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ABSTRACT

Transformer models learn in two distinct modes: in-weights learning (IWL), en-
coding knowledge into model weights, and in-context learning (ICL), adapting
flexibly to context without weight modification. To better understand the interplay
between these learning modes, we draw inspiration from evolutionary biology’s
analogous adaptive strategies: genetic encoding (akin to IWL, adapting over gen-
erations and fixed within an individual’s lifetime) and phenotypic plasticity (akin
to ICL, enabling flexible behavioral responses to environmental cues). In evolu-
tionary biology, environmental predictability dictates the balance between these
strategies: stability favors genetic encoding, while reliable predictive cues pro-
mote phenotypic plasticity. We experimentally operationalize these dimensions of
predictability and systematically investigate their influence on the ICL/IWL bal-
ance in Transformers. Using regression and classification tasks, we show that high
environmental stability decisively favors IWL, as predicted, with a sharp transi-
tion at maximal stability. Conversely, high cue reliability enhances ICL efficacy,
particularly when stability is low. Furthermore, learning dynamics reveal task-
contingent temporal evolution: while a canonical ICL-to-IWL shift occurs in some
settings (e.g., classification with many classes), we demonstrate that scenarios
with easier IWL (e.g., fewer classes) or slower ICL acquisition (e.g., regression)
can exhibit an initial IWL phase later yielding to ICL dominance. These find-
ings support a relative-cost hypothesis for explaining these learning mode transi-
tions, establishing predictability as a critical factor governing adaptive strategies
in Transformers, and offering novel insights for understanding ICL and guiding
training methodologies.

1 INTRODUCTION

Transformer architectures (Vaswani et al., 2017) underpin the success of modern large language
models (LLMs), demonstrating impressive performance across diverse tasks (Brown et al., 2020). A
key emergent capability in these models is in-context learning (ICL), where models adapt to novel
tasks specified by examples within the input prompt, without requiring gradient-based parameter
updates (Brown et al., 2020; Dong et al., 2022; Liu et al., 2023). This rapid, flexible adaptation con-
trasts with standard in-weights learning (IWL), where knowledge is gradually encoded into model
parameters during training (Chan et al., 2022; Singh et al., 2023). The mechanisms enabling ICL
are an active area of research, with theories encompassing induction heads that copy and complete
patterns (Olsson et al., 2022; Elhage et al., 2021), function vector heads that compute task represen-
tations (Todd et al., 2023; Hendel et al., 2023), and interpretations of ICL as implicit optimization
or Bayesian inference within the forward pass (Von Oswald et al., 2023; Dai et al., 2022; Xie et al.,
2021).

While IWL traditionally yields stable knowledge from consistent task exposure, the interplay and
developmental trajectory between IWL and ICL remain incompletely understood. Notably, ICL
capabilities can be transient, emerging early in training but sometimes diminishing or being su-
perseded by IWL as tasks become more predictable or frequently encountered (Singh et al., 2023;
Anand et al., 2024). Characteristics of the data distribution, such as input noise and dynamic input-
label mappings – which influence task predictability – have also been shown to affect the balance
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between ICL and IWL (Chan et al., 2022; Reddy, 2023). Despite these advances, a comprehensive
framework for why and when Transformers shift their reliance between these learning modes is still
developing.

In this paper, we argue that evolutionary biology offers one explanatory lens for understanding this
dynamic interplay. Organisms adapt to variable environments via analogous mechanisms: pheno-
typic plasticity and genetic evolution. Phenotypic plasticity – the ability of a genotype to produce
different phenotypes (e.g., changes in morphology, physiology, or behavior like learning) in re-
sponse to environmental cues (West-Eberhard, 2003; Scheiner, 1993) – allows rapid, within-lifetime
adaptation, akin to a Transformer’s ICL adapting to a prompt. This contrasts with genetic evolution
– the slower, generational modification of the genotype – which encodes more permanent traits,
analogous to IWL.

Evolutionary biology has established that environmental predictability critically determines the fa-
vored adaptive strategy (Stearns, 1989). Phenotypic plasticity is generally favored when the environ-
ment fluctuates and reliable cues are available to guide an appropriate adaptive response (Stearns,
1989; Stephens, 1989). However, plasticity may be selected against if the environment is extremely
stable (negating the need for flexibility and favoring genetically hardcoded traits), if cues are un-
reliable, or if the inherent costs of plasticity are too high (Stearns, 1989; Stephens, 1989; DeWitt
et al., 1998). Furthermore, a key long-term dynamic is genetic assimilation: if an environment that
previously favored a plastic response becomes stable, the consistently advantageous phenotype, ini-
tially induced plastically by cues, can become genetically encoded, shifting the trait from flexible to
fixed (Waddington, 1953; Pigliucci et al., 2006). This offers a compelling parallel to the observed
transience of ICL.

Building on this evolutionary framework, we hypothesize that analogous dimensions of task pre-
dictability govern which modes of learning Transformers adopt and how their balance shifts over
time. We operationalize two key dimensions, inspired by these biological concepts: cue reliability,
defined as the clarity and informativeness of information within a single prompt for specifying the
required task, and environmental stability, defined as the consistency or predictability of the task
structure across different prompts encountered over the course of training. We predict that high
environmental stability will favor IWL, while high cue reliability will enhance ICL efficacy, par-
ticularly when stability is low. Moreover, we anticipate that conditions of high stability for tasks
initially learned via ICL may lead to an “assimilation” of these solutions into IWL.

To test these hypotheses, we employ a controlled experimental design that systematically investi-
gates the independent and interactive effects of cue reliability and environmental stability on the use
and development of ICL and IWL. We deploy this approach in two distinct domains: a parametric
sinusoid regression task and a few-shot binary classification task on Omniglot images. Our findings
aim to establish predictability as a critical factor shaping adaptive learning in Transformers, offering
insights for understanding ICL and potentially guiding future training methodologies.

2 LEARNING DYNAMICS THROUGH AN EVOLUTIONARY LENS

Our approach leverages analogies between biological adaptation and Transformer learning to inves-
tigate the influence of environmental predictability. The core idea is that the emergence, persistence,
and transitions between ICL and IWL in Transformers can be understood as parallels to how or-
ganisms evolve to use phenotypic plasticity versus genetically determined traits, and how these
strategies themselves can shift (e.g., via genetic assimilation).

To make these parallels concrete:

ICL as Phenotypic Plasticity: Consider the water flea (Daphnia), which develops protective hel-
mets and spines (phenotype) only when detecting chemical cues from predators (environmental cue)
(Tollrian & Harvell, 1999). Similarly, many animals adjust coat thickness and color based on chang-
ing daylight hours – a cue predictive of seasonal temperature and snowfall (Underwood & Reynolds,
1980; Otte et al., 2024). This rapid, reversible, cue-driven adaptation mirrors how a Transformer uses
in-context examples (cue) to tailor its output (phenotype) to a novel task without altering its weights
(genotype).
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IWL as Genetically Determined/Canalized Traits: The innate, species-specific song of certain
songbirds develops reliably, even in acoustic isolation. This exemplifies a genetically underpinned
trait that is invariant to environmental variation, a phenomenon known as environmental canaliza-
tion (Marler, 2014). Analogously, IWL captures fundamental, consistently useful knowledge (e.g.,
grammar for an LLM) that is “hardcoded” into model weights through sustained exposure to stable
patterns.

ICL Transience as Genetic Assimilation: Waddington’s classic experiments showed that a heat-
shock-induced crossveinless wing phenotype in Drosophila (a plastic response), after generations
of selection, became genetically assimilated, appearing even without the heat shock (Waddington,
1953). Analogously, if a Transformer initially uses ICL for a task type that later becomes a stable
and frequent part of training, the model might “assimilate” this solution into its weights (IWL),
potentially reducing reliance on ICL for that specific pattern.

Guided by this framework, particularly the established role of environmental stability and cue reli-
ability in shaping biological adaptation, our experimental design systematically manipulates these
two factors within the training regime of Transformers. For cue reliability, we vary the clarity or
consistency of the in-context examples provided within each prompt. For environmental stability,
we manipulate the consistency of the underlying task rule across successive training batches.

3 EXPERIMENTAL DESIGN

3.1 MODEL AND TRAINING REGIME

Drawing on the previous literature, we use both a sinusoid regression task (Finn et al., 2017) and an
Omniglot classification task (Lake et al., 2015). For both experimental tasks, we employ a decoder-
only Transformer architecture with 4 layers, 4 attention heads per layer, an embedding dimension
(dmodel) of 128, and learned positional encodings.

Input processing varies by task. For the sinusoid regression task, scalar inputs and outputs are
linearly projected to dmodel. For Omniglot classification, character images are processed by a shallow
ResNet featuring three stages, each with 2 residual blocks, and outputting 16, 32, and 64 channels
per stage, respectively. This ResNet is trained jointly with the Transformer and projects the extracted
image features to dmodel.

Models are optimized to minimize either the mean squared error for sinusoid regression or the binary
cross-entropy loss for Omniglot classification, calculated on their predictions for the query item (yq).
We use the AdamW optimizer (Loshchilov & Hutter, 2017) with a peak learning rate of 1 × 10−4,
subject to a cosine decay schedule following 1,000 warmup steps. All models are trained for a total
of 50,000 training steps, using a batch size of 128. Each training sequence presented to the model
consists of N prompt example pairs followed by a single query item. The specific value of N differs
per task, as detailed below.

3.2 TASK 1: SINUSOID REGRESSION

The first task requires the model to perform regression on points sampled from a sinusoidal function
(see Figure 1), a setup inspired by prior meta-learning studies (Finn et al., 2017).

Each training batch corresponds to a single environmental timestep t. Within a batch, all training
sequences are generated from the same true underlying sinusoid ft(x) = At sin(x+ϕt). This setup
mirrors a population adapting to a common, evolving environment.

For each sequence, the model is provided with N = 10 prompt examples {(xi, yi)}Ni=1. Inputs
xi are sampled uniformly from [−π, π], and corresponding outputs are yi = ft(xi) + δi, where δi
represents Gaussian observation noise specific to each prompt example. The model’s objective is to
predict the noise-free value yq = ft(xq) for a given query input xq .

Cue Reliability: This is manipulated by adjusting the variance, σ2
reliability, of the Gaussian observa-

tion noise δi ∼ N (0, σ2
reliability) applied to the yi values in the prompt. Lower σ2

reliability corresponds
to higher cue reliability.
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Figure 1: Illustration of the sinusoid regression task under varying predictability conditions. Each
panel shows prompt examples (black dots) for a given underlying sinusoid at timestep t (solid line),
and the sinusoid at the preceding timestep t−1 (dashed line). Top row: Low environmental stability,
meaning the underlying sinusoid (solid line) changes significantly at each step. Bottom row: High
environmental stability, where the underlying sinusoid is more stable across time. Left column: Low
cue reliability, where prompt examples are noisy. Right column: High cue reliability, where prompt
examples are less noisy and closer to the true underlying sinusoid.

Environmental Stability: This is manipulated by controlling the parameter αstability in an AR(1)
process governing the evolution of the sinusoid parameters θt = [At, ϕt]

T across successive en-
vironmental timesteps t. A higher αstability indicates greater stability. The parameter update rule
is:

θt = αstabilityθt−1 + (1− αstability)θ
(t)
innovation (1)

where θ0 is initially sampled from prior distributions. For each subsequent timestep t, θ(t)innovation is
a vector of innovations drawn afresh from these same priors: amplitude A ∼ U [0.5, 1.5] and phase
ϕ ∼ U [0, 2π]. This formulation ensures mean-reversion towards the center of the prior distributions,
with αstability dictating the rate of change.

3.3 TASK 2: OMNIGLOT FEW-SHOT BINARY CLASSIFICATION

The second task is few-shot binary classification of Omniglot characters (Lake et al., 2015) (see
Figure 2). Similar to the sinusoid task, each training batch corresponds to a single environmental
timestep t. At each timestep t, an underlying global mapping, Mt : C → {0, 1}, assigns a binary
label to each character c from a set C of 1623 unique Omniglot character classes.

A prompt sequence comprises N = 2 example image-label pairs {(xi, yi)}Ni=1, followed by a query
image xq (an exemplar of character class cq). The model predicts the true binary label Mt(cq).
Critically, one example character in the prompt, ck, matches the query’s class ck = cq . This allows
the model to predict the query label by relying on the in-context label yk (ICL) or by accessing an
internalized representation of Mt(cq) (IWL).

(reliable cue)
y1 = 0 y2 = 1 yq = 0 y1 = 1

(unreliable cue)
y2 = 1 yq = 0

Figure 2: Sequences drawn from the Omniglot binary classification task. (Left) A sequence illus-
trating a reliable in-context cue (prompt label y1 for character c1 = cq matches Mt(cq)). (Right) A
sequence illustrating an unreliable in-context cue (prompt label y2 for c2 = cq is flipped relative to
Mt(cq)).
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Cue Reliability: This is manipulated by controlling the probability, preliability, that the label yi for a
prompt character ci matches its true label Mt(ci). Specifically:

yi =

{
Mt(ci) with probability preliability

1−Mt(ci) with probability 1− preliability
(2)

Higher preliability indicates higher cue reliability.

Environmental Stability: This is manipulated by varying the probability, pstability, that the true map-
ping Mt(c) for each character c persists from the previous timestep Mt−1(c). The initial mapping
M0(c) is sampled from Bernoulli(0.5) for all characters. For t > 0:

Mt(c) =

{
Mt−1(c) with probability pstability

1−Mt−1(c) with probability 1− pstability
(3)

Higher pstability signifies greater environmental stability. The first-order temporal autocorrelation for
each character’s label in this process is αstability = 2pstability − 1.

3.4 EVALUATION: ASSESSING PREFERENCE BETWEEN ICL AND IWL

To assess a trained model’s preference for ICL versus IWL solutions, we employ a targeted evalua-
tion protocol inspired by prior work (Chan et al., 2022). This evaluation is performed periodically
during training. It uses novel evaluator tasks sampled from the same prior distributions as the train-
ing tasks but unseen during training. This allows us to contrast mappings learned in weights against
those learnable from context during evaluation.

Evaluator Task Generation: For sinusoid regression, an evaluator task is a specific function
fe(x) = Ae sin(x + ϕe) with (Ae, ϕe) newly sampled from their priors (Section 3.2). For Om-
niglot classification, an evaluator task is a complete binary mapping Me : C → {0, 1} where each
Me(c) is independently sampled from Bernoulli(0.5).

Prompting and Prediction: For each evaluator task (fe or Me) and a query input xq , we construct a
noiseless evaluation prompt Pe = {(xj , yj)}Nj=1, with examples derived directly from fe or Me. For
Omniglot, one example in Pe matches cq . The model then predicts ŷq (sinusoid) or p̂q = P (yq =
1|Pe, xq) (Omniglot).

Target Definitions for Preference Assessment: At the moment of periodic evaluation, we define
two distinct targets for the model’s prediction:

• ICL Target (yq,ICL): The ground-truth for xq from the current evaluator task: fe(xq) or
Me(cq). This target is independent of the training environment’s state.

• IWL Target (yq,IWL): The ground-truth for xq from the current state of the training en-
vironment generator (i.e., ft(xq) or Mt(cq) at the time of evaluation). This reflects what
a model relying purely on an internalized representation of the latest training environment
state would predict.

Preference Quantification: We calculate the model’s prediction error relative to both targets (EICL
and EIWL) using mean squared error (sinusoid) or binary cross-entropy (Omniglot). A model prefers
ICL if EICL > EIWL. We quantify this preference using the score:

SICL =
EIWL

EICL + EIWL + ϵstab
(4)

where ϵstab (e.g., 1× 10−8) ensures numerical stability. SICL > 0.5 indicates IWL preference. This
metric captures strategy preference, not absolute task performance.

4 ANALYSIS AND RESULTS

Our experiments reveal that the learning strategies adopted by Transformers are systematically
shaped by the predictability of their training environment, in ways that parallel adaptive mecha-
nisms in evolutionary biology. We first examine how environmental stability and cue reliability
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dictate the asymptotic preference for ICL vs. IWL. We then explore the dynamic learning trajecto-
ries, or transience, of these strategies. Finally, we introduce and provide evidence for a relative-cost
hypothesis, which posits that the computational cost of acquiring ICL versus IWL solutions governs
these dynamic preferences and reconciles observed behaviors with biological principles.
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Figure 3: ICL preference score (SICL) as a function of environmental stability and cue reliability.
Higher S SICL (y-axis) indicates greater ICL reliance. Environmental stability (x-axis) increases
from left to right. Different lines represent varying levels of cue reliability. The dashed line at
SICL = 0.5 marks balanced preference between ICL and IWL. (Top) Sinusoid regression task: Envi-
ronmental stability is parameterized by the AR(1) autocorrelation αstability. Cue reliability increases
with decreasing prompt noise variance σ2

reliability (lighter lines denote higher reliability). (Bottom)
Omniglot binary classification task: Environmental stability is parameterized by the task mapping
autocorrelation (αstability = 2pstability − 1, plotted on a logit scale). Cue reliability increases with
prompt label correctness probability preliability (darker lines denote higher reliability).

4.1 ENVIRONMENTAL PREDICTABILITY GOVERNS ASYMPTOTIC LEARNING PREFERENCES

Figure 3 visualizes how dimensions of environmental predictability influence the asymptotic prefer-
ence between ICL and IWL, supporting our core hypothesis.

In the sinusoid regression task (Figure 3, Top), increasing environmental stability (higher αstability)
consistently leads to a marked reduction in ICL preference (SICL), with scores declining sharply as
αstability approaches 1. This mirrors evolutionary principles where stable environments favor fixed,
genetically encoded traits over costly phenotypic plasticity (Stearns, 1989; DeWitt et al., 1998). Fur-
thermore, higher cue reliability (lower σ2

reliability, lighter lines) generally fosters greater ICL prefer-
ence, especially at low-to-moderate environmental stability. This is analogous to biological systems
where reliable cues are crucial for adaptive plasticity in variable environments (Stephens, 1989;
Scheiner, 1993). However, cue reliability’s impact diminishes under very high environmental sta-
bility (αstability ≈ 1), where IWL becomes dominant regardless of prompt clarity, consistent with the
biological view that if an environment seldom changes, plasticity (and cue sensitivity) offers little
benefit.

The Omniglot binary classification task (Figure 3, Bottom) shows a generally sharper response but
reflects similar principles. Across a broad range of environmental stability (up to αstability ≈ 0.95),
cue reliability (higher preliability, lighter lines) primarily governs ICL preference, underscoring the
tenet that reliable cues are essential for plasticity in non-static environments (Stephens, 1989). As
the environment approaches perfect stability (αstability = 1), ICL preference plummets, indicating
a robust shift towards IWL, aligning with evolutionary concepts like genetic assimilation or trait
fixation (Waddington, 1953; Pigliucci et al., 2006).
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Notably, in the Omniglot task with perfectly reliable cues (preliability = 1), models can maintain
strong ICL preference even in a perfectly stable environment. This contrasts with typical biological
assumptions that maintaining plasticity machinery incurs costs (DeWitt et al., 1998), suggesting that
when ICL and IWL strategies are equally effective at task performance, their relative computational
cost to acquire or implement might determine preference. This intuition is formalized as the relative-
cost hypothesis in Section 4.3.

Overall, these asymptotic results demonstrate that environmental predictability systematically
shapes Transformer learning strategies, extending prior work showing that factors like noise and
dynamic mappings affect ICL (Chan et al., 2022), and aligning broadly with predictions from evo-
lutionary biology.
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Figure 4: Contrasting learning dynamics of ICL preference (SICL) over training steps (t) for differ-
ent levels of cue reliability, at a fixed level of environmental stability. (Top) Omniglot classification
(perfect environmental stability, pstability = 1.0): Illustrates typical ICL transience, where high initial
SICL decays over training. Decay rates vary with cue reliability (preliability, different lines). (Bottom)
Sinusoid regression (environmental stability αstability = 0.8): Demonstrates IWL transience, where
SICL starts lower and gradually increases, especially with higher cue reliability (lower σ2

reliability,
lighter lines). The dashed line indicates SICL = 0.5.

4.2 LEARNING DYNAMICS: TASK-DEPENDENT TRANSIENCE BETWEEN ICL AND IWL

Beyond asymptotic states, learning trajectories reveal dynamic shifts in strategy preference – a phe-
nomenon known as transience (Singh et al., 2023; Anand et al., 2024; Singh et al., 2025). As shown
in Figure 4, this changing balance between ICL versus IWL is task-dependent, reminiscent of de-
velopmental or evolutionary shifts in organisms adapting to sustained environmental pressures.

Specifically, for the Omniglot task under high environmental stability (Figure 4, Top), we typically
observe “ICL transience” (Singh et al., 2023). The model exhibits strong preference for ICL early
in training but then gradually shift towards an IWL solution, as the model internalizes the stable
character-to-label mapping. This progression strongly parallels genetic assimilation, where an ini-
tially plastic response becomes genetically encoded under prolonged, stable selection (Waddington,
1953; Pigliucci et al., 2006).

In contrast, the sinusoid regression task (Figure 4, Bottom) can exhibit the opposite phenomenon of
“IWL transience” under high stability.Here, the model initially exhibits a lower preference for ICL,
or a preference that increases more slowly, with a notable increase often occurring later in training,
particularly with high cue reliability. This suggests an initial phase where a simpler global IWL
solution is more readily acquired, with the subsequent rise in ICL preference reflecting the slower
development of more complex ICL circuitry. This pattern is analogous to an organism first establish-
ing a basic viable trait before refining more sophisticated plastic capabilities, and it also relates to
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phenomena like “grokking,” where generalization emerges after initial memorization (Power et al.,
2022).

These contrasting transience patterns indicate that the particular learning paths depend on the spe-
cific computational challenges posed within a given task – a notion explored next.
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Figure 5: Reversal of transience in the Omniglot task by varying IWL difficulty (total character
set size |C|). Plots show ICL preference (SICL) across training steps (t) under high environmental
stability (αstability = 0.999) and high cue reliability (preliability = 0.95). Reducing |C| (e.g., to |C| =
100, lightest gray line) makes IWL easier, leading to an initial phase of lower SICL (IWL preference)
followed by a gradual rise, characteristic of IWL transience. The dashed line is SICL = 0.5.

4.3 THE RELATIVE-COST HYPOTHESIS

We propose a relative-cost hypothesis to explain both the persistence of ICL under perfect conditions
in Omniglot (Section 4.1) and the observed task-dependent transience patterns (Section 4.2). This
hypothesis posits that the choice between ICL and IWL, and the direction of any transience, is gov-
erned by the relative computational cost – in terms of ease of learning, representational complexity,
or inference efficiency – of implementing a solution via each mode for a specific task configuration.

For instance, our Omniglot involves a large character set (|C| = 1623), such that ICL (e.g., pattern
matching from prompt examples) might be computationally simpler to discover initially. In contrast,
IWL (memorizing the entire Mt : C → {0, 1} mapping) is a high-capacity memorization task,
becoming viable only with extended training if Mt is stable. Conversely, for sinusoid regression,
an IWL approach (learning a single global sinusoid, especially with moderate stability) could be
simpler to parameterize quickly. Developing sophisticated ICL for arbitrary few-shot regression
might represent a more complex circuit to learn, thus emerging later.

To directly test this, we manipulated IWL difficulty in the Omniglot task by varying the total char-
acter set size, |C|. As Figure 5 shows, significantly reducing |C| (e.g., to 100, lightest gray line),
thereby making IWL substantially easier, reverses the learning dynamics under high environmental
stability and cue reliability. SICL(t) starts low, indicating an initial preference for the easier IWL
strategy, and then gradually increases. This induced IWL transience–in a task that typically shows
ICL transience (Singh et al., 2023; 2025)–strongly supports our hypothesis: making IWL relatively
easier to acquire leads to its initial preference.

These results align with previous findings that increasing classifier class count can affect ICL tran-
sience (Singh et al., 2023), and with models relating strategy acquisition speed to transience (Nguyen
& Reddy, 2024; Singh et al., 2025). They also resonate with studies on “circuit efficiency” and reg-
ularization in grokking (Thilak et al., 2022; Nanda et al., 2023; Varma et al., 2023).

Together, these findings suggest that Transformers, like biological systems, navigate a trade-off.
Instead of metabolic or developmental costs, Transformers appear to balance computational costs
and learning efficiencies of different internal mechanisms. An easier strategy may be adopted first,
while a more complex but potentially more effective or general strategy develops over a longer
timescale, echoing how biological systems often evolve solutions favoring immediate viability while
allowing subsequent refinement. The framework of resource rational analysis (Lieder & Griffiths,
2020), introduced in cognitive science but inspired by earlier work in AI (Horvitz, 1987; Russell &
Subramanian, 1994), may provide a set of tools for formalizing this tradeoff in a way that can offer
further insight into the behavior of AI models.

8
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5 DISCUSSION

Our investigation, drawing analogies from evolutionary biology, has demonstrated that core prin-
ciples of environmental predictability systematically govern the balance and dynamics between in-
context learning (ICL) and in-weights learning (IWL) in Transformer models. We found that high
environmental stability strongly promotes IWL, mirroring the selection for genetically fixed traits
in stable biological environments, while high cue reliability enhances ICL efficacy, akin to pheno-
typic plasticity’s reliance on dependable environmental signals. Furthermore, our findings revealed
distinct, task-dependent transience patterns: models sometimes shift from ICL to IWL (resembling
genetic assimilation) or, conversely, from IWL to ICL (resembling the evolution of plasticity). We
proposed and provided evidence for a relative-cost hypothesis, suggesting these dynamics are driven
by the comparative ease of learning and implementing each strategy within a given model and task
context. These results affirm the utility of an evolutionary lens for understanding adaptive learning
in artificial neural networks.

5.1 LIMITATIONS AND FUTURE DIRECTIONS

While our controlled experiments are aimed at providing foundational insights, certain limitations
define the scope of the current work. We also describe exciting areas for future work.

Task Simplification: The sinusoid regression and Omniglot classification tasks are, by design,
simplifications of the complex, high-dimensional environments (e.g., natural language) where large
language models typically operate. Such controlled settings are, however, essential for isolating
variables and establishing clearer causal links between predictability and learning dynamics. They
provide a foundational understanding that can inform future investigations in more complex do-
mains.

Computational versus Mechanistic Analogy: This paper offers a computational-level analysis in
the tradition of Marr (Marr, 1982; Ku et al., 2025). We characterize the adaptive challenges a sys-
tem faces (coping with environmental predictability) and the functional solutions it employs (ICL as
flexible plasticity, IWL as assimilated knowledge). The analogy to evolutionary biology operates at
this functional level of adaptation to environmental statistics; we do not claim direct equivalence be-
tween the learning mechanisms in Transformers and the specific genetic or developmental pathways
in biology.

The Baldwin Effect and Learning Speed: A key argument for biological plasticity, beyond man-
aging uncertainty, is its potential to accelerate evolution on complex fitness landscapes (e.g., via the
Baldwin Effect). Plastic individuals can more effectively explore and identify advantageous pheno-
typic regions, which can then be refined and genetically assimilated (Hinton et al., 1987; Fernando
et al., 2018). An analogous question for Transformers is whether ICL not only provides flexibil-
ity but also speeds up the acquisition of robust IWL solutions for complex tasks, perhaps by IWL
reusing or refining circuits initially developed for ICL (Singh et al., 2025).

Exploring Diverse Predictability Regimes: Our use of noise for cue reliability and AR(1) pro-
cesses for environmental stability represents specific implementations of predictability. Future work
should explore other forms of environmental structure and change. This includes systematically
varying the nature of aleatory uncertainty beyond our current manipulations – for example, by intro-
ducing non-stationary predictability or more complex temporal structures (e.g., environments with
punctuated equilibria (Gould & Eldredge, 1977)).

5.2 CONCLUSION

This research underscores the significant value of drawing on established principles from evolution-
ary theory to illuminate complex learning behaviors in artificial systems. The insights gained not
only contribute to a more fundamental understanding of how Transformers adapt to their training en-
vironments but also pave the way for designing more effective training methodologies. Ultimately,
this line of inquiry can help guide the development of artificial systems capable of robustly and
flexibly navigating the diverse and dynamic environments they increasingly encounter.

9
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Ethics Statement: This research aims to provide a foundational understanding of the learning dy-
namics in Transformer models by drawing an analogy to evolutionary biology. Our experiments
were conducted exclusively on synthetic data and the publicly available Omniglot dataset, as de-
tailed in Section 3. We do not foresee any direct negative societal consequences stemming from this
work.

Reproducibility Statement: To ensure the reproducibility of our findings, we provide a detailed
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compute resources used. The complete code for data generation, model training, and analysis will
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A TECHNICAL APPENDICES AND SUPPLEMENTARY MATERIAL

A.1 EXPERIMENTAL DETAILS: PARAMETER SWEEPS AND REPLICATION

To investigate the effects of environmental predictability, we performed dense parameter sweeps for
the Sinusoid regression and Omniglot classification tasks. Unless otherwise specified, all results
reported in figures are the mean across 3 runs using different random seeds, and plotted error bars
represent ±1 standard error of the mean (SEM).

Sweep 1: Sinusoid Regression

The following grid of parameter values was used:

• αstability ∈ {0.0, 0.1, 0.3, 0.5, 0.7, 0.8, 0.9, 0.95, 0.99, 0.999, 1.0}
• σreliability ∈ {0.0, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.5, 0.75, 1.0, 1.5}

Sweep 2: Omniglot Classification

The following grid was used, where αstability is determined from pstability via αstability = 2pstability − 1,
as described in the main text.

• αstability ∈ {0., 0.1, 0.2, 0.4, 0.6, 0.8, 0.9, 0.95, 0.99, 0.999, 1.}
• preliability ∈ {0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 0.99, 1.}
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Sweep 3: Omniglot Relative-Cost Experiment

To test the relative-cost hypothesis (Figure 5), environmental stability and cue reliability were held
at high values (αstability = 0.999, preliability = 0.95), while varying the IWL difficulty via the character
set size:

• |C| ∈ {100, 200, 400, 600, 800, 1000, 1200, 1400, 1623}

These sweeps comprise (11 × 12) + (11 × 12) + 9 = 273 unique experimental configurations.
Including the 3 random seeds per configuration, this resulted in a total of 819 model training runs.

A.2 COMPUTE RESOURCES

All models were trained on single TPUv3 cores. Each of the 819 training runs took approximately
30 minutes to complete the 50,000 training steps (detailed in Section 3). The total compute usage
was approximately 410 TPU-hours.

B USE OF LARGE LANGUAGE MODELS

During the preparation of this manuscript, a large language model was used to assist with editing the
prose for clarity and to aid in literature discovery. This latter function was particularly valuable for
exploring the evolutionary biology literature that provides the conceptual framework for this study.
All scientific claims and the final content of the paper were written and verified by the authors.
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