SecureRAG: End-to-End Secure Retrieval-Augmented Generation

Anonymous ACL submission

Abstract

Retrieval-augmented generation (RAG) en-
hances large language models (LLMs) with ex-
ternal knowledge from databases but introduces
privacy risks when handling sensitive informa-
tion. Existing defenses fall short: differential
privacy degrades accuracy and remains vulnera-
ble to embedding inversion attacks, while fully
homomorphic encryption (FHE) ensures secu-
rity but lacks access control. We present Secur-
eRAG, an end-to-end secure RAG framework
that enforces strict access control while mitigat-
ing prompt injection data extraction and embed-
ding inversion attacks. It achieves this by de-
coupling retrieval into secure search and secure
document fetching, using FHE for encrypted
search and attribute-based encryption (ABE)
for fine-grained access control. SecureRAG
supports dynamic database updates, adaptive
access policies, and integrates seamlessly with
FHE-friendly LLMs, adding only 0.05s of over-
head. By providing a fully encrypted, privacy-
preserving retrieval framework, SecureRAG en-
ables the secure deployment of domain-specific
chatbots in sensitive applications.

1 Introduction

Retrieval-augmented generation (RAG)(Lewis
et al., 2020) enhances large language models
(LLMs)(Meng et al., 2024) by retrieving relevant
information from external sources to generate more
accurate and context-aware responses without re-
training. By bridging information retrieval and text
generation, RAG enables cost-effective chatbot cus-
tomization across the healthcare, finance, and law
sectors. For example, Figure 1 illustrates RAG
in healthcare, where a hospital corpus aids doctors
(users) in generating precise diagnostic suggestions.

Despite its advantages, RAG is highly vulnera-
ble to privacy and security risks in sensitive sec-
tors (Zeng et al., 2024; Qi et al., 2024). The primary
threat is sensitive information leakage, which can

Retriever
(Text search top-k docs)

\
Vector g Fetch 4 Ducs
DB

Hospllal Corpus

_‘IADocs belonging to
Search Embed ﬁ Dr. Alice's patient
Query Top-k docs

5 Query +

B Query Top-k Docs
Reader Generator
(Text pre/post-processing) H .a'
—

7 Response 6 Raw

Dr. Bob
(user u;)

(LLM)
Response leaking Response

Dr. Alice's patient data

Figure 1: Healthcare-based RAG showing key vulner-
abilities: a) retriever exploiting query embeddings and
hospital corpus, b) generator misusing queries and re-
trieved documents, and c¢) Dr. Bob receiving sensitive
data of Dr. Alice’s patient due to lack of access control.

occur through (1) compromised components (e.g.,
retriever, generator) or (2) adversarial prompt injec-
tions that extract restricted data from the database
(DB). Beyond direct DB access, exposing cleartext
embeddings (queries and documents) risks leaking
personally identifiable information (PII). Morris
et al. (2023) demonstrated that text embeddings
are highly invertible, recovering 89% of PII (e.g.,
full names) from clinical note embeddings, under-
scoring the need for equal protection of raw text
and embeddings. Additionally, Qi et al. (2024) in-
troduced a prompt injection data extraction attack
that targeted RAG’s retrieval DB—rather than the
LLM’s training data—successfully extracting 41%
of a 77K-word book and 3% of a 1.5M-word cor-
pus using only 100 crafted queries. These findings
highlight a critical weakness: RAG lacks effec-
tive access control at the retrieval level, leaving it
vulnerable to data extraction attacks.

These vulnerabilities are evident in the health-
care scenario shown in Figure 1, where Dr. Bob
must uphold patient confidentiality while poten-
tially sharing patients with other doctors. He must
also be prevented from using prompt injection at-
tacks to access records of Dr. Alice’s patients, as

they do not collaborate. Deploying separate RAG
solutions for each doctor is impractical due to in-
efficiency, cost, and complexity. Instead, hospitals
require a unified RAG system integrated with their
database while enforcing strict access controls. The
key challenge is ensuring that responses are per-
sonalized while retrieved documents remain both
relevant and restricted to authorized patients, pre-
serving security and privacy.

Most privacy-preserving RAG solutions (Gris-
lain, 2024; Cheng et al., 2024) rely on differential
privacy (DP) (Dwork, 2006) as a lightweight de-
fense, adding controllable noise to balance privacy
and accuracy. However, DP has critical limitations:
(1) it distorts text, reducing retrieval and generation
accuracy, (2) its privacy guarantee weakens over
repeated queries due to budget exhaustion, and (3)
it fails to prevent text embedding inversion (Kim
et al., 2022) and prompt injection attacks. These
shortcomings make DP unsuitable for an end-to-
end, provably secure RAG without accuracy loss.

Fully homomorphic encryption (FHE) (Gentry,
2009) has emerged as a promising approach, offer-
ing end-to-end security with strong privacy guar-
antees and no accuracy loss. Despite its runtime
overhead, recent advances demonstrated their ef-
fectiveness in preventing information leakage from
text embeddings (Kim et al., 2022), enabling se-
cure text classification (Al Badawi et al., 2020;
Lee et al., 2022), and supporting secure LLM infer-
ence (Zhang et al., 2024; de Castro et al., 2024; Rho
et al., 2024). While FHE provides essential build-
ing blocks for a secure RAG, existing solutions do
not afford access control on retrieved documents.

We propose SecureRAG, an end-to-end secure
RAG framework that enforces access control over
retrieved documents while preventing prompt in-
jection data extraction and embedding inversion
attacks. SecureRAG achieves secure retrieval by
splitting the process into two subphases: (1) se-
cure search and (2) secure document fetching. By
leveraging FHE’s SIMD property and vertically
packing FHE-encrypted embeddings, SecureRAG
enables efficient and scalable search over the vec-
tor database. To enforce access control, documents
are encrypted using an attribute-based encryption
(ABE) scheme, ensuring that only authorized users
can decrypt retrieved content. SecureRAG supports
dynamic management of both the database (e.g.,
adding/deleting encrypted documents and embed-
dings) and access rights (e.g., granting/revoking
permissions). It seamlessly integrates with FHE-

friendly LLM generators (Rho et al., 2024) with-
out compromising accuracy. We evaluate Secur-
eRAG with the goal of assessing whether encryp-
tion can be integrated without compromising accu-
racy while enabling seamless model updates. Our
results show that SecureRAG matches unprotected
RAG in accuracy for rank top-k and context preci-
sion metrics, the latter assessed by an LLM judge.
Performance-wise, SecureRAG retrieves 100 doc-
uments from 16,384 under a 2-attribute policy in
0.05s on a single GPU—achieving a 13.6x speedup
over RemoteRAG (Cheng et al., 2024), which, de-
spite using two GPUs, takes 0.68s to retrieve only
5 documents from 160 with no access control, leav-
ing it vulnerable to prompt injection attacks.

In summary, we introduce SecureRAG, an end-
to-end secure RAG framework that enforces access
control over retrieved documents while prevent-
ing prompt injection data extraction and embed-
ding inversion attacks. SecureRAG achieves this
by decoupling retrieval into secure document in-
dex search and secure document fetching, utilizing
FHE for encrypted embedding search and ABE
for fine-grained access control. Our evaluation
shows that SecureRAG maintains the accuracy of
unprotected RAG while ensuring provable secu-
rity. With seamless integration into FHE-friendly
LLMs and support for dynamic access management
and database updates, SecureRAG enables secure,
privacy-preserving RAG deployments in sensitive
domains such as healthcare.

2 Related Work

In RAG, sensitive data leaks through embedding
inversion attacks on its components (Morris et al.,
2023) or prompt injection queries targeting the ex-
traction of restricted documents (Qi et al., 2024).
Existing solutions protect components separately
but remain vulnerable to prompt injection attacks.

Secure text embedding classification. Many so-
lutions mitigate information leakage by encrypting
text embeddings with FHE (Al Badawi et al., 2020;
Lee et al., 2022; Kim et al., 2022) for classification
tasks. However, they are limited to basic one-to-
one similarity comparisons and do not scale to large
databases due to FHE’s computational bottlenecks
in search. SecureRAG addresses this challenge by
enabling efficient one-to-many and many-to-many
text embedding searches under FHE. It leverages
vertical data packing to fully exploit FHE’s SIMD
property, significantly improving efficiency and re-

ducing encrypted database storage overhead.
Secure inference of LLMs. LLMs are proprietary,
requiring queries to be sent to external servers for
inference, raising concerns about access and re-
tention of sensitive data. Research on secure in-
ference falls into interactive and non-interactive
models. Interactive models(Akimoto et al., 2023;
Dong et al., 2023; Gupta et al., 2023) rely on mul-
tiparty computation (MPC) but suffer from high
communication overhead, making them imprac-
tical for RAG’s large-scale deployment. Hybrid
approaches(Pang et al., 2024) combine HE and
MPC to mitigate this overhead. FHE-based solu-
tions (de Castro et al., 2024; Zhang et al., 2024;
Rho et al., 2024) offer stronger privacy by trans-
forming LLMs into FHE-friendly architectures, en-
abling non-interactive, end-to-end encrypted infer-
ence. SecureRAG is fully compatible with any
non-interactive FHE-friendly LLLM and can seam-
lessly switch between different FHE-friendly LLM
providers without affecting its retriever or access
control policies.

Privacy-preserving RAGs. While individual RAG
components can be secured, privacy-preserving
RAG solutions aim for end-to-end protection,
primarily against information leakage. Ex-
isting approaches rely on differential privacy
(DP)(Dwork, 2006), but its privacy-accuracy trade-
off degrades LLM performance by altering text
semantics(Mattern et al., 2022). DP also fails to
prevent embedding inversion attacks(Kim et al.,
2022), and its privacy guarantee weakens with re-
peated queries, requiring resets that hinder real-
world deployment(Watson, 2020). Moreover, no
DP-based RAG solutions prevent prompt injection
data extraction attacks. SecureRAG is the first end-
to-end secure RAG framework that enforces access
control over retrieved documents while preventing
information leakage at both the embedding and
generator response levels.

3 Preliminaries

SecureRAG integrates encryption with RAG using
FHE for computations on encrypted text embed-
dings and attribute-based encryption (ABE) for re-
stricting document decryption to authorized users.

3.1 Fully Homomorphic Encryption

Fully Homomorphic Encryption (FHE) (Gentry,
2009) enables computations on encrypted data
without decryption, providing strong privacy guar-

antees. Its IND-CPA security (Cramer et al., 1997)
prevents semi-honest attackers from inferring plain-
texts from ciphertexts. While FHE is computation-
ally expensive, ongoing optimizations, including
GPU acceleration (Yang et al., 2024), have en-
hanced its practicality. SecureRAG utilizes the
CKKS scheme (Cheon et al., 2017) due to its
support for floating-point operations, enabling en-
crypted computations that closely approximate
cleartext results. CKKS also leverages the single-
instruction multiple-data (SIMD) (Smart and Ver-
cauteren, 2014) property, efficiently packing multi-
ple plaintext values into a single ciphertext. How-
ever, SIMD efficiency depends on the packing
strategy—SecureRAG employs vertical packing,
which is optimized for large-scale vector database
searches (Figure 2).

2 empty
slots per ct;
v’_)ﬁ

7Ct17

| |
| |
| |

7Ct37

Horizontal packing

[
[
{

Vertical packing

Figure 2: SecureRAG uses the vertical packing to effi-
ciently store the encrypted text embeddings in DB.

3.2 Attribute-Based Encryption

Attribute-Based Encryption (ABE) enables fine-
grained access control, allowing decryption only
when user attributes meet a defined policy. In
Ciphertext-Policy ABE (CP-ABE), access policies
are in the ciphertext, giving data owners control,
while in Key-Policy ABE (KP-ABE), policies are
in decryption keys, managed by a central author-
ity. SecureRAG requires KP-ABE, where hospital
authorities control access policies and keys. While
most KP-ABE schemes use pairing-based cryp-
tography, LWE and RLWE-based alternatives (Dai
et al., 2017; Luo et al., 2024) offer stronger security,
and revocability. RLWE-based KP-ABE (Figure 3)
enables key homomorphism, allowing homomor-
phic evaluation of public keys over a circuit pol-
icy. Selective security (IND-sCPA) (Goyal et al.,
20006) ensures adversaries without authorized keys
cannot distinguish between encrypted messages.
Like FHE, LWE and RLWE-based KP-ABE rely
on lattice-based hardness, providing post-quantum
security guarantees.

4 Threat Model

SecureRAG prevents sensitive information leakage
across all RAG stages from malicious components

1—> ot MSK —>
etu]
1 — P Tk

f—> Access Policy
m—> v
m

@ —> Encage —> cta —> Evalplicy —>ctj(a> Decape HT’
MPK —>»

KeyGen gy ———> oy

Figure 3: RLWE-based KP-ABE scheme in (Dai et al.,
2017). More details are in Appendix A.

(retriever, generator) or users, specifically address-
ing embedding inversion and prompt injection data
extraction attacks. Notably, the latter targets the
retrieval database, not the LLM generator’s train-
ing data, which SecureRAG does not consider in
its threat model. We consider a four-party set-
ting with non-colluding entities: users, a reader,
a retriever, and a generator. All parties are semi-
honest!, except the reader, a trusted third party
representing the hospital administrator. The users,
representing hospital staff with attribute-based ac-
cess, query a customized LLM augmented with
the hospital corpus for tailored responses. The
reader encrypts sensitive data (doctors’ queries,
patient records, hospital corpus), sets DB access
policies, manages public key infrastructure (PKI),
issues user keys, and handles text preprocessing
and post-processing. The retriever, a cloud DB
provider, stores the encrypted documents and re-
trieves relevant documents for RAG. The generator,
an FHE-friendly proprietary LLM (e.g., OpenAI’s
ChatGPT), processes encrypted queries and docu-
ments, performs inference under encryption, and
returns encrypted responses, protecting its intel-
lectual property. The reader protects hospital data
while enabling doctors to use external services. The
retriever and generator must not extract meaningful
information from queries, corpus, the hospital, or
retrieved documents in any form. Users should not
intentionally or unintentionally receive responses
containing information about other users’ sensitive
data or documents they are unauthorized to access.

5 SecureRAG

In RAG, the retriever and generator use different
text embedding models suitable for text similarity
or generation. Thus, SecureRAG extracts the gen-
erator’s text embeddings from raw documents on
the fly to support any FHE-compatible LLM gen-
erator. This enables SecureRAG to integrate with
any FHE-friendly LLM generator.

"Follow the protocol but try to infer sensitive information.

5.1 Key Generation

SecureRAG encrypts text embeddings with FHE,
using separate keypairs for the retriever and gener-
ator, and encrypts raw documents with KP-ABE to
enforce access policies. During setup, the reader,
as the system administrator, generates two FHE
keypairs: (pk,, sk,) for retriever searches and
(pkg, sky) for generator inference. It shares pk,
with the retriever and pk, with the generator, keep-
ing sk, and sk, private. The reader also generates
a KP-ABE master keypair (MPK, MSK), sharing MPK
with users while keeping MSK private.

5.2 Encrypted Vector and Document DBs

To build an end-to-end secure RAG while main-
taining high efficiency, SecureRAG splits the en-
crypted vector database (DB) into two parts: an
FHE-encrypted chunked vector DB and an ABE-
encrypted raw document DB enforcing an access
control policy over the retrieved documents.
FHE-Encrypted chunked vector DB. The
reader encrypts the vector DB following its chunk-
ing strategy that optimizes the overall RAG per-
formance. SecureRAG enables the reader to pack
n embeddings £ = {e;};c[1,,) of dimension d us-
ing only d ciphertexts, where e; = (€14, ,€q,;)
and n is ciphertext capacity and n >> d, which
is also the chunk’s size. This is achieved by ver-
tically arranging each chunk’s embeddings and
packing them row-wise with one ciphertext ct; =
Encglﬂ'E(ejJ, -+, €ejn) per row, resulting in d ci-
phertexts per chunk ctp = {ct;}jc[1,q-
ABE-Encrypted document DB. The raw docu-
ments {Doc; }; belonging to user u; are first ABE-
encrypted under user’s attributes a,, € {0,1}!
using the master public key MPK to yeild the ci-
phertext ctp, = Encfggui (Doc;) over which the

reader evaluates the circuit policy f, resulting in

ct{)t = EncMAP]gg(a“i)(Doct), ciphertexts decrypt-

able with the policy secret key o if and only
if a,,; satisfies the policy f. To enable a secure
direct fetch of those encrypted documents and
avoid storing their respective IDs, we use a keyed
pseudo-random function (Bellare and Cash, 2010)
D, = PRFk(d;) that given a secret key K and
an index d; it returns the same pseudorandom D,
completely different from d;. The reader gen-
erates and sends the ABE-encrypted documents
{ctét }+ along with their pseudorandom identifiers
{ Dt} 11,k to the retriever for storage. SecureRAG
benefits from this by making fetching secure doc-

Reader

> q EncFHE

81+ 8y, «— Decpug —

FHE Keys for Retriever

@

S1°+

Retriever H
1. Search
e, & Chunked
Vector DB
ct
. B @ty x> 1:; -
a .—ctqd«x»ct.z L o =
Chunk % @W

“Sn

(pk;, sk) 2. Fetching Encrypted Docs DB
> Topk ——PRF —> {Di}; —Fetch—> PseudoRand| ABE Encrypted
Doc ID Docs
ABE Master Keys for i . D)
R Failed Decrus <= poicy — [S | D
Yes|
<—ﬂ <«— Decase
FHE K?});?cfor Se)nerator Generator H
s
Qg, ’g. 3. Inference
L> Q d; - dp — Encrrg > Qdy - dy Infer—> 'Q'
a a °]
Response <« Decrrg — R <«—outpui— (FHE-Friendly LLM)

Figure 4: Overview of the SecureRAG framework integrating an FHE-friendly LLM generator with ABE-encrypted
documents, ensuring fine-grained access control. 1) The user’s query embedding is FHE-encrypted and used to
search for the top-k document indexes in the encrypted chunked vector DB. 2) The ABE-encrypted documents
are fetched via pseudo-random IDs and only decryptable if the user u; satisfies the access policy. Finally, 3)
the embeddings of the query and top-k documents are FHE-encrypted and sent to the LLM generator for secure
inference, generating an encrypted response, which is post-processed by the reader before delivering it to the user.

uments efficient without the risk of leaking their
actual identifiers, which saves storage space.

5.3 Protocol Description

SecureRAG, depicted in Figure 4, consists of three
steps: 1) FHE-encrypted search for the top-k doc-
ument indexes, 2) secure fetching of the ABE-
encrypted documents via pseudorandom identifiers,
and 3) FHE-encrypted LLM inference. To enhance
efficiency, the retrieval part is split into 1) and 2),
with SecureRAG filtering documents by user at-
tributes and access policy before step 3).

Searching top-k document indexes. We con-
sider the query embedding ¢ and document embed-
dings E' = {ei};c[1,n as normalized d-dim vec-
tors. Normalized vectors enable efficient encrypted
search, as the inner product (IP) is cheaper to com-
pute under encryption than cosine similarity while
preserving identical scores. The equation below
shows that the inner product avoids computing the
embedding norms, which would require expensive
computation under FHE.

(g,€))
qll - [l
A naive encrypted search over n embeddings would

Cosme(q, e]) <q7 6J>

compare the query against one embedding at a
time, resulting in n IPs costing n homomorphic
multiplications. By leveraging the SIMD prop-
erty and the vertical packing of the document
vector DB, SecureRAG computes those n IPs at
once, reducing the computation cost to only d
homomorphic multiplications, where d << n,
while the search remains exhaustive. Hence, the
reader extracts the user query embedding ¢
(q1,---,4qj, -+ ,qq) that is compatible with the re-
triever’s embedding model. Then, it encrypts each
component g; as an n-dim vector of its replica,
yeilding ct,, = EncglgE(qj,-'- ,q;). Next, it
sends ct, = {cty, }je[1,q) to the retriever for com-
puting IP w.r.t. each chunk as follow:

Z q; X ctj

j€[l,d]

(ctq, ctp)

The retriever returns ctg = Enc%’gE(sl, “ee 8y
a ciphertext containing the IP scores s; = (g, €;).
The reader decrypts the scores DecSF]}_}E(ctg) =
(81, , Sn), sorts them, and selects the top-k.
Fetching relevant documents. From the in-
dexes {d;}¢c,x) of the top-k scores, the reader
recovers the documents’ pseudorandom identi-

~—

fiers D;. Next, the reader sends {D:}c[1x
to the retriever who sends back the ABE-
encrypted documents {ctét}te[l’k] where ctét =

MPK, f (@, . , .
Enc ABEf (a J(Doct) with user’s w; attributes a,,,

an [-dim binary vector with [being the maximum
number of attributes a user can have. Then, the
reader decrypts documents using the secret key oy
for access policy f. Decryption succeeds only if
user u;’s attributes a,,, satisfy f; otherwise, it fails.

Encrypted inference. The reader combines the
user’s query with the successfully ABE-decrypted
documents and extracts their embeddings with an
embedding model compatible with the generator.
It then sends their FHE-encryption using pk, to
the FHE-friendly LLM generator, performs the se-
cure inference under encryption, and returns its en-
crypted response back to the reader. Subsequently,
the reader decrypts it using sk, post-processes it,
and displays it to the user.

5.4 Complexity and Security Analyses

Table 1 presents SecureRAG’s computational com-
plexity and storage requirements for its secure
search part, which is the dominant part of the re-
trieval. Note that FHE schemes can adjust their pa-
rameters to expand ciphertext capacity as needed,
which would help in improving efficiency. Our
security analysis is in Appendix B.

Table 1: SecureRAG’s retriever search storage and computational
complexity as O (N - (#Addug + #Multyg)) where N is the
number of chunks.

Dimension | d | 256 | 768

| Addug [d—1| 255 | 767

Complexity |y ultygs | d ‘ 256 ‘ 768

. Enc Query d 256 768
Storage | gy DB ‘ d-N | 256-N | 768-N

* Those are homomorphic multiplications of depth 1.

5.5 Dynamic Databases and Access Rights

SecureRAG efficiently and dynamically handles
the addition and deletion of documents and their
embeddings with on-the-fly user management, in-
cluding dynamic addition, revocation, and real-
time policy updates. Dynamic Databases. For
the addition of a document Doc;, the reader up-
dates the vector DB with the document embed-
ding é; = (€14, - ,€q+) by selecting a chunk
with an available empty slot d;, and sends to
the retriever the set of ciphertexts encrypting é;,
that is, cts, = {cte;,}jenq Where cte;, =

EUC[F)IEE(‘ -+,0,€54,0,---). Then, the retriever

then updates the encrypted vector DB ctp =
{etj}jen,q) using one homomorphic addition per
ciphertext ct; := ct; + cte; ,Vj € [1,d]. Also,
the reader generates the document’s pseudorandom
identifier D; = PRFk(d;) and ABE-encryption
of the document to which it applies the access

MF’K’f(a"i)(Doct).

policy f resulting in ctét = Enc, g}
It sends to the retriever ctht for storing it un-

der D;. Note that our addition can add batch

of embeddings at once é;,,- - - , &, at once with
K _ _

cte;, = EncPip(--- 50,56, 1€, 0,).

SecureRAG supports batch deletion of embed-
dings. The reader creates a deletion vector v €
{0, —1}", marking deletions with —1, and encrypts
itas ct, = Enc’é’ﬁE(v). The retriever updates the
encrypted DB ctp = {ct;} jc[1,q using one homo-
morphic addition and multiplication per ciphertext:
ctj == ctj + ct, x ctj Vj € [1,d]. The retriever
processes encrypted updates blindly, without know-
ing the modified documents. Dynamic access con-
trol. The KP-ABE-SW scheme (Luo et al., 2024)
supports switchable attributes, enabling dynamic
user management and policy updates. SecureRAG
leverages these capabilities to manage access rights
dynamically, with all modifications handled by the
reader, acting as the system administrator.

6 Experiments

Our goal is not to enhance state-of-the-art RAG
accuracy but to assess whether an encryption layer
can be integrated without compromising accuracy
or efficiency in sensitive applications. The experi-
ments in Section 6.1 were conducted using Python
3.12 on a NVIDIA RTX A6000 GPU-equipped
server. For embedding search, we implemented
CUDA C++ experiments using PhantomFHE(Yang
et al., 2024) with the CKKS scheme, tested on
HPCC with a single NVIDIA A100 core and 16GB
of memory. For document decryption, we used
PALISADE-abe(PALISADE, 2020), implementing
the lattice-based ABE scheme in C++, running on
macOS Sequoia on an Apple M3 Pro (12 cores,
36GB RAM). We will publicly release our code?.

6.1 Performance Evaluation

We evaluate SecureRAG using the standard RAG
assessment pipeline (Es et al., 2023; Roucher,
2024), where an LLM judge systematically as-
sesses retriever and generator performance. The
judge receives instructions, the query, retrieved

2Upon acceptance at https://github.com/anonymous

https://github.com/anonymous

IP rank-K Accuracy for CovidQA

IP rank-K Accuracy for TechQA

IP rank-K Accuracy for FinQA

o
©
3

Accuracy
Accuracy

0.85

Accuracy

%
—e— modemBERT-embed-base-256-dim 05 —e— modemBERT-embed-base-256-dim 0.10 {/” __ —e— modemBERT-embed-base-256-dim
0.80 modernBERT-embed-base-256-dim-rd-5 modernBERT-embed-base-256-dim-rd-5 : /7 modernBERT-embed-base-256-dim-rd-5
—e— modernBERT-embed-base-768-dim 04 —e— modemBERT-embed-base-768-dim 0.0 —e— modernBERT-embed-base-768-dim
—e— modernBERT-embed-base-768-dim-rd-5 —e— modemBERT-embed-base-768-dim-rd-5 : —o— modemBERT-embed-base-768-dim-rd-5
0.3 T
12345678 91011121314151617181920 12345678 91011121314151617181920 12345678 91011121314151617181920
Rank-K Rank-K Rank-K
(a) CovidQA (b) TechQA (c) FinQA

Figure 5: SecureRAG’s retriever performance on CovidQA, TechQA, and FinQA (rounded to 5, orange&red curves)
meets unprotected RAG accuracy for rank top-k with & € [1, 20] for embeddings of dimensions d € {256, 768}.

documents (retriever output), and the generated
response (LLM output) for structured analysis. To
evaluate the impact of encryption on RAG, we ap-
ply rounding to 5, reflecting CKKS’s precision lim-
its. Performance in cleartext (no rounding) is com-
pared to the encrypted setting (with rounding) to
measure potential losses. Models. We use Modern-
BERT Embed (Nussbaum et al., 2024) for retrieval
(supporting 256 and 768 dimensions) and Llama-
2-7B (Meta, 2024) as the FHE-friendly generator,
optimized for GPUs (Community, 2024; Rho et al.,
2024). SecureRAG is tested with ModernBERT
Embed as the retriever and Llama-2-7B as the gen-
erator, using Llama-3.1-8B as the LLM judge, with-
out fine-tuning any models. Datasets. To assess the
adaptation of RAG to domain-specific contexts, we
consider the following datasets provided in (Friel
et al., 2024): the PubMedQA and CovidAQ-RAG
datasets for the biomedical domain, the TechQA
dataset for customer support, and the FinQA and
TAT-QA datasets for the financial domain. Metrics.
We measure the retriever’s effectiveness using the
rank top-k and the context precision metric as de-
fined in (Es et al., 2023), providing the LLM judge
with a specific prompt (see Appendix D) instruct-
ing it to return a verdict based on the relevance of
the retrieved documents w.r.t. the question and the
LLM generator’s response. High scores indicate
high performance. Assessment. For each dataset,
the documents column contains documents cor-
responding to each question. We combined all
documents to build the vector DB, extracted their
normalized embeddings for d € {256, 768}, and
rounded them to 5. Figure 5 shows that rounding
has no impact on retrieval accuracy, as ranking
curves with and without rounding overlap almost
perfectly, regardless of the embedding dimensional-
ity. Table 2 reports LLLM judged context precision
for varying retrieved documents (k € {1,5,10}).

Table 2: Performance of SecureRAG for context precision using a retriever with d-dim
embeddings. Gray (resp. white) cells are with (resp. without) rounding.

d-dim | 256 | 768
KDocs | 1 | 5 | 10 | 1 5 | 10
0.889 ‘ 0.999 ‘ 0.999 ‘ 0.839 | 0.999 | 0.999

0.851 | 0.999 | 0.999 | 0.847 | 0.999 0.999
0.974 | 0.999 | 0.999 | 0.961 | 0.999 ‘ 0.999

0.971 | 0.999 | 0.999 | 0.994 | 0.999 0.999

0.999 | 0.929 | 0.911 ‘ 0.999 | 0.999

0.929
0.938

0.999 | 0.998 | 0.916 | 0.999 0.999

0.999 | 0.999 | 0.970 | 0.999 ‘ 0.999
0.999 | 0.999 | 0.961 | 0.999 0.999

0.999 | 0.999 | 0.999 | 0.999 | 0.999 ‘ 0.999
0.999 | 0.999 | 0.999 | 0.999 0.999

The LLM judge produces nearly identical scores for
k > 5, with minor variations at k¥ = 1, which can
be due to its probabilistic nature. SecureRAG main-
tains RAG accuracy with minimal loss when re-
trieving one document while preventing prompt in-
jection and data extraction attacks. See Appendix C
for PubMedQA and TAT-QA results.

Table 3: SecureRAG’s GPU mean runtime for searching the top-100 embeddings
chunk-wise, with N embeddings per chunk at a 128-bit security level.

Dimension | 256 | 512 | 768 | 1024 | #Chunks
N | 16384 | 16384 | 16384 | 16384 -
100:N| 18ms | 27ms | 37ms | 47ms 1
100:10° | 1.11s | 1.67s | 229s | 291s 61

(&1

N | 32768 | 32768 | 32768 | 32768

100:N | 30ms | 43ms |
100:105| 093 | 133s | 179 | 232s

100 : 10° | 15.25min | 21.87min | 29.5min | 36.11min

71ms 1

30

58ms ‘

\
\
\
\
100: 109 | 18.31min | 27.46min | 37.63min | 47.81min | 6103
\
\
\
| 3

* Runtime measured over 500 iterations for 100 : N and extrapolated for
100 : 10% and 100 : 10°.

6.2 Runtime Evaluation

We measure SecureRAG’s latency for its 3 steps:
(1) FHE-encrypted search on GPU, (2) ABE-based
secure fetching on CPU, and (3) FHE-encrypted
LLM inference, referencing reported GPU bench-
marks for state-of-the-art FHE-friendly LLMs.

Table 4: Runtime comparison between SecureRAG and state-of-the-art solutions showing a seamless integration of SecureRAG with the state-of-the-art FHE-friendly
LLMs, incurring negligible overhead while effectively preventing prompt injection data extraction attacks.

Solution ‘ Approach ‘ Docs | DB ‘ Dim ‘ Tokens | GPUs Ret(rif):ver Gen(zr)ator Tz)st)a ! ‘ :tlt]a)fl: ‘ (/:\gr?lerisl
(Kim et al., 2022) | FHE | 1 | 1000 | 768 | - | - | 06 | - | - | Vulmerable| X
RemoteRAG (Cheng et al., 2024) | DP&PHE | 5 | 160 | 768 | - | 2 | 068 | - | - | Vulnerable| X
BOLT (Pangetal., 2024) | HE&MPC | - | - | 768 | 128 | 4 | - | 185 | - | Vulnerable | X
NEXUS (Zhangetal,2024) | FHE | - | - | 768 | 128 | 4 | - | 373 | - | Vulnerable| X
HEaaN (Rhoetal,2024) | FHE | - | - | 768] 128 | 1 | - | 265 | - | Vulnerable| X
SecureRAG+NEXUS' ‘ FHE&ABE ‘ 100 ‘ 16384 ‘ 768 ‘ 128 ‘ 4 ‘ 0.05 ‘ 37.30 ‘ 37.35 | Prevented ‘ v
SecureRAG+HEaaN! 100 | 16384 | 768 | 128 1 0.05 26.50 | 26.55 | Prevented |

* Prompt injection data extraction (PIDE) attack (Qi et al., 2024). t Retrieval of 100 documents from a 16384 vector DB using 2 attributes 51.81ms.

Search Performance. Table 3 reports Secur-
eRAG’s mean runtime for top-100 document
searches using embeddings of dimensions d €
{256,512, 768,1024}, evaluated at two chunk ca-
pacities (16384 and 32768 embeddings per chunk).
For single-chunk searches, runtime ranges from
18ms to 47ms at 16384 capacity and 30ms to 71ms
at 32768, showing efficiency gains with larger
chunks. For large-scale DBs, SecureRAG scales ef-
fectively: retrieving from 1M embeddings requires
30 chunks, adding < 2.2s in runtime, while re-
trieval from 1B embeddings spans ~ 30K chunks
in 36.11 minutes. SecureRAG achieves a 13.6x
speedup over RemoteRAG (Cheng et al., 2024),
which takes 0.68s on two GPUs to retrieve just 5
documents from 160, lacking access control and
remaining vulnerable to prompt injection data ex-
traction attacks.

Access Control Overhead. Table 5 measures
ABE-decryption runtime for 1 to 100 encrypted
documents (~ 350-700 words) with 2 to 10 at-
tributes. Decryption time scales with attributes but
remains minimal compared to search, peaking at
92.43ms, demonstrating efficient enforcement of
access control with low overhead.

End-to-End Runtime. Table 4 compares Secur-
eRAG with existing approaches that protect only
specific RAG components. SecureRAG adds just
0.05s overhead to FHE-friendly non-interactive
LLMs, leading to a total runtime of 26.55s to
37.35s. Thus, SecureRAG effectively mitigates
prompt injection data extraction attacks while
seamlessly integrating with state-of-the-art FHE-
friendly LL.Ms, ensuring strong privacy protection
at minimal computational cost.

7 Conclusion

Privacy and security are critical for responsible
RAG deployment, especially in healthcare, where

Table 5: SecureRAG’s CPU mean runtime for ABE-decrypting K documents
assuming one document per ciphertext using a 128-bit security level.

#Atributes | 2 | 4 | 6 | 8 | 10

16384 bits documents ~ 350 words

Tdoc | 0.47ms | 1.04ms | 1.23ms | 2.03ms | 2.25ms

10docs | 1.20ms | 2.14ms | 3.15ms | 4.09ms | 5.08ms

100 docs | 13.81ms | 20.53ms | 28.04ms | 35.29ms | 41.44ms
32768 bits documents ~ 700 words

Ldoc | 1.45ms | 3.03ms | 4.08ms | 5.12ms | 6.08ms

10docs | 3.13ms | 5.30ms | 7.37ms | 9.31ms | 11.20ms

100 docs | 27.69ms | 45.49ms | 61.55ms | 76.62ms | 92.43ms

Runtime measured over 500 iterations.

unauthorized access can lead to severe violations.
This paper presents SecureRAG, an end-to-end se-
cure RAG framework that integrates FHE and ABE
to prevent information leakage, enforce access con-
trol, and defend against prompt injection and em-
bedding inversion attacks. SecureRAG splits re-
trieval into secure search and secure document
fetching, ensuring only authorized users access
relevant documents without compromising accu-
racy. Our evaluation shows SecureRAG matches
unprotected RAG in rank top-k and context preci-
sion metrics. With a single GPU, it retrieves 100
documents from 16K under a 2-attribute policy in
51.81ms, achieving a 13x speedup over existing
solutions, which retrieve only 5 documents from
160 with no access control. SecureRAG supports
dynamic database updates and adaptive access con-
trol while seamlessly integrating with FHE-friendly
LLMs, adding only 0.05s of overhead. By effec-
tively preventing prompt injection data extraction
attacks, SecureRAG provides a scalable, practi-
cal solution for privacy-preserving RAG deploy-
ments. It addresses core security challenges, laying
the foundation for future research on secure and
privacy-aware chatbots.

8 Limitations

SecureRAG has the following limitations. Its over-
all runtime is heavily influenced by the efficiency
of the FHE-friendly LLM generator it integrates
with. Additionally, it operates in three rounds, two
of which involve the retriever; reducing these in-
teractions could improve efficiency. Another limi-
tation is that the number of supported attributes is
fixed during setup, requiring careful estimation of
expected attributes. Increasing this number would
slightly impact the retriever’s runtime. Another lim-
itation of SecureRAG is the heavy key management
burden on the reader’s side. As a trusted third party
system administrator, the reader is responsible for
handling cryptographic keys for ABE and FHE op-
erations, including key distribution, updates, and
revocations. This overhead can increase storage
complexity and require efficient key management
strategies to maintain scalability. Also, a trusted
third party introduces a single point of failure, as
if it is compromised, could undermine the entire
system; however, in practice, many real-world de-
ployments rely on a centralized authority for ef-
ficiency and trust management. This risk can be
mitigated through decentralization schemes such as
multi-authority ABE (MA-ABE) or threshold cryp-
tography to ensure no single entity has absolute
control.

Acknowledgments

References

Yoshimasa Akimoto, Kazuto Fukuchi, Youhei Aki-
moto, and Jun Sakuma. 2023. Privformer: Privacy-
preserving transformer with mpc. In 2023 IEEE
8th European Symposium on Security and Pri-
vacy (EuroS&P), pages 392-410. IEEE. https:
//ieeexplore.ieee.org/document/10190506.

Ahmad Al Badawi, Louie Hoang, Chan Fook Mun, Kim
Laine, and Khin Mi Mi Aung. 2020. Privft: Pri-
vate and fast text classification with homomorphic
encryption. [EEE Access. https://ieeexplore.
ieee.org/abstract/document/9296754.

Mihir Bellare and David Cash. 2010. Pseudorandom
functions and permutations provably secure against
related-key attacks. In Annual Cryptology Confer-
ence. Springer.

Yihang Cheng, Lan Zhang, Junyang Wang, Mu Yuan,
and Yunhao Yao. 2024. Remoterag: A privacy-
preserving llm cloud rag service. arXiv preprint
arXiv:2412.12775.

Jung Hee Cheon, Andrey Kim, Miran Kim, and
Yongsoo Song. 2017. Homomorphic encryption

for arithmetic of approximate numbers. In In-
ternational Conference on the Theory and Appli-
cations of Cryptology and Information Security
(ASIACRYPT). Springer. https://link.springer.
com/chapter/10.1007/978-3-319-70694-8_15.

CKKS Community. 2024.
?target=heaan-11m.

https://iheaan.com/

Ronald Cramer, Rosario Gennaro, and Berry Schoen-
makers. 1997. A secure and optimally efficient multi-
authority election scheme. European transactions on
Telecommunications.

Wei Dai, Yarkin Dordz, Yuriy Polyakov, Kurt Rohloff,
Hadi Sajjadpour, Erkay Savag, and Berk Sunar. 2017.
Implementation and evaluation of a lattice-based key-
policy abe scheme. IEEE Transactions on Informa-
tion Forensics and Security, 13(5):1169—1184.

Leo de Castro, Antigoni Polychroniadou, and Daniel
Escudero. 2024. Privacy-preserving large language
model inference via gpu-accelerated fully homomor-
phic encryption. In Neurips Safe Generative AI Work-
shop 2024.

Ye Dong, Wen-jie Lu, Yancheng Zheng, Haoqi Wu,
Derun Zhao, Jin Tan, Zhicong Huang, Cheng Hong,
Tao Wei, and Wenguang Chen. 2023. Puma: Se-
cure inference of llama-7b in five minutes. arXiv
preprint arXiv:2307.12533. https://arxiv.org/
pdf/2307.12533.

Cynthia Dwork. 2006. Differential privacy. In Inter-
national colloquium on automata, languages, and
programming. Springer.

Shahul Es, Jithin James, Luis Espinosa-Anke, and
Steven Schockaert. 2023. Ragas: Automated eval-
uation of retrieval augmented generation. arXiv
preprint arXiv:2309.15217.

Robert Friel, Masha Belyi, and Atindriyo Sanyal. 2024.
Ragbench: Explainable benchmark for retrieval-
augmented generation systems. arXiv preprint
arXiv:2407.11005.

Craig Gentry. 2009. Fully homomorphic encryption
using ideal lattices. In Proceedings of the forty-first
annual ACM symposium on Theory of computing.

Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent
Waters. 2006. Attribute-based encryption for fine-
grained access control of encrypted data. In Proceed-
ings of the 13th ACM conference on Computer and
communications security.

Nicolas Grislain. 2024. Rag with differential privacy.
arXiv preprint arXiv:2412.19291.

Kanav Gupta, Neha Jawalkar, Ananta Mukherjee, Nis-
hanth Chandran, Divya Gupta, Ashish Panwar, and
Rahul Sharma. 2023. Sigma: Secure GPT infer-
ence with function secret sharing. Cryptology ePrint
Archive. https://eprint.iacr.org/2023/1269.
pdf.

https://ieeexplore.ieee.org/document/10190506
https://ieeexplore.ieee.org/document/10190506
https://ieeexplore.ieee.org/document/10190506
https://ieeexplore.ieee.org/abstract/document/9296754
https://ieeexplore.ieee.org/abstract/document/9296754
https://ieeexplore.ieee.org/abstract/document/9296754
https://link.springer.com/chapter/10.1007/978-3-319-70694-8_15
https://link.springer.com/chapter/10.1007/978-3-319-70694-8_15
https://link.springer.com/chapter/10.1007/978-3-319-70694-8_15
https://iheaan.com/?target=heaan-llm
https://iheaan.com/?target=heaan-llm
https://iheaan.com/?target=heaan-llm
https://arxiv.org/pdf/2307.12533
https://arxiv.org/pdf/2307.12533
https://arxiv.org/pdf/2307.12533
https://eprint.iacr.org/2023/1269.pdf
https://eprint.iacr.org/2023/1269.pdf
https://eprint.iacr.org/2023/1269.pdf

Donggyu Kim, Garam Lee, and Sungwoo Oh. 2022.
Toward privacy-preserving text embedding similarity
with homomorphic encryption. In Proceedings of
the Fourth Workshop on Financial Technology and
Natural Language Processing (FinNLP). https://
aclanthology.org/2022.finnlp-1.4.pdf.

Garam Lee, Minsoo Kim, Jai Hyun Park, Seung-
won Hwang, and Jung Hee Cheon. 2022. Privacy-
Preserving Text Classification on BERT Embeddings
with Homomorphic Encryption. In Proceedings of
the 2022 Conference of the North American Chap-
ter of the Association for Computational Linguis-
tics: Human Language Technologies. https://
aclanthology.org/2022.naacl-main.231.pdf.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rock-
tdaschel, et al. 2020. Retrieval-augmented generation
for knowledge-intensive nlp tasks. Advances in Neu-
ral Information Processing Systems.

Fucai Luo, Haiyan Wang, Xingfu Yan, and Jiahui Wu.
2024. Key-policy attribute-based encryption with
switchable attributes for fine-grained access control
of encrypted data. IEEE Transactions on Information
Forensics and Security.

Justus Mattern, Benjamin Weggenmann, and Florian
Kerschbaum. 2022. The limits of word level differ-
ential privacy. In Findings of the Association for
Computational Linguistics: NAACL 2022.

Xiangbin Meng, Xiangyu Yan, Kuo Zhang, Da Liu, Xi-
aojuan Cui, Yaodong Yang, Muhan Zhang, Chunxia
Cao, Jingjia Wang, Xuliang Wang, et al. 2024. The
application of large language models in medicine: A
scoping review. Iscience, 27(5).

Meta. 2024. Meta llama 2-7b. https://huggingface.
co/meta-1lama/Llama-2-7b.

John Xavier Morris, Volodymyr Kuleshov, Vitaly
Shmatikov, and Alexander M Rush. 2023. Text em-
beddings reveal (almost) as much as text. In The
2023 Conference on Empirical Methods in Natural
Language Processing. https://openreview.net/
pdf?id=EDuKP7DqCk.

Zach Nussbaum, John X. Morris, Brandon Duderstadt,
and Andriy Mulyar. 2024. Nomic embed: Training a
reproducible long context text embedder. Preprint,
arXiv:2402.01613.

PALISADE. 2020. Palisade abe - lattice cryptography
library experimental repository. https://gitlab.
com/palisade/palisade-abe.

Qi Pang, Jinhao Zhu, Helen Mollering, Wenting Zheng,
and Thomas Schneider. 2024. BOLT: Privacy-
Preserving, Accurate and Efficient Inference for
Transformers. In Symposium on Security and Pri-
vacy (SP). IEEE. https://ieeexplore.ieee.org/
abstract/document/10646705.

10

Zhenting Qi, Hanlin Zhang, Eric Xing, Sham Kakade,
and Himabindu Lakkaraju. 2024. Follow my instruc-
tion and spill the beans: Scalable data extraction
from retrieval-augmented generation systems. arXiv
preprint arXiv:2402.17840.

Donghwan Rho, Taeseong Kim, Minje Park, Jung Woo
Kim, Hyunsik Chae, Jung Hee Cheon, and Ernest K
Ryu. 2024. Encryption-friendly llm architecture.
arXiv preprint arXiv:2410.02486. https://arxiv.
org/pdf/2410.02486.

Aymeric Roucher. 2024. RAG Evaluation -
Hugging Face Open-Source AI Cookbook.
https://huggingface.co/learn/cookbook/en/
rag_evaluation.

Nigel P Smart and Frederik Vercauteren. 2014. Fully
homomorphic simd operations. Designs, codes and

cryptography.
Lauren Watson. 2020. An introduction to differen-

tial privacy. https://laurenwatson.github.io/
blogposts/2020-10-25-dp/.

Hao Yang, Shiyu Shen, Wangchen Dai, Lu Zhou, Zhe
Liu, and Yunlei Zhao. 2024. Phantom: A cuda-
accelerated word-wise homomorphic encryption li-
brary. IEEE Transactions on Dependable and Se-
cure Computing. https://ieeexplore.ieee.org/
abstract/document/10428046.

Shenglai Zeng, Jiankun Zhang, Pengfei He, Yue Xing,
Yiding Liu, Han Xu, Jie Ren, Shuaiqiang Wang,
Dawei Yin, Yi Chang, et al. 2024. The good and the
bad: Exploring privacy issues in retrieval-augmented
generation (rag). arXiv preprint arXiv:2402.16893.

Jiawen Zhang, Xinpeng Yang, Lipeng He, Kejia Chen,
Wen-jie Lu, Yinghao Wang, Xiaoyang Hou, Jian Liu,
Kui Ren, and Xiaohu Yang. 2024. Secure trans-
former inference made non-interactive. Cryptology
ePrint Archive. https://eprint.iacr.org/2024/
136. pdf.

A RLWE-based KP-ABE Scheme

We recall the RLWE-based KP-ABE scheme pro-
posed in (Dai et al., 2017) and enhanced with at-
tribute revocability in (Luo et al., 2024).

o Setup(1*,1) — {MPK,MSK} where \ is the
security parameter, [is the number of user
maximum attributes, MPK is public master key,
and MSK is secret master key.

Encage (m, a,MPK) — ct, where m is the mes-
sage, a the user’s attributes, and ct,, the ouptut
ciphertext linked to the user’s attributes.

KeyGen,ge (MSK, MPK, f) — ay where f is the
circuit policy, which is a boolean circuit, and
acy is the policy decryption key.

https://aclanthology.org/2022.finnlp-1.4.pdf
https://aclanthology.org/2022.finnlp-1.4.pdf
https://aclanthology.org/2022.finnlp-1.4.pdf
https://aclanthology.org/2022.naacl-main.231.pdf
https://aclanthology.org/2022.naacl-main.231.pdf
https://aclanthology.org/2022.naacl-main.231.pdf
https://huggingface.co/meta-llama/Llama-2-7b
https://huggingface.co/meta-llama/Llama-2-7b
https://huggingface.co/meta-llama/Llama-2-7b
https://openreview.net/pdf?id=EDuKP7DqCk
https://openreview.net/pdf?id=EDuKP7DqCk
https://openreview.net/pdf?id=EDuKP7DqCk
https://arxiv.org/abs/2402.01613
https://arxiv.org/abs/2402.01613
https://arxiv.org/abs/2402.01613
https://gitlab.com/palisade/palisade-abe
https://gitlab.com/palisade/palisade-abe
https://gitlab.com/palisade/palisade-abe
https://ieeexplore.ieee.org/abstract/document/10646705
https://ieeexplore.ieee.org/abstract/document/10646705
https://ieeexplore.ieee.org/abstract/document/10646705
https://arxiv.org/pdf/2410.02486
https://arxiv.org/pdf/2410.02486
https://arxiv.org/pdf/2410.02486
https://huggingface.co/learn/cookbook/en/rag_evaluation
https://huggingface.co/learn/cookbook/en/rag_evaluation
https://huggingface.co/learn/cookbook/en/rag_evaluation
https://laurenwatson.github.io/blogposts/2020-10-25-dp/
https://laurenwatson.github.io/blogposts/2020-10-25-dp/
https://laurenwatson.github.io/blogposts/2020-10-25-dp/
https://doi.org/10.1109/TDSC.2024.3363900
https://doi.org/10.1109/TDSC.2024.3363900
https://doi.org/10.1109/TDSC.2024.3363900
https://doi.org/10.1109/TDSC.2024.3363900
https://doi.org/10.1109/TDSC.2024.3363900
https://ieeexplore.ieee.org/abstract/document/10428046
https://ieeexplore.ieee.org/abstract/document/10428046
https://ieeexplore.ieee.org/abstract/document/10428046
https://eprint.iacr.org/2024/136.pdf
https://eprint.iacr.org/2024/136.pdf
https://eprint.iacr.org/2024/136.pdf

* Evalpge(cta, f) — ctpq) Where cty, is a
ciphertext linked to the policy f.

. DeCABE(th(a),O[f,d) — m or 1 where m
the recovered message if the attribute & satis-
fies the policy f otherwise the decryption fails
L.

B SecureRAG Security Analysis

Our security analysis follows our threat model
discussed in Section 4, where the parties are as-
sumed semi-honest and non-colluding, except for
the reader, who is a trusted third party. We re-
call that semi-honest parties adhere to the protocol
as specified but aim to infer sensitive information
about other participants solely through their inter-
actions.

Compromised User. A semi-honest user, who
interacts with the system only by sending queries
and receiving responses, may attempt to extract
information about other users’ documents. They
could do this by crafting malicious queries target-
ing unauthorized documents in the database. How-
ever, SecureRAG prevents such attacks through
ABE-encryption of documents. Even if a query
matches an unauthorized document, decryption
will fail because the document’s ciphertext is bound
to a policy f that excludes the user’s attributes.

Compromised Retriever. A semi-honest re-
triever that stores the ABE-encrypted documents
and their FHE-encrypted embeddings can try to
learn the user query, which is FHE-encrypted, the
retrieved documents under both forms. For the
FHE-encrypted query and embeddings, a compro-
mised retriever cannot infer meaningful informa-
tion thanks to the IND-CPA security property of
FHE, which ensures that FHE ciphertexts remain
indistinguishable, even when their underlying plain-
texts are identical. The ABE-encrypted documents
are fetched using pseudorandom identifiers that
look like random values to the retriever. Thus, it
cannot learn which documents are fetched. More-
over, the RLWE-based KP ABE scheme that en-
crypts the documents satisfies the selective security
(IND-sCPA) property (Goyal et al., 2006) that pre-
vents an attacker, who claimed to possess certain
attributes from between ciphertexts of two chosen
plaintexts as long as they do not satisfy the access
policy f.

Compromised Generator. A semi-honest gen-
erator that receives encrypted and top-k documents
and returns its response encrypted can try to in-

11

fer information about the query and the selected
documents. However, this is prevented by the IND-
CPA property of FHE, which entails that the FHE
ciphertexts cannot be distinguished even if their un-
derlying plaintexts are identical. Given that, such
a compromised generator performs the inference
on encrypted data protected by the IND-CPA prop-
erty, it will be incapable of learning any meaningful
information.

C SecureRAG performance on other
datasets

Similarly to Figure 5, Figure 6 shows that rounding
does not affect retrieval accuracy, as the ranking
curves for the PubMedQA and TAT-QA datasets
with and without rounding align almost perfectly,
irrespective of embedding dimensionality.

IP rank-K Accuracy for PubMedQA

1.0

o
©

Accuracy
I I
~ o«

—8— modernBERT-embed-base-256-dim
modernBERT-embed-base-256-dim-rd-5

—8— modernBERT-embed-base-768-dim

—8— modernBERT-embed-base-768-dim-rd-5

o
o

o
wn

vvvvvvvvvvvvvvvvvvvv

123456 7 8 91011121314151617181920
Rank-K

(a) PubMedQA
IP rank-K Accuracy for TAT-QA

Accuracy

—8— modernBERT-embed-base-256-dim
modernBERT-embed-base-256-dim-rd-5

—8— modernBERT-embed-base-768-dim

—8— modernBERT-embed-base-768-dim-rd-5

vvvvvvvvvvvvvvvvvvvv
123456 7 8 91011121314151617181920
Rank-K

(b) TAT-QA

Figure 6: SecureRAG’s retriever performance on the
PubMedQA and TAT-QA datasets (rounded to 5, or-
ange&red curves) matches unprotected RAG accuracy
for rank top-k with & € [1, 20].

D Prompts for the LLM judge

We used the following prompt from RAGAS (Es
et al., 2023) for our evaluation of the context preci-
sion metric.

Context Precision Prompt

* Instruction: Given question, answer and con-
text verify if the context was useful in arriving
at the given answer. Give verdict as 1 if useful
and 0 if not.

e Prompt: ‘instruction question: question
context: context answer: answer verdict: ’

12

	Introduction
	Related Work
	Preliminaries
	Fully Homomorphic Encryption
	Attribute-Based Encryption

	Threat Model
	SecureRAG
	Key Generation
	Encrypted Vector and Document DBs
	Protocol Description
	Complexity and Security Analyses
	Dynamic Databases and Access Rights

	Experiments
	Performance Evaluation
	Runtime Evaluation

	Conclusion
	Limitations
	RLWE-based KP-ABE Scheme
	SecureRAG Security Analysis
	SecureRAG performance on other datasets
	Prompts for the LLM judge

