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Abstract

Inverse design, where we seek to design input variables in order to optimize an
underlying objective function, is an important problem that arises across fields such
as mechanical engineering to aerospace engineering. Inverse design is typically
formulated as an optimization problem, with recent works leveraging optimization
across learned dynamics models. However, as models are optimized they tend to fall
into adversarial modes, preventing effective sampling. We illustrate that by instead
optimizing over the learned energy function captured by the diffusion model, we
can avoid such adversarial examples and significantly improve design performance.
We further illustrate how such a design system is compositional, enabling us to
combine multiple different diffusion models representing subcomponents of our
desired system to design systems with every specified component. In an N-body
interaction task and a challenging 2D multi-airfoil design task, we demonstrate that
our method allows us to design initial states and boundary shapes that are more
complex than those in the training data. Our method outperforms state-of-the-art
neural inverse design method for the N-body dataset and discovers formation flying
to minimize drag in the multi-airfoil design task.

1 Introduction

The problem of inverse design – finding a set of high-dimensional design parameters (e.g., boundary
and initial conditions) for a system to optimize a set of specified objectives and constraints, occurs
across many engineering domains such as mechanical, materials, and aerospace engineering, with
important applications such as jet engine design (Athanasopoulos et al., 2009), nanophotonic design
(Molesky et al., 2018), shape design for underwater robots (Saghafi & Lavimi, 2020), and battery
design (Bhowmik et al., 2019). Such inverse design problems are extremely challenging since they
typically involve simulating the full trajectory of complicated physical dynamics as an inner loop,
have high-dimensional design space, (e.g. complex shape for airplane surface design) and require
out-of-distribution test-time generalization (to design more complex parts and shapes than seen in
training).

Recent deep learning has made promising progress for inverse design. A notable work is by Allen
et al. (2022), which addresses inverse design by first learning a neural surrogate model to approximate
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Figure 1: CinDM schematic. By composing generative models specified over subsets of inputs, we
present an approach which design materials significantly more complex than those seen at training.

the forward physical dynamics, and then performing backpropagation through the full simulation
trajectory to optimize the design parameters such as the boundary shape. Compared with standard
sampling-based optimization methods with classical simulators, it shows comparable and sometimes
better performance, establishing deep learning as a viable technique for inverse design.

However, an underlying issue with backpropagation with surrogate models is over-optimization – as
learned models have adversarial minima, excessive optimization with respect to a learned forward
model leads to adversarial design parameters which lead to poor performance (Zhao et al., 2022).
A root cause of this is that the forward model does not have a measure of data likelihood and does
not know which design parameters are in or out of the training distribution it has seen, allowing
optimization to easily fall out-of-distribution of the design parameters seen during training.

To address this issue, we view the inverse design problem from an energy optimization perspective,
where constraints of the simulation model are implicitly captured through the generative energy
function of a diffusion model trained with design parameters and simulator outputs. Designing
parameters subject to constraints corresponds to optimizing for design parameters that minimize
the energy of both the generative energy function and associated design objective functions. The
generative energy function prevents design parameters from deviating and falling out of distribution.

An essential aspect of inverse design is the ability to further construct new structures subjects to
different constraints at test-time. By formulating inverse design as optimizing generative energy
function trained on existing designs, a naïve issue is that it constrains design parameters to be
roughly those seen in the training data. We circumvent this issue by using a set of generative
energy functions, where each generative model captures a subset of design parameters governing the
system. Each individual generative energy function ensures that designs do not locally fall out of
distribution, with their composition ensuring that inferred design parameters are roughly “locally" in
distribution. Simultaneously, designs from this compositional set of generative energy functions may
be significantly different from the training data, as designs are not constrained to globally follow the
observed data (Liu et al., 2022; Du et al., 2023), achieving compositional generalization in design.

We illustrate the promise of using such compositional energy functions across a variety of different
settings. We illustrate that temporally composing multiple compositional energy functions, we may
design sequences of outputs that are significantly longer than the ones seen in training. Similarly, we
can design systems with many more objects and more complex shapes than those seen in training.

Concretely, we contribute the following: (1) We propose a novel formulation for inverse design as an
energy optimization problem. (2) We introduce Compositional Inverse Design with Diffusion Models
(CinDM) method, which enables us to generalize to out-of-distribution and more complex design
inputs than seen in training. (3) We present a set of benchmarks for inverse design in 1D and 2D. Our
method outperforms prior state-of-the-art models by an average of 41.5% in prediction MAE and
14.3% in design objective for the N-body dataset and discovers formation flying to minimize drag in
the multi-airfoil design task.
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2 Related Work

Inverse Design. Inverse design plays a key role across science and engineering, including mechan-
ical engineering (Coros et al., 2013), materials science (Dijkstra & Luijten, 2021), nanophotonics
(Molesky et al., 2018), robotics (Saghafi & Lavimi, 2020), chemical engineering (Bhowmik et al.,
2019), and aerospace engineering (Athanasopoulos et al., 2009; Anderson & Venkatakrishnan, 1999).
Classical methods to address inverse design rely on slow classical solvers. They are accurate but
are prohibitively inefficient (e.g., sampling-based methods like CEM (Rubinstein & Kroese, 2004)).
Recently, deep learning-based inverse design has made promising progress. Allen et al. (2022)
introduced backpropagation through the full trajectory with surrogate models. Wu et al. (2022a)
introduced backpropagation through latent dynamics to improve efficiency and accuracy. For Stokes
systems, Du et al. (2020a) introduced an inverse design method under different types of boundary
conditions. While the above methods typically rely on learning a surrogate model for the dynamics
and use it as an inner loop during inverse design, we introduce a novel generative perspective that
brings the important benefit of out-of-distribution generalization and compositionality. Ren et al.
(2020); Trabucco et al. (2021); Ansari et al. (2022); Chen et al. (2023) benchmarked varieties of deep
learning-based methods in a wide range of inverse design tasks.

Compositional Models. A large body of recent work has explored how multiple different instances of
generative models can be compositionally combined for applications such as 2D images synthesis (Du
et al., 2020b; Liu et al., 2021; Nie et al., 2021; Liu et al., 2022; Wu et al., 2022b; Du et al., 2023;
Wang et al., 2023), 3D synthesis (Po & Wetzstein, 2023), video synthesis (Yang et al., 2023a),
trajectory planning (Du et al., 2019; Urain et al., 2021; Gkanatsios et al., 2023; Yang et al., 2023b)
and multimodal perception (Li et al., 2022) and hierarchical decision making (Ajay et al., 2023). To
the best of our knowledge, we are the first to introduce a compositional generative perspective and
method to inverse design, and show how compositional models can enable us to generalize to design
spaces that are much more complex than seen at training time.

3 Method

In this section, we detail our method of Compositional INverse design with Diffusion Models
(CinDM). We first introduce the problem setup in Section 3.1. In Section 3.2, we introduce generative
inverse design, a novel generative paradigm for solving the inverse design problem. In Section 3.3,
we detail how our method allows for test-time composition of the design variables.

3.1 Problem setup

We formalize the inverse design problem using a similar setup as in Zhang et al. (2023). Concretely,
let u(x, t; γ) be the state of a dynamical system at time t and location x where the dynamics are
described by a partial differential equation (PDE) or an ordinary differential equation (ODE). Here
γ = (u0,B) ∈ Γ consists of the initial state u0 and boundary condition B, Γ is the design space, and
we will call γ “boundary” for simplicity. Given a PDE or ODE, a specific γ can uniquely determine
a specific trajectory u[0,T ](γ) := {u(x, t; γ)|t ∈ [0, T ]}, where we have written the dependence
of u[0,T ] on γ explicitely. Let J be the design objective which evaluates the quality of the design.
Typically J is a function of a subset of the trajectory u[0,T ] and γ (esp. the boundary shape). The
inverse design problem is to find an optimized design γ̂ which minimizes the design objective J :

γ̂ = argmin
γ

J (u[0,T ](γ), γ) (1)

We see that J depends on γ through two routes. On the one hand, γ influences the future trajectory
of the dynamical system, which J evaluates on. On the other hand, γ can directly influence J at
future times, since the design objective may be directly dependent on the boundary shape.

Typically, we don’t have access to the ground-truth model for the dynamical system, but instead
only observe the trajectories u[0,T ](γ) at discrete time steps and locations and a limited diversity
of boundaries γ ∈ Γ. We denote the above discrete version of the trajectory as U[0,T ](γ) =
(U0, U1, ..., UT ) across time steps t = 0, 1, ...T . Given the observed trajectories U[0,T ](γ), γ ∈ Γ,
a straightforward method for inverse design is to use such observed trajectories to train a neural
surrogate model fθ for forward modeling, so the trajectory can be autoregressively simulated by fθ:

Ût(γ) = fθ(Ût−1(γ), γ), Û0 := U0, γ = (U0,B), (2)
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Algorithm 1 Algorithm for Compositional Inverse Design with Diffusion Models (CinDM)
1: Require Compositional set of diffusion models ϵiθ(zs, s), i = 1, 2, ...N , design objective J (·),

covariance matrix σ2
t I , hyperparameters λ, S,K

2: Initialize optimization variables zS ∼ N (0, I)
3: for s = S, . . . , 1 do
4: for k = 1, . . . ,K do
5: ξ ∼ N

(
0, σ2

sI
)

6: zs ← zs − η 1
N

∑N
i=1

(
ϵiθ(z

i
s, s) + λ∇zJ (zs)

)
+ ξ

7: end for
8: ξ ∼ N

(
0, σ2

sI
)

9: zs−1 ← zs − η 1
N

∑N
i=1

(
ϵiθ(z

i
s, s) + λ∇zJ (zs)

)
+ ξ

10: end for
11: γ, U[0,T ] = z0
12: return γ

Here we use Ût to represent the prediction by fθ, to differentiate from the actual observed state Ut.
In the test time, the goal is to optimize J (Û[0,T ](γ), γ) w.r.t. γ, which includes the autoregressive
rollout with fθ as an inner loop, as introduced in Allen et al. (2022). In general inverse design, the
trajectory length T , state dimension dim(U[0,T ](γ)), and complexity of γ may be much larger than in
training, requiring significant out-of-distribution generalization.

3.2 Generative Inverse Design

Directly optimizing equation 1 with respect to γ using a learned surrogate model fθ is often prob-
lematic as the optimization procedure on γ often leads a set of U[0,T ] that is out-of-distribution or
adversarial to the surrogate model fθ, leading to poor performance, as observed in Zhao et al. (2022).
A major cause of this is that fθ does not have an inherent measure of uncertainty, and cannot prevent
optimization from entering design spaces γ that the model cannot guarantee its performance in.

To circumvent this issue, we propose a generative perspective to inverse design: during the inverse
design process, we jointly optimize for both the design objective J and a generative objective Eθ,

γ̂ = argmin
γ,U[0,T ]

[
Eθ(U[0,T ], γ) + λ · J (U[0,T ], γ)

]
, (3)

where Eθ is an energy-based model (EBM) p(U[0,T ], γ) ∝ e−Eθ(U[0,T ],γ) (LeCun et al., 2006; Du &
Mordatch, 2019) trained over the joint distribution of trajectories U[0,T ] and boundaries γ, and λ is a
hyperparameter. Both U[0,T ] and γ are jointly optimized and the energy function Eθ is minimized
when both U[0,T ] and γ are consistent with each other and serves the purpose of a surrogate model fθ
in approximating simulator dynamics. The joint optimization optimizes all the steps of the trajectory
U[0,T ] and the boundary γ simultaneously.

To train Eθ, we use a diffusion objective, where we learn a denoising network ϵθ that learns to denoise
all variables in design optimization z = U[0,T ]

⊕
γ supervised with the training loss

LMSE = ∥ϵ− ϵθ(
√

1− βsz +
√
βsϵ, s)∥22, ϵ ∼ N (0, I). (4)

As discussed in Liu et al. (2022), the denoising network ϵθ corresponds to the gradient of an EBM
∇zEθ(z). To optimize equation 3 using a Langevin sampling procedure, we can initialize an
optimization variable zS from Gaussian noise N (0, I), and iteratively run

zs−1 = zs − η (∇z(Eθ(zs) + λJ (zs))) + ξ, ξ ∼ N
(
0, σ2

sI
)
, (5)

for s = S, S− 1, ..., 1. This sampling procedure is implemented with diffusion models by optimizing

zs−1 = zs − η (ϵθ(zs, s) + λ∇zJ (zs)) + ξ, ξ ∼ N
(
0, σ2

sI
)
, (6)

where σ2
s and η correspond to a set of different noise schedules and scaling factors used in the

diffusion process. To further improve the performance, we run additional steps of Langevin dynamics
optimization at a given noise level following Du et al. (2023).
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3.3 Compositional Generative Inverse Design

A key challenge in inverse design is that the boundary γ or the trajectory U[0,T ] can be substantially
different than seen during training. To enable generalization across such design variables, we propose
to compositionally represent the design variable z = U[0,T ]

⊕
γ, using a composition of different

energy functions Eθ (Du et al., 2020b) on subsets of the design variable zi ⊂ z. Each of the above
Eθ on the subset of design variable zi provides a physical consistency constraint on zi, encouraging
each zi to be physically consistent internally. Also, we make sure that different zi, i = 1, 2, ...N
overlap with each other, and overall cover z (See Fig. 1), so that the full z is physically consistent.
Thus, test-time compositions of energy functions defined over subsets of the design variable zi ⊂ z
can then be composed together to generalize to new design variable z values that are substantially
different than those seen during training, but exploiting shared local structure in z.

Below, we illustrate three different ways compositional inverse design can enable to generalize to
design variables z that are much more complex than the ones seen during training.

I. Generalization to more time steps. In the test time, the trajectory length T may be much longer
than the trajectory length T tr seen in training. In this case, the energy function can be written in terms
of a composition of N energy functions over subsets of trajectories with overlapping states:

Eθ(U[0,T ], γ) =

N∑
i=1

Eθ(U[(i−1)·tq,i·tq+T tr], γ). (7)

Here zi := U[(i−1)·tq,i·tq+T tr]

⊕
γ is a subset of the design variable z := U[0,T ]

⊕
γ. tq ∈

{1, 2, ...T − 1} is the stride for consecutive time intervals, and we let T = N · tq + T tr.

II. Generalization to more interacting bodies. Our method allows generalizing the trained model
to more interacting bodies for a dynamical system. Now we illustrate it with a 2-body to N-body
generalization. Suppose that only the trajectory of a 2-body interaction is given, where we have the
trajectory of U (i)

[0,T ] = (U
(i)
0 , U

(i)
1 , ..., U

(i)
T ) for body i ∈ {1, 2} at time steps t = 0, 1, ...T . We can

learn an energy function Eθ((U
(1)
[0,T ], U

(2)
[0,T ]), γ) from this trajectory. In the test time, suppose that we

have N > 2 interacting bodies subjecting to the same pairwise interactions. The energy function for
the combined trajectory U[0,T ] = (U

(1)
[0,T ], ..., U

(N)
[0,T ]) for the N bodies is then be given by:

Eθ(U[0,T ], γ) =
∑
i<j

Eθ

(
(U

(i)
[0,T ], U

(j)
[0,T ]), γ

)
(8)

III. Generalization from part to whole for boundaries. Real-life inverse design typically involves
designing shapes consisting of multiple parts that constitute an integral whole. In this case, we
can again compose the energy function over subsets of the design variable z. Concretely, suppose
that we have trajectories U

(i)
[0,T ] corresponding to the part γi, i = 1, 2, ...N , we can learn energy

functions corresponding to the dynamics of each part Eθi(U
(i)
[0,T ], γ

i). In the test time, when requiring
to generalize over a whole boundary γ that consisting of these N parts γi, i = 1, 2...N , we have

Eθ(U[0,T ], γ) =

N∑
i=1

Eθi(U[0,T ], γ
i) (9)

Note that here in the composition, all the parts γi share the same trajectory U[0,T ], which can be
intuitively understood in the example of the plane where all the parts of the plane influence the same
full state of fluid around the plane. The composition of energy functions in equation 9 means that the
full energy Eθ(U[0,T ], γ) will be low if the trajectory U[0,T ] is consistent with all the parts γi.

Compositional Generative Inverse Design. Given the above composition of energy functions, we
can correspondingly learn each energy function over the design variable z = U[0,T ]

⊕
γ by training

a corresponding diffusion model over the subset of design variables zi ⊂ z. Our overall sampling
objective given the set of energy functions {Ei(z

i)}i=1:N is then given by

zs−1 = zs − η
1

N

N∑
i=1

(
ϵiθ(z

i
s, s) + λ∇zJ (zs)

)
+ ξ, ξ ∼ N

(
0, σ2

sI
)
, (10)
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Table 1: Compositional Generalization Across Time. Experiment on compositional inverse design
in time. The confidence interval information is deligated to Table 6 in Appendix B for page constraints.
Bold font denotes the best model.

2-body 24 steps 2-body 34 steps 2-body 44 steps 2-body 54 steps
Method design obj MAE design obj MAE design obj MAE design obj MAE

CEM, GNS (1-step) 0.3021 0.14941 0.2531 0.13296 0.2781 0.20109 0.2845 0.19811
CEM, GNS 0.3144 0.12741 0.3178 0.16538 0.3102 0.24884 0.3059 0.24863
CEM, U-Net (1-step) 0.2733 0.08013 0.2680 0.13183 0.2910 0.14783 0.2919 0.13348
CEM, U-Net 0.2731 0.02995 0.2424 0.02937 0.2616 0.04460 0.2804 0.06520

Backprop, GNS (1-step) 0.1216 0.03678 0.1643 0.02976 0.1966 0.03645 0.2657 0.10331
Backprop, GNS 0.2453 0.13024 0.2822 0.11200 0.2959 0.12867 0.2877 0.14241
Backprop, U-Net (1-step) 0.2020 0.06338 0.2193 0.07705 0.2187 0.05668 0.2851 0.07716
Backprop, U-Net 0.1168 0.01137 0.1294 0.01303 0.1481 0.00804 0.3140 0.01675

CinDM (ours) 0.1143 0.01202 0.1251 0.00763 0.1326 0.00695 0.1533 0.00870

for s = S, S − 1, ...1. Similarly to before, we can further run multiple steps of Langevin dynamics
optimization at a given noise level following Du et al. (2023) to further improve performance. We
provide the overall pseudo-code of our method in the compositional setting in Algorithm 1.

4 Experiments

In the experiments, we aim to answer the following questions: (1) Can CinDM generalize to more
complex designs in the test time using its composition capability? (2) Comparing backpropagation
with surrogate models and other strong baselines, can CinDM improve on the design objective? (3)
Can CinDM address high-dimensional design space? To answer these questions, we perform our
experiments in three different scenarios: compositional inverse design in time dimension (Sec. 4.1),
compositional inverse design generalizing to more objects (Sec. 4.2), and 2D compositional design
for multiple airfoils with Navier-Stokes flow (Sec. 4.3). Each of the above experiments represents an
important scenario in inverse design and has important implications in science and engineering. In
each experiment, we compare CinDM with the state-of-the-art deep learning-based inverse design
method proposed by Allen et al. (2022), which we term Backprop, and cross-entropy method (CEM)
(Rubinstein & Kroese, 2004) which is a standard sampling-based optimization method typically used
in classical inverse design. To evaluate the performance of each inverse design method fairly, all the
baselines and our model contain similar numbers of parameters in each comparison. We feed the
output of the inverse design method to the ground-truth solver, perform rollout by the solver and feed
the rollout trajectory to the design objective in evaluation.

4.1 Compositional inverse design in time

In this experiment, we aim to test each method’s ability to generalize to more forward time steps
than during training. This is important since in test time, the inverse design methods are typically
used over longer prediction horizons than in training. We use an N-body interaction environment
where each ball with a radius of 0.1 is bouncing in a 1× 1 box. The balls will exchange momentum
(resulting in a velocity change) when elastically colliding with each other or with the wall. The
design task is to identify the initial state (position and velocity of the balls) of the system such that
the end state optimizes a certain objective (e.g., as close to a certain target as possible). This setting
represents a simplified version of many real-life scenarios such as billiard, bowling, and ice hockey.
Details for this experiment are provided in Appendix A.

From Table 1, we see that our method generally outperforms the baselines by a wide margin. In
the “2-body 24 steps” scenario which is the same setting as in training and without composition,
our model performs similarly to “Backprop with U-Net” that shares the same backbone architecture.
However, with more prediction steps, the design objective and MAE for all the baseline methods
worsen quickly. In contrast, our method’s metrics remain much lower than the baselines, with wider
gaps for longer prediction steps. This shows the two-fold advantage of our method. Firstly, even
with the same backbone architecture, our diffusion method can roll out stably and accurately for
much longer than the baseline, since the forward surrogate models in the baselines during design may
encounter out-of-distribution and adversarial inputs which it does not know how to evolve properly.
On the other hand, our diffusion-based method is trained to denoise and has a sense of how likely
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Table 2: Compositional Generalizaion Across Objects. Experiment on compositional inverse
design generalizing to more objects. The confidence interval information is deligated to Table 7 in
Appendix B for page constraints.

4-body 24 steps 4-body 44 steps 8-body 24 steps 8-body 44 steps
Method design obj MAE design obj MAE design obj MAE design obj MAE

CEM, GNS (1-step) 0.3029 0.20027 0.3215 0.26518 0.3312 0.36865 0.3292 0.37430
CEM, GNS 0.3139 0.21253 0.3110 0.26924 0.3221 0.26708 0.3319 0.32678

Backprop, GNS (1-step) 0.2872 0.08023 0.2900 0.11331 0.3312 0.27988 0.3227 0.74314
Backprop, GNS 0.3118 0.10249 0.3423 0.15277 0.3302 0.19039 0.3233 0.24718

CinDM (ours) 0.2066 0.04152 0.2281 0.03195 0.3056 0.08821 0.3169 0.09566

an input is consistent with the underlying physics. Secondly, our compositional method allows our
model to generalize to longer time steps and allows for stable rollout. An example trajectory designed
by our CinDM is shown in Fig. 2 (a). We see that it matches with the ground-truth simulation nicely,
captures the bouncing with walls and with other balls, and the end position of the bodies tends towards
the center, showing the effectiveness of our method. We also see that Backprop’s performance is
superior to the sampling-based CEM, consistent with Allen et al. (2022).

4.2 Compositional inverse design generalizing to more objects

(a) 2-body 54 steps (b) 4-body 44 steps

Figure 2: Example trajectories for N-body dataset with
compositional inverse design in time (a) and bodies (b).
The circles indicate CinDM-designed trajectory for the balls,
drawn every 2 steps, and darker color indicating later states.
The central star indicates the design target that the end state
should be as close to as possible. “+” indicates ground-truth
trajectory simulated by the solver.

In this experiment, we test each
method’s capability to perform in-
verse design on larger state dimen-
sions than in training. We utilize the
N-body simulation environment as in
Sec. 4.1, but instead of considering
longer trajectories, we test on more
bodies than in training, resulting in
larger state dimensions. This setting
is also inspired by real-life scenar-
ios where the dynamics in test time
have more interacting objects than in
training (e.g., in astronomical simula-
tion and biophysics). Specifically, all
methods are trained with only 2-body
interactions with 24 time steps, and in
test time, we directly test them with
4-body and 8-body interactions for 24
and 44 time steps using Eq. 8. For
the base network architecture, the U-
Net in Backprop cannot generalize to
more bodies due to U- Net’s fixed feature dimension. Thus we only use GNS as the backbone
architecture in the baselines. The results are reported in Table 2.

From Table 2, we see that our CinDM method outperforms all baselines by a wide margin in both the
design objective and MAE. On average, our method achieves an improvement of 14.1% in design
objective, and an improvement of 58.8% in MAE than the best baseline. In Fig. 2 (b), we see that our
method captures the interaction of the 4 bodies with the wall and each other nicely and all bodies
tend towards the center at the end. The above results again demonstrate the strong compositional
capability of our method: it can generalize to much larger state space than seen in training.

4.3 2D compositional design for multiple airfoils

In this experiment, we test the methods’ ability to perform inverse design in high-dimensional space,
for multiple 2D airfoils. We train the methods using flow around a single randomly-sampled shape,
and in the test time, ask it to perform inverse design for one or more airfoils. The standard goal
for airfoil design is to maximize the ratio between the total lift force and total drag force, thus
improving aerodynamic performance (range) and reducing cost (fuel consumption). The multi-
airfoil case represents an important scenario in real-life engineering where the boundary shape
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Table 3: Generalization Across Airfoils. Experiment results for multi-airfoil compositional design.
1 airfoil 2 airfoils

Method design obj ↓ lift-to-drag ratio ↑ design obj ↓ lift-to-drag ratio ↑
CEM, FNO 0.0932 1.4005 0.3890 1.0914
CEM, LE-PDE 0.0794 1.4340 0.1691 1.0568

Backprop, FNO 0.0281 1.3300 0.1837 0.9722
Backprop, LE-PDE 0.1072 1.3203 0.0891 0.9866

CinDM (ours) 0.0797 2.177 0.1986 1.4216

that needs to be designed is more complicated and out-of-distribution than in training but can be
constructed by composing multiple parts. Moreover, when there are multiple flying agents, they may
use formation flying to minimize drag, as has been observed in nature for migrating birds (Lissaman
& Shollenberger, 1970; Hummel, 1995) and adopted by humans in aerodynamics (Venkataramanan
et al., 2003). For the ground-truth solver that generates a training set and performs evaluation, we
use Lily-Pad (Weymouth, 2015) which is adept at modeling fluid-boundary interactions. Detailed
simulation and evaluation settings are given in Appendix D.

Figure 3: Discovered formation flying. In the 2-airfoil
case, our model’s designed boundary forms a “leader”
and “follower” formation (a), reducing the drag by
53.6% and increasing the lift-to-drag ratio by 66.1%
compared to each airfoil flying separately (b)(c). Colors
represent fluid vorticity.

For our CinDM method, we use U-Net as
the backbone architecture and train it to de-
noise the joint variable of the trajectory and
the boundary. In the test time, we utilize
Eq. 9 to compose multiple airfoils into a
formation. For both CEM and Backprob,
we use the state-of-the-art architecture of
FNO (Li et al., 2021) and LE-PDE (Wu
et al., 2022a). For all methods, to improve
design stability, we use the design objective
of J = −lift + drag and evaluate both this
design objective and the lift-to-drag ratio.
The results are in Table 3. Details for the
experiment are provided in Appendix D.

From the table, we see that although
CinDM has a similar design objective
as baseline methods, it achieves a much
higher lift-to-drag ratio than the baselines,
especially in the compositional case of 2
airfoils. Fig. 9 and Fig. 10 show examples
of the designed initial state and boundary
for the 2-airfoil scenario, for our model and “CEM, FNO” baseline respectively. We see that while our
CinDM can design a smooth initial state and reasonable boundaries, the baseline falls into adversarial
modes. A surprising finding is that our model discovers formation flying (Fig. 3) that reduces the
drag by 53.6% and increases the lift-to-drag ratio by 66.1% compared to each airfoil flying separately.
The above demonstrates the capability of CinDM to effectively design boundaries that are more
complex than in training, avoiding the adversarial mode issue through its generative modeling, and
achieving much better design performance.

5 Conclusion

In this work, we have introduced Compositional Inverse Design with Diffusion Models (CinDM), a
novel paradigm and method to perform compositional generative inverse design. By composing the
trained diffusion models on subsets of the design variables and jointly optimizing the trajectory and
the boundary, CinDM can generalize to design systems much more complex than the ones seen in
training. We’ve demonstrated our model’s compositional inverse design capability in N-body and 2D
multi-airfoil tasks, and believe that the techniques presented in this paper are general (Appendix J),
and may further be applied across other settings such as material, drug, and molecule design.
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A Additional details for compositional inverse design in time

This section provides additional details for Section 4.1 and Section 4.2. In both sections, we use the
same dataset for training, and the model architecture and training specifics are the same for both
sections.

Setup of experiment in Section 4.1. This experiment represents a non-trivial inverse design problem
with abrupt changes in the design space (i.e. small changes in the initial state leads to large differences
in the outcomes) since the collisions preserve kinetic energy but modify speed and direction of each
ball and multiple collisions can happen over a long time. During training time, we provide each
method with training trajectory consisting of 24 steps, and in test time, let it roll out for a total of
24, 34, 44, and 54 steps. The design objective is to minimize the last step’s Euclidean distance
to the center (x, y) = (0.5, 0.5). For baselines, we compare with CEM (Rubinstein & Kroese,
2004) and Backprop (Allen et al., 2022). Each method uses either Graph Network Simulator (GNS,
Sanchez-Gonzalez et al. (2020), a state-of-the-art method for modeling N-body interactions) or U-Net
(Ronneberger et al., 2015) as backbone architecture that either predicts 1 step or 23 steps in a single
forward pass. For our method, we use the same U-Net backbone architecture for diffusion. To
perform time composition, we superimpose N EBMs Eθ(U[0,T ], γ) on states with overlapping time
ranges: U[0,23], U[10,33], U[20,43],...U[10(N−1),10(N−1)+23] as in Eq. 7, and use Eq. 10 to perform
denoising diffusion. Besides evaluating with the design objective (J ), we also use the metric of
mean absolute error (MAE) between the predicted trajectory and the trajectory generated by the
ground-truth solver to evaluate how faithful each method’s prediction is. Each design scenario is run
50 times and the average performance is reported in Table 1. We show example trajectories of our
method in Fig. 2.

Dataset. We use two Python packages Pymunk (Blomqvist, 2007) and Pygame (Shinners, 2000)
to generate the trajectories for this N-body dataset. We use 4 walls and several bodies to define the
simulation environment. The walls are shaped as a 200× 200 rectangle, setting elasticity to 1.0 and
friction to 0.0. A body is described as a ball (circle) with a radius of 20, which shares the same
elasticity and friction coefficient as the wall it interacts with. The body is placed randomly within the
boundaries and its initial velocity is determined using a uniform distribution v ∼ U(−100, 100). We
performed 2000 simulations, for 2 balls, 4 balls, and 8 balls in each simulation. Each simulation has
a time step of 1/60 seconds, consisting of 1000 steps in total. During these simulations, we record the
positions and velocities of each particle in two dimensions at each time step to generate 3 datasets
with a shape of [Ns, Nt, Nb, Nf ]. Ns means number of simulations, Nt means number of time steps,
Nb is number of bodies, Nf means number of features. The input of one piece of data shaped as
[B, 1, Nb ×Nf ], B is batch size, for example, [32, 1, 8] for 2 bodies conditioning on only one step.
Before training the model, the final data will be normalized by dividing it by 200 and setting the time
resolution to four simulation time steps.

Model structure. The U-Net (Ronneberger et al., 2015) consists of three modules: the downsampling
encoder, the middle module, and the upsampling decoder. The downsampling encoder comprises
4 layers, each including three residual modules and downsampling convolutions. The middle
module contains 3 residual modules, while the upsampling decoder includes four layers, each
with 3 residual modules and upsampling. We mainly utilize one-dimensional convolutions in each
residual module and incorporate attention mechanisms. The input shape of our model is defined
as [batch_size, n_steps, n_features], and the output shape follows the same structure. The GNS
(Sanchez-Gonzalez et al., 2020) model consists of three main components. First, it builds an
undirected graph based on the current state. Then, it encodes nodes and edges on the constructed
graph, using message passing to propagate information. Finally, it decodes the predicted acceleration
and utilizes semi-implicit Euler integration to update the next state. In our implementation of GNS,
each body represents a node with three main attributes: current speed, distance from the wall, and
particle type. We employ the standard k-d tree search algorithm to locate adjacent bodies within a
connection radius, which is set as 0.2 twice the body radius. The attribute of an edge is the vector
distance between the two connected bodies. More details are in Table 4.

Training. We utilize the MSE (mean squared error) as the loss function in our training process. Our
model is trained for approximately 60 hours on a single Tesla V100 GPU, with a batch size of 32,
employing the Adam optimizer for 1 million iterations. For the first 600,000 steps, the learning rate
is set to 1e-4. After that, the learning rate is decayed by 0.5 every 40,000 steps for the remaining
400,000 iterations. More details are provided in Table 5.
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Table 4: Hyperparameters of model architecture for N-body task.

Hyperparameter name 23-steps 1-step
Hyperparameters for U-Net architecture:
Channel Expansion Factor (1, 2, 4, 8) (1, 2, 1, 1)
Number of downsampling layers 4 4
Number of upsampling layers 4 4
Input channels 8 8
Number of residual blocks for each layer 3 3
Batch size 32 32
Input shape [32, 24, 8] [32, 2, 8]
Output shape [32, 24, 8] [32, 2, 8]
Hyperparameters for GNS architecture:
Input steps 1 1
Prediction steps 23 1
Number of particle types 1 1
Connection radius 0.2 0.2
Maximum number of edges per node 6 6
Number of node features 8 8
Number of edge features 3 3
Message propagation layers 5 5
Latent size 64 64
Output size 46 2
Hyperparameters for the U-Net in our CinDM:
Diffusion Noise Schedule cosine cosine
Diffusion Step 1000 1000
Channel Expansion Factor (1, 2, 4, 8) (1, 2, 1, 1)
Number of downsampling layers 4 4
Number of upsampling layers 4 4
Input channels 8 8
Number of residual blocks for each layer 3 3
Batch size 32 32
Input shape [32, 24, 8] [32, 2, 8]
Output shape [32, 24, 8] [32, 2, 8]

To perform inverse design, we mainly trained the following models: U-Net, conditioned on 1 step and
capable of rolling out 23 steps; U-Net (single step), conditioned on 1 step and limited to rolling out
only 1 step; GNS, conditioned on 1 step and able to roll out 23 steps; GNS (single step), conditioned
on 1 step and restricted to rolling out only 1 step; and the diffusion model. Simultaneously, we
conducted a comparison to assess the efficacy of time compose by training a diffusion model with
44 steps directly for inverse design, eliminating the requirement for time compose. The results and
analysis are shown in Appendix C. Throughout the training process, we maintained consistency in
the selection of optimizers, datasets, and training steps for these models.

Inverse design. The center point is defined as the target point, and our objective is to minimize the
mean squared error (MSE) between the position of the trajectory’s last step and the target point. To
compare our CinDM method, we utilize U-Net and GNS as forward models separately. We then
use CEM (Rubinstein & Kroese, 2004) and Backprop (Allen et al., 2022) for inverse design with
conditioned state (x0, y0, vx0, vy0) used as input, and multiple trajectories of different bodies as rolled
out. While the CEM algorithm does not require gradient information, we define a parameterized
Gaussian distribution and sample several conditions from it to input into the forward model for
prediction. After the calculation of loss between the prediction and target, the best-performing
samples are selected to update the parameterized Gaussian distribution. Through multiple iterations,
we can sample favorable conditions from the optimized distribution to predict trajectories with low
loss values. Backpropagation heavily relies on gradient information. It calculates the gradient of
the loss concerning the conditions and updates the conditions using gradient descent, ultimately
designing conditions that result in promising output.
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Table 5: Hyperparameters of training for N-body task.

Hyperparameter name 23-steps 1-step
Hyperparameters for U-Net training:
Loss function MSE MSE
Number of examples for traing dataset 3× 105 3× 105

Total number of training steps 1× 106 1× 106

Batch size 32 32
Initial learning rate 1× 10−4 1× 10−4

Number of training steps with a fixed learning rate 6× 105 6× 105

Learning rate adjustment strategy StepLR StepLR
Optimizer Adam Adam
Number of steps for saving checkpoint 1× 104 1× 104

Exponential Moving Average decay rate 0.95 0.95
Hyperparameters for GNS training:
Loss function MSE MSE
Number of examples for traing dataset 3× 105 3× 105

Total number of training steps 1× 106 1× 106

Batch size 32 32
Initial learning rate 1× 10−4 1× 10−4

Number of training steps with a fixed learning rate 6× 105 6× 105

Learning rate adjustment strategy StepLR StepLR
Optimizer Adam Adam
Number of steps for saving checkpoint 1× 104 1× 104

Exponential Moving Average decay rate 0.95 0.95
Hyperparameters for our CinDM training:
Loss function MSE MSE
Number of examples for traing dataset 3× 105 3× 105

Total number of training steps 1× 106 1× 106

Batch size 32 32
Initial learning rate 1× 10−4 1× 10−4

Number of training steps with a fixed learning rate 6× 105 6× 105

Learning rate adjustment strategy StepLR StepLR
Optimizer Adam Adam
Number of steps for saving checkpoint 1× 104 1× 104

Exponential Moving Average decay rate 0.95 0.95

During training, we can only predict a finite number of time steps based on conditional states, but
the system evolves over an infinite number of time steps starting from an initial state in real-world
physical processes. To address this, we need to combine time intervals while training a single model
capable of predicting longer trajectories despite having a limited number of training steps. For the
forward model, whether using U-Net or GNS, we rely on an intermediate time step derived from
the last prediction as the condition for the subsequent prediction. We iteratively forecast additional
time steps based on a single initial condition in this manner. As for the forward model (single step),
we employ an autoregressive approach using the last step of the previous prediction to predict more
steps.

B Full table for compositional inverse design in time and number of bodies

Here we provide the full table including the 95% confidence interval (for 50 instances) for Table 1 in
Section 4.1, as in Table 6. In addition, we provide the full table including the 95% confidence interval
for Table 2 in Section 4.2, as in Table 7.
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Table 6: Experiment on compositional inverse design in the time dimension. In addition to
providing the average over 50 instances, we also provide the 95% confidence interval for each metric.

2-body 24 steps 2-body 34 steps 2-body 44 steps 2-body 54 steps
Method design obj MAE design obj MAE design obj MAE design obj MAE

CEM, GNS (1-step) 0.3021 ± 0.0266 0.14941 ± 0.02772 0.2531 ± 0.0212 0.13296 ± 0.02692 0.2781 ± 0.0227 0.20109 ± 0.03369 0.2845 ± 0.0211 0.19811 ± 0.03721
CEM, GNS 0.3144 ± 0.0302 0.12741 ± 0.02432 0.3178 ± 0.0215 0.16538 ± 0.02322 0.3102 ± 0.0198 0.24884 ± 0.02011 0.3059 ± 0.0190 0.24863 ± 0.01410
CEM, U-Net (1-step) 0.2733 ± 0.0268 0.08013 ± 0.02803 0.2680 ± 0.0207 0.13183 ± 0.03146 0.2910 ± 0.0207 0.14783 ± 0.03025 0.2919 ± 0.0242 0.13348 ± 0.03039
CEM, U-Net 0.2731 ± 0.0260 0.02995 ± 0.00921 0.2424 ± 0.0176 0.02937 ± 0.00889 0.2616 ± 0.0199 0.04460 ± 0.01406 0.2804 ± 0.0247 0.06520 ± 0.01932

Backprop, GNS (1-step) 0.1216 ± 0.0053 0.03678 ± 0.00666 0.1643 ± 0.0186 0.02976 ± 0.00449 0.1966 ± 0.0252 0.03645 ± 0.00404 0.2657 ± 0.0222 0.10331 ± 0.04124
Backprop, GNS 0.2453 ± 0.0242 0.13024 ± 0.02470 0.2822 ± 0.0191 0.11200 ± 0.01560 0.2959 ± 0.0196 0.12867 ± 0.01608 0.2877 ± 0.0186 0.14241 ± 0.01569
Backprop, U-Net (1-step) 0.2020 ± 0.0158 0.06338 ± 0.00905 0.2193 ± 0.0226 0.07705 ± 0.02047 0.2187 ± 0.0196 0.05668 ± 0.01464 0.2851 ± 0.0219 0.07716 ± 0.02250
Backprop, U-Net 0.1168 ± 0.0042 0.01137 ± 0.00202 0.1294 ± 0.0092 0.01303 ± 0.00207 0.1481 ± 0.0110 0.00804 ± 0.00164 0.3140 ± 0.0137 0.01675 ± 0.00188

CinDM (ours) 0.1143 ± 0.0047 0.01202 ± 0.00114 0.1251 ± 0.0071 0.00763 ± 0.00069 0.1326 ± 0.0087 0.00695 ± 0.00067 0.1533 ± 0.0140 0.00870 ± 0.00150

Table 7: Experiment on compositional inverse design generalizing to more objects. In addition to
providing the average over 50 instances, we also provide the 95% confidence interval for each metric.

4-body 24 steps 4-body 44 steps 8-body 24 steps 8-body 44 steps
Method design obj MAE design obj MAE design obj MAE design obj MAE

CEM, GNS (1-step) 0.3029 ± 0.0129 0.20027 ± 0.02875 0.3215 ± 0.0143 0.26518 ± 0.02648 0.3312 ± 0.0084 0.36865 ± 0.02384 0.3292 ± 0.0062 0.37430 ± 0.02231
CEM, GNS 0.3139 ± 0.0127 0.21253 ± 0.02030 0.3110 ± 0.0147 0.26924 ± 0.01362 0.3221 ± 0.0075 0.26708 ± 0.01043 0.3319 ± 0.0078 0.32678 ± 0.00991

Backprop, GNS (1-step) 0.2872 ± 0.0114 0.08023 ± 0.01550 0.2900 ± 0.0170 0.11331 ± 0.02922 0.3312 ± 0.0068 0.27988 ± 0.02224 0.3227 ± 0.0063 0.74314 ± 0.02940
Backprop, GNS 0.3118 ± 0.0136 0.10249 ± 0.01311 0.3423 ± 0.0141 0.15277 ± 0.01279 0.3302 ± 0.0063 0.19039 ± 0.00797 0.3233 ± 0.0061 0.24718 ± 0.00705

CinDM (ours) 0.2066 ± 0.0118 0.04152 ± 0.00644 0.2281 ± 0.0145 0.03195 ± 0.00705 0.3056 ± 0.0062 0.08821 ± 0.00593 0.3169 ± 0.0068 0.09566 ± 0.00924

C Additional baseline for time composition of the N-body task

We also make a comparison with a simple baseline that performs diffusion over 44 steps directly with-
out time composition. We designed this baseline to verify the effectiveness of our time-compositional
approach. This baseline takes the same architecture as CinDM but with 44 time steps instead of 24
time steps, thus has almost twice of number of parameters in CinDM. The results are displayed in
Table 8, which indicates that this sample baseline is outperformed by our CinDM. Its reason may be
the difficulty in capturing dynamics across 44 time steps simultaneously using a single model, due to
the presence of long-range dependencies. In such cases, a 24-step diffusion model proves to be more
suitable. Hence, when dealing with designs that involve a larger number of time steps, employing
time composition is a more effective approach, with lower cost and better performance.

D Additional details for compositional inverse design of 2D airfoils

D.1 Details for the main experiment

Setup of experiment in Section 4.3. The fluid state Ut at each time step t is represented by 64× 64
grid cells where each cell has three dynamic features: fluid velocity vx, vy, and pressure. The
boundary γ is represented by a 64× 64× 3 tensor, where for each grid cell, it has three features: a
binary mask indicating whether the cell is inside a boundary (denoted by 1) or in the fluid (denoted
by 0), and relative position (∆x, ∆y) between the cell center to the closest point on the boundary.
Therefore, the boundary has in total 64× 64× 3 = 12288 dimensions, making the inverse design
task especially challenging.

Dataset. We use Lily-Pad (Weymouth, 2015) as our data generator (Fig. 5). We generate 30,000
ellipse bodies and NACA airfoil boundary bodies and perform fluid simulation around each body. The
bodies are sampled by randomizing location, thickness, and rotation between respective ranges. Each
body is represented by 40 two-dimensional points composing its boundary. The spacial resolution
is 64 × 64 and each cell is equipped with temporal pressure and velocities in both horizontal and
vertical directions. Each trajectory consists of 100 times steps. To generate training trajectories, we
use a sliding time window over the 100 time steps. Each time window contains state data of T = 6
time steps with a stride of 4. So each original trajectory amounts to 25 training trajectories, and we
get 750,000 training samples in total.

Table 8: Compositional Generalization Across Time. Comparison to a baseline that directly
diffuses 44 steps without time composition.

Methods #parameters(Million) 2-body 44 steps 4-body 44 steps
design_obj MAE design_obj MAE

Our method 20.76M 0.1326 ± 0.0087 0.00695 ± 0.00067 0.2281 ± 0.0145 0.03195 ± 0.00705
Directly diffuse 44 steps 44.92M 0.2779 ± 0.0197 0.00810 ± 0.00200 0.2986 ± 0.01481 0.05166 ± 0.01218
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Figure 4: Diffusion model architecture of 2D inverse design.

Figure 5: Example of Lily-Pad simulation.

Model architecture. We use U-Net (Ronneberger et al., 2015) as our backbone for denoising from a
random state sampled from a prior distribution. Without considering the mini-batch size dimension,
the input includes a tensor of shape (3T + 3)× 64× 64, which concatenates flow states (pressure,
velocity of horizontal and vertical directions) of T time steps and the boundary mask and offsets of
horizontal and vertical directions along the channel dimension, and additionally the current diffusion
step s. The output tensor shares the same shape with the input except s. The model architecture is
illustrated in Fig. 4. The hyperparameters in our model architecture is shown in Table 9.

Training. We utilize the MSE (mean squared error) between prediction and a Gaussian noise as the
loss function during training. We take batch size of 48 and run for 700,000 iterations. The learning
rate is initialized as 1× 10−4. Training details are provided in Table 10.

Evaluation of design results. In inference, we set λ in Eq. 3 as 0.0002. We find that this λ could
get the best design result. More discussion on the selection of λ is presented in Appendix I. For
each method and each airfoil design task (one airfoil or two airfoils), we conduct 10 batches of
design and each batch contains 20 examples. After we get the designed boundaries, we input them
into Lily-Pad and run simulation. To make the simulation more accurate and convincing, we use a
128×128 resolution of the flow field, instead of 64 × 64 as in the generation of training data. Then
we use the calculated horizontal and vertical flow force to compute our two metrics: −lift + drag and
lift-to-drag ratio. In each batch, we choose the best designed boundary (or pair of boundaries in two
airfoils scenario) and then we report average values regarding the two metrics over 10 batches.

D.2 Surrogate Model for Force Prediction

Model architecture. In the 2D compositional inverse design of multiple airfoils, we propose a neural
surrogate model gφ to approximate the mapping from the state Ut and boundary γ to the lift and
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Table 9: Hyperparameters used in 2D diffusion model architecture.
Number of downsampling blocks 4
Number of upsampling blocks 4
Input channels 21
Number of residual blocks for each layer 2
Batch size 48
Input shape [48, 21, 64, 64]
Output shape [48, 21, 64, 64]

Table 10: Hyperparameters used in 2D diffusion model training.
Loss function MSE
Number of examples for training dataset 3× 106

Total number of training steps 7× 105

Batch size 48
Initial learning rate 1× 10−4

Number of training steps with a fixed learning rate 6× 105

Learning rate adjustment strategy StepLR
Optimizer Adam
Number of saving checkpoint 700
Exponential Moving Average decay rate 0.995

drag forces, so that the design objective J is differentiable to the design variable z = U[0,T ]

⊕
γ.

The input of our model is a tensor comprising pressure, boundary mask, and offsets (both horizontal
and vertical directions) of shape 4× 64× 64 for a given time step. The output is the predicted drag
and lift forces of dimension 2. Boundary masks indicate the inner part (+1) and outside part (0) of a
closed boundary. Offsets measure the signed deviation of the center of each square on a 64× 64 grid
from the boundary in horizontal and vertical direction respectively, where the deviation of a given
point is defined as its distance to the nearest point on a boundary. If two or more boundaries appear
in a sample, the input mask (resp. offsets) is given by the summation of masks (resp. offsets) of
all the boundaries. Notice that since the input boundaries are assumed not to be overlapped, so the
summed mask and offset are still valid. The model architecture is half of a U-Net Ronneberger et al.
(2015) where we only take the down-sampling part to embed the input features to a 512-dimensional
representation; then we use a linear transformation to output forces.

Dataset. We use Lily-Pad (Weymouth, 2015) to generate simulation data with 1, 2 or 3 airfoil
boundaries to train and evaluate the surrogate model. Boundaries are mixture of ellipses and NACA
airfoils. We generate 10,000 trajectories for training dataset and 1,000 trajectories for test dataset.
Each trajectory consists of 100 time steps. We use pressure as features and lift and drag forces as
labels. Thus we have 3 million training samples and 300 thousand testing samples in total.

Training. We use MSE (mean squared error) loss between the ground-truth and predicted forces to
train the surrogate model. The optimizer is Adam (Kingma & Ba, 2014). The batch size is 128. The
model is trained for 20 epochs. The learning rate starts from 1× 10−4 and multiplies a factor of 0.1
every five epochs. The test error is 0.04, smaller than 5% of the average force in the training dataset.

E Visualization of 1D inverse design.

Examples of 1D design results are provided in this section. Figure 6 shows the results of using the
backpropagation algorithm and CinDM to design 2-body 54 time steps trajectories. The results of
designing 2-body 54 time steps trajectories using CEM and CinDM are provided in Figure 7. Figure
8 are the results of designing 4-body 44 time steps trajectories using CEM, backpropagation, and
CinDM.
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Figure 6: 54 time steps trajectories of 2 bodies after performing inverse design using the
backpropagation algorithm. Figures (a), (b), (c), and (d) represent the trajectory graphs obtained
using GNS, GNS (single step), U-Net, and U-Net (single step) as the forward models, respectively.
And (e) is the result of CinDM. The legend of this figure is consistent with Figure 2.

18



0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

(a)

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

(b)

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

(c)

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0
y

(d)

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

(e)

Figure 7: 54-step trajectories of 2 bodies after performing inverse design using the backpropa-
gation algorithm. Figures (a), (b), (c), and (d) represent the trajectory graphs obtained using GNS,
GNS (single step), U-Net, and U-Net (single step) as the forward models, respectively. And (e) is the
result of CinDM. The legend of this figure is consistent with Figure 2.
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Figure 8: 44-time steps trajectories of 4 bodies after performing inverse design using CEM.
Figures (a), (b), (c), and (d) represent the trajectory graphs obtained using GNS, GNS (single step),
U-Net, and U-Net (single step) as the forward models, respectively. And (e) is the result of CinDM.
The legend of this figure is consistent with Figure 2.
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Figure 9: Compositional design results of our method in 2D airfoil generation. Each row
represents an example. We show the heatmap of velocity in horizontal and vertical direction and
pressure in the initial time step, inside which we plot the generated airfoil boundaries.
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Table 11: Comparison to NABL and cINN for N-body time composition inverse design task.
2-body 24 steps 2-body 34 steps 2-body 44 steps 2-body 54 steps

Method design obj MAE design obj MAE design obj MAE design obj MAE

NABL, U-Net (1-step) 0.1174 0.01650 0.1425 0.01511 0.1788 0.01185 0.2606 0.02042
cINN 0.3235 0.11704 0.3085 0.18015 0.3478 0.18322 0.3372 0.19296

CinDM (ours) 0.1143 0.01202 0.1251 0.00763 0.1326 0.00695 0.1533 0.00870

F Visualization results of 2D inverse design by our CinDM

We show compositional design results of our method in 2D airfoils generation in Figure 9.

G Some visualization results of 2d inverse design baseline.

We show some 2D design results of our baseline model in Fig. 10.

H Comparison to additional works

Besides comparison results of baselines shown in the main text, we further evaluated additional two
baselines: neural adjoint method with boundary loss function (NABL) and conditional invertible
neural network (cINN) method (Ren et al., 2020; Ansari et al., 2022) for both N-body and airfoils
design experiments.

We implement NABL on top of baselines FNO and LE-PDE in the airfoil design task and U-net
in tcompositionalostional taskamed as “NABL, FNO”, “NABL, LE-PDE” and “NABL, U-net”
respectively. These new NABL baselines additionally use the boundary loss defined by the mean
value and 95% significance radius of the training dataset. cINN does not apply to compositional
design because the input scale for the invertible neural network function is fixed. Therefore, for the
time composition task, we trained 4 cINN models, each for one of the time steps: 24, 34, 44, and 54.
These models differ only in the input size. The input x to cINN is a vector of size 2× 4× T , where 2
is the number of objects, 4 is the number of features and T is the number of time steps. The condition
y is set to 0, the minimal distance to the target point. For cINN for 2D airfoil design, we adopt 2D
coordinates of 40 boundary pointsarewhich is spanned 80-dimensionalensional vector, as the input,
since the invertible constraint on the cINN model hardly accepts image-like inputs adopted in the
main experiments. Therefore we evaluate cINN only in the single airfoil design task. The condition y
is set as the minimal value of drag - lift drag in the training trajectories. In both tasks, the random
variable z has a dimension of dim(x) - dim(y). It is drawn from a Gaussian distribution and then
input to the INN for inference. We also adjust the hyperparameters, such as hidden size and a number
of reversible blocks, to make the number of parameters in cINN close to ours for fair comparison.

The results of NABL and cINN are shown in Table 11 and Table 12. We can see that CinDM
significantly outperforms the new baselines in both experiments. Even compared to the original
baselines (whocontains contain “Backprop-") without the boundary loss function, as shown in Table
1 and Table 3, the NABL baselines in both tasks do not show the improvement in the objective
for out-of-distribution data. These results show that our method generalizes to out-of-distribution
while the original and new baselines struggle to generalize the out-of-distribution. CinDM also
outperforms cINN by a large margin in both the time composition and airfoil design tasks. Despite the
quantities, we also find that airfoil boundaries generated by cINN have little variation in shape, and
the orientation is not as desired, which could incur high drag force in simulation. These results may
be caused by the limitation of the model architecture of cINN, which utilizes fully connected layers as
building blocks, and thus has an obvious disadvantage in capturing inductive bias of spatial-temporal
features. We think it is necessary to extend cINN to convolutional networks when cINN is applied
to such high-resolution design problems. However, this appears challenging when the invertible
requirement is imposed. In summary, our method outperforms both NABL and cINN in both tasks.
Furthermore, our method could be used for flexible compositional design. We use only one trained
model to generate samples lying in a much larger state space than in training during inference, which
is a unique advantage of our method beyond these baselines.
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Figure 10: Design results of FNO with CEM in 2D airfoil generation. Each row is the heatmap of
optimized velocities in horizontal and vertical direction and optimized pressure in the initial time
step, inside which we plot the generated airfoil boundaries.
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Table 12: Comparison to NABL and cINN for 2D airfoils inverse design task.
1 airfoil 2 airfoils

Method # parameters (Million) design obj ↓ lift-to-drag ratio ↑ design obj ↓ lift-to-drag ratio ↑
NABL, FNO 3.29 0.0323 1.3169 0.3071 0.9541
NABL, LE-PDE 3.13 0.1010 1.3104 0.0891 0.9860

cINN 3.07 1.1745 0.7556 - -

CinDM (ours) 3.11 0.0797 2.177 0.1986 1.4216

I performance sensitivity to hyperparameters, initialization and sampling
steps.

This section evaluate the effects of different λ, initialization and sampling steps on performance of CinDM.

I.1 Influence of the hyperparameter λ

Table 13: Effect of λ in N-body time composition inverse design.
2-body 24 steps 2-body 34 steps 2-body 44 steps 2-body 54 steps

λ design_obj MAE design_obj MAE design_obj MAE design_obj MAE
0.0001 0.3032 ± 0.0243 0.00269 ± 0.00047 0.2954 ± 0.0212 0.00413 ± 0.00155 0.3091 ± 0.0223 0.00394 ± 0.00076 0.2996 ± 0.0201 0.01046 ± 0.00859
0.001 0.2531 ± 0.0185 0.00385 ± 0.00183 0.2937 ± 0.0213 0.00336 ± 0.00115 0.2797 ± 0.0190 0.00412 ± 0.00105 0.2927 ± 0.0219 0.00521 ± 0.00103
0.01 0.1200 ± 0.0069 0.00483 ± 0.00096 0.1535 ± 0.0135 0.00435 ± 0.00100 0.1624 ± 0.0137 0.00416 ± 0.00059 0.1734 ± 0.0154 0.00658 ± 0.00267
0.1 0.1201 ± 0.0046 0.01173 ± 0.00150 0.1340 ± 0.0107 0.00772 ± 0.00099 0.1379 ± 0.0088 0.00816 ± 0.00149 0.1662 ± 0.0180 0.01141 ± 0.00473
0.2 0.1283 ± 0.0141 0.01313 ± 0.00312 0.1392 ± 0.0119 0.00836 ± 0.00216 0.1529 ± 0.0130 0.01019 ± 0.00584 0.1513 ± 0.0131 0.00801 ± 0.00172
0.4 0.1172 ± 0.0084 0.01500 ± 0.00207 0.1385 ± 0.0145 0.00948 ± 0.00293 0.1402 ± 0.0113 0.00763 ± 0.00112 0.1663 ± 0.0126 0.00850 ± 0.00124
0.6 0.1259 ± 0.0100 0.01382 ± 0.00115 0.1326 ± 0.0126 0.01171 ± 0.00595 0.1592 ± 0.0151 0.01140 ± 0.00355 0.1670 ± 0.0177 0.00991 ± 0.00287
0.8 0.1217 ± 0.0073 0.01596 ± 0.00127 0.1385 ± 0.0120 0.01095 ± 0.00337 0.1573 ± 0.0116 0.00893 ± 0.00113 0.1715 ± 0.0181 0.01026 ± 0.00239
1 0.1330 ± 0.0063 0.01679 ± 0.00139 0.1428 ± 0.0112 0.01087 ± 0.00149 0.1634 ± 0.0119 0.00968 ± 0.00079 0.1789 ± 0.0164 0.01102 ± 0.00185
2 0.1513 ± 0.0079 0.02654 ± 0.00160 0.1795 ± 0.0129 0.01765 ± 0.00193 0.1779 ± 0.0121 0.01707 ± 0.00474 0.2113 ± 0.0161 0.01447 ± 0.00130
10 0.2821 ± 0.0197 0.21153 ± 0.01037 0.2210 ± 0.0149 0.09715 ± 0.00236 0.2273 ± 0.0133 0.07781 ± 0.00232 0.2269 ± 0.0175 0.06538 ± 0.00210

Table 14: Effect of λ in 2D inverse design.
λ obj lift/drag
0.05 0.7628±0.1892 1.015±0.2008
0.02 0.3849±0.0632 1.0794±0.1165
0.01 0.2292±0.0408 1.286±0.1402
0.005 0.2061±0.0388 1.2378±0.1414
0.002 0.217±0.0427 1.2429±0.1243
0.001 0.2277±0.0451 1.2608±0.1469
0.0005 0.2465±0.0473 1.4102±0.1771
0.0002 0.1986±0.0431 1.4216±0.1607
0.0001 0.271±0.0577 1.1962±0.1284

To evaluate influence of the hyperparameter λ in Eq. 3, we perform inference in both N-body time
composition and 2D airfoils design task for a wide range of λ. The results are shown in Table 13,
Table 14, Fig 11, Fig 12, and Fig 13, where Table 13 corresponds to Fig 11 and Fig 12 while Table
Table 14 corresponds to Fig 13. Our method demonstrates robustness and consistent performance
across a wide range of lambda values. However, if λ is set too small (≤0.0001 in the 2D airfoil task,
or ≤0.01 in the N-body task), the design results will be subpar because there is minimal objective
guidance incorporated. On the other hand, if λ is set too large (≥ 0.01 in the 2D airfoil task, or ≥
1.0 in the N-body task), there is a higher likelihood of entering a poor likelihood region, and the
preservation of physical consistency is compromised. In practical terms, λ can be set between 0.01
and 1.0 for the N-body task, and between 0.0002 and 0.02 for the 2D airfoil task. In our paper, we
choose based on the best evaluation performance, namely we set as 0.4 for the N-body task and
0.0002 for the 2D airfoils task.

I.2 Influence of initialization

To analyze the sensitivity of initialization in our approach, we follow a similar methodology discussed
in Ren et al. (2020). We consider the “re-simulation" error r of a target objective y as a function of
the number of samplings T , where each sampling starts from a Gaussian initialization z. We use
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Figure 11: Design objective of different λ in N-body time composition inverse design.
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Figure 12: MAE of different λ in N-body time composition inverse design.

the simulator to obtain the output ŷ for each design x from the T design results given the target y
and compute the “re-simulation" error L(ŷ, y). We then calculate the least error among a batch of T
design results. This process is repeated for several batches, and the mean least error rT is obtained by
averaging over these batches.

Table 15 and Fig 14 present the results for the N-body inverse design task. We consider values of
T ranging from 10 to 100, with N = 10 batches. The target y is set to be 0, which represents the
distance to a fixed target point. The results show that rT gradually decreases as T increases in the
24-step design, indicating that the design space is well explored and most solutions can be retrieved
even with a small number of samplings. This demonstrates the efficiency of our method in generating
designs. Moreover, similar observations can be made when time composition is performed in 34, 44,
and 54 steps, indicating the effectiveness of our time composition approach in capturing long-time
range physical dependencies and enabling efficient generation in a larger design space.

In the 2D inverse design task, the target y is slightly different. Here, we aim to minimize the model
output (drag - lift force). Hence, we adopt the “re-simulation" performance metric, which is the
lift/drag ratio, as opposed to the “re-simulation" error used in the N-body task, to evaluate sensitivity
to initialization. For each T , the lift/drag ratio is chosen as the highest value among the simulation
results of a batch of T designed boundaries (or boundary pairs for the 2 airfoils design). Any invalid
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Figure 13: Performance of different λ in 2D airfoil inverse design.
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Figure 14: “Re-simulation" error rT of different T in N-body inverse design.

design results, such as overlapping airfoil pairs in the 2-airfoil design, are removed from the T results
before computing the maximal lift/drag ratio. The reported numbers are obtained by averaging over
N batches for each T .

Table 16 and Fig 15 present the results for the 2D airfoils design task. In the 1 airfoil design column,
we observe that the lift/drag performance remains relatively steady for T ≥ 20. For T = 10, the
lift/drag ratio is relatively low, indicating that the design space is not sufficiently explored due to its
high dimensionality (64x64x3 in our boundary mask and offsets representation). In the 2 airfoils
design column, the lift/drag ratio increases with T . This is attributed to the higher dimensional and
more complex design space compared to the single airfoil design task. The stringent constraints on
boundary pairs, such as non-overlapping, lead to the presence of complex infeasible regions in the
design space. Random initialization may lead to these infeasible regions, resulting in invalid design
results. The rate of increase in lift/drag ratio becomes slower when T ≥ 30, indicating that a majority
of solutions have been explored. Despite the training data only containing a single airfoil boundary,
which lies in a relatively lower dimensional and simpler design space, our model demonstrates a
strong ability to generalize and efficiently generate designs for this challenging 2 body compositional
design problem.
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Figure 15: Design performance (lift-to-drag) of different T in 2D airfoil inverse design.

Table 15: Influence of initialization. rT with respect to T for N-body inverse design task. Each
number is an of average over 10 batches.

T 2-body 24 steps 2-body 34 steps 2-body 44 steps 2-body 54 steps
10 0.10122654 0.1022556 0.10542078 0.11227837
20 0.10051114 0.10122902 0.10261874 0.10554917
30 0.09950846 0.10106587 0.10220513 0.10408381
40 0.09928784 0.10066015 0.10173534 0.10409425
50 0.09794939 0.10023642 0.10168899 0.10462530
60 0.09876589 0.09997466 0.10105932 0.10257294
70 0.09858151 0.09979441 0.10124100 0.10179855
80 0.09809845 0.09972977 0.10060663 0.10203485
90 0.09808731 0.09941968 0.10108861 0.10120515
100 0.09734109 0.09912691 0.10056177 0.10135190

I.3 Influence of the number of sampling steps in inference
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Figure 16: Design objective of different sampling steps in N-body inverse design.
Fig 16 and Fig 17 illustrate the outcomes of inverse design carried out by CinDM. It is apparent
that with an increase in the number of sampling time steps, the design objective gradually decreases.
In contrast, the MAE fluctuates within a small range, occasionally rising. This phenomenon can
be examined as follows: as the number of sampling steps increases, the participation of the design
objective in the diffusion process intensifies. As a result, the designs improve and align more closely
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Table 16: Influence of initialization. Design performance (lift-tconcerningspect to T for 2D inverse
design task. Each number is an of average over 10 batches.

T 1 airfoil 2 airfoils
10 1.4505 0.8246
20 2.2725 0.7178
30 2.2049 1.3862
40 2.6506 1.5781
50 2.1355 1.6055
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Figure 17: MAE of different sampling steps in N-body inverse design.

with the design objective, ultimately leading to a decrease in the design objective. However, when the
number of sampling steps increases, the MAE also increases. This is because, with a small number of
sampling steps, the initial velocities of some designed samples are very small, causing the diffusion
of trajectories to be concentrated within a narrow range. Consequently, both the true trajectory and
the diffused trajectory are highly concentrated, resulting in a small calculated MAE. By analyzing
the sensitivity of the design objective and MAE to different sampling steps, we can conclude that
CInDM can achieve desired design results that align with design objectives and physical constraints
by appropriately selecting a sampling step size during the inverse design process.

J Broader impacts and limitations

Our method, CinDM, extends the scope of design exploration and enables efficient design and control
of complex systems. Its application across various scientific and engineering fields has profound
implications. In materials science, utilizing the diffusion model for inverse design facilitates the
customization of material microstructures and properties. In biomedicine, it enables the structural
design of drug molecular systems and optimizes production processes. Furthermore, in the aerospace
sector, integrating the diffusion model with inverse design can lead to the development of more
diverse shapes and structures, thereby significantly enhancing design efficiency and quality.

CinDM combines the advantages of diffusion models, allowing us to generate more diverse and
sophisticated design samples. However, some limitations need to be addressed at present. In terms
of design quality and exploration space, we need to strike a balance between different objectives to
avoid getting stuck in local optima, especially when dealing with complex, nonlinear systems in the
real world. We also need to ensure that the designed samples adhere to complex multi-scale physical
constraints. Furthermore, achieving interpretability in the samples designed by deep learning models
is challenging for inverse design applications. From a cost perspective, training diffusion models
requires large datasets and intensive computational resources. The complexity of calculations also
hinders the speed of our model design.

Moving forward, we intend to incorporate more physical prior knowledge into the model, leverage
multi-modal data for training, employ more efficient sampling methods to enhance training efficiency,
improve interpretability, and generalize the model to multiple scales.
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