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ABSTRACT

In recent decades, messaging apps (e.g., Facebook Messager, Whatsapp, Wechat,
Snapchat) have expanded exponentially, where a huge amount of private image
sharing takes place daily. However, within these apps, the possible unauthorised or
malicious image forwarding among users poses significant threats to personal im-
age privacy. In specific situations, we hope to send private and confidential images
(e.g., personal selfies) in an ‘only for you’ manner. Given limited existing stud-
ies on this topic, for the first time, we propose the Deep Neural Anti-Forwarding
Watermark (DeepRAFT) that enables media platforms to check and block any
unauthorised forwarding of protected images through injecting non-fragile and
invisible watermarks. To this end, we jointly train a DeepRAFT encoder and scan-
ner, where the encoder embeds a confidentiality stamp into images as watermarks,
and the scanner learns to detect them. To ensure that the technique is robust and
resistant to tampering, we involve a series of stochastic concatenated data augmen-
tations and randomized smoothing (a scalable and certified defense) towards both
common image corruptions (e.g., rotation, cropping, color jitters, defocus blur,
perspective warping, pixel noise, JPEG compression) and adversarial attacks (i.e.,
under both black and white box settings). Experiments on Mirflickr and MetFaces
datasets demonstrate that DeepRAFT can efficiently and robustly imbue and de-
tect the anti-forwarding watermark in images. Moreover, the trained DeepRAFT
encoder and scanner can be easily transferred in a zero-shot manner even with a
significant domain shift. We release our code and models to inspire studies in this
anti-forwarding area at link.available.upon.acceptance.

1 INTRODUCTION

Over the past decades, online messaging apps, such as Facebook Messager, Whatsapp, Wechat,
Snapchat, have been becoming essential tools for people’s work and life. Billions of people use
these platforms daily to send images to other users for the purpose of sharing life and business
cooperation.

In some cases, a lot of shared images (e.g., private self-portrait and photos of non-discloseable busi-
ness documents) are confidential. From the perspective of users, these private/confidential images
are expected to be anti-forwarded to unauthorised receivers with the goal of privacy protection. For
instance, a couple or close friends share private photos among themselves but do not intent for the
media to be propagated outside the group. Currently, such privacy protections are mainly achieved
by none-technological tools, such as business law Mantelero (2017) and personal trust Saeri et al.
(2014). Existing data-privacy related studies Beigi & Liu (2020); Jiang et al. (2021) mainly aim to
avoid the sensitive/private information leaking or abuse in the usage or publication of data, which
can be deemed as the data privacy conflict between the data provider and the platform who utilize
these data to train machine learning models. In contrast, our work mainly focuses on the privacy
protection for data transmissions among different users on a media platform.

To prohibit unauthorized image transmissions among users, for the first time, we propose the Deep
Neural Anti-Forwarding Watermark (DeepRAFT) as shown in Figure 1. Specifically, when a user
intends to share an image to others on a media platform, he/she can choose whether turning on or
off DeepRAFT. If DeepRAFT is turned on as shown by the green pipeline, the DeepRAFT encoder
will add imperceptible watermarks on the protected images, accordingly any unexpected further
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Figure 1: Pipelines of deep neural privacy-preserving watermark framework. Sample image is from
MirFlickr dataset Huiskes et al. (2010).

transmissions to unauthorised receivers will be stopped by the DeepRAFT scanner. In contrast, if
DeepRAFT is tuned off (i.e., the red pipeline), images will be directly sent to the receiver and they
can be forwarded by the receiver to other parties. Although plenty of studies have worked on image
watermarking Zhu et al. (2018); Tancik et al. (2020), none of them is for anti-forwarding purpose.

With the goal of anti-forwarding, we design an end-to-end structure of DeepRAFT as shown in
Figure 2. Specifically, the encoder is structured to embed imperceptible/subtle watermarks into
protected images, where the imperceptibility is regularized by a residual regularization loss and
LPIPS perceptual loss Zhang et al. (2018). Meanwhile, the DeepRAFT scanner is designed as a
binary classifier that learns to distinguish watermarked and non-watermarked images. More im-
portantly, to make DeepRAFT robust and resilient towards possible image editing/corruptions (e.g.,
rotation, cropping, color jitters, defocus blur, perspective warping, pixel noise, JPEG compression),
we involve a stochastic concatenation based data augmentation during training. Besides, the corrup-
tions/edit may come from the malicious party trying to circumvent DeepRAFT to propagate private
media. This inspires us going step further to improve the adversarial robustness of the scanner
through randomized smoothing due to its scalability. We validate our adversarial robustness on five
white- and black-box attacks, including auto-attack Croce & Hein (2020), Auto-PGD Croce & Hein
(2020), square-attack Andriushchenko et al. (2020), PGD and FGSM.

The main contributions of this paper can be summarized as follows.

• To the best of knowledge, this is the first study that investigates the anti-forwarding problem to
protect personal data privacy when sharing images on media platforms. This opens up a plethora
of novel research questions for data privacy that have not yet been studied in machine learning.

• We propose DeepRAFT, an end-to-end training framework with 1) an encoder that adds imper-
ceptible watermark on protected images, and 2) a scanner that learns to detect the watermark.
Moreover, we jointly train the encoder and the scanner with introducing a stochastic concatena-
tion of the data augmentations that mimics both electronic and physical image corruptions in the
real-world. Moreover, we take a step further to preemptively take care of the robustness towards
malicious adversarial attacks by training a randomly smoothed detector.

• Extensive experiments on Mirflickr and MetFaces datasets showcase that DeepRAFT can not
only accurately detect whether an image should be anti-forwarded, but also be substantially robust
towards common image corruptions and black- & white-box adversarial attacks. Moreover, we
surprisingly find that our trained DeepRAFT encoder and scanner can be transferred in a zero-shot
manner where significant domain shift exists.

2 RELATED WORK

The closely related studies to this paper are about hiding data in an image, which includes image
watermarking, steganography and adversarial attacks. Moreover, given our aim is to protect the
users’ data privacy on a media platform, we also show the difference between this work and previous
studies about data privacy.

Image Watermarking. Research along adding watermarks on images has a long history. Earlier
works Braudaway (1997) mainly focus on improving the robustness towards possible image manipu-
lations (e.g., JPEG compression) and human imperceptibility. Further studies thereafter explore how
to improve the invisibility of embedded watermark through log-polar frequency domain. There are
also efforts Nakamura et al. (2006); Pramila et al. (2012) on improving the effectiveness of added
watermarks in the wild, such as using on mobile apps. In addition, to better alleviate the impact
from re-photography (i.e., with perspective warping), there are studies that specifically investigate
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the printer-camera Pramila et al. (2018) and display-camera Fang et al. (2018); Wengrowski et al.
(2016) transformation. However, most of previous approaches in watermarking are mainly based on
hand designed pipeline.

Although there are approaches Tancik et al. (2020); Zhu et al. (2018); Sharma et al. (2019); Wang
et al. (2021) in recent years that learn how to insert watermarks automatically in an end-to-end man-
ner, they mainly focus on information transmission instread of anti-forwarding. For instance, Zhu
et al. (2018) proposed to hide specific messages in images, from which the model learns how to re-
construct the original message. Tancik et al. (2020) proposed to hide arbitrary hyperlink bit-strings
into images, thereby the model can recognise this hyperlink with the goal of information transforma-
tion. Wang et al. (2021) investigated how to generate fake watermarked images for circumvention,
which is still different from our anti-forwarding goal. These approaches can be converted to do
anti-forwarding, but they are not designed explicitly to do so, thus making our encoder design more
efficient as shown in Section 3.2. There are also studies in steganography that hide data in images
using encoder-decoder based deep learning models Baluja (2017); Hayes & Danezis (2017); Tang
et al. (2017); Wengrowski & Dana (2019). Many of them assume perfect digital image transmission,
thus the possible image perturbation (e.g., random noise) and editing (e.g., rotation, cropping, color
jitters) may cause the well trained model less efficient.

Compared with previous studies, our work investigates more comprehensive types of image corrup-
tions/perturbation as shown in Section 3.4. Specifically, StegaStamp Tancik et al. (2020) did not
consider image rotation and cropping. HiDDeN Zhu et al. (2018) examines most of our corruptions
yet without color jitters and physical perspective change. It is more noteworthy that none of previ-
ous studies considers the case of adversarial attacks by malicious actors. In contrast, we carefully
investigate the adversarial robustness of DeepRAFT as shown in Section 3.5. Lastly, compared to
many image watermarking studies for embedding random messages Tancik et al. (2020); Zhu et al.
(2018) into images during encoder training, our anti-forwarding encoder structure does involve such
randomness; this makes our pipeline relatively easier to train.

Adversarial Attack. In computer vision, adversarial attack Szegedy et al. (2014) aims to find out
particular pixel perturbations that mostly degrade the performance of well trained models within
restricted neighborhoods of original images. For instance, the projected gradient descent (PGD)
Madry et al. (2018b) attack starts from a random perturbation and iteratively updates it to minimise
the accuracy of the original model. Although our approach is also adding pixel perturbations on
images, we take a different and positive view, i.e., we aim to protect the user privacy instead of
discovering the vulnerability.

Besides that, we also maintain the robustness of DeepRAFT against adversarial attacks. Namely,
assuming our DeepRAFT has been deployed, the attacker may generate adversarial examples that es-
cape from the DeepRAFT scanner, thereby forwarding the anti-forwarded images. There are plenty
of methods for improving adversarial robustness, such as adversarial training Shafahi et al. (2019),
interval bound propagation Mirman et al. (2018); Zhang et al. (2019) and randomized smoothing
Cohen et al. (2019). In this paper we utilize randomized smoothing due to its scalibility towards
high dimensional dataset, e.g., Mirflickr with 400× 400 dimension.

Data Privacy. There have been many studies on protecting data privacy Beigi & Liu (2020); Jiang
et al. (2021) in machine learning. However, most of them focus on the problem of possible exposes
of user information when a dataset is used for model training Liu et al. (2021). Namely, such data
privacy aims to solve the issue that malicious parties may use deployed deep models to retrieve
desired sensitive information. For instance, Zhang et al. (2021) proposed to proactively transfer
original data into adversarial data with quasi-imperceptible perturbations before releasing them.
There are also plenty of studies on differential privacy Dwork et al. (2014); Abadi et al. (2016) of
deep learning model, which aims to publicly share a dataset while preserving information about
individuals in the dataset. In summary, previous privacy protection approaches aim at a different
scope compared with our case, since our focus is on the privacy protection among users when sharing
images on media platforms. Although there are approaches (e.g., iPrivacy Yu et al. (2016)) that try
to identify sensitive information when users sharing images, they are based on a fixed and predefined
rule for identifying sensitivity and determining whether to allow forwarding thereafter. However, our
approach can choose arbitrary images to be anti-forwarded, thus being more general and flexible.
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Figure 2: General training framework of DeepRAFT.

3 DEEP NEURAL ANTI-FORWARDING WATERMARK (DEEPRAFT)

First, we formally define the anti-forwarding problem, since it has rarely studied in literature.
Thereby, we design an encoder-scanner framework for DeepRAFT that enables adding impercepti-
ble watermark (on arbitrarily selected images) and being detected by the scanner in an end-to-end
manner. During training, we involve a stochastic concatenation of a series of differentiable image
corruptions in order to mimic both digital image editing and real-world transmissions, e.g., color
jitters, cropping, defocus blur, random noise, rotation, perspective warping that simulates physical
displaying-imaging pipeline, and JPEG compression. Besides common image corruptions, we go
step further to consider the robustness towards adversarial attacks via adversarial training Madry
et al. (2018a) and randomized smoothing Cohen et al. (2019).

3.1 ANTI-FORWARDING PROBLEM SETTING

The training framework of DeepRAFT is shown in Figure 2. In general, the goal of anti-forwarding
is to distinguish non-watermarked images and watermarked images (i.e., generated by DeepRAFT
encoder) without degrading/distorting the image. A more specific problem setting is defined as
follows.

Definition 1 (Anti-Forwarding) Given an image x ∈ X , the DeepRAFT encoder E : X −→ X ′

generates a watermarked image x+ δx, δx ≤ α, where α is the threshold for visibility. Thereby, the
DeepRAFT scanner S : X −→ Y learns to distinguish x and x+ δx, where Y is a binary space. This
therefore enables x+ δx to be anti-forwarded but x not.

To this end, E and S are optimized jointly to minimize the loss function L(E,S):

L(E,S) = Ex∼X

 LP (x,E(x))︸ ︷︷ ︸
Watermark Imperceptibility

+ LA(S(x),S(E(x))︸ ︷︷ ︸
Anti-Forwarding Accuracy

 ,E(x) = x+ δx, (1)

where LP (·) is the imperceptibility loss that minimizes the visibility of the added watermark δx.
LA(·) is the anti-forwarding accuracy loss that enables the scanner S to distinguish x and x + δx.
Note that the encoder does not involve a random vector for generating watermark δx as what previous
approaches have done. This makes our pipeline relatively much easier to train. More details of the
training loss and model structure are shown as follows.

3.2 MODEL STRUCTURE AND LOSS DESIGN

Encoder Model. The encoder E is a U-Net Ronneberger et al. (2015) based model that generates
a watermark δx solely based on the original image x (e.g., with dimension 3 × 400 × 400). The
output (i.e., watermarked image x + δx) from E is a 3 × 400 × 400 tensor as well. Accordingly,
the visibility of δx can be controlled by simultaneously regularizing δx from different perspectives
(e.g., RGB space, YUV space and deep feature space) as shown below.

Watermark Imperceptibility Loss. The watermark imperceptibility loss LP (·) aims to enforce
minimal perceptual corruptions from δx. To this end, we introduce two loss functions, viz., 1) the
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residual regularization loss Lrr(·) that generally minimizes the magnitude of δx; 2) the perceptual
similarity loss Lps(·) in deep feature space that computes the average learned perceptual image
patch similarity (LPIPS) distance Zhang et al. (2018) between x and x+ δx. Specifically, Lrr(·) is
calculated as the sum of l1 distance in RGB space and l2 distance in YUV space Levin et al. (2004),
where the transformation Tyuv separates the color (Y channel) and brightness (U and V channels)
of a source image. In addition, the LPIPS distance is calculated by a weighted Euclidean distance
between deep features of images, where features are obtained from ImageNet-pretrained AlexNet
Krizhevsky et al. (2012) and the weights are fit to align with human perceptual similarity judgments.
In sum, LP (·) is formulated as:

LP (x,E(x)) = Lrr(x,E(x)) + Lps(x,E(x)),

Lrr(x,E(x)) = ∥E(x)− x∥1 + ∥Tyuv(E(x))− Tyuv(x)∥2
(2)

Details of calculating Lps(x,E(x) follow the implementation 1 in Zhang et al. (2018).

Scanner Model. The scanner S is a network trained to distinguish the original image x and water-
marked image x+δx = E(x). To consider both digital and physical image corruptions (as shown in
Section 3.4) that may appear, a stochastic concatenation of different differentiable image transforma-
tions are introduced. After that, the transformed images are fed into the scanner network (i.e., a set
of convolution and fully connected layers) that outputs a sigmoid activated value y = S(x), y ∈ Y .

Anti-Forwarding Accuracy Loss. The anti-forwarding accuracy loss LA(·) utilizes binary cross
entropy I(·), viz.,

LA(S(x),S(E(x))) = I(S(x), ynw) + I(S(E(x)), yw), (3)

where ynw and yw are labels for non-watermarked and watermarked images, respectively. The above
definition and settings could enable the basic anti-forwarding ability (i.e., watermark being invisible
and distinguishable) of DeepRAFT. However, in real-world scenarios, there may exist digital im-
age editing (e.g., rotation, cropping, color jitters) or natural image corruptions (e.g., random noise,
perspective change when taking a photo), which would degrade the performance of DeepRAFT.
Moreover, the uses or malicious party of a media platform may apply transformations/perturbations
to remove embedded yet unknown watermarks. To understand and mitigate their impact, we inves-
tigate such robustness as follows.

3.3 THREAT MODEL

To comprehensively take care of the robustness of DRAFT, we consider that the threat comes from
two aspects, i.e., common image corruptions and adversarial attacks. To this end, following most
deployed machine learning model’s settings, we assume that the media platform keeps the water-
mark encoder as secrete, i.e., the users can query the encoder API yet without accessibility of its
internal model. Moreover, the platform can introduce random keys and abnormal query checking to
avoid possible malicious encoder model theft.

Under such setting, the threat of watermarking removal mainly comes from the scanner perspective.
To improve the robustness on common image corruptions/editing, we utilize a stochastic concatena-
tion based image augmentation (i.e., illustrated in Section 3.4). To increase the adversarial robust-
ness, we involve randomized smoothing (as shown in Section 3.5) to train a smoothed scanner. Such
robustness operations together with other model settings are kept unknown for external parties.

3.4 ROBUSTNESS TOWARDS COMMON IMAGE CORRUPTIONS/EDITING

To investigate the robustness of DeepRAFT, we consider 7 common image corruptions (i.e., color
jitters (CLJ), cropping (CRP), defocus blur (DFB), random noise (RDN), rotation (RTT), perspective
warping (PSW), JPEG compression (JPEG)) and the concatenation of all image corruptions (CCA).
Compared to previous studies Zhu et al. (2018); Tancik et al. (2020), our investigated image corrup-
tions are more comprehensive to reflect the real world scenario as analyzed in Section 2. Examples
of all image corruptions are shown in Figure 6. Specifically, the rotation layer rotates the image
by angle. The cropping layer crops a random portion of image and resizes it to the original size.
The color jitters layer randomly changes the brightness, contrast, saturation and hue of an image.

1https://github.com/richzhang/PerceptualSimilarity
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The perspective warp layer performs a random perspective transformation of the given image with a
given probability, which aims to mimic the displaying-and-imaging scenario that people take a photo
of a displayed anti-forwarded image. The defocus blur layer reflects the inaccurate autofocus when
displaying-and-imaging happens. The random noise layer adds a random Gaussian noise (with stan-
dard deviation σ) on a source image. The JPEG compression simulates the change of digital image
storing format that introduces numerical corruptions, which is commonly used to reduce the amount
of data that needs to record an image. Specifically, JPEG compresses an image by calculating the
discrete cosine transform of each 8×8 block in the image and quantizing the obtained coefficients as
their nearest integers. Implementation of JPEG compression follows from DiffJPEG Mirman et al.
(2018). Other corruptions are mounted on transforms in Torchvision Marcel & Rodriguez (2010).

Note that a plain training cannot generalize to these image corruptions. To improve such gener-
alization towards different corruptions, we introduce a stochastic contention process Tc(x, p) that
sequentially manipulates an image x using each corruption with a probability p. Such stochastic
concatenation of different corruptions is motivated by the fact that training is possibly biased to-
wards a specific corruption. Since we found that the plain training could naturally resist the pertur-
bation from random Gaussian noise, we only utilize the other 6 image corruptions shown in Figure
6 besides random noise in the training stage. Therefore, the corresponding anti-forwarding accuracy
loss LDA

A (·) with data augmented training becomes

LDA
A (S(x),S(E(x))) = LA(S(x),S(E(x))) + I(S(Tc(x, p)), ynw) + I(S(Tc(E(x), p)), yw). (4)

3.5 SMOOTHED SCANNER TO RESIST ADVERSARIAL ATTACKS

Besides the common image corruptions mentioned above, we also consider the impact from adver-
sarial attack. To improve the adversarial robustness of scanner, we utilize randomized smoothing due
to its scalibility toward high dimensional dataset. Specifically, the scheme of training a smoothed
scanner S̃(x) is: first, we train the scanner S(x) with Gaussian data augmentation on input image x

at variance σ2; then we utilize S(x) to create a new, “smoothe” scanner S̃(x); finally S̃(x) returns
the prediction which S(x) is most likely to return when x is corrupted by isotropic Gaussian noise
with variance σ2. In sum, the smoothed scanner can be formulated as

Ex∈X S̃(x) = Ex∈X [S(x+ ϵ)] , ϵ ∈ N (0, σ2I). (5)

Alternatively stated of Eq. (5), the smoothed scanner S̃(x) classifies whether x is a watermarked
image under the sampling of S(x + ϵ). Accordingly, an adversarial attack x + δx towards S(·) is
less harmful for S̃(·), because S̃(·) does not only focus on x + δx itself, but also on its weighted
neighborhood. This enables S̃(·) to eliminate/alleviate the impact from adversarial perturbations.

3.6 THE TRAINING SCHEME OF DEEPRAFT

In sum, the training loss for DeepRAFT is shown as

L(E,S) = Ex∼X{λp

(
∥E(x)− x∥1 + ∥Tyuv(E(x))− Tyuv(x)∥22

)
+ Lps(x,E(x))

+ λa [I(S(x+ ϵ), ynw) + I(S(E(x+ ϵ)), yw)]

+ λaug [I(S(Tc(x, p)), ynw) + I(S(Tc(E(x)), p), yw)]},
(6)

where λp and λps are weights for two watermark imperceptibility losses in Eq. (2); λa and λaug are
weights for accuracy loss and corruption based augmented accuracy loss, respectively in Eq. (4).
In summary, for the training loss in Eq. (6), there are several settings as shown below that we find
useful for faster convergence. (1) The training is more sensitive to image variation of azimuth, i.e.,
rotation and perspective warping. For successful training, the strength of such data augmentation
should be increased gradually. (2) JPEG compression is naturally non-differentiable. We involve an
approximate yet differentiable JPEG compression Shin & Song (2017) during training. (3) We find
that using L1 distance loss term in Lrr(x,E(x)) is important for perceptual similarity.

4 EXPERIMENTS

4.1 Experiment Settings. We evaluate the effectiveness of DeepRAFT on two commonly used
benchmark datasets, MirFlickr Huiskes & Lew (2008) and MetFaces Karras et al. (2020). We start
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Table 2: Objective evaluations (PSNR, SSIM and LPIPS) on watermark invisibility. ↑ and ↓ indicate
a larger and smaller value is preferred, respectively. Baseline results are from Tancik et al. (2020).

PSNR ↑ SSIM ↑ LPIPS ↓
Baluja Baluja (2017) 24.61 0.926 0.256
Hidden[native] Zhu et al. (2018) 31.07 0.940 0.070
Hidden Zhu et al. (2018) 24.55 0.775 0.202
LFM Wengrowski & Dana (2019) 20.89 0.910 0.315
StegaStamp Tancik et al. (2020) 27.25 0.927 0.194

DeepRAFT [Plain] 40.7188 ± 0.9228 0.9968 ± 0.0003 0.0006 ± 0.0001
DeepRAFT [Plain+DA+RS] 32.8442 ± 0.3287 0.9758 ± 0.0019 0.0096 ± 0.0008

with the training and evaluation on MirFlickr dataset, where the evaluation has considered 7 common
image corruptions (i.e., rotation, cropping, color jitters, perspective warp, random noise, defocus
blur and JPEG compression) and their concatenation. Moreover, we also evaluate the robustness
of the well trained DeepRAFT scanner towards adversarial attacks, where both multiple black-box
and white-box attacks are involved. More importantly, we evaluate the transfer-ability by directly
applying the DeepRAFT encoder and scanner trained on MirFlickr to METAFACES dataset (i.e.,
sampled with resolution 400 × 400) in a zero-shot manner. We train our model on NVIDIA-A100
GPU with batchsize 64 and training step 2 × 105. The weights (i.e., λp, λps, λa and λaug) in Eq.
6 are intially set to be 1 and we found they work well as shown below. The weight λaug is linearly
increased from 0 to 1, starting at step 5e3 and ending at 5e4. We set up learning rate, dataset split, and
optimizer related settings, according to protocols in StegaStamp Tancik et al. (2020). In evaluating
the invisibility of added watermark, we provide both objective evaluations and demo showcases,
where the objective evaluation metrics are based on peak signal-to-noise ratio (PSNR), structural
similarity index metric (SSIM) and LPIPS distance (i.e., as shown in Eq. 2).

Table 1: Image watermark detection accuracy.

Method Accuracy ↑
Baluja Baluja (2017) 51%
Hidden Zhu et al. (2018) 65%
LFM Wengrowski & Dana (2019) 93%
StegaStamp Tancik et al. (2020) 99%

DeepRAFT [Plain] 100%
DeepRAFT [Plain+DA] 100%
DeepRAFT [Plain+DA+RS] 99.98%

4.2 Anti-Forwarding Detection Accu-
racy. First, we evaluate the accuracy of
DeepRAFT on original images from Mir-
Flickr dataset across 2560 images. Note
that existing works Baluja (2017); Zhu et al.
(2018); Wengrowski & Dana (2019); Tan-
cik et al. (2020) on image watermarking
are mainly for message hiding. For the
anti-forwarding purpose, the message re-
construction accuracy can be converted to
represent as the accuracy of binary anti-
forwarding classification accuracy, because a 100% message reconstruction can represent a suc-
cessful anti-forwarding detection. The results of baselines are implemented by Tancik et al. (2020).

The results and comparisons are shown in Table 1, where abbreviations are explained as: DA (with
data augmention), RS (with randomized smoothing). From results, we achieve 100% accuracy on
plain training and 99.98% plain training with DA and RS, which suggests an outstanding perfor-
mance of anti-forwarding detection on clean images. Our results are better than all the evaluated
baselines, expecially for Baluja (2017) and Zhu et al. (2018). Moreover, comparisons among our
methods indicate that introducing data augmentation and randomized smoothing has limited impact
on the accuracy on clean data. Besides that, our approach also outperforms existing work from the
watermark imperceptibility perspective, which is illustrated as follows.

4.3 Watermark Invisibility Evaluations.

To evaluate and compare the invisibility of added watermark, we use three metrics, viz., PSNR,
SSIM and LPIPS distance. The results and comparisons are shown in Table 2, where our approach
consistently outperforms previous baselines. Especially on LPIPS distance, our results are signifi-
cantly smaller than that from previous baselines. However, compared with the invisibility of plain
training (i.e., 40.7188 of PSNR, 0.9968 of SSIM and 0.0006 of LPIPS), adding randomized smooth-
ing and data augmentation did slightly degrade the invisibility, but the corresponding scores (i.e.,
32.8442 of PSNR, 0.9758 of SSIM and 0.0096 of LPIPS) still outperform previous approaches.

This would be contributed by three reasons. 1) We use a random message free design of the encoder
structure, which makes the training with less randomness, thus being easier to converge. 2) The ob-
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Table 3: Robustness towards APGD, square attack and auto-attack. Values represent accuracy per-
centage from 0 to 100.

Auto-PGD (White-box) Square-Attack (Black-box) Auto-Attack (Adaptive)
Strength ϵ 2

255
4

255
8

255
16
255

32
255

2
255

4
255

8
255

16
255

32
255

2
255

4
255

8
255

16
255

32
255

Plain 0 0 0 0 0 84.38 15.66 0 0 0 0 0 0 0 0
RS(σ=0.25) 86.80 58.46 20.44 0.40 0 99.22 99.22 92.23 90.70 68.16 86.80 58.55 22.61 21.48 17.77
RS(σ=0.5) 97.04 91.76 71.22 50.03 6.60 100 100 99.98 99.26 91.12 97.04 91.76 72.54 50.25 5.43
RS(σ=0.75) 94.66 91.67 79.97 50.26 49.90 100 100 98.48 99.23 96.18 94.66 91.57 80.00 50.28 50.00
DA+RS
(σ=0.25) 93.96 33.85 8.17 5.27 5.27 99.69 98.98 95.12 84.78 62.98 94.89 84.10 72.40 76.45 63.63

jective of scanner (i.e., binary classification) is much simpler than previous message reconstruction,
which simplifies the training pipeline as well. 3) The LPIPS distance explicitly appears as a loss
function, hence the performance is improved more significantly than the other two metrics. 4) The
training based on DA and RS makes the training more difficult, thus sacrificing some watermark
invisibility to balance the accuracy loss.

Clean Watermark Watermarked
Figure 3: Demo of watermark invisibility.

We also compare the difference between orig-
inal images and their corresponding water-
marked image through demo showcases. One
demo is shown in Figure 3, but more can be
seen in Appendix. From the figure, very limited
difference can be observed. Moreover, the add
watermarks can reflect the semantics contained
in the corresponding original images. This sug-
gests that DeepRAFT learns how to smartly
hide the watermark according to the semantic representation. To further verify the robustness of
DeepRAFT, we evaluate the performance on different image corruptions and adversarial attacks as
follows.

4.4 Robustness Towards Adversarial Attack. We investigate the robustness of DeepRAFT toward
five adversarial attacks (i.e., auto-PGD Croce & Hein (2020), square attack Andriushchenko et al.
(2020), auto-attack Croce & Hein (2020), PGD, FGSM) and random Gaussian noise. All attacks are
based on Linf setting with ϵ ∈ {2/255, 4/255, 8/255, 16/255, 32/255}. We compare the model
by plain training with that trained by randomized smoothing. In randomized smoothing, we use
standard deviation σ ∈ {0.25, 0.5, 0.75}2.

The results and comparisons are shown in Table 3 and 5 (see appendix). In general, the model using
plain training setting is quite vulnerable to adversarial attacks, viz., the accuracy degrades to 0 on
most cases. In contrast, with utilizing randomized smoothing, the robustness of DeepRAFT has
been significantly improved. Specifically, we also have several interesting findings. 1) The results
with randomized smoothing on square attack show some robustness, viz., 84.38% and 15.66% on
ϵ = 2

255 and ϵ = 4
255 , respectively. However, when ϵ keeps increasing, the accuracy decreases to 0 as

well. This is different from other two attacks, where the accuracies under auto-PGD and auto-attack
are always 0. This indicates that the black box attack in this scenario is weaker than the gradient
based PGD attack and adaptive auto-attack. 2) The watermark detection accuracy on each attack
consistently decreases with the increase of ϵ. This aligns with the fact that stronger attack deliveries
stronger performance degradation. 3) Auto-attack is the ensemble of auto-PGD and square attacks,
thus the performance mostly follows the worse one of the two. 4) Auto-PGD attack is worse than
canonical PGD attack when comparing Table 3 and Table 5. This is mainly caused by the difference
of steps, where auto-PGD utilizes an adaptive step size (i.e., calculated by ceil(log2(400)) = 9),
while PGD uses a step size 40. 5) Both the plain trained and randomized smoothing trained model
are robust to random Gaussian noise, which suggests the very limited threat posed by random pixel
perturbations to the security of DeepRAFT.

4.5 Robustness Towards Common Image Corruptions. The robustness towards common image
corruptions (i.e., rotation, cropping, color jitters, perspective warp, random noise, defocus blur and
JPEG compression) are evaluated on each corruption independently and their concatenation as a
whole. The results are shown in the first two rows in Table 4. Specifically, the color jitter randomly

2Models will be provided in code release. We find that the training does not converge using σ = 1.
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Table 4: Evaluation on common image corruptions/editing and zero-short transfer.
Clean CLJ DFB CRP RTT PSW JPEG CCA

MirFlickr [Plain] 100% 48.98% 49.90% 52.23% 50.24% 48.78% 53.08% 47.68%
MirFlickr [Plain+DA] 99.98% 99.94% 99.98% 99.96% 99.44% 98.96% 99.76% 97.80%

MirFlickr [Plain+DA+RS] 99.83% 99.46% 99.81% 88.68% 98.62% 99.73% 99.83% 89.11%

MetFaces Transfer
Plain + DA 99.95% 99.91% 100% 100% 99.71% 100% 99.87% 97.37%

changes the brightness, contrast, saturation and hue in the scale from 0 to 0.4; the defocus blur
utilizes a Gaussian kernel with size (3, 7) and sigma 1, 3; the cropping randomly selects a portion
(scaled from 0.5 to 1) and upsampled to the original dimension 400 × 400; the rotation degree is
randomly sampled from [−45, 45]; the perspective warping distorted an image with a random distor-
tion scale sampled from [0, 0.4]; the JPEG compression follows the implementation from DiffJPEG
Mirman et al. (2018) with quality uniformly sampled from 50, 100. The random dropout of each
image corruption during training is 25%.

In general from Table 4, although different image corruptions are added, all detection accuracies are
larger than 98%. This suggests that DeepRAFT scanner can still robustly detect whether a corrupted
image contains watermark that is added by DeepRAFT encoder. In particular, compared to other im-
age corruptions, DeepRAFT is more sensitive toward rotation with accuracy 99.43% and perspective
warping with accuracy 98.96%. When all image corruptions are concatenated together, the accuracy
drops to 97.80%, which are reasonable due to their impact accumulation. Same phenomenon is also
observed when DA and RS are both involved.

4.5 Zero-Shot Transfer. We investigate the transferablity of DeepRAFT by directly applying mod-
els trained on MirFlickr dataset to MetFaces dataset in a zero-short manner. The example images
from MetFaces dataset are shown in Figure 4(b) in Appendix. Since the MetFaces dataset is col-
lected from art paintings, which has a clear distribution shift with MirFlickr dataset in Figure 4(a).
There are totally 1336 images (preprocessed to dimension 400 × 400) in MetFaces. We compare
the clean accuracy and accuracies under image corruptions in Table 4. Although the directly trans-
ferred DeepRAFT model is not trained on MetFaces dataset, it still achieves a remarkable detection
accuracy even with different image corruptions. This suggests that DeepRAFT can be successfully
transferred to unseen image data; thus being flexible for future deployment in the real platform.
Meanwhile, the robustness towards common image corruptions is transferred successfully as well.
For instance, under the corruptions of DFB, CRP and PSW, the transferred accuracy achieves 100%.

4.7 Discussions and Limitations. Although our DeepRAFT framework works efficiently with a
high accuracy, there are still challenges for broad deployment in the wild. 1) The current anti-
forwarding scheme works with an assumption that different media platforms share the same Deep-
RAFT system, which will largely depend on the collaboration from different companies. The good
news is that different countries and regions have been proposing data privacy and security related
disciplines Hagendorff (2020), which makes it promising that different companies could follow a
same trustworthy privacy protection system. 2) The robustness is regularized based on several yet
still limited image corruptions in simulation. For real deployment, further explorations towards its
vulnerability are needed, including more types of corruptions and real-world testing. 3) The training
is quite struggling when random azimuth variations (e.g., cropping and perspective transform) is
introduced, which need future work on make the training on such data augmentation more stable.

5 CONCLUSION

We have presented the DeepRAFT framework that is trained in an end-to-end manner to enable
media platforms to check and block any unauthorised forwarding through injecting non-fragile and
invisible watermarks. The DeepRAFT encoder and scanner are jointly trained, where the encoder
embeds a confidentiality stamp into images as watermarks, and the scanner learns to detect them
even with a stochastic concatenation of data augmentations (i.e., rotation, cropping, color jitters,
defocus blur, perspective warping, pixel noise, JPEG compression). Moreover, we improve the ad-
versarial robustness of DeepRAFT by involving randomized smoothing. Experiments on MirFlickr
and Metfaces datasets indicate that our model can not only efficiently and robustly detect whether an
image should be anti-forwarded, but also be easily transferred in a zero-short scenario. Therefore,
this work opens up a plethora of new research questions of anti-forwarding privacy protection that
have not yet been investigated in machine learning.

9



Under review as a conference paper at ICLR 2023

REFERENCES

Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and
Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security, pp. 308–318, 2016.

Maksym Andriushchenko, Francesco Croce, Nicolas Flammarion, and Matthias Hein. Square at-
tack: a query-efficient black-box adversarial attack via random search. In European Conference
on Computer Vision, pp. 484–501. Springer, 2020.

Shumeet Baluja. Hiding images in plain sight: Deep steganography. Advances in Neural Information
Processing Systems (NeurIPS), 30, 2017.

Ghazaleh Beigi and Huan Liu. A survey on privacy in social media: Identification, mitigation, and
applications. ACM Transactions on Data Science, 1(1):1–38, 2020.

Gordon W Braudaway. Protecting publicly-available images with an invisible image watermark.
In Proceedings of international conference on image processing, volume 1, pp. 524–527. IEEE,
1997.

Jeremy Cohen, Elan Rosenfeld, and Zico Kolter. Certified adversarial robustness via randomized
smoothing. In International Conference on Machine Learning (ICML), pp. 1310–1320. PMLR,
2019.

Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness with an ensemble
of diverse parameter-free attacks. In International Conference on Machine Learning (ICML), pp.
2206–2216. PMLR, 2020.

Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy. Found.
Trends Theor. Comput. Sci., 9(3-4):211–407, 2014.

Han Fang, Weiming Zhang, Hang Zhou, Hao Cui, and Nenghai Yu. Screen-shooting resilient wa-
termarking. IEEE Transactions on Information Forensics and Security, 14(6):1403–1418, 2018.

Thilo Hagendorff. The ethics of ai ethics: An evaluation of guidelines. Minds and Machines, 30(1):
99–120, 2020.

Jamie Hayes and George Danezis. Generating steganographic images via adversarial training. Ad-
vances in Neural Information Processing Systems (NeurIPS), 30, 2017.

Mark J Huiskes and Michael S Lew. The mir flickr retrieval evaluation. In Proceedings of the 1st
ACM international conference on Multimedia information retrieval, pp. 39–43, 2008.

Mark J Huiskes, Bart Thomee, and Michael S Lew. New trends and ideas in visual concept detection:
The mir flickr retrieval evaluation initiative. In Proceedings of the international conference on
Multimedia information retrieval, pp. 527–536, 2010.

Honglu Jiang, Jian Pei, Dongxiao Yu, Jiguo Yu, Bei Gong, and Xiuzhen Cheng. Applications of
differential privacy in social network analysis: a survey. IEEE Transactions on Knowledge and
Data Engineering, 2021.

Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Training
generative adversarial networks with limited data. Advances in Neural Information Processing
Systems (NeurIPS), 33:12104–12114, 2020.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep con-
volutional neural networks. Advances in Neural Information Processing Systems (NeurIPS), 25,
2012.

Anat Levin, Dani Lischinski, and Yair Weiss. Colorization using optimization. In ACM SIGGRAPH,
pp. 689–694. 2004.

Bo Liu, Ming Ding, Sina Shaham, Wenny Rahayu, Farhad Farokhi, and Zihuai Lin. When machine
learning meets privacy: A survey and outlook. ACM Computing Surveys (CSUR), 54(2):1–36,
2021.

10



Under review as a conference paper at ICLR 2023

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. To-
wards deep learning models resistant to adversarial attacks. International Conference on Learning
Representations (ICLR), 2018a.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. To-
wards deep learning models resistant to adversarial attacks. International Conference on Learning
Representations (ICLR), 2018b.

Alessandro Mantelero. From group privacy to collective privacy: towards a new dimension of
privacy and data protection in the big data era. pp. 139–158, 2017.
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6 APPENDIX

(a) Images from MirFlickr Huiskes & Lew (2008) (b) Images from MetFaces Karras et al. (2020) datset
Figure 4: Example images from MirFlickr and MetFaces dataset

Table 5: Robustness towards PGD, FGSM and random gaussian noise. Values represent accuracy
percentage from 0 to 100.

PGD (40-steps) FGSM Gaussian Noise
Strength ϵ 2

255
4

255
8

255
16
255

32
255

2
255

4
255

8
255

16
255

32
255

2
255

4
255

8
255

16
255

32
255

Plain 0 0 0 0 0 0 0 0 0 0 99.92 99.92 99.92 99.93 98.82
RS(σ=0.25) 86.80 58.46 20.44 0.40 0 99.22 99.22 92.23 90.70 68.16 86.80 58.55 22.61 21.48 47.77
RS(σ=0.5) 67.46 63.75 57.20 50.52 29.27 67.75 64.39 58.70 52.12 46.38 99.83 99.82 99.82 99.80 99.74
RS(σ=0.75) 52.58 52.04 51.21 50.30 49.90 52.95 52.73 52.25 51.45 50.33 84.76 84.74 84.70 84.39 83.23

DA+RS
(σ=0.25) 94.14 46.18 9.07 4.84 4.53 94.74 70.25 23.84 10.02 12.39 99.83 99.83 99.83 99.82 99.81

Original Original Original Original Original

Watermark Watermark Watermark Watermark Watermark

Watermarked Watermarked Watermarked Watermarked Watermarked

Figure 5: Additional demos of watermark invisibility by comparing original images, added water-
marks and resulting watermarked images
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Figure 6: Showcase of the accumulation from different image corruptions.
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Figure 7: Additional visualization examples of DeepRAFT watermarked images and the correspond-
ing image corruptions. The mixed in the last row indicates all image corruptions are concatenated
together.

15


	Introduction
	Related Work
	Deep neural anti-forwarding watermark (DeepRAFT)
	Anti-Forwarding Problem Setting
	Model Structure and Loss Design
	Threat Model
	Robustness Towards Common Image Corruptions/Editing
	Smoothed Scanner To Resist Adversarial Attacks
	The Training Scheme of DeepRAFT

	Experiments
	Conclusion
	Appendix

