
2

so large that for any
n′k ≥ N δ

2
we have that sups∈[0,t]‖Zn′′k (s)− z(s)‖`2(R2d) <

δ
2 . Hence, for n′′k > N δ

2
we have

inf
a∈A
‖Zn′′k (t)− a‖`2(R2d) < δ,

which yields the statement of the lemma.

With the help of Lemma A.6, we now show Theorem 5.16. The proof is inspired by the proof
strategy in Fort & Pagès (1996).

Proof of Theorem 5.16. Let ε > 0 and let δ > 0 be as in Definition 5.15. According to Lemma A.6,
there is a subsequence {zrk}k≥0 of {zk}k≥0 such that {zrk}k≥0 ⊂ Nδ/2(A).

We now show by contradiction that {zk}k≥0 cannot escape Nε(A) infinitely often. Suppose that
there is a subsequence {zsk}k≥0 ⊂ Nε(A)c.

Define `0 = min{j : zj ∈ Nδ/2(A)} and recursively for k = 1, 2, . . .,

nk = min{j : j ≥ `k−1 and zj ∈ Nε(A)c},
mk = max{j : j ≤ nk and zj ∈ Nδ/2(A)},
`k = min{j : j ≥ nk and zj ∈ Nδ/2(A)}.

Then there is no index j ∈ {mk + 1, . . . , nk} such that zj ∈ Nδ/2(A); i.e. mk is the last index for
which zj visits Nδ/2(A) before going to Nε(A)c.

Consider the associated sequence of functions {Zmk}k≥0. This satisfies

Zmk(t) = zmk ∈ Nδ/2(A), 0 ≤ t < αmk ,

Zmk(t) = znk ∈ Nε(A)c, tnk − tmk ≤ t < tnk − tmk + αnk .
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In between these two time intervals, Zmk attains the values zmk+1, zmk+2, . . . , znk−1. We can
therefore guarantee that

Zmk(t) ∈ Nδ/2(A)c for t ∈ [αmk , tnk − tmk ]. (49)

Let {Zm′k} be a subsequence of {Zmk} that converges uniformly on compact sets to a function z.

First, assume that lim supk→∞ tn′k − tm′k = ∞. Then we can extract a subsequence (which we
continue to denote {tnk}) for which limk→∞ tn′k − tm′k =∞. Under this assumption, it holds that

z(t) ∈ Nδ/2(A)c for t > 0.

If this was not the case there would be a t′ > 0 such that z(t′) ∈ Nδ/2(A). By the openness of
Nδ/2(A) we can choose η > 0 such that B(z(t′), η) ⊂ Nδ/2(A). There is a Kη such that k ≥ Kη

implies that

‖Zm′k(t′)− z(t′)‖ < η,

i.e. Zm′k(t′) ∈ B(z(t′), η) ⊂ Nδ/2(A). However, since tn′k − tm′k →∞ and αm′k → 0, it holds that
t′ ∈ [αm′k , tn′k − tm′k ] for large enough k. This contradicts (49), so that indeed z(t) ∈ Nδ/2(A)c for
t > 0. By Theorem 5.11, z is continuous and since Zmk(0) ∈ Nδ/2(A) we must thus have z(0) ∈
∂Nδ/2(A). However, the fact that z(t) ∈ Nδ/2(A)c for t ≥ 0 contradicts the asymptotic stability of
A, since this path which starts in ∂Nδ/2(A) ⊂ Nδ(A) does not approach A. This is a contradiction
towards our assumption that tn′k − tm′k → ∞, and we can thus define T̃ = supk tn′k − tm′k < ∞.
Then [0, T̃ ] is a compact interval such that {tn′k − tm′k}k≥0 ⊂ [0, T̃ ]. Hence there is a subsequence
{tn′′k − tm′′k }k≥0 ⊂ {tn′k − tm′k}k≥0 that converges to some T ∈ [0, T̃ ].

The corresponding sequence of functions {Zm′′k } is a subsequence of {Zm′k} and thus it must also
converge uniformly on compact sets to the same function z. From the uniform convergence it also
follows that

zn′′k
= Zm′′k

(tn′′k
− tm′′k )→ z(T ).

Since each zn′′k ∈ Nε(A)c we must have z(T ) ∈ Nε(A)c. However, this contradicts the Lyapunov
stability ofA and therefore also our original assumption that there exists a subsequence {zsk}k≥0 ⊂
Nε(A)c. This concludes the proof.

A.7 CONVERGENCE TO A STATIONARY POINT

We will now apply Theorem 5.16 and show that {zk}k≥0 converges to the set {z : H(z) ≤
lim infkH(zk)}. First, we need to show that it is locally asymptotically stable:
Lemma 5.17. Consider the same assumptions and notation as in Theorem 5.6. For each c, if the set
{z : H(z) ≤ c} is non-empty, it is a locally asymptotically stable set for the solutions to (8).

Proof. We need to show that for all ε > 0 we can choose δ > 0 so that if z0 ∈ Nδ(A), z(t) stays in
Nε(A) and that limt→∞ z(t) ∈ A.

By Lemma B.3, there exists a η > 0 such that {z : H(z) ≤ c+ η} ⊂ Nε(A). Now z(t) will stay in
{z : H(z) ≤ c+ η} since z(t) decreases along the paths of H . However, it might not converge to A
since there may exists stationary points z∗ such that

c < H(z∗) ≤ c+ η,

and if we reach one of these we will get stuck there instead of reaching A. Define

c∗ = inf{H(z∗) : c < H(z∗) ≤ c+ η,∇H(z∗) = 0}.
It holds that c∗ > c, i.e. we cannot find stationary points for which H(z∗) is arbitrarily close to c∗.
We can see this by letting Λ = {x : ∇H(x) = 0} and K = [c, c + η]. Then by Assumption 1.iii),
there exist numbers {yi}ni=1 , such that y1 < · · · < yn and

{H(z) : c ≤ H(z) ≤ c+ η : z ∈ Λ} = H(Λ) ∩K = {y1, . . . , yn}.
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If y1 = c, we have that

y2 = minH(Λ) ∩K = min{H(z) : c < H(z) ≤ c+ η, z ∈ Λ} = c∗

and thus c∗ > c. Similarly, if y1 > c, we also get that c∗ = y1 > c. Thus indeed it always holds that
c∗ > c, and we can take µ > 0 so small that c∗ − µ > c. By Lemma B.2 there exists some δ > 0
such that

Nδ(A) ⊂ {H(z) < c∗ − µ}

Since H is decreasing along the paths of z(t), any solution starting in Nδ(A) will stay inside {z :
H(z) ≤ c∗ − µ} (and thus Nε(A)). By La Salle’s invariance principle, any path starting in the
compact setM = {z : H(z) ≤ c∗ − µ} tends to {z ∈ M : ∇H(z) = 0}. All points z∗ ∈ {z ∈
M : ∇F (z) = 0} satisfy H(z∗) ≤ c, by the choice of c∗ and µ > 0. Thus, z(t)→ {z : H(z) ≤ c}
whenever z(0) ∈ Nδ(A).

We have for the given ε > 0 found a δ > 0 such that any path in Nδ(A) never leaves Nε(A) and
tends to A as t→∞.

We are now ready to prove our main result, Theorem 5.6:

Theorem 5.6. Let Assumptions 1, 2 and 6 be satisfied, as well as either Assumption 3, 4 or 5. Then
{qk}k≥0 converges almost surely to the set of stationary points of the objective function F . If we
additionally assume that Assumption 7 holds, the convergence is to a unique stationary point.

Proof. Let c = lim infkH(zk). We start with showing that

lim
k→∞

H(zk) = c. (50)

By Lemma 5.17, the set A = {z : H(z) ≤ c} is a locally asymptotically stable set, and by Lemma
B.5, we can find a compact set K in the domain of attraction of A that {zk}k≥0 enters infinitely
often: In particular, we can take K = M, where M is as in the proof of Lemma 5.17; M is in
the domain of attraction of A, and by Lemma B.5, {zk}k≥0 visits M infinitely often. Theorem
5.16 then implies that zk → {z : H(z) ≤ c}. Suppose that limkH(zk) 6= c. The negation of the
statement is

∃ε > 0 : ∀n∃nk ≥ n,H(znk) ≤ c− ε ∨H(znk) ≥ c+ ε.

In the case that there exists a subsequence {znk} such that H(znk) ≥ c+ ε, since then {zk} would
not converge to {z : H(z) ≤ c}. If there exists a subsequence that satisfies H(znk) ≤ c − ε we
would have lim infkH(zk) ≤ c− ε < c which is also a contradiction by the choice of c.

We now know that limk→∞H(zk) = c, but we have yet to verify that {zk}k≥0 converges to the set
of stationary points. Suppose that this is not the case. For brevity let Λ = {z : ∇H(x) = 0}. Then
there exists an ε0 > 0 and subsequence {znk}k≥0 such that

inf
x∈Λ
‖znk − x‖ ≥ ε0. (51)

From the previous paragraph, it holds that

lim
nk→∞

H(znk) = c.

By Theorem 5.8, the sequence {znk}k≥0 is bounded. By Lemma B.1 we can thus find a further
subsequence (still denoted by {znk}k≥0) and a point z̃0 such that limnk→∞ znk = z̃0 and H(z̃0) =
c. The sequence of interpolations {Znk(·)} associated with {znk}, has a subsequence {Zn′k(·)} that
converges to a solution z̃(·), such that z̃(0) = z̃0. By (51) it holds that z̃0 6∈ {z : ∇H(z) = 0}. As
H is decreasing along the paths of z̃(·), we have for t′ > 0 that c = H(z̃0) = H(z̃(0)) > H(z̃(t′)).
However, z̃(·) is taking values in L ({zk}), the set of limit points of {zk}, compare Proposition
1.b) in Fort & Pagès (1996). Thus, there is some subsequence {zmk} that converges to H(z̃(t′)).
But since c = H(z̃0) > H(z̃(t′)) and {zmk} converges to H(z̃(t′)) which is a contradiction,
by the choice of c. It follows that the set of limit points L ({zk}k≥0) of {zk}k≥0 is contained in
{z : ∇H(z) = 0}. Since zk+1−zk → 0, the limit set L ({zk}k≥0) is connected (Asic & Adamovic,
1970). By Assumption 7, this implies that {zk}k≥0 converges to a single stationary point.
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At last, we prove Corollary 5.7:

Corollary 5.7 (Convergence in expectation). Let Assumptions 1, 2, 6 and 7 be valid. Further, let the
Hamiltonian be on the form (7) and let the sequences{pk}k≥0 and {qk}k≥0 be generated by (9).
Then it holds under that

lim
k→∞

E
[
‖∇F (qk)‖θ2

]
= 0,

where θ = 1 under Assumption 3 and θ = 1
2 under Assumption 4 or 5.

Proof. By Theorem 5.6 {qk}k≥0 converges almost surely to a random variable q∗ which takes values
in the set of stationary points of F . Hence,

lim
k→∞

‖∇F (qk)‖2 = 0, a.s.,

compare Lemma 2.3 in van der Vaart (2000). From Lemma B.6 we have that

‖∇F (qk)‖22 ≤ 2L (F (qk)− F∗) .

By Theorem 5.8, we obtain that

sup
k

E
[
‖∇F (qk)‖22

]
<∞.

By Lemma 3 in Chapter 2.6 of Shiryaev (2016) we obtain (taking G(t) = t2) that the sequence
{‖∇F (qk)‖}k≥0 is uniformly integrable. It follows from Theorem 5 in Chapter 2.6 of Shiryaev
(2016) that

lim
k→∞

E [‖∇F (qk)‖2] = 0.

Under Assumption 4 or 5, we instead get from Lemma B.6 and Theorem 5.8 that

sup
k

E [‖∇F (qk)‖2] <∞.

It follows that

lim
k→∞

E
[
‖∇F (qk)‖

1
2
2

]
= 0.

B AUXILIARY RESULTS

Several of the results in this section are relatively standard, but we keep them here for the sake of
reference.

Lemma B.1. Let {xk}k≥0 be a sequence in Rd. Suppose that supk‖xk‖ <∞ and that f(xk)→ y,
where f : Rd → R is continuous. Then there is a subsequence {xnk}k≥0 ⊂ {xk}k≥0 that converges
to some number x such that f(x) = y

Proof. Since supk‖xk‖ < ∞ there is some compact set K such that {xk} ⊂ K. By compactness,
there is some subsequence {xnk}, that converges to some element x. The sequence {f(xnk)} is a
subsequence of {f(xk)}, and must converge to the same limit y. However, by continuity of f , we
have that limk→∞ f(xnk) = f(limk→∞ xnk) = f(x). Thus, f(x) = y.

The next two Lemmas, Lemma B.2 and B.2, are helpful in showing that the sublevel sets the Hamil-
tonian are locally asymptotically stable:

Lemma B.2. Suppose that f : Rd → R is continuous and coercive. LetA = {x : f(x) ≤ c}, where
c is such that A 6= ∅. Then, for every η > 0 there is δ > 0 such that Nδ(A) ⊂ {x : f < c+ η}.
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Proof. We first note that since f is coercive, A is compact. Let η > 0 be given. By continuity of f ,
there is δ > 0 such that

|x− y| < δ =⇒ |f(x)− f(y)| < η.

For such δ, we consider

Nδ(A) = {x : inf
a∈A
‖x− a‖ < δ}.

Take x0 ∈ Nδ(A). Then infa∈A‖x0 − a‖ < δ and by the definition of the infimum, there exists for
each n and element an ∈ A such that

‖x0 − an‖ < inf
a∈A
‖x0 − a‖+

1

n
.

Then {an} ⊂ A and by compactness there is a subsequence {ank} that converges to an element
a∗ ∈ A. Since

‖x0 − ank‖ < inf
a∈A
‖x0 − a‖+

1

nk
,

it holds that

‖x0 − a∗‖ ≤ inf
a∈A
‖x0 − a‖ < δ.

Since f is continuous, we have that

f(x0) < f(a∗) + η ≤ c+ η

i.e. x0 ∈ {x : f(x) ≤ c+ η}. Thus Nδ(A) ⊂ {x : f(x) ≤ c+ η}.

Lemma B.3. Let A = {x : f(x) ≤ c} (where c is such that A 6= ∅). Then for every ε > 0 there is
η > 0 such that {x : f(x) ≤ c+ η} ⊂ Nε(A).

Proof. If this was not the case, then there exists some ε > 0 and for every n we can find xn that
satisfies

xn ∈ {x : f(x) ≤ c+
1

n
} ∩Nε(A)c ⊂ {x : f(x) ≤ c+ 1} ∩Nε(A)c.

The latter is compact since Nε(A)c is closed and {x : f(x) ≤ c + 1} is compact. Thus, {xn} has
a subsequence {xnk} that converges to x∗ ∈ {x : f(x) ≤ c + 1} ∩ Nε(A)c ⊂ Nε(A)c ⊂ Ac.
However, each xnk ∈ {x : f(x) ≤ c+ 1

nk
} and thus by continuity it holds that f(x∗) ≤ c which is

a contradiction.

We will use the next Lemma to show that under the given assumptions, the sublevel set {z : H(z) ≤
lim infk→∞H(zk)} is non-empty:

Lemma B.4. Let f : Rd → R be a continuous function that is bounded below by f∗ = infx∈Rd f(x).
Let {xk}k≥0 be a sequence in Rd such that supk‖xk‖ < ∞. Put c = lim infk f(xk). Then
{x : f(x) ≤ c} 6= ∅.

Proof. By assumption {xk}k≥0 is contained in some compact set K. By continuity, it holds that
C = supk f(xk) <∞ and hence the sequence {f(xk)}k≥0 is contained the compact set [f∗, C]. It
follows that c ∈ [f∗, C]. By a standard result in real analysis, we can (since {f(xk)}k≥0 is bounded)
find a subsequence {f(xnk)} that converges to c. By Lemma B.1, there exists a further subsequence
{xn′k} that converges to some element x such that f(x) = c. Hence x ∈ {x : f(x) ≤ c} and
{x : f(x) ≤ c} 6= ∅.

Lemma B.5. Let f be a function which is bounded below. Put c = lim infk f(xk). Then for every
δ > 0, the sequence {xk} is in the set Aδ = {x : f(x) ≤ c+ δ} infinitely often.
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Proof. The negation of statement is

¬ (∀δ > 0,∀n, ∃nk, nk ≥ n ∧ znk ∈ Aδ)

which can be rewritten as

∃δ0 > 0,∃k0,∀k ≥ k0, xk 6∈ Aδ.

This means that for all k ≥ k0,

f(xk) > c+ δ0. (52)

Taking the infimum, we see that

inf
k≥k0

f(xk) ≥ c+ δ0. (53)

Since infk≥k0 f(xk) is increasing, we have for k ≥ k0 that

inf
m≥k

f(xm) ≥ inf
m≥k0

f(xm) ≥ c+ δ0

Taking the supremum over k, we see that we must have

lim inf
k

f(xk) = sup
k≥0

inf
m≥k

f(xm) ≥ c+ δ0,

i.e. lim infk→∞ f(xk) ≥ c+ δ0, which is a contradiction.

Lemma B.6. Let F be bounded from below by F∗. If F is (L0, L1)−smooth, it holds that

‖∇F (q)‖ ≤ 2L1(F (q)− F∗) +
L0

L1
.

If F is instead L-smooth with Lipschitz constant L, it holds that

‖∇F (q)‖22 ≤ 2L(F (q)− F∗).

Proof. Consider first the (L0, L1)−smooth case. Put

q+ = q − 1

L1‖∇F (q)‖
∇F (q), (54)

Then

‖q+ − q‖ =
1

L1

Thus, the conditions for (21) in Zhang et al. (2020a) are satisfied, and it holds that

F (q+)− F (q) ≤ 〈∇F (q), q+ − q〉+
L0 + L1‖∇F (q)‖

2
‖q+ − q‖2.

Inserting (54) into the previous expression we see that

F (q+)− F (q) ≤ − 1

L1
‖∇F (q)‖+

L0 + L1‖∇F (q)‖
2

1

L2
1

,

Rearranging the terms, we find that

F (q+)− F (q) ≤ − 1

2L1
‖∇F (q)‖+

L0

2

1

L2
1

One more rearrangement yields

‖∇F (q)‖ ≤ 2L1(F (q)− F (q+)) +
L0

L1
.

Since F (q+) ≥ F∗ we obtain the statement of the first part of the Lemma. The proof of the second
part is very similar but simpler, and therefore omitted.
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Lemma B.7. Let F satisfy Assumption 5.i) and f(·, ξ) satisfy Assumption 5.iii). Then

‖∇f(x, ξ)‖2 ≤ 2NL1 (F (q)− F∗) +
L0

L1
, (55)

almost surely, where F∗ = 1
N

∑N
i=1 infq∈Rd fi(x).

Proof. We start with showing that there exists a constant C such that

f(x, ξ)− inf
x∈Rd

f(x, ξ) ≤ C(F (x)− F∗), (56)

almost surely. First we note that by the properties of inf it holds that

inf
x∈Rd

f(x, ξ) = inf
x∈Rd

 1

|Bξ|
∑
i∈Bξ

fi(x)

 =
1

|Bξ|
· inf
x∈Rd

∑
i∈Bξ

fi(x)

 ≥ 1

|Bξ|
·
∑
i∈Bξ

inf
x∈Rd

fi(x).

Hence

f(x, ξ)− inf
x∈Rd

f(x, ξ) =
1

|Bξ|
·
∑
i∈Bξ

fi(x)− inf
x∈Rd

f(x, ξ)

≤ 1

|Bξ|
·
∑
i∈Bξ

fi(x)− 1

|Bξ|
·
∑
i∈Bξ

inf
x∈Rd

fi(x)

Since fi(x)− infx∈Rd fi(x)) ≥ 0, the previous expression can be bounded by

1

|Bξ|
·
N∑
i=1

fi(x)− inf
x∈Rd

fi(x) =
N

|Bξ|
(F (x)− F∗) .

As the batch size |Bξ| is non-decreasing, (56) holds. Since f(·, ξ) is (L0, L1)−smooth, it holds that

‖∇f(x, ξ)‖2 ≤ 2L1

(
f(x, ξ)− inf

x∈Rd
f(x, ξ)

)
+
L0

L1
.

Combining the previous expression with (56), we obtain (55).

Remark B.8. Note that for fixed, deterministic x, (55) implies that the norm ‖∇f(x, ξ)−∇F (x)‖2
is bounded almost surely. This means that around a stationary point q∗ or for the initial iterate q0

(which in this paper is assumed to be deterministic), the norm of the noise is not heavy-tailed. When
x = qk is a random variable this is no longer the case. This is in line with e.g (Gurbuzbalaban et al.,
2021), in which it is reported that the noise is not heavy-tailed initially.

C NUMERICAL EXPERIMENTS

In order to illustrate the behavior of the algorithms, we set up three numerical experiments. The
experiments are implemented in Tensorflow 2.12 (Abadi et al., 2015). We consider the following
kinetic energy functions

• ϕ(x) = x. (Abbreviated as SHD.)

• ϕ(x) =
√
ε+ ‖x‖22. (Normalized).

• ϕ(x) =
√

1 + ‖x‖22. (SoftClipped.)

In the plots we also see the results of Adam (Kingma & Ba, 2015), SGD with momentum (ab-
breviated as SGDmom), Clipped SGD with momentum (ClippedSGDmom) and Clipped SGD
(ClippedSGD). All of these algorithms are as implemented in Abadi et al. (2015). Each of the
experiments were run for 4 random seeds ranging from 3000 to 3003, that all yielded similar results.
In the plots we see the results for the random seed 3000. For every experiment we consider a grid of
initial step sizes β with values(

10−4, 5 · 10−4, 10−3, 5 · 10−3, 10−2, 5 · 10−2, 0.1, 0.5, 1
)
.
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Figure 1: Accuracy of the different methods when used for training a simple convolutional neural
network to classify the MNIST dataset. Each method displays the result when the optimal initial
step size β is used.

To find the optimal initial value of β among these, we use the Keras implementation of the Hy-
perband algorithm (Li et al., 2018); a hyper parameter optimization algorithm that makes use of
a combination of random search and successive halving (Jamieson & Talwalkar, 2016). In all the
experiments, we use a step size scheme defined by β

bk/10c+1 , where β is the initial step size and k is
the epoch.

C.1 CLASSIFICATION OF THE MNIST DATASET

The first experiment is a simple convolutional neural network used to classify the MNIST dataset
(Lecun et al., 1998). We split the data in the standard way, but use both the training and validation
sets for training. The training- and test accuracy after 20 epochs is displayed in Figure 1. All of the
algorithms work well for the given problem. Around the 10th epoch several of the methods see an
improvement in training accuracy due to the step size decrease. All the methods converge relatively
fast on both training and test data and display performance on par to the state of the art algorithms
implemented in Tensorflow. We also remark that Normalized and SoftClipped perform at their best
with a higher step size, like the clipped SGD-methods. The methods all exhibit a smooth behavior
on the training data, while the oscillations are slightly higher on the test data.

C.1.1 DETAILS ON THE NETWORK ARCHITECTURE

The model consists of one convolutional layer with 32 filters, a kernel size of 3 and a stride of 1.
Padding is chosen such that the input has the same shape as the output. Upon this, a dense layer of
128 neurons is stacked before the output layer with a softmax function. The activation function used
in the hidden layers is the exponential linear unit (Clevert et al., 2016). In both the convolutional-
and the dense layers we use a weight decay of 5 · 10−3.

C.2 CLASSIFICATION OF THE CIFAR10 DATASET

The second experiment is a VGG-network (Simonyan & Zisserman, 2015) used to classify the CI-
FAR10 dataset (Krizhevsky, 2009). We split the data in the standard way, but use both the training
and validation sets for training. In Figure 2, we see the train- and test accuracy for the methods.
We see that all the kinetic energy functions display performance on par with state of the art algo-
rithms. On the training data, the majority of the methods converge to a stationary point for which the
models has an accuracy of about 70 percent. After the first step size decrease, the algorithms find a
new stationary point towards which they converge. The training curves are smooth, while again the
oscillations are slightly higher on the test data during the first 15 epochs. Adam, Normalized and
SoftClipped exhibits a smoother behavior on the test data than the other algorithms.
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Figure 2: Accuracy of the different methods when used for training a VGG-network to classify the
CIFAR10 dataset. The two plots in the top shows the first 12 epochs and the two plots in the bottom,
all the 50 epochs. Each method displays the result when the optimal initial step size β is used.
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Figure 3: Perplexity of the different methods when used for text prediction on the Penn. Treebank
dataset. Each method displays the result when the optimal initial step size β is used.

C.2.1 DETAILS ON THE NETWORK ARCHITECTURE

The model consists of three blocks of convolutional layers. The first block consists of two convolu-
tional layers with 32 filters with kernel size of 3, each followed by a batch normalization layer (Ioffe
& Szegedy, 2015). This is then passed through a max-pooling layer with a kernel size of 2× 2 and
a stride of 2. In the convolutional layers a weight decay of 5 · 10−3 is used. The next two blocks
have similar structure but with filter sizes of 64 and 128 respectively. In between each layer a drop
out of 20% is used. As in the first example we use a dense hidden layer with 128 neurons before the
output layer. In all layers, the exponential linear unit was used as activation function.

C.3 TEXT PREDICTION ON THE PENNSYLVANIA TREEBANK CORPUS

The last experiment is a long-short-term memory-type model, that we use for text prediction on the
Pennsylvania Treebank portion of the Wall Street Journal corpus (Marcus et al., 1993). The design
of the experiment is inspired by similar ones in e.g. Graves (2014); Mikolov et al. (2012); Pascanu
et al. (2012); Zhang et al. (2020a). For the experiment, we use the same training and validation split
of the dataset as in Merity et al. (2018).5

In Figure 3 we see the exponentiated average regret, or perplexity

exp

(
1

K

K∑
k=1

f(qk, ξk)

)
,

where K is the number of batches in an epoch. For a model that chooses each of the words in the
vocabulary with uniform probability we expect this to be close to the size of the vocabulary (in this
case 10000). We expect a well performing model to have a perplexity close to 1. In Figure 3, we
see the training- and test perplexity for the various methods. The SHD-method achieves a slightly
higher perplexity on the training data then the other methods. (Although this behavior is not as
pronounced on the test data). In general, methods that make use of some sort of normalization or
clipping appears to be working best for this task; the best method is the SoftClipped, which quickly
reaches the lowest perplexity on the test data set.

C.3.1 DETAILS ON THE NETWORK ARCHITECTURE

The network consists of an embedding layer of size 400 upon which three bidirectional LSTM-layers
are stacked, each with 1150 RNN-units. A dropout of 50% is used in the LSTM-layers, as well as

5We call the validation set ’Test’ in Figure 3 so that it agrees with the terminology in the previous experi-
ments.
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weight decay of 1.2 · 10−6. In the output layer, a dense layer with 10000 neurons is used. The batch
size is 64 and we use a sequence length of 10 words.

C.4 CONCLUSIONS

The experiments in the previous section verify the theoretical results in the paper and we see that
most of the algorithms also exhibit performance on par with state of the art algorithms. We remark
that in all the examples, we used very generic networks for the sake of finding problems on which we
could easily compare the behavior of the models. Better performance could be achieved in all cases
if the networks and optimizers would have been tuned more carefully to the classification problems,
but the intention here is to illustrate the behavior of the algorithms rather than achieving state of the
art results.

36


	Introduction
	Gradient normalization, momentum and Hamiltonian systems

	Contributions
	Outline
	Related works
	Momentum algorithms
	Hamiltonian dynamics
	Almost sure convergence
	(L0,L1)-smoothness

	Analysis
	Brief overview
	Setting
	Basic assumptions
	Setting 1
	Setting 2
	Setting 3
	Book-keeping assumptions

	Outline of proof

	Conclusions
	Analysis
	The sequences {pk}k 0 and {qk}k 0 are finite almost surely
	Almost sure convergence, notation
	Convergence of the sequence {Mk}
	Equicontinuity of the sequences {Pk}k 0 and {Qk}k 0
	Asymptotic solution
	Convergence to a locally asymptotically stable set
	Convergence to a stationary point

	Auxiliary results
	Numerical experiments
	Classification of the MNIST dataset
	Details on the network architecture

	Classification of the CIFAR10 dataset
	Details on the network architecture

	Text prediction on the Pennsylvania treebank corpus
	Details on the network architecture

	Conclusions


