
SecureRAG: End-to-End Secure Retrieval-Augmented Generation

Anonymous ACL submission

Abstract

Retrieval-augmented generation (RAG) en-001
hances large language models (LLMs) with ex-002
ternal knowledge from databases but introduces003
privacy risks when handling sensitive informa-004
tion. Existing defenses fall short: differential005
privacy degrades accuracy and remains vulnera-006
ble to embedding inversion attacks, while fully007
homomorphic encryption (FHE) ensures secu-008
rity but lacks access control. We present Secur-009
eRAG, an end-to-end secure RAG framework010
that enforces strict access control while mitigat-011
ing prompt injection data extraction and embed-012
ding inversion attacks. It achieves this by de-013
coupling retrieval into secure search and secure014
document fetching, using FHE for encrypted015
search and attribute-based encryption (ABE)016
for fine-grained access control. SecureRAG017
supports dynamic database updates, adaptive018
access policies, and integrates seamlessly with019
FHE-friendly LLMs, adding only 0.05s of over-020
head. By providing a fully encrypted, privacy-021
preserving retrieval framework, SecureRAG en-022
ables the secure deployment of domain-specific023
chatbots in sensitive applications.024

1 Introduction025

Retrieval-augmented generation (RAG)(Lewis026

et al., 2020) enhances large language models027

(LLMs)(Meng et al., 2024) by retrieving relevant028

information from external sources to generate more029

accurate and context-aware responses without re-030

training. By bridging information retrieval and text031

generation, RAG enables cost-effective chatbot cus-032

tomization across the healthcare, finance, and law033

sectors. For example, Figure 1 illustrates RAG034

in healthcare, where a hospital corpus aids doctors035

(users) in generating precise diagnostic suggestions.036

037

Despite its advantages, RAG is highly vulnera-038

ble to privacy and security risks in sensitive sec-039

tors (Zeng et al., 2024; Qi et al., 2024). The primary040

threat is sensitive information leakage, which can041

Retriever
(Text search top-k docs)

Top-k docs
Search Embed

Query

Query
Query +

Top-k Docs

Raw
Response

Vector
DB Docs

Fetch

Hospital Corpus

Reader
(Text pre/post-processing)

Generator

(LLM)

 Docs belonging to
Dr. Alice's patient

ResponseDr. Bob
(user) Response leaking

Dr. Alice's patient data

Figure 1: Healthcare-based RAG showing key vulner-
abilities: a) retriever exploiting query embeddings and
hospital corpus, b) generator misusing queries and re-
trieved documents, and c) Dr. Bob receiving sensitive
data of Dr. Alice’s patient due to lack of access control.

occur through (1) compromised components (e.g., 042

retriever, generator) or (2) adversarial prompt injec- 043

tions that extract restricted data from the database 044

(DB). Beyond direct DB access, exposing cleartext 045

embeddings (queries and documents) risks leaking 046

personally identifiable information (PII). Morris 047

et al. (2023) demonstrated that text embeddings 048

are highly invertible, recovering 89% of PII (e.g., 049

full names) from clinical note embeddings, under- 050

scoring the need for equal protection of raw text 051

and embeddings. Additionally, Qi et al. (2024) in- 052

troduced a prompt injection data extraction attack 053

that targeted RAG’s retrieval DB—rather than the 054

LLM’s training data—successfully extracting 41% 055

of a 77K-word book and 3% of a 1.5M-word cor- 056

pus using only 100 crafted queries. These findings 057

highlight a critical weakness: RAG lacks effec- 058

tive access control at the retrieval level, leaving it 059

vulnerable to data extraction attacks. 060

These vulnerabilities are evident in the health- 061

care scenario shown in Figure 1, where Dr. Bob 062

must uphold patient confidentiality while poten- 063

tially sharing patients with other doctors. He must 064

also be prevented from using prompt injection at- 065

tacks to access records of Dr. Alice’s patients, as 066

1

they do not collaborate. Deploying separate RAG067

solutions for each doctor is impractical due to in-068

efficiency, cost, and complexity. Instead, hospitals069

require a unified RAG system integrated with their070

database while enforcing strict access controls. The071

key challenge is ensuring that responses are per-072

sonalized while retrieved documents remain both073

relevant and restricted to authorized patients, pre-074

serving security and privacy.075

Most privacy-preserving RAG solutions (Gris-076

lain, 2024; Cheng et al., 2024) rely on differential077

privacy (DP) (Dwork, 2006) as a lightweight de-078

fense, adding controllable noise to balance privacy079

and accuracy. However, DP has critical limitations:080

(1) it distorts text, reducing retrieval and generation081

accuracy, (2) its privacy guarantee weakens over082

repeated queries due to budget exhaustion, and (3)083

it fails to prevent text embedding inversion (Kim084

et al., 2022) and prompt injection attacks. These085

shortcomings make DP unsuitable for an end-to-086

end, provably secure RAG without accuracy loss.087

Fully homomorphic encryption (FHE) (Gentry,088

2009) has emerged as a promising approach, offer-089

ing end-to-end security with strong privacy guar-090

antees and no accuracy loss. Despite its runtime091

overhead, recent advances demonstrated their ef-092

fectiveness in preventing information leakage from093

text embeddings (Kim et al., 2022), enabling se-094

cure text classification (Al Badawi et al., 2020;095

Lee et al., 2022), and supporting secure LLM infer-096

ence (Zhang et al., 2024; de Castro et al., 2024; Rho097

et al., 2024). While FHE provides essential build-098

ing blocks for a secure RAG, existing solutions do099

not afford access control on retrieved documents.100

We propose SecureRAG, an end-to-end secure101

RAG framework that enforces access control over102

retrieved documents while preventing prompt in-103

jection data extraction and embedding inversion104

attacks. SecureRAG achieves secure retrieval by105

splitting the process into two subphases: (1) se-106

cure search and (2) secure document fetching. By107

leveraging FHE’s SIMD property and vertically108

packing FHE-encrypted embeddings, SecureRAG109

enables efficient and scalable search over the vec-110

tor database. To enforce access control, documents111

are encrypted using an attribute-based encryption112

(ABE) scheme, ensuring that only authorized users113

can decrypt retrieved content. SecureRAG supports114

dynamic management of both the database (e.g.,115

adding/deleting encrypted documents and embed-116

dings) and access rights (e.g., granting/revoking117

permissions). It seamlessly integrates with FHE-118

friendly LLM generators (Rho et al., 2024) with- 119

out compromising accuracy. We evaluate Secur- 120

eRAG with the goal of assessing whether encryp- 121

tion can be integrated without compromising accu- 122

racy while enabling seamless model updates. Our 123

results show that SecureRAG matches unprotected 124

RAG in accuracy for rank top-k and context preci- 125

sion metrics, the latter assessed by an LLM judge. 126

Performance-wise, SecureRAG retrieves 100 doc- 127

uments from 16,384 under a 2-attribute policy in 128

0.05s on a single GPU—achieving a 13.6× speedup 129

over RemoteRAG (Cheng et al., 2024), which, de- 130

spite using two GPUs, takes 0.68s to retrieve only 131

5 documents from 160 with no access control, leav- 132

ing it vulnerable to prompt injection attacks. 133

In summary, we introduce SecureRAG, an end- 134

to-end secure RAG framework that enforces access 135

control over retrieved documents while prevent- 136

ing prompt injection data extraction and embed- 137

ding inversion attacks. SecureRAG achieves this 138

by decoupling retrieval into secure document in- 139

dex search and secure document fetching, utilizing 140

FHE for encrypted embedding search and ABE 141

for fine-grained access control. Our evaluation 142

shows that SecureRAG maintains the accuracy of 143

unprotected RAG while ensuring provable secu- 144

rity. With seamless integration into FHE-friendly 145

LLMs and support for dynamic access management 146

and database updates, SecureRAG enables secure, 147

privacy-preserving RAG deployments in sensitive 148

domains such as healthcare. 149

2 Related Work 150

In RAG, sensitive data leaks through embedding 151

inversion attacks on its components (Morris et al., 152

2023) or prompt injection queries targeting the ex- 153

traction of restricted documents (Qi et al., 2024). 154

Existing solutions protect components separately 155

but remain vulnerable to prompt injection attacks. 156

Secure text embedding classification. Many so- 157

lutions mitigate information leakage by encrypting 158

text embeddings with FHE (Al Badawi et al., 2020; 159

Lee et al., 2022; Kim et al., 2022) for classification 160

tasks. However, they are limited to basic one-to- 161

one similarity comparisons and do not scale to large 162

databases due to FHE’s computational bottlenecks 163

in search. SecureRAG addresses this challenge by 164

enabling efficient one-to-many and many-to-many 165

text embedding searches under FHE. It leverages 166

vertical data packing to fully exploit FHE’s SIMD 167

property, significantly improving efficiency and re- 168

2

ducing encrypted database storage overhead.169

Secure inference of LLMs. LLMs are proprietary,170

requiring queries to be sent to external servers for171

inference, raising concerns about access and re-172

tention of sensitive data. Research on secure in-173

ference falls into interactive and non-interactive174

models. Interactive models(Akimoto et al., 2023;175

Dong et al., 2023; Gupta et al., 2023) rely on mul-176

tiparty computation (MPC) but suffer from high177

communication overhead, making them imprac-178

tical for RAG’s large-scale deployment. Hybrid179

approaches(Pang et al., 2024) combine HE and180

MPC to mitigate this overhead. FHE-based solu-181

tions (de Castro et al., 2024; Zhang et al., 2024;182

Rho et al., 2024) offer stronger privacy by trans-183

forming LLMs into FHE-friendly architectures, en-184

abling non-interactive, end-to-end encrypted infer-185

ence. SecureRAG is fully compatible with any186

non-interactive FHE-friendly LLM and can seam-187

lessly switch between different FHE-friendly LLM188

providers without affecting its retriever or access189

control policies.190

Privacy-preserving RAGs. While individual RAG191

components can be secured, privacy-preserving192

RAG solutions aim for end-to-end protection,193

primarily against information leakage. Ex-194

isting approaches rely on differential privacy195

(DP)(Dwork, 2006), but its privacy-accuracy trade-196

off degrades LLM performance by altering text197

semantics(Mattern et al., 2022). DP also fails to198

prevent embedding inversion attacks(Kim et al.,199

2022), and its privacy guarantee weakens with re-200

peated queries, requiring resets that hinder real-201

world deployment(Watson, 2020). Moreover, no202

DP-based RAG solutions prevent prompt injection203

data extraction attacks. SecureRAG is the first end-204

to-end secure RAG framework that enforces access205

control over retrieved documents while preventing206

information leakage at both the embedding and207

generator response levels.208

3 Preliminaries209

SecureRAG integrates encryption with RAG using210

FHE for computations on encrypted text embed-211

dings and attribute-based encryption (ABE) for re-212

stricting document decryption to authorized users.213

3.1 Fully Homomorphic Encryption214

Fully Homomorphic Encryption (FHE) (Gentry,215

2009) enables computations on encrypted data216

without decryption, providing strong privacy guar-217

antees. Its IND-CPA security (Cramer et al., 1997) 218

prevents semi-honest attackers from inferring plain- 219

texts from ciphertexts. While FHE is computation- 220

ally expensive, ongoing optimizations, including 221

GPU acceleration (Yang et al., 2024), have en- 222

hanced its practicality. SecureRAG utilizes the 223

CKKS scheme (Cheon et al., 2017) due to its 224

support for floating-point operations, enabling en- 225

crypted computations that closely approximate 226

cleartext results. CKKS also leverages the single- 227

instruction multiple-data (SIMD) (Smart and Ver- 228

cauteren, 2014) property, efficiently packing multi- 229

ple plaintext values into a single ciphertext. How- 230

ever, SIMD efficiency depends on the packing 231

strategy—SecureRAG employs vertical packing, 232

which is optimized for large-scale vector database 233

searches (Figure 2).

Horizontal packing Vertical packing

 empty
slots per

Figure 2: SecureRAG uses the vertical packing to effi-
ciently store the encrypted text embeddings in DB. 234

3.2 Attribute-Based Encryption 235

Attribute-Based Encryption (ABE) enables fine- 236

grained access control, allowing decryption only 237

when user attributes meet a defined policy. In 238

Ciphertext-Policy ABE (CP-ABE), access policies 239

are in the ciphertext, giving data owners control, 240

while in Key-Policy ABE (KP-ABE), policies are 241

in decryption keys, managed by a central author- 242

ity. SecureRAG requires KP-ABE, where hospital 243

authorities control access policies and keys. While 244

most KP-ABE schemes use pairing-based cryp- 245

tography, LWE and RLWE-based alternatives (Dai 246

et al., 2017; Luo et al., 2024) offer stronger security, 247

and revocability. RLWE-based KP-ABE (Figure 3) 248

enables key homomorphism, allowing homomor- 249

phic evaluation of public keys over a circuit pol- 250

icy. Selective security (IND-sCPA) (Goyal et al., 251

2006) ensures adversaries without authorized keys 252

cannot distinguish between encrypted messages. 253

Like FHE, LWE and RLWE-based KP-ABE rely 254

on lattice-based hardness, providing post-quantum 255

security guarantees. 256

4 Threat Model 257

SecureRAG prevents sensitive information leakage 258

across all RAG stages from malicious components 259

3

Access Policy

or

Figure 3: RLWE-based KP-ABE scheme in (Dai et al.,
2017). More details are in Appendix A.

(retriever, generator) or users, specifically address-260

ing embedding inversion and prompt injection data261

extraction attacks. Notably, the latter targets the262

retrieval database, not the LLM generator’s train-263

ing data, which SecureRAG does not consider in264

its threat model. We consider a four-party set-265

ting with non-colluding entities: users, a reader,266

a retriever, and a generator. All parties are semi-267

honest1, except the reader, a trusted third party268

representing the hospital administrator. The users,269

representing hospital staff with attribute-based ac-270

cess, query a customized LLM augmented with271

the hospital corpus for tailored responses. The272

reader encrypts sensitive data (doctors’ queries,273

patient records, hospital corpus), sets DB access274

policies, manages public key infrastructure (PKI),275

issues user keys, and handles text preprocessing276

and post-processing. The retriever, a cloud DB277

provider, stores the encrypted documents and re-278

trieves relevant documents for RAG. The generator,279

an FHE-friendly proprietary LLM (e.g., OpenAI’s280

ChatGPT), processes encrypted queries and docu-281

ments, performs inference under encryption, and282

returns encrypted responses, protecting its intel-283

lectual property. The reader protects hospital data284

while enabling doctors to use external services. The285

retriever and generator must not extract meaningful286

information from queries, corpus, the hospital, or287

retrieved documents in any form. Users should not288

intentionally or unintentionally receive responses289

containing information about other users’ sensitive290

data or documents they are unauthorized to access.291

5 SecureRAG292

In RAG, the retriever and generator use different293

text embedding models suitable for text similarity294

or generation. Thus, SecureRAG extracts the gen-295

erator’s text embeddings from raw documents on296

the fly to support any FHE-compatible LLM gen-297

erator. This enables SecureRAG to integrate with298

any FHE-friendly LLM generator.299

1Follow the protocol but try to infer sensitive information.

5.1 Key Generation 300

SecureRAG encrypts text embeddings with FHE, 301

using separate keypairs for the retriever and gener- 302

ator, and encrypts raw documents with KP-ABE to 303

enforce access policies. During setup, the reader, 304

as the system administrator, generates two FHE 305

keypairs: (pkr, skr) for retriever searches and 306

(pkg, skg) for generator inference. It shares pkr 307

with the retriever and pkg with the generator, keep- 308

ing skr and skg private. The reader also generates 309

a KP-ABE master keypair (MPK, MSK), sharing MPK 310

with users while keeping MSK private. 311

5.2 Encrypted Vector and Document DBs 312

To build an end-to-end secure RAG while main- 313

taining high efficiency, SecureRAG splits the en- 314

crypted vector database (DB) into two parts: an 315

FHE-encrypted chunked vector DB and an ABE- 316

encrypted raw document DB enforcing an access 317

control policy over the retrieved documents. 318

FHE-Encrypted chunked vector DB. The 319

reader encrypts the vector DB following its chunk- 320

ing strategy that optimizes the overall RAG per- 321

formance. SecureRAG enables the reader to pack 322

n embeddings E = {ei}i∈[1,n] of dimension d us- 323

ing only d ciphertexts, where ei = (e1,i, · · · , ed,i) 324

and n is ciphertext capacity and n >> d, which 325

is also the chunk’s size. This is achieved by ver- 326

tically arranging each chunk’s embeddings and 327

packing them row-wise with one ciphertext ctj = 328

EncpkrFHE(ej,1, · · · , ej,n) per row, resulting in d ci- 329

phertexts per chunk ctE = {ctj}j∈[1,d]. 330

ABE-Encrypted document DB. The raw docu- 331

ments {Doct}t belonging to user ui are first ABE- 332

encrypted under user’s attributes aui ∈ {0, 1}l 333

using the master public key MPK to yeild the ci- 334

phertext ctDt = Enc
MPK,aui
ABE (Doct) over which the 335

reader evaluates the circuit policy f , resulting in 336

ctfDt
= Enc

MPK,f(aui)

ABE (Doct), ciphertexts decrypt- 337

able with the policy secret key αf if and only 338

if aui satisfies the policy f . To enable a secure 339

direct fetch of those encrypted documents and 340

avoid storing their respective IDs, we use a keyed 341

pseudo-random function (Bellare and Cash, 2010) 342

Dt = PRFK(dt) that given a secret key K and 343

an index dt it returns the same pseudorandom Dt 344

completely different from dt. The reader gen- 345

erates and sends the ABE-encrypted documents 346

{ctfDt
}t along with their pseudorandom identifiers 347

{Dt}t∈[1,k] to the retriever for storage. SecureRAG 348

benefits from this by making fetching secure doc- 349

4

Query

User

Reader Retriever
1. Search

2. Fetching

Chunk

Top-k

Chunked
Vector DB

1

N

Send

Fetch

(FHE-Friendly LLM)

3. Inference
Generator

Output

Encrypted Docs DB

Infer

Response

Failed Policy
No

Yes

PseudoRand
Doc ID

ABE Encrypted
Docs

ABE Master Keys for
Docs Access Policy

FHE Keys for Generator

FHE Keys for Retriever

Figure 4: Overview of the SecureRAG framework integrating an FHE-friendly LLM generator with ABE-encrypted
documents, ensuring fine-grained access control. 1) The user’s query embedding is FHE-encrypted and used to
search for the top-k document indexes in the encrypted chunked vector DB. 2) The ABE-encrypted documents
are fetched via pseudo-random IDs and only decryptable if the user ui satisfies the access policy. Finally, 3)
the embeddings of the query and top-k documents are FHE-encrypted and sent to the LLM generator for secure
inference, generating an encrypted response, which is post-processed by the reader before delivering it to the user.

uments efficient without the risk of leaking their350

actual identifiers, which saves storage space.351

5.3 Protocol Description352

SecureRAG, depicted in Figure 4, consists of three353

steps: 1) FHE-encrypted search for the top-k doc-354

ument indexes, 2) secure fetching of the ABE-355

encrypted documents via pseudorandom identifiers,356

and 3) FHE-encrypted LLM inference. To enhance357

efficiency, the retrieval part is split into 1) and 2),358

with SecureRAG filtering documents by user at-359

tributes and access policy before step 3).360

Searching top-k document indexes. We con-361

sider the query embedding q and document embed-362

dings E = {ei}i∈[1,n] as normalized d-dim vec-363

tors. Normalized vectors enable efficient encrypted364

search, as the inner product (IP) is cheaper to com-365

pute under encryption than cosine similarity while366

preserving identical scores. The equation below367

shows that the inner product avoids computing the368

embedding norms, which would require expensive369

computation under FHE.370

Cosine(q̃, ẽj) =
⟨q̃, ẽj⟩

∥q̃∥ · ∥ẽj∥
= ⟨q, ej⟩371

A naive encrypted search over n embeddings would372

compare the query against one embedding at a 373

time, resulting in n IPs costing n homomorphic 374

multiplications. By leveraging the SIMD prop- 375

erty and the vertical packing of the document 376

vector DB, SecureRAG computes those n IPs at 377

once, reducing the computation cost to only d 378

homomorphic multiplications, where d << n, 379

while the search remains exhaustive. Hence, the 380

reader extracts the user query embedding q = 381

(q1, · · · , qj , · · · , qd) that is compatible with the re- 382

triever’s embedding model. Then, it encrypts each 383

component qj as an n-dim vector of its replica, 384

yeilding ctqj = EncpkrFHE(qj , · · · , qj). Next, it 385

sends ctq = {ctqj}j∈[1,d] to the retriever for com- 386

puting IP w.r.t. each chunk as follow: 387

⟨ctq, ctE⟩ =
∑

j∈[1,d]

qj × ctj 388

The retriever returns ctS = EncpkrFHE(s1, · · · , sn) 389

a ciphertext containing the IP scores sj = ⟨q, ej⟩. 390

The reader decrypts the scores DecskrFHE(ctS) = 391

(s1, · · · , sn), sorts them, and selects the top-k. 392

Fetching relevant documents. From the in- 393

dexes {dt}t∈[1,k] of the top-k scores, the reader 394

recovers the documents’ pseudorandom identi- 395

5

fiers Dt. Next, the reader sends {Dt}t∈[1,k]396

to the retriever who sends back the ABE-397

encrypted documents {ctfDt
}t∈[1,k] where ctfDt

=398

Enc
MPK,f(aui)

ABE (Doct) with user’s ui attributes aui ,399

an l-dim binary vector with l being the maximum400

number of attributes a user can have. Then, the401

reader decrypts documents using the secret key αf402

for access policy f . Decryption succeeds only if403

user ui’s attributes aui satisfy f ; otherwise, it fails.404

Encrypted inference. The reader combines the405

user’s query with the successfully ABE-decrypted406

documents and extracts their embeddings with an407

embedding model compatible with the generator.408

It then sends their FHE-encryption using pkg to409

the FHE-friendly LLM generator, performs the se-410

cure inference under encryption, and returns its en-411

crypted response back to the reader. Subsequently,412

the reader decrypts it using skg, post-processes it,413

and displays it to the user.414

5.4 Complexity and Security Analyses415

Table 1 presents SecureRAG’s computational com-416

plexity and storage requirements for its secure417

search part, which is the dominant part of the re-418

trieval. Note that FHE schemes can adjust their pa-419

rameters to expand ciphertext capacity as needed,420

which would help in improving efficiency. Our421

security analysis is in Appendix B.

Table 1: SecureRAG’s retriever search storage and computational
complexity as O (N · (#AddHE +#MultHE)) where N is the
number of chunks.

Dimension d 256 768

Complexity
AddHE d− 1 255 767
MultHE* d 256 768

Storage
Enc Query d 256 768

Enc DB d ·N 256 ·N 768 ·N
* Those are homomorphic multiplications of depth 1.422

5.5 Dynamic Databases and Access Rights423

SecureRAG efficiently and dynamically handles424

the addition and deletion of documents and their425

embeddings with on-the-fly user management, in-426

cluding dynamic addition, revocation, and real-427

time policy updates. Dynamic Databases. For428

the addition of a document Doct, the reader up-429

dates the vector DB with the document embed-430

ding ēt = (ē1,t, · · · , ēd,t) by selecting a chunk431

with an available empty slot dt, and sends to432

the retriever the set of ciphertexts encrypting ēt,433

that is, ctēt = {ctēj,t}j∈[1,d] where ctēj,t =434

EncpkrFHE(· · · , 0, ēj,t, 0, · · ·). Then, the retriever435

then updates the encrypted vector DB ctE = 436

{ctj}j∈[1,d] using one homomorphic addition per 437

ciphertext ctj := ctj + ctēj,t∀j ∈ [1, d]. Also, 438

the reader generates the document’s pseudorandom 439

identifier Dt = PRFK(dt) and ABE-encryption 440

of the document to which it applies the access 441

policy f resulting in ctfDt
= Enc

MPK,f(aui)

ABE (Doct). 442

It sends to the retriever ctfDt
for storing it un- 443

der Dt. Note that our addition can add batch 444

of embeddings at once ēt1 , · · · , ētm at once with 445

ctēj,t = EncpkrFHE(· · · , 0, ēj,t1 , · · · , ēj,tm , 0, · · ·). 446

SecureRAG supports batch deletion of embed- 447

dings. The reader creates a deletion vector v ∈ 448

{0,−1}n, marking deletions with −1, and encrypts 449

it as ctv = EncpkrFHE(v). The retriever updates the 450

encrypted DB ctE = {ctj}j∈[1,d] using one homo- 451

morphic addition and multiplication per ciphertext: 452

ctj := ctj + ctv × ctj ∀j ∈ [1, d]. The retriever 453

processes encrypted updates blindly, without know- 454

ing the modified documents. Dynamic access con- 455

trol. The KP-ABE-SW scheme (Luo et al., 2024) 456

supports switchable attributes, enabling dynamic 457

user management and policy updates. SecureRAG 458

leverages these capabilities to manage access rights 459

dynamically, with all modifications handled by the 460

reader, acting as the system administrator. 461

6 Experiments 462

Our goal is not to enhance state-of-the-art RAG 463

accuracy but to assess whether an encryption layer 464

can be integrated without compromising accuracy 465

or efficiency in sensitive applications. The experi- 466

ments in Section 6.1 were conducted using Python 467

3.12 on a NVIDIA RTX A6000 GPU-equipped 468

server. For embedding search, we implemented 469

CUDA C++ experiments using PhantomFHE(Yang 470

et al., 2024) with the CKKS scheme, tested on 471

HPCC with a single NVIDIA A100 core and 16GB 472

of memory. For document decryption, we used 473

PALISADE-abe(PALISADE, 2020), implementing 474

the lattice-based ABE scheme in C++, running on 475

macOS Sequoia on an Apple M3 Pro (12 cores, 476

36GB RAM). We will publicly release our code2. 477

6.1 Performance Evaluation 478

We evaluate SecureRAG using the standard RAG 479

assessment pipeline (Es et al., 2023; Roucher, 480

2024), where an LLM judge systematically as- 481

sesses retriever and generator performance. The 482

judge receives instructions, the query, retrieved 483

2Upon acceptance at https://github.com/anonymous

6

https://github.com/anonymous

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Rank-K

0.80

0.85

0.90

0.95

1.00
Ac

cu
ra

cy
IP rank-K Accuracy for CovidQA

modernBERT-embed-base-256-dim
modernBERT-embed-base-256-dim-rd-5
modernBERT-embed-base-768-dim
modernBERT-embed-base-768-dim-rd-5

(a) CovidQA

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Rank-K

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

IP rank-K Accuracy for TechQA

modernBERT-embed-base-256-dim
modernBERT-embed-base-256-dim-rd-5
modernBERT-embed-base-768-dim
modernBERT-embed-base-768-dim-rd-5

(b) TechQA

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Rank-K

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Ac
cu

ra
cy

IP rank-K Accuracy for FinQA

modernBERT-embed-base-256-dim
modernBERT-embed-base-256-dim-rd-5
modernBERT-embed-base-768-dim
modernBERT-embed-base-768-dim-rd-5

(c) FinQA

Figure 5: SecureRAG’s retriever performance on CovidQA, TechQA, and FinQA (rounded to 5, orange&red curves)
meets unprotected RAG accuracy for rank top-k with k ∈ [1, 20] for embeddings of dimensions d ∈ {256, 768}.

documents (retriever output), and the generated484

response (LLM output) for structured analysis. To485

evaluate the impact of encryption on RAG, we ap-486

ply rounding to 5, reflecting CKKS’s precision lim-487

its. Performance in cleartext (no rounding) is com-488

pared to the encrypted setting (with rounding) to489

measure potential losses. Models. We use Modern-490

BERT Embed (Nussbaum et al., 2024) for retrieval491

(supporting 256 and 768 dimensions) and Llama-492

2-7B (Meta, 2024) as the FHE-friendly generator,493

optimized for GPUs (Community, 2024; Rho et al.,494

2024). SecureRAG is tested with ModernBERT495

Embed as the retriever and Llama-2-7B as the gen-496

erator, using Llama-3.1-8B as the LLM judge, with-497

out fine-tuning any models. Datasets. To assess the498

adaptation of RAG to domain-specific contexts, we499

consider the following datasets provided in (Friel500

et al., 2024): the PubMedQA and CovidAQ-RAG501

datasets for the biomedical domain, the TechQA502

dataset for customer support, and the FinQA and503

TAT-QA datasets for the financial domain. Metrics.504

We measure the retriever’s effectiveness using the505

rank top-k and the context precision metric as de-506

fined in (Es et al., 2023), providing the LLM judge507

with a specific prompt (see Appendix D) instruct-508

ing it to return a verdict based on the relevance of509

the retrieved documents w.r.t. the question and the510

LLM generator’s response. High scores indicate511

high performance. Assessment. For each dataset,512

the documents column contains documents cor-513

responding to each question. We combined all514

documents to build the vector DB, extracted their515

normalized embeddings for d ∈ {256, 768}, and516

rounded them to 5. Figure 5 shows that rounding517

has no impact on retrieval accuracy, as ranking518

curves with and without rounding overlap almost519

perfectly, regardless of the embedding dimensional-520

ity. Table 2 reports LLM judged context precision521

for varying retrieved documents (k ∈ {1, 5, 10}).522

Table 2: Performance of SecureRAG for context precision using a retriever with d-dim
embeddings. Gray (resp. white) cells are with (resp. without) rounding.

Domain
d-dim 256 768

K Docs 1 5 10 1 5 10

H
ea

lth
ca

re PubMedQA
0.889 0.999 0.999 0.839 0.999 0.999
0.851 0.999 0.999 0.847 0.999 0.999

CovidQA
0.974 0.999 0.999 0.961 0.999 0.999
0.971 0.999 0.999 0.994 0.999 0.999

Fi
na

nc
e TAT-QA

0.929 0.999 0.929 0.911 0.999 0.999
0.938 0.999 0.998 0.916 0.999 0.999

FinQA
0.955 0.999 0.999 0.970 0.999 0.999
0.973 0.999 0.999 0.961 0.999 0.999

Te
ch TechQA

0.999 0.999 0.999 0.999 0.999 0.999
0.999 0.999 0.999 0.999 0.999 0.999

The LLM judge produces nearly identical scores for 523

k ≥ 5, with minor variations at k = 1, which can 524

be due to its probabilistic nature. SecureRAG main- 525

tains RAG accuracy with minimal loss when re- 526

trieving one document while preventing prompt in- 527

jection and data extraction attacks. See Appendix C 528

for PubMedQA and TAT-QA results. 529

Table 3: SecureRAG’s GPU mean runtime for searching the top-100 embeddings
chunk-wise, with N embeddings per chunk at a 128-bit security level.

Dimension 256 512 768 1024 #Chunks

N 16384 16384 16384 16384 −

100 : N 18ms 27ms 37ms 47ms 1

100 : 106 1.11s 1.67s 2.29s 2.91s 61

100 : 109 18.31min 27.46min 37.63min 47.81min 61035

N 32768 32768 32768 32768 −

100 : N 30ms 43ms 58ms 71ms 1

100 : 106 0.93s 1.33s 1.79s 2.2s 30

100 : 109 15.25min 21.87min 29.5min 36.11min 30517

* Runtime measured over 500 iterations for 100 : N and extrapolated for
100 : 106 and 100 : 109.

6.2 Runtime Evaluation 530

We measure SecureRAG’s latency for its 3 steps: 531

(1) FHE-encrypted search on GPU, (2) ABE-based 532

secure fetching on CPU, and (3) FHE-encrypted 533

LLM inference, referencing reported GPU bench- 534

marks for state-of-the-art FHE-friendly LLMs. 535

7

Table 4: Runtime comparison between SecureRAG and state-of-the-art solutions showing a seamless integration of SecureRAG with the state-of-the-art FHE-friendly
LLMs, incurring negligible overhead while effectively preventing prompt injection data extraction attacks.

Solution Approach Docs DB Dim Tokens GPUs
Retriever

(s)
Generator

(s)
Total
(s)

PIDE*

Attack
Access
Control

(Kim et al., 2022) FHE 1 1000 768 - - 0.6 - - Vulnerable ✗

RemoteRAG (Cheng et al., 2024) DP&PHE 5 160 768 - 2 0.68 - - Vulnerable ✗

BOLT (Pang et al., 2024) HE&MPC - - 768 128 4 - 185 - Vulnerable ✗

NEXUS (Zhang et al., 2024) FHE - - 768 128 4 - 37.3 - Vulnerable ✗

HEaaN (Rho et al., 2024) FHE - - 768 128 1 - 26.5 - Vulnerable ✗

SecureRAG+NEXUS†
FHE&ABE

100 16384 768 128 4 0.05 37.30 37.35 Prevented ✓

SecureRAG+HEaaN† 100 16384 768 128 1 0.05 26.50 26.55 Prevented ✓

* Prompt injection data extraction (PIDE) attack (Qi et al., 2024). † Retrieval of 100 documents from a 16384 vector DB using 2 attributes 51.81ms.

Search Performance. Table 3 reports Secur-536

eRAG’s mean runtime for top-100 document537

searches using embeddings of dimensions d ∈538

{256, 512, 768, 1024}, evaluated at two chunk ca-539

pacities (16384 and 32768 embeddings per chunk).540

For single-chunk searches, runtime ranges from541

18ms to 47ms at 16384 capacity and 30ms to 71ms542

at 32768, showing efficiency gains with larger543

chunks. For large-scale DBs, SecureRAG scales ef-544

fectively: retrieving from 1M embeddings requires545

30 chunks, adding < 2.2s in runtime, while re-546

trieval from 1B embeddings spans ∼ 30K chunks547

in 36.11 minutes. SecureRAG achieves a 13.6×548

speedup over RemoteRAG (Cheng et al., 2024),549

which takes 0.68s on two GPUs to retrieve just 5550

documents from 160, lacking access control and551

remaining vulnerable to prompt injection data ex-552

traction attacks.553

Access Control Overhead. Table 5 measures554

ABE-decryption runtime for 1 to 100 encrypted555

documents (∼ 350–700 words) with 2 to 10 at-556

tributes. Decryption time scales with attributes but557

remains minimal compared to search, peaking at558

92.43ms, demonstrating efficient enforcement of559

access control with low overhead.560

End-to-End Runtime. Table 4 compares Secur-561

eRAG with existing approaches that protect only562

specific RAG components. SecureRAG adds just563

0.05s overhead to FHE-friendly non-interactive564

LLMs, leading to a total runtime of 26.55s to565

37.35s. Thus, SecureRAG effectively mitigates566

prompt injection data extraction attacks while567

seamlessly integrating with state-of-the-art FHE-568

friendly LLMs, ensuring strong privacy protection569

at minimal computational cost.570

7 Conclusion571

Privacy and security are critical for responsible572

RAG deployment, especially in healthcare, where573

Table 5: SecureRAG’s CPU mean runtime for ABE-decrypting K documents
assuming one document per ciphertext using a 128-bit security level.

Attributes 2 4 6 8 10

16384 bits documents ∼ 350 words

1 doc 0.47ms 1.04ms 1.23ms 2.03ms 2.25ms

10 docs 1.20ms 2.14ms 3.15ms 4.09ms 5.08ms

100 docs 13.81ms 20.53ms 28.04ms 35.29ms 41.44ms

32768 bits documents ∼ 700 words

1 doc 1.45ms 3.03ms 4.08ms 5.12ms 6.08ms

10 docs 3.13ms 5.30ms 7.37ms 9.31ms 11.20ms

100 docs 27.69ms 45.49ms 61.55ms 76.62ms 92.43ms

* Runtime measured over 500 iterations.

unauthorized access can lead to severe violations. 574

This paper presents SecureRAG, an end-to-end se- 575

cure RAG framework that integrates FHE and ABE 576

to prevent information leakage, enforce access con- 577

trol, and defend against prompt injection and em- 578

bedding inversion attacks. SecureRAG splits re- 579

trieval into secure search and secure document 580

fetching, ensuring only authorized users access 581

relevant documents without compromising accu- 582

racy. Our evaluation shows SecureRAG matches 583

unprotected RAG in rank top-k and context preci- 584

sion metrics. With a single GPU, it retrieves 100 585

documents from 16K under a 2-attribute policy in 586

51.81ms, achieving a 13× speedup over existing 587

solutions, which retrieve only 5 documents from 588

160 with no access control. SecureRAG supports 589

dynamic database updates and adaptive access con- 590

trol while seamlessly integrating with FHE-friendly 591

LLMs, adding only 0.05s of overhead. By effec- 592

tively preventing prompt injection data extraction 593

attacks, SecureRAG provides a scalable, practi- 594

cal solution for privacy-preserving RAG deploy- 595

ments. It addresses core security challenges, laying 596

the foundation for future research on secure and 597

privacy-aware chatbots. 598

8

8 Limitations599

SecureRAG has the following limitations. Its over-600

all runtime is heavily influenced by the efficiency601

of the FHE-friendly LLM generator it integrates602

with. Additionally, it operates in three rounds, two603

of which involve the retriever; reducing these in-604

teractions could improve efficiency. Another limi-605

tation is that the number of supported attributes is606

fixed during setup, requiring careful estimation of607

expected attributes. Increasing this number would608

slightly impact the retriever’s runtime. Another lim-609

itation of SecureRAG is the heavy key management610

burden on the reader’s side. As a trusted third party611

system administrator, the reader is responsible for612

handling cryptographic keys for ABE and FHE op-613

erations, including key distribution, updates, and614

revocations. This overhead can increase storage615

complexity and require efficient key management616

strategies to maintain scalability. Also, a trusted617

third party introduces a single point of failure, as618

if it is compromised, could undermine the entire619

system; however, in practice, many real-world de-620

ployments rely on a centralized authority for ef-621

ficiency and trust management. This risk can be622

mitigated through decentralization schemes such as623

multi-authority ABE (MA-ABE) or threshold cryp-624

tography to ensure no single entity has absolute625

control.626

Acknowledgments627

References628

Yoshimasa Akimoto, Kazuto Fukuchi, Youhei Aki-629
moto, and Jun Sakuma. 2023. Privformer: Privacy-630
preserving transformer with mpc. In 2023 IEEE631
8th European Symposium on Security and Pri-632
vacy (EuroS&P), pages 392–410. IEEE. https:633
//ieeexplore.ieee.org/document/10190506.634

Ahmad Al Badawi, Louie Hoang, Chan Fook Mun, Kim635
Laine, and Khin Mi Mi Aung. 2020. Privft: Pri-636
vate and fast text classification with homomorphic637
encryption. IEEE Access. https://ieeexplore.638
ieee.org/abstract/document/9296754.639

Mihir Bellare and David Cash. 2010. Pseudorandom640
functions and permutations provably secure against641
related-key attacks. In Annual Cryptology Confer-642
ence. Springer.643

Yihang Cheng, Lan Zhang, Junyang Wang, Mu Yuan,644
and Yunhao Yao. 2024. Remoterag: A privacy-645
preserving llm cloud rag service. arXiv preprint646
arXiv:2412.12775.647

Jung Hee Cheon, Andrey Kim, Miran Kim, and648
Yongsoo Song. 2017. Homomorphic encryption649

for arithmetic of approximate numbers. In In- 650
ternational Conference on the Theory and Appli- 651
cations of Cryptology and Information Security 652
(ASIACRYPT). Springer. https://link.springer. 653
com/chapter/10.1007/978-3-319-70694-8_15. 654

CKKS Community. 2024. https://iheaan.com/ 655
?target=heaan-llm. 656

Ronald Cramer, Rosario Gennaro, and Berry Schoen- 657
makers. 1997. A secure and optimally efficient multi- 658
authority election scheme. European transactions on 659
Telecommunications. 660

Wei Dai, Yarkın Doröz, Yuriy Polyakov, Kurt Rohloff, 661
Hadi Sajjadpour, Erkay Savaş, and Berk Sunar. 2017. 662
Implementation and evaluation of a lattice-based key- 663
policy abe scheme. IEEE Transactions on Informa- 664
tion Forensics and Security, 13(5):1169–1184. 665

Leo de Castro, Antigoni Polychroniadou, and Daniel 666
Escudero. 2024. Privacy-preserving large language 667
model inference via gpu-accelerated fully homomor- 668
phic encryption. In Neurips Safe Generative AI Work- 669
shop 2024. 670

Ye Dong, Wen-jie Lu, Yancheng Zheng, Haoqi Wu, 671
Derun Zhao, Jin Tan, Zhicong Huang, Cheng Hong, 672
Tao Wei, and Wenguang Chen. 2023. Puma: Se- 673
cure inference of llama-7b in five minutes. arXiv 674
preprint arXiv:2307.12533. https://arxiv.org/ 675
pdf/2307.12533. 676

Cynthia Dwork. 2006. Differential privacy. In Inter- 677
national colloquium on automata, languages, and 678
programming. Springer. 679

Shahul Es, Jithin James, Luis Espinosa-Anke, and 680
Steven Schockaert. 2023. Ragas: Automated eval- 681
uation of retrieval augmented generation. arXiv 682
preprint arXiv:2309.15217. 683

Robert Friel, Masha Belyi, and Atindriyo Sanyal. 2024. 684
Ragbench: Explainable benchmark for retrieval- 685
augmented generation systems. arXiv preprint 686
arXiv:2407.11005. 687

Craig Gentry. 2009. Fully homomorphic encryption 688
using ideal lattices. In Proceedings of the forty-first 689
annual ACM symposium on Theory of computing. 690

Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent 691
Waters. 2006. Attribute-based encryption for fine- 692
grained access control of encrypted data. In Proceed- 693
ings of the 13th ACM conference on Computer and 694
communications security. 695

Nicolas Grislain. 2024. Rag with differential privacy. 696
arXiv preprint arXiv:2412.19291. 697

Kanav Gupta, Neha Jawalkar, Ananta Mukherjee, Nis- 698
hanth Chandran, Divya Gupta, Ashish Panwar, and 699
Rahul Sharma. 2023. Sigma: Secure GPT infer- 700
ence with function secret sharing. Cryptology ePrint 701
Archive. https://eprint.iacr.org/2023/1269. 702
pdf. 703

9

https://ieeexplore.ieee.org/document/10190506
https://ieeexplore.ieee.org/document/10190506
https://ieeexplore.ieee.org/document/10190506
https://ieeexplore.ieee.org/abstract/document/9296754
https://ieeexplore.ieee.org/abstract/document/9296754
https://ieeexplore.ieee.org/abstract/document/9296754
https://link.springer.com/chapter/10.1007/978-3-319-70694-8_15
https://link.springer.com/chapter/10.1007/978-3-319-70694-8_15
https://link.springer.com/chapter/10.1007/978-3-319-70694-8_15
https://iheaan.com/?target=heaan-llm
https://iheaan.com/?target=heaan-llm
https://iheaan.com/?target=heaan-llm
https://arxiv.org/pdf/2307.12533
https://arxiv.org/pdf/2307.12533
https://arxiv.org/pdf/2307.12533
https://eprint.iacr.org/2023/1269.pdf
https://eprint.iacr.org/2023/1269.pdf
https://eprint.iacr.org/2023/1269.pdf

Donggyu Kim, Garam Lee, and Sungwoo Oh. 2022.704
Toward privacy-preserving text embedding similarity705
with homomorphic encryption. In Proceedings of706
the Fourth Workshop on Financial Technology and707
Natural Language Processing (FinNLP). https://708
aclanthology.org/2022.finnlp-1.4.pdf.709

Garam Lee, Minsoo Kim, Jai Hyun Park, Seung-710
won Hwang, and Jung Hee Cheon. 2022. Privacy-711
Preserving Text Classification on BERT Embeddings712
with Homomorphic Encryption. In Proceedings of713
the 2022 Conference of the North American Chap-714
ter of the Association for Computational Linguis-715
tics: Human Language Technologies. https://716
aclanthology.org/2022.naacl-main.231.pdf.717

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio718
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-719
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-720
täschel, et al. 2020. Retrieval-augmented generation721
for knowledge-intensive nlp tasks. Advances in Neu-722
ral Information Processing Systems.723

Fucai Luo, Haiyan Wang, Xingfu Yan, and Jiahui Wu.724
2024. Key-policy attribute-based encryption with725
switchable attributes for fine-grained access control726
of encrypted data. IEEE Transactions on Information727
Forensics and Security.728

Justus Mattern, Benjamin Weggenmann, and Florian729
Kerschbaum. 2022. The limits of word level differ-730
ential privacy. In Findings of the Association for731
Computational Linguistics: NAACL 2022.732

Xiangbin Meng, Xiangyu Yan, Kuo Zhang, Da Liu, Xi-733
aojuan Cui, Yaodong Yang, Muhan Zhang, Chunxia734
Cao, Jingjia Wang, Xuliang Wang, et al. 2024. The735
application of large language models in medicine: A736
scoping review. Iscience, 27(5).737

Meta. 2024. Meta llama 2-7b. https://huggingface.738
co/meta-llama/Llama-2-7b.739

John Xavier Morris, Volodymyr Kuleshov, Vitaly740
Shmatikov, and Alexander M Rush. 2023. Text em-741
beddings reveal (almost) as much as text. In The742
2023 Conference on Empirical Methods in Natural743
Language Processing. https://openreview.net/744
pdf?id=EDuKP7DqCk.745

Zach Nussbaum, John X. Morris, Brandon Duderstadt,746
and Andriy Mulyar. 2024. Nomic embed: Training a747
reproducible long context text embedder. Preprint,748
arXiv:2402.01613.749

PALISADE. 2020. Palisade abe - lattice cryptography750
library experimental repository. https://gitlab.751
com/palisade/palisade-abe.752

Qi Pang, Jinhao Zhu, Helen Möllering, Wenting Zheng,753
and Thomas Schneider. 2024. BOLT: Privacy-754
Preserving, Accurate and Efficient Inference for755
Transformers. In Symposium on Security and Pri-756
vacy (SP). IEEE. https://ieeexplore.ieee.org/757
abstract/document/10646705.758

Zhenting Qi, Hanlin Zhang, Eric Xing, Sham Kakade, 759
and Himabindu Lakkaraju. 2024. Follow my instruc- 760
tion and spill the beans: Scalable data extraction 761
from retrieval-augmented generation systems. arXiv 762
preprint arXiv:2402.17840. 763

Donghwan Rho, Taeseong Kim, Minje Park, Jung Woo 764
Kim, Hyunsik Chae, Jung Hee Cheon, and Ernest K 765
Ryu. 2024. Encryption-friendly llm architecture. 766
arXiv preprint arXiv:2410.02486. https://arxiv. 767
org/pdf/2410.02486. 768

Aymeric Roucher. 2024. RAG Evaluation - 769
Hugging Face Open-Source AI Cookbook. 770
https://huggingface.co/learn/cookbook/en/ 771
rag_evaluation. 772

Nigel P Smart and Frederik Vercauteren. 2014. Fully 773
homomorphic simd operations. Designs, codes and 774
cryptography. 775

Lauren Watson. 2020. An introduction to differen- 776
tial privacy. https://laurenwatson.github.io/ 777
blogposts/2020-10-25-dp/. 778

Hao Yang, Shiyu Shen, Wangchen Dai, Lu Zhou, Zhe 779
Liu, and Yunlei Zhao. 2024. Phantom: A cuda- 780
accelerated word-wise homomorphic encryption li- 781
brary. IEEE Transactions on Dependable and Se- 782
cure Computing. https://ieeexplore.ieee.org/ 783
abstract/document/10428046. 784

Shenglai Zeng, Jiankun Zhang, Pengfei He, Yue Xing, 785
Yiding Liu, Han Xu, Jie Ren, Shuaiqiang Wang, 786
Dawei Yin, Yi Chang, et al. 2024. The good and the 787
bad: Exploring privacy issues in retrieval-augmented 788
generation (rag). arXiv preprint arXiv:2402.16893. 789

Jiawen Zhang, Xinpeng Yang, Lipeng He, Kejia Chen, 790
Wen-jie Lu, Yinghao Wang, Xiaoyang Hou, Jian Liu, 791
Kui Ren, and Xiaohu Yang. 2024. Secure trans- 792
former inference made non-interactive. Cryptology 793
ePrint Archive. https://eprint.iacr.org/2024/ 794
136.pdf. 795

A RLWE-based KP-ABE Scheme 796

We recall the RLWE-based KP-ABE scheme pro- 797

posed in (Dai et al., 2017) and enhanced with at- 798

tribute revocability in (Luo et al., 2024). 799

• Setup(1λ, l) → {MPK, MSK} where λ is the 800

security parameter, l is the number of user 801

maximum attributes, MPK is public master key, 802

and MSK is secret master key. 803

• EncABE(m, a, MPK) → cta where m is the mes- 804

sage, a the user’s attributes, and cta the ouptut 805

ciphertext linked to the user’s attributes. 806

• KeyGenABE(MSK, MPK, f) → αf where f is the 807

circuit policy, which is a boolean circuit, and 808

αf is the policy decryption key. 809

10

https://aclanthology.org/2022.finnlp-1.4.pdf
https://aclanthology.org/2022.finnlp-1.4.pdf
https://aclanthology.org/2022.finnlp-1.4.pdf
https://aclanthology.org/2022.naacl-main.231.pdf
https://aclanthology.org/2022.naacl-main.231.pdf
https://aclanthology.org/2022.naacl-main.231.pdf
https://huggingface.co/meta-llama/Llama-2-7b
https://huggingface.co/meta-llama/Llama-2-7b
https://huggingface.co/meta-llama/Llama-2-7b
https://openreview.net/pdf?id=EDuKP7DqCk
https://openreview.net/pdf?id=EDuKP7DqCk
https://openreview.net/pdf?id=EDuKP7DqCk
https://arxiv.org/abs/2402.01613
https://arxiv.org/abs/2402.01613
https://arxiv.org/abs/2402.01613
https://gitlab.com/palisade/palisade-abe
https://gitlab.com/palisade/palisade-abe
https://gitlab.com/palisade/palisade-abe
https://ieeexplore.ieee.org/abstract/document/10646705
https://ieeexplore.ieee.org/abstract/document/10646705
https://ieeexplore.ieee.org/abstract/document/10646705
https://arxiv.org/pdf/2410.02486
https://arxiv.org/pdf/2410.02486
https://arxiv.org/pdf/2410.02486
https://huggingface.co/learn/cookbook/en/rag_evaluation
https://huggingface.co/learn/cookbook/en/rag_evaluation
https://huggingface.co/learn/cookbook/en/rag_evaluation
https://laurenwatson.github.io/blogposts/2020-10-25-dp/
https://laurenwatson.github.io/blogposts/2020-10-25-dp/
https://laurenwatson.github.io/blogposts/2020-10-25-dp/
https://doi.org/10.1109/TDSC.2024.3363900
https://doi.org/10.1109/TDSC.2024.3363900
https://doi.org/10.1109/TDSC.2024.3363900
https://doi.org/10.1109/TDSC.2024.3363900
https://doi.org/10.1109/TDSC.2024.3363900
https://ieeexplore.ieee.org/abstract/document/10428046
https://ieeexplore.ieee.org/abstract/document/10428046
https://ieeexplore.ieee.org/abstract/document/10428046
https://eprint.iacr.org/2024/136.pdf
https://eprint.iacr.org/2024/136.pdf
https://eprint.iacr.org/2024/136.pdf

• EvalABE(cta, f) → ctf(a) where ctf(a) is a810

ciphertext linked to the policy f .811

• DecABE(ctf(a), αf , ã) → m̄ or ⊥ where m̄812

the recovered message if the attribute ã satis-813

fies the policy f otherwise the decryption fails814

⊥.815

B SecureRAG Security Analysis816

Our security analysis follows our threat model817

discussed in Section 4, where the parties are as-818

sumed semi-honest and non-colluding, except for819

the reader, who is a trusted third party. We re-820

call that semi-honest parties adhere to the protocol821

as specified but aim to infer sensitive information822

about other participants solely through their inter-823

actions.824

Compromised User. A semi-honest user, who825

interacts with the system only by sending queries826

and receiving responses, may attempt to extract827

information about other users’ documents. They828

could do this by crafting malicious queries target-829

ing unauthorized documents in the database. How-830

ever, SecureRAG prevents such attacks through831

ABE-encryption of documents. Even if a query832

matches an unauthorized document, decryption833

will fail because the document’s ciphertext is bound834

to a policy f that excludes the user’s attributes.835

Compromised Retriever. A semi-honest re-836

triever that stores the ABE-encrypted documents837

and their FHE-encrypted embeddings can try to838

learn the user query, which is FHE-encrypted, the839

retrieved documents under both forms. For the840

FHE-encrypted query and embeddings, a compro-841

mised retriever cannot infer meaningful informa-842

tion thanks to the IND-CPA security property of843

FHE, which ensures that FHE ciphertexts remain844

indistinguishable, even when their underlying plain-845

texts are identical. The ABE-encrypted documents846

are fetched using pseudorandom identifiers that847

look like random values to the retriever. Thus, it848

cannot learn which documents are fetched. More-849

over, the RLWE-based KP ABE scheme that en-850

crypts the documents satisfies the selective security851

(IND-sCPA) property (Goyal et al., 2006) that pre-852

vents an attacker, who claimed to possess certain853

attributes from between ciphertexts of two chosen854

plaintexts as long as they do not satisfy the access855

policy f .856

Compromised Generator. A semi-honest gen-857

erator that receives encrypted and top-k documents858

and returns its response encrypted can try to in-859

fer information about the query and the selected 860

documents. However, this is prevented by the IND- 861

CPA property of FHE, which entails that the FHE 862

ciphertexts cannot be distinguished even if their un- 863

derlying plaintexts are identical. Given that, such 864

a compromised generator performs the inference 865

on encrypted data protected by the IND-CPA prop- 866

erty, it will be incapable of learning any meaningful 867

information. 868

C SecureRAG performance on other 869

datasets 870

Similarly to Figure 5, Figure 6 shows that rounding 871

does not affect retrieval accuracy, as the ranking 872

curves for the PubMedQA and TAT-QA datasets 873

with and without rounding align almost perfectly, 874

irrespective of embedding dimensionality.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Rank-K

0.5

0.6

0.7

0.8

0.9

1.0
Ac

cu
ra

cy
IP rank-K Accuracy for PubMedQA

modernBERT-embed-base-256-dim
modernBERT-embed-base-256-dim-rd-5
modernBERT-embed-base-768-dim
modernBERT-embed-base-768-dim-rd-5

(a) PubMedQA

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Rank-K

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Ac
cu

ra
cy

IP rank-K Accuracy for TAT-QA

modernBERT-embed-base-256-dim
modernBERT-embed-base-256-dim-rd-5
modernBERT-embed-base-768-dim
modernBERT-embed-base-768-dim-rd-5

(b) TAT-QA

Figure 6: SecureRAG’s retriever performance on the
PubMedQA and TAT-QA datasets (rounded to 5, or-
ange&red curves) matches unprotected RAG accuracy
for rank top-k with k ∈ [1, 20].

875

D Prompts for the LLM judge 876

We used the following prompt from RAGAS (Es 877

et al., 2023) for our evaluation of the context preci- 878

sion metric. 879

11

Context Precision Prompt880

• Instruction: Given question, answer and con-881

text verify if the context was useful in arriving882

at the given answer. Give verdict as 1 if useful883

and 0 if not.884

• Prompt: ‘instruction question: question885

context: context answer: answer verdict: ’886

12

	Introduction
	Related Work
	Preliminaries
	Fully Homomorphic Encryption
	Attribute-Based Encryption

	Threat Model
	SecureRAG
	Key Generation
	Encrypted Vector and Document DBs
	Protocol Description
	Complexity and Security Analyses
	Dynamic Databases and Access Rights

	Experiments
	Performance Evaluation
	Runtime Evaluation

	Conclusion
	Limitations
	RLWE-based KP-ABE Scheme
	SecureRAG Security Analysis
	SecureRAG performance on other datasets
	Prompts for the LLM judge

