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ABSTRACT

Spectral GNNs leverage graph spectral properties to model graph representations
but have been less explored due to their computational challenges, especially com-
pared to the more flexible and scalable spatial GNNs, which have seen broader
adoption. However, spatial methods cannot fully exploit the rich information
in graph spectra. Current Spectral GNNSs, relying on fixed-order polynomials,
use scalar-to-scalar filters applied uniformly across eigenvalues, failing to cap-
ture key spectral shifts and signal propagation dynamics. Though set-to-set filters
can capture spectral complexity, methods that employ them frequently rely on
Transformers, which add considerable computational burden. Our analysis indi-
cates that applying Transformers to these filters provides minimal advantage in the
spectral domain. We demonstrate that effective spectral filtering can be achieved
without the need for transformers, offering a more efficient and spectrum-aware
alternative. To this end, we propose a Simple Yet Effective Spectral Graph Neu-
ral Network (SSGNN), which leverages the graph spectrum to adaptively filter
using a simplified set-to-set approach that captures key spectral features. More-
over, we introduce a novel, parameter-free Relative Gaussian Amplifier (ReGA)
module, which adaptively learns spectral filtering while maintaining robustness
against structural perturbations, ensuring stability. Extensive experiments on 20
real-world graph datasets, spanning both node-level and graph-level tasks along
with a synthetic graph dataset, show that SSGNN matches or surpasses the per-
formance of state-of-the-art (SOTA) spectral-based GNNs and graph transformers
while using significantly fewer parameters and GFLOPs. Specifically, SSGNN
achieves performance comparable to the current SOTA Graph Transformer model,
Polynormer, with an average 55x reduction in parameters and 100x reduction in
GFLOPs across all datasets. Our code will be made public upon acceptance.

1 INTRODUCTION

In recent years, Graph Neural Networks (GNNs) (Scarselli et al.| (2008))), have gained significant
popularity for machine learning on graph structured data, delivering impressive results on various
graph related tasks. Although traditional GNNs utilize a message-passing framework (Gilmer et al.
(2017), Battaglia et al.| (2018)) to facilitate information exchange between neighboring nodes, they
often face challenges such as over-smoothing and over-squashing (Oono & Suzuki| (2019), |Alon &
Yahav| (2020), D1 Giovanni et al.[ (2023)) which can restrict their ability to accurately model com-
plex functions. Spectral GNNs (Defferrard et al.| (2016)), [Bruna et al|(2013)), on the other hand,
capitalize on graph convolutions and operate in the spectral domain to obtain graph filter responses
that enable them to capture non-local dependencies more effectively. Despite the success of spatial
GNN:gs, the exploration of spectral GNNs has been limited, largely because of the use of scalar filters
that fail to leverage the rich information within the graph spectrum|Bo et al.|(2023a)). Recently graph
transformer (GT) models have show potential for enhancing GNN expressivity, their scalability is
limited due to high parameter complexity because of which linear GTs (Choromanski et al.| (2022),
Zhang et al.|(2022), Kong et al.|(2023))) have been proposed. However, GTs underperform on numer-
ous widely used datasets (Platonov et al.|(2023))), as highlighted in Polynormer (Deng et al.| (2024)),
which raises concerns about the effective utilization of the expressivity enabled by the self-attention
module in these GTs.

Conventional spectral graph filters often apply scalar functions uniformly across eigenvalues, disre-
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garding the unique structural insights they provide. It is well known that eigenvalues and eigenvec-
tors capture critical structural properties: smaller eigenvalues represent smooth variations in a graph,
while the number of zero eigenvalues reflects the number of connected components. The eigenvec-
tor associated with the smaller non-zero eigenvalue balances smoothness and variation across the
graph, revealing its global structure. It is common that eigen-values of the graph Laplacian are not
distinct. While polynomial filters enhance flexibility by approximating spectral filters with fixed-
order polynomials and avoiding costly eigen-decomposition, they struggle with the high multiplic-
ity of eigenvalues commonly found in real-world graphs. This multiplicity leads to uniform scaling
of frequency components with the same eigenvalue, limiting the expressive capacity of these filters.
To address this limitation, a method that manages sets of eigenvalues and captures their geometric
relationships is essential.

Unlike traditional scalar-to-scalar filters that apply the same filter to all eigenvalues, a set-to-set fil-
tering approach leverages the spectrum information from a set of eigenvalues. This enables more ex-
pressive spectral filtering by modeling complex interactions between frequency components, yield-
ing a richer understanding of the graph’s structure. Bastos et al.|(2022) demonstrate that the spatial
attention mechanism in transformers fails to capture the desired frequency response, limiting ex-
pressiveness in the spectral domain. They introduce FeTA, which captures attention across the entire
spectrum while approximating this spectral information through polynomial methods. Specformer
(Bo et al.|(2023a)) employs transformers (Vaswani et al.|(2017))) for set-to-set filtering, directly mod-
eling eigenvalue relationships at the graph spectrum level without polynomial approximations. This
method enables the construction of advanced spectral filters that can capture complex spectral be-
haviors. The self-attention mechanism poses a significant computational bottleneck, with quadratic
time and space complexity, complicating Specformer’s scalability to large graphs |Bo et al.| (2023b).
Our results further demonstrate that it encounters CUDA OOM challenges even on moderate-sized
heterophilic graph datasets. Heterophilic graphs, where nodes from different classes tend to connect
with each other are highly sensitive to hyperparameters. Transformers also exhibit hyperparameter
sensitivity and training instability due to parameter perturbations (Chen et al.| (2021)). This shared
vulnerability questions the reliability of transformers on heterophilic data, despite their theoretical
advantages. We investigate the question: “Can we develop a set-to-set spectral filtering adaptively
learns filters based on graph data characteristics in a parameter-efficient manner?”

We introduce SSGNN—Simple Yet Effective Spectral Graph Neural Network—an encoder-decoder
architecture that directly operates on the graph spectrum. Engineered for parameter efficiency, SS-
GNN incorporates a novel, parameter-free Relative Gaussian Amplifier (ReGA) module for dynamic
spectral filtering tailored to the graph’s characteristics.

This lightweight design enables SSGNN to effectively Vymberof Perams. v T vs Highec st Accuracy
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The major contributions of the paper can be summarised as follows:

* We propose a simple architecture featuring: i) a spectral encoding to capture eigenvalue
interdependencies and global structural information; ii) a decoder that serves as a bank of
filter bases, enabling adaptive learning of spectral filters tailored to the graph’s characteris-
tics, enhanced by our parameter-free ReGA module.

* We provide both theoretical and empirical analysis showing that SSGNN is robust against
structural changes.

» Experiments on a synthetic dataset demonstrate that SSGNN can learn complex filters, pro-
viding accurate approximations of spectral filters compared to other spectral GNNs and GT.
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Specifically, SSGNN excels in modeling high-pass, band-pass, and comb filters, achieving
performance nearly 100 times better than Specformer in node regression task.

» Extensive experiments across 20 real-world graph datasets for node and graph classifica-
tion tasks demonstrate that SSGNN achieves comparable or even surpasses recent SOTA
models, with nearly 100x fewer parameters. Specifically, for node classification, on the
homophilic WikiCS dataset, SSGNN outperforms Polynormer by 5%, utilizing approxi-
mately 2700x fewer parameters and 2600x fewer GFLOPs. In the same vein, on the het-
erophilic Tolokers dataset, SSGNN achieves nearly 2% higher AUC compared to Poly-
normer, with about 2600x fewer parameters and 500x fewer GFLOPs. In graph classifi-
cation tasks, we achieve a new best mean absolute error (MAE) of 0.0592 on the ZINC
dataset and 0.3012 average precision (AP) on MolPCBA. Additionally, on MolHIV, we
surpass an AUC of 80, a benchmark previously reached only by higher-order GNNs like
CIN (Bodnar et al.[(2021)).

2 BACKGROUND AND RELATED WORKS

Preliminary. Consider an undirected graph G = (V, £), where V represents a finite set of N nodes.
Eachnode i € V is associated with a feature vector X; € R?, where X € RV > is the node feature
matrix and d ¢ denotes the dimensionality of node features. £ C V x V represents the edge set and the
adjacency matrix of G is denoted as A € {0, 1}V <V, Let D be the diagonal degree matrix, where
D;; corresponds to the degree of the node i. L = Iy — D~'/2AD'/2 denotes the normalized
graph Laplacian, where I is the identity matrix. Since L is a real symmetric matrix, its eigen
decomposition can be defined as L = UAUT, where A = diag()\o, A1, ..., Ax) is the diagonal
matrix of the eigenvalues and U = [ug, u1, ..., u,| comprises of the corresponding eigenvectors.

Graph Signal Processing. The graph Fourier transform (GFT) for a signal = € RY>1 is expressed
as & = Ux € RV*1. A spectral filter gy operates on & to scale the Fourier coefficients. Subse-
quently, an inverse GFT is applied to obtain the filtered signal in the vertex domain as x = UZ.

Existing GNNs can be roughly divided into three categories: Spatial GNNs, Spectral GNNs and GT.

Spatial GNNs. Spatial GNNs operate by leveraging local-message passing mechanisms, where in-
formation is exchanged between neighboring nodes based on graph topology. GraphSAGE Hamil-
ton et al.| (2017) uses efficient sampling and aggregation, MPNN |Gilmer et al.| (2017) generalizes
message-passing across nodes, GAT |Velickovic et al.| (2017) as well as GATv2 Brody et al.| (2021}
incorporate attention mechanisms to weigh the importance of neighboring nodes. Although stacking
multiple layers in spatial GNNs facilitates the capturing of long-range dependencies, it frequently
introduces difficulties such as over-smoothing|Oono & Suzuki|(2019), making node representations
hard to distinguish, and over-squashing Topping et al.| (2021)), where distant information is com-
pressed into limited node capacity.

Spectral GNNs. Spectral GNNs (Wu et al.| (2019)), [Dong et al. (2020)) operate in the frequency
domain, utilizing the graph’s Laplacian spectrum to perform convolutions and capture global struc-
tures. Initial models like Spectral CNN (Bruna et al.|(2013)) and ChebNet (Defferrard et al.|(2016))
laid the foundation by learning convolutional filters in the spectral domain, while Graph Convolu-
tional Networks (GCN) (Kipf & Welling|(2016)) further simplified spectral convolution for broader
applicability. Recent advances include SpecFormer (Bo et al.[ (2023a)), which integrates spectral
graph convolution with transformer architectures to capture local and global patterns effectively.
G?CN (Li et al.| (2022)) utilizes Gaussian convolutional networks with concentrated graph filters,
enhancing efficiency while preserving structural properties. Despite these developments, spectral
methods still struggle with computational intensity and scalability challenges, making them less
practical for very large graphs (Wu et al.|(2021)), |Liang et al.|(2022)).

Graph Transformers. Graph Transformers (Thekumparampil et al.|(2018)),[Yun et al.[|(2019)) have
emerged as a powerful alternative to traditional GNNs, effectively modeling long-range dependen-
cies through attention mechanisms that capture both local and global structures. Key advancements
include Graphormer (Ying et al.[(2021))), which embeds structural encodings for improved perfor-
mance on molecular graphs; SAN (Kreuzer et al. (2021))), which integrates structural relationships
to enhance node classification; and GraphGPS (Rampasek et al.| (2022)), which combines local
message-passing with global attention. Efficiency-focused models like Exformer (Shirzad et al.
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(2023)) and DiFFormer (Gao et al.|(2022)) aim to optimize attention mechanisms for scalability and
better long-range dependency modeling.

3 METHODOLOGY

In this section, we present the architecture of SSGNN, which includes a Spectral Encoder and a De-
coder. Then, we discuss our parameter-free ReGA module followed by an overview of the modified
graph convolution. Finally, we conclude with the computational complexity analysis of SSGNN.

3.1 SPECTRAL ENCODER

First we adopt the eigen-correction strategy from |Lu et al.| (2024), to address the issue of repeated
eigenvalues as discussed in Section. [T} modifying the eigenvalues as follows:

< 2 .

)\Z:ﬁ)\z-F(l—ﬂ)m,VZeN, (1)
where 3 € [0,1] is a hyperparameter that ensures )\; remains strictly monotonically increasing,
making each ); to be unique. Then, we define an encoding function motivated by Specformer
Bo et al.| (2023a), which maps these correct scalar eigenvalues ¢ : R — R<, into meaningful d
dimensional vector representation, as:

(A, 20) = sin((eAy,) /1000027 %) : d(X, 2i + 1) = cos((eA)/10000%/?), VE € N.  (2)

where € > 0 denotes the scaling factor. While Specformer emphasizes the advantages of encoding
for expressive scalar eigenvalue representation, multi-scale features, and relative frequency shifts,
we offer a new perspective that supports our subsequent approach. We begin by concatenating
the corrected eigenvalues )\;Vi € R with their corresponding encodings ¢();) to form Zeig =
(Molld(Xo), - -5 Anllo(An)) € RYX(4+D) Next, we apply a transformation W, € R4+ (d+1)
to Z.;4 to learn the dependencies between the original eigenvalues and their encoded representa-
tions, which can be seen as Zeig = ZeigWeig 726@ e RVx(d+1), Zm-g can be interpreted as
comprising of two key components: (i) the corrected eigenvalues \;, which retains essential global
structural information and (ii) ¢()\;), which captures the oscillatory behavior of these corrected
eigenvalues.

In homophilic data, where nodes with similar attributes are connected, the signal predominantly ex-
hibits low-frequency characteristics. This is due to connected nodes typically sharing comparable
features, resulting in a smoother graph signal. Consequently, the variations captured by ¢(\) are
minimal, highlighting the critical role of the corrected eigenvalue in enabling the model to distin-
guish between encodings. In contrast, heterophilic data, characterized by connections between nodes
with dissimilar attributes, is captured by high-frequency components. Here, connected nodes exhibit
substantial variability, leading to rapid fluctuations in the graph signal. These rapid oscillations are
represented by the higher eigenvalues of the Laplacian, while ¢(\) encapsulates these dynamic vari-
ations within the graph structure. The weight matrix W, is trained to learn the interdependencies
between the corrected eigenvalue and its encoding, facilitating optimal model performance. By
leveraging this encoding, the model adapts to the underlying graph structure, accurately capturing
both smooth and oscillatory behaviors.

3.2 DECODER

The output of the encoder, Zeig € RN*(d+1) i then passed into a two-layer MLP-based decoder
that includes a non-linear activation function. This architecture enables the decoder to effectively
capture intricate transformations and adapt versatile spectral filtering. It is given by:

M= 0(ZeigW1) Wi, A € RV Wy € RUFDXEHD Dy, ¢ RUAFD>T (3)

Here o denotes activation and W7, W, are learnable parameters. The decoder holds a crucial func-
tion in our network, being responsible for adaptively executing spectral filtering. Its main objective
is to learn a wide variety of filtering strategies by adjusting to the graph’s spectral characteristics
and the node features. To allow the decoder to capture various aspects of the filtering procedure, we
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introduce H heads, drawing inspiration from multi-head architecture of Transformers. These heads
allow the decoder to learn diverse spectral filtering patterns. These heads focus on learning distinct
aspects of the signal, making the decoder a bank of efficient filter bases. As training progresses, the
encoder refines its representations by integrating node feature data. However, in the early stages, the
decoder might face difficulties in grasping meaningful representations due to its reliance on spectral
encodings, which may not comprehensively capture all dependencies. Consequently, the learned
filters may exhibit uneven amplitude distribution, where a filter intended for a specific frequency
band inadvertently captures signals from other bands.

To tackle the problem of noisy focus by decoder on irrelevant features, which hinders its effective-
ness in accurately isolating the target frequency band, we implement a mean shift at the decoder
level. This adjustment re-centers the amplitude distribution around zero, facilitating a more bal-
anced and accurate filtering mechanism. Furthermore, the variations learnt across different decoder
heads enhance the diversity of the filtering process. In this multi-head configuration, the mean shift
allows each head to concentrate more effectively on its target frequency components, yielding filters
that are both consistent and specialized. The mean shift is defined as A\;, — up, Vh € H, where
Wy = % Ziv:l Anj denotes the mean amplitude of the filter head. This mean value encapsulates the
global context captured by the decoder for that specific head. However, using the mean shift directly
may lead to inconsistencies, as the distribution can fluctuate unpredictably due to varying frequency
components. To address this, scaling the mean shift by the standard deviation of each head’s am-
plitudes o5, normalizes these fluctuations, resulting in a more balanced representation across all
frequency bands. Considering these we introduce a head-specific factor z;, € RV*! defined by:

1
(An — pn) )

Zh = —
Oh

Here o}, represents the standard deviation of the learned amplitudes for each head h , calculated as

o = \/ % Zivzl (Ank — ph)? + € with € being a small constant added for numerical stability. We

find that this formulation is equivalent to normalizing the learned amplitudes for each head of the
decoder.

3.3 REGA: RELATIVE GAUSSIAN AMPLIFIER

To further enhance the representational capabilities of the filters learned by the decoder, we concen-
trate on amplification at the filtering level. y implementing a function f(-) to adjust the ampli-
fication of the decoder’s filters, we can optimize their ability to capture relevant spectral features,
thereby improving overall efficacy. For homophilic graph data, f(-) should guide the decoder to
amplify low-frequency components, allowing the filter to effectively function as a low-pass filter.
In contrast, for heterophilic graph data, f(-) should enable the decoder to adaptively model a band-
reject filter or amplify high-frequency components, thereby acting as a high-pass filter. z;, highlights
a preference for frequency components with higher amplitudes. To emphasize this distinction, we
aim to model f(-) in a way that amplifies the amplitudes of frequency components near the mean
while suppressing those that diverge from it. This approach is designed to meet the following cri-
teria: i). f(z) is constrained within the semi-closed interval (0, 1], meaning f(z) € (0, 1]; ii). It
attains a unique maximum value of 1 at z = 0; iii). As z approaches infinity, the function asymptot-
ically converges to zero, represented by lim,_, 1, f(z) = 0. To meet these properties, we propose
Relative Gaussian Amplifier (ReGA), G, (z) utilizing the Gaussian function over other functions
as
_ (zp—a)?

Gn(zn) = ae” 27—, Vh € H, (&)
where « represents the scale of the Gaussian function. We set o = 1 to satisfy the first condition.
The mean a is set to 0 to meet the second condition and b is the standard deviation, serving as a
hyperparameter controlling the spread of the scores across different amplitude values. Thus, the
simplified form of G},(z5,) becomes:

(zp 2

)
fzh, = Gh(zh) =e 27 fzh, € RNXI; (6)

'In filtering, this entails prioritizing relevant frequency components to enhance their influence while dimin-
ishing the effects of less relevant ones. From this point forward, we will refer to this adaptive behavior as
amplification throughout the paper.




Under review as a conference paper at ICLR 2025

where f,, represents ReGA’s output, the adaptive scores for each head h. f,, is now applied
element-wise to the decoder’s output \;, € RV*! yielding the scaled output Xn. This operation
can be expressed as: A = fz, © Ap where © denotes element-wise multiplication. By integrat-
ing ReGA, the decoder effectively adapts its learned filter bases, resulting in improved filtering of
frequency components.

To gauge the amplification effect of the filters on the initial values, we quantify the difference (N n—
Ai, Vi € RY), highlighting the degree of emphasis placed on each component during filtering
(here )\;) denotes the original eigenvalue). This approach is inspired by the gradient operator in
graph diffusion techniques, as discussed by |Chamberlain et al.| (2021)). Amplified components reflect
heightened attention, while suppressed components denote reduced influence, thereby enhancing the
model’s adaptiveness. We conceptualize this deviation as a learned spectral shift. To improve the
interpretability of the learned spectral shift, we introduce a constraint to prevent negative filtering
(Bo et al.|(2021)). This constraint is crucial for avoiding adverse effects in the spectral domain that
could arise from negative amplitude values. We enforce non-negativity by applying the absolute

value operation, represented as Ai h= |):i h—Ai|, Vi e RN,

3.4 GRAPH CONVOLUTION

With the learned spectral filters Ah, We NOW move on to defining the spectral bases necessary for
graph convolution. For each head h € H, we construct the corresponding spectral bases F},, stack
them along the head dimension, and pass these stacked bases through an MLP to capture interde-
pendencies between the spectral bases of different heads. This process is formulated as:

F), = Udiag(A\,)U ", F =MLP([Fy|---||Fy_1]), 7

where F' is the final set of learned spectral bases that model interdependencies across heads. These
learned bases serve a similar role to polynomial bases used in existing literature, but are adaptively
learned from the data. Finally our graph convolution can be defined as:

X0 = pxU-D X0 — 5(x -V -D), ®)

where X () represents the node representations for the I-th layer, while X ‘1) represents the mod-
ified representations of (I — 1)-th layer when given the spectral bases F'. The matrix W=D rep-

resents the transformation that updates X ‘=1 to X () and o represents the activation. By stacking
multiple graph convolutional layer, SSGNN effectively learns node representations.

3.5 THEORITICAL ANALYSIS AND COMPUTATIONAL COMPLEXITY

Theoritical Analysis. Let A € RY*! be the eigenvalue and A = \ + £ represent a pertubed eigen-
value, where ¢ is a bounded pertubation such that ||£||2 < §. The Gaussian-based spectral filtering

f(\) =exp <7 (2’\(;5))22 ) remains stable under perturbations in the eigenvalue, such that:

1FN) = N2 < K6 )

where K is a constant and 0 is the perturbation bound. All proofs and empirical analysis are
provided in the Appendix section [C]

Computational Complexity. SSGNN’s computation involves two key components: spectral de-
composition and forward process. Spectral decomposition, pre-computed with a complexity of
O(N?), is amortized over multiple training and inference steps, as it is computed just once and
stored. For smaller graphs, this precomputation incurs minimal overhead. However, for larger
graphs, fast numerical methods such as Krylov subspace approximations for the top k eigenvalues
or Sparse Generalized Eigenvalue algorithms can significantly reduce the cost by efficiently esti-
mating k eigenvalues and eigenvectors. The forward pass has two parts: learnable bases and graph
convolution, with complexities O(HN?) and O(INd), respectively, where [ represents the number
of layers, and d is the hidden dimension. Thus the total forward complexity is O(N(HN + [d). For
large graphs, this complexity can be further reduced to O(Hk? + INd).
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Table 1: Node regression: Mean of the sum of squared error and (R? score) on synthetic data.

Low-pass High-pass Band-pass Band-rejection Comb
Model exp(—100%)  1—exp(—1003)  exp(—100A — 1)?) 1 — exp(—10(A — 1)%) [sin(m)|
GCN 3.4799(.9872)  67.6635(.2364) 25.8755(.1148) 21.0747(.9438) 50.5120(.2977)
GAT 2.3574(.9905)  21.9618(.7529) 14.4326(.4823) 12.6384(.9652) 23.1813(.6957)
ChebyNet 0.8220(.9973)  0.7867(.9903) 2.2722(.9104) 2.5296(.9934) 4.0735(.9447)
GPR-GNN  0.4169(.9984)  0.0943(.9986) 3.5121(.8551) 3.7917(.9905) 4.6549(.9311)
BernNet 0.0314(.9999)  0.0113(.9999) 0.0411(.9984) 0.9313(.9973) 0.9982(.9868)
JacobiConv  0.0003(.9999)  0.0064(.9999) 0.0213(.9999) 0.0156(.9999) 0.2933(.9995)
Specformer  0.0048(.9999) 0.001(.9999) 0.000057(.9999) 0.0054(.9999) 0.0052(.9999)
SSGNN 0.0034(.9999)  0.000008(.9999)  0.0000059 (.9999) 0.0084(.9999) 0.000057(.9999)

exp(~10%) exp(~10(A - 1%)

1-exp(~10(A - 1%)

1- exp(~104%) Isin(m)|
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Figure 2: Filters learned by Specformer and SSGNN on a Synthetic dataset

4 EXPERIMENTS

In this section, we present experiments on diverse real-world and a synthetic graph dataset to assess
the effectiveness of our model, SSGNN. We thoroughly compare its performance against SOTA
GNNs, Graph Transformer and spectral GNN models across both homophilic and heterophilic
graphs for node classification, graph classification and regression. We also perform ablation studies
to show the effect € and b on the learned filters after our ReGA operation.

4.1 LEARNING SPECTRAL FILTERS ON SYNTHETIC DATA

In this experiment, we use the synthetic dataset from Specformer, where 50 images from the Image
Processing Toolbox are treated as 2D 4-neighbor grid graphs with pixel values as node features.
All images share the same adjacency matrix, and five predefined graph filters generate the ground
truth signals. Specformer-Small and SSGNN are both configured with 16 hidden units and 1 head
for fair comparison, with training running up to 2000 epochs. No regularization is applied, and a
learning rate of 0.01 is used. We measure performance using sum of squared error and R? score.
We conduct experiments using Specformer-Small and SSGNN with the described settings, while
for the remaining baselines, we rely on the results reported in the Specformer paper, as it already
provides a fair comparison across models. Table |I| shows the quantitative results, where SSGNN
consistently outperforms other models, especially on complex filters like high-pass, band-pass, and
comb achieving lower SSE. SSGNN surpasses Specformer even in low-pass filtering. Figure
visualizes the learned filters, showing that SSGNN aligns more closely with ground truth across all
scenarios. These results highlight that SSGNN is not only lightweight but also highly effective in
capturing various types of filtering based on the data.

4.2 NODE CLASSIFICATION

In the node classification task, we assess SSGNN using eight homophilic datasets and nine het-
erophilic datasets. Details on the baseline settings and dataset splits can be found in the Appendix.

Results. The node classification results span three tables, each analyzed in detail. . In Table [2
SSGNN shows competitive performance on homophilic datasets, outperforming most of SOTA GT
models. Notably SSGNN achieves a record 85.16% accuracy on WikiCS, surpassing Polynormer
by 5% with a remarkable 625x reduction in parameters.On Coauthor-Physics, Specformer faces
OOM, while SSGNN ranks first without such issues. In Amazon-Photo, SSGNN ranks second with
comparable performance to Specformer, lower standard deviation, and a 300x reduction in param-
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eters compared to Polynormer. In large-scale graphs like ogbn-arXiv, SSGNN outperforms both
Polynormer and Specformer, with Polynormer initially facing OOM issues. In Table[3] we evaluate
homophilic and heterophilic datasets targeted by Specformer, which Polynormer does not address.
For Chameleon, SSGNN achieves accuracy improvements of 7% and 2.35% over Specformer and
Polynormer, respectively. In the Squirrel dataset, it records increases of 4.65% and 7.45% compared
to Specformer. These significant enhancements demonstrate SSGNN’s superior ability to adaptively
capture high-pass and band-rejection features, as further evidenced by the synthetic data experi-
ments (see Table[T). In Table[d] we present results from experiments on the latest heterophilic graph
datasets introduced by [Platonov et al.| (2023), which were evaluated using Polynormer but not by
Specformer. We encountered challenges with the Roman-Empire dataset due to its directed nature,
which hinders spectral GNNs that convert it to undirected graphs. In contrast, models like Dir-
GNN, designed for directed graphs, achieve superior results. In the Minesweeper dataset, we ranked
second relative to Polynormer with a notable 3000x reduction in parameters. In the Tolokers and
Questions datasets, we achieve new SOTA accuracies, surpassing Polynormer and Specformer by
1.86% and 1.36% respectively, while also achieving a 2600x reduction in parameters compared to
Polynormer. These results demonstrate that SSGNN not only surpasses SOTA models across diverse
graph datasets but also showcases improved scalability and efficiency in handling both homophilic
and heterophilic graph data. Its streamlined architecture, combined with effective, parameter-free
ReGA module, allows SSGNN to effectively learn complex filters.

Table 2: Results for node classification accuracy on homophilic datasets. We report average accuracy
(%) =£ std over 10 runs. The top first, second, and results are highlighted for each dataset.
means that the baselines were trained from scratch.

Computer Photo CS Physics WikiCS ogbn-arXiv
GCN 89.65 £ 0.52 92.70 +£0.20 92.924+0.12 96.18 +0.07 T747+0.85  71.74£0.29
GraphSAGE 91.20 £0.29 94.59 +0.14 93.91+£0.13 96.49 £ 0.06 74.77 £ 0.95 -
GAT 90.78 £ 0.13 93.87+0.11 93.61+0.14 96.17 +0.08 76.91 £ 0.82 +0.20
GCNII 91.04 £0.41 94.30 £ 0.20 92.224+0.14 95.97 £ 0.11 78.68 £ 0.55 -
GPRGNN 89.324+0.29 94.49 +0.14 95.13 +0.09 96.85 4 0.08 78.12+0.23  71.10£0.12
OrderedGNN  92.03 £0.13  95.10+0.20 95.00 £ 0.10 97.00 £ 0.08 79.01 £ 0.68 -
GraphGPS 91.19 4+ 0.54 95.06 +0.13 93.93+0.12 +0.19  78.66+£0.49  70.97+£0.41

Exphormer 91.47 £0.17 95.35 £0.22 94.93 £ 0.01 96.89 £ 0.09 78.54£0.49 7244 +£0.28
NodeFormer 86.98 £ 0.62 93.46 £0.35 95.64 +£0.22 96.45 £ 0.28 74.73+£0.94 67.19+£0.83

DIFFormer +0.76  95.10+£0.47  94.78+0.20 96.60+0.18  73.46+056  69.86+0.25

Soech 87.23 + 0.52* +0.32* +0.07* 0OM* 84.55 £ 0.20* 71.98 4 0.33*
pectormer (33K) (32K) (226K) (17.6K) (500K)

Polynormer 371 £0217 9648 £0.34°  95.55 40117 97.27 £0.11° +0.56* 71.89 4+ 0.21*
(5.4M) (7.8M) (9.3M) (4.0M) (7.5M) (393K)

SSGNN 91.384£0.38 95.38+0.03 96.30+£0.08 98.33+0.15 85.16+£0.41 72.10 =+ 0.04
(27.2K) (26.5K) (220K) (135K) (12.3K) (36.5K)

Table 3: Averaged accuracy (%) =+ std over 10 runs for node classification on homophilic (Cora,
Citeseer) and heterophilic datasets. We highlight the top first, second, and results per dataset.
* means that the baselines were trained from scratch.

Chameleon Squirrel Actor Penn%4 Cora Citeseer
GCN 40.89+4.12 3947+147 3323+1.16 82474027 87.14+1.01 79.86+0.67
GAT 390.214+3.08 35.62+£2.06 33.93+247 81.53+£0.55 88.03+£0.79  80.52+0.71
H,GCN 26.754+3.64 3510+1.15 35.86+1.03 00OM 86.924+1.37  77.07+1.64
GPRGNN 39934330 38.95+1.99 39.92+0.67 81.38+0.16 +0.69 80.12+0.83
JacobiConv  39.00 £4.20  29.71 & 1.66 +0.64 +0.11 8898046 80.78 +0.79
Soect 36.11 & 0.44* +0.42% 42.01£1.14* 84.28+0.32* 88.50 4 0.98* 81.52 = 0.90*

pectormer (82k) (75K) (37k) (338K) (54K) (126K)
Pol +0.46* 34.86£0.11% 41.16 +0.93* 83.31 +0.50* 86.79 £ 0.28* +0.62

olynormer (665K) (2.0M) (6.2M) (983K) (1.8M) (2.4M)
SSGNN 4310+1.36 4231+0.74 4322+1.05 8433420001 88.66+0.17 8218 +0.21

(77K) (34K) (32K) (157K) (48.5K) (121Kk)

4.3 GRAPH CLASSIFICATION AND REGRESSION

We evaluate SSGNN on three graph-level datasets of varying sizes: ZINC |Dwivedi et al.|(2023), a
small dataset with 12,000 molecular graphs, and two larger OGB datasets, MolHIV and MolPCBA
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Table 4: Average results = std for node classification over 10 runs on heterophilic datasets. Accuracy
is reported for roman-empire and amazon-ratings; ROC AUC is reported for the rest. The top first,
second, and results are highlighted for each dataset. * means that the baselines were trained

from scratch.

roman-empire  amazon-ratings  minesweeper tolokers questions

GCN 73.69+0.74 48.70 £ 0.63 89.75+0.52 83.64 £0.67  76.09 +1.27
GraphSAGE 85.74 £ 0.67 53.63 +0.39 93.51 £0.57 82.43+0.44  76.44+£0.62
GAT-sep 88.75+£0.41 52.70 £ 0.62 93.91+0.35 83.78£0.43  76.79+0.71
H2GCN 60.11 +0.52 36.47+0.23 89.71+£0.31 73.35 £1.01 63.59 + 1.46
GPRGNN 64.85 +0.27 44.88 £0.34 86.24 £+ 0.61 72.94+£0.97 5548 £0.91
FSGNN 79.92 + 0.56 52.74 +£0.83 90.08 £ 0.70 82.76 £0.61  78.86 £0.92
GloGNN 59.63 £ 0.69 36.89 £0.14 51.08 +1.23 73.39+1.17  65.74£1.19
GGCN 74.46 + 0.54 43.00 £0.32 87.54+1.22 77.31+1.14 7110+ 1.57
OrderedGNN  77.68 £0.39 47.29 £ 0.65 80.58 +1.08 75.60+£1.36  75.09 4+ 1.00
G2-GNN 82.16 £0.78 47.93 £0.58 91.83 +0.56 82.51+£0.80  74.82+£0.92
DIR-GNN 91.23 £0.32 47.89£0.39 87.05 £ 0.69 81.19+1.05 76.13 +1.24
tGNN 79.95 £ 0.75 48.21 £0.53 91.93 £0.77 70.84 £1.75 76.38 £ 1.79
GraphGPS 82.00 £ 0.61 53.10 £ 0.42 90.63 £+ 0.67 83.71+0.48  71.73 +£1.47
Exphormer +0.37 +0.46 90.74 +0.53 83.77£0.78  73.94+£1.06
NodeFormer 64.49+0.73 43.86 £0.35 86.71 £ 0.88 78.10+1.03  74.27£1.46
DIFFormer 79.10 £ 0.32 47.84 £ 0.65 90.89 £ 0.58 83.57+£0.68  72.15+£1.31
Specformer 00M* 00M* (8.5iK(;.39 85'%?8‘48 00M*

Polynormer 92.15+0.58* 54.36 £0.32* 97.12 4+ 0.30* +0.88* +0.71*

(9.9M) (9.1M) (10.5M) (7.9M) (6.7M)
SSGNN 83.90 +£1.21 52.46 +0.70 94.38 £0.54 86.37+£0.46 79.16 £0.16
(77K) (690K) (3K) (3K) (12.5K)

Table 5: Average results =+ std for graph classification and regression. | means lower the better, and
1 means higher the better. We highlight the top first, second, and

results for each dataset.

Model ZINC() MolHIV(?1) MolPCBA(T1)
GCN 0.367 £0.011 0.7599 £0.0119  0.2424 4+ 0.0034
GIN 0.526 + 0.051 0.7707 £0.0149  0.2703 £ 0.0023
CIN 0.079 £ 0.006 0.8094 + 0.0057 -
GIN-AK+ 0.080 £ 0.001 0.7961 £ 0.0119  0.2930 + 0.0044
GSN 0.101 +£0.010 0.7799 + 0.0100 -

DGN 0.168 £ 0.003 +0.0097  0.2885 £ 0.0030
PNA 0.188 £ 0.004 0.7905+£0.0132  0.2838 + 0.0035
SAN 0.139 £ 0.006 0.7785+0.0025  0.2765 % 0.0042
Graphormer  0.122 £ 0.006 0.7640 £ 0.0022  0.2643 + 0.0017
GPS +0.004 0.7880 £ 0.0101 +0.0028
Specformer  0.066 +0.003  0.7889 +£0.0124 0.2972 £ 0.0023
SSGNN 0.0592 +0.008 0.8014 £+ 0.0193 0.3012 =+ 0.0350

Hu et al.| (2020), containing 41,000 and 437,000 graphs respectively. Nodes represent atoms, and
edges denote chemical bonds. For fair comparison, we match Specformer’s training settings. Re-
sults in Table E] show that SSGNN outperforms SOTA models like GIN, PNA, SAN, GPS, and
Specformer, achieving new benchmarks of 0.0592 MAE on ZINC and 0.3012 AP on MolPCBA. On
MolHIV, we surpass most models, ranking second only to CIN in AUC-ROC.

4.4  ABLATIONS

This section explores the effect of hyperparameters b and € on learned filters. The parameter b
controls the spread of our Relative Gaussian Amplifier (ReGA), influencing the distribution of scores
across spectral encodings. A higher b results in smoother filters with uniform score distribution,
while a lower b concentrates scores on a few encodings, causing sharp amplitude spikes. Fig.
shows this effect on the WikiCS dataset, where lower b values (e.g., b=2) lead to sudden spikes,
which smooth out as b increases to 10.



Under review as a conference paper at ICLR 2025

, W” "

f\‘“‘”“w 'nlu

S P 1 o [ AN i - ‘u |
(a)b=2 (b)b=6 (c)b=10 (a)e=10 (b) e =50 (c) e = 100
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Figure 5: WikiCS dataset Figure 6: Amazon-Ratings dataset

We now examine how varying € affects the learned filters. A higher e captures more oscillatory
patterns in spectral encodings, leading to stronger and more distinct components. However, this can
cause abrupt score assignments in ReGA, amplifying certain spectral components and suppressing
others, resulting in random spikes. Conversely, a lower ¢ produces smoother filters with fewer oscil-
lations. Fig. f]illustrates this effect on the Coauthor-Physics dataset, showing increased oscillations
and amplitude spikes as € rises from 10 to 100.

4.5 VISUALIZATIONS

In this section, we explore the filters learned by SSGNN and their impact through visualizing the
Graph Fourier Transform (GFT) and the resulting convolved GFT output after applying our filters.
These visualizations illustrate how our model effectively captures the underlying spectral properties
of the graph, learning filters optimized for specific tasks. For the homophilic dataset WikiCS, our
model learns an optimal low-pass filter (Fig. [3)), allowing it to suppress high-frequency components
and retain smooth node signals. In contrast, for the heterophilic dataset Amazon Ratings, SSGNN
learns a band-reject filter (Fig. [6) which efficiently handles the more complex spectral character-
istics of heterophilic graphs by filtering out irrelevant mid-frequency components. These results
emphasize the critical role our learned filters play in the convolution process, adapting to the nature
of the graph and enhancing performance across different types of data.

5 CONCLUSION

This work introduces SSGNN, a Simple Yet Effective Spectral Graph Neural network, powered by
spectral encoding and a decoder supported by a novel parameter-free Relative Gaussian Amplifier
(ReGA) to enhance adaptive filter learning. Synthetic data experiments show that SSGNN effec-
tively captures complex spectral filters, while real-world results demonstrate that it achieves com-
parable or outperforms SOTA graph transformers and spectral GNNs. Notably, SSGNN achieves
this with significant reductions in parameters, and runtime, highlighting its potential for advancing
efficient spectral GNN research.
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A  DATASET INFORMATION

Table 6: Statistics of Node Classification datasets used in our experiments.

Dataset Type Nodes Edges Classes Features
Cora Homophily 2,708 5,429 7 1,433
Citeseer Homophily 3,327 4,732 6 3,707
Computer Homophily 13,752 245, 861 10 767
Photo Homophily 7,650 119,081 8 745
CS Homophily 18,333 81,894 15 6,805
Physics Homophily 34,493 247,962 5 8,415
WikiCS Homophily 11,701 216,123 10 300
ogbn-arxiv Homophily 169,343 1,166,243 40 128
Chameleon Heterophily 850 13,584 5 2325
Squirrel Heterophily 2,223 65,718 5 2089
Penn94 Heterophily 41,554 1,326,229 2 4,814
roman-empire  Heterophily 22,662 32,927 18 300
amazon-ratings  Heterophily = 24,492 93,050 5 300
minesweeper Heterophily 10,000 39,402 2 7
tolokers Heterophily 11,758 519,000 2 10
questions Heterophily 48,921 153, 540 2 301

Table 7: Statistics of Graph Classification datasets used in our experiments.

Graphs Avg. nodes Avg. edges Min nodes Max nodes Tasks Metric
ZINC 12,000 23.2 24.9 9 37  Regression MAE
MolHIV 41,127 25.5 27.5 2 222  Classification AUROC
MolPCBA 437,929 26.0 28.1 1 332 Classification AP
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B OUR COMPUTE

All experiments were conducted using two NVIDIA RTX 4090 GPUs, each with 24GB of memory.
While the SSGNN model can be efficiently trained on a single GPU, both GPUs were utilized to
train multiple configurations simultaneously by varying the hyperparameters b and €. This parallel
training approach significantly reduced the total training time. All models were implemented using
the PyTorch deep learning framework.

C STABILITY TEST AGAINST PURTERBATIONS.

Here we first provide the proof for the theoritical statement that we made in the main paper.

Theorem 1. Let A € RV*! be the corrected eigenvalue and A = \ + & represent a eigenvalue,
where ¢ is a bounded pertubation such that ||¢]|2 < 0. The Gaussian-based spectral filtering f(\) =

2
exp <_ (é\(;f))? ) remains stable under perturbations in the eigenvalue, such that:

1FN) = fF(V]l2 < K6 (10)

where K is a constant and J is the perturbation bound.

2
Proof. Let f(\) = exp (—%) represent the Gaussian-based spectral filtering function, where
1 is the mean and o is the standard deviation of the eigenvalue vectors and c is a scaling constant.

Let € represent a perturbation in the eigenvalues such that A = A + &, with [|€[|2 < 6. We need to
show that the filtered output f(\) remains stable under perturbations, that is, the difference between

f(X\) and f()) is bounded.
Consider the difference between f()\) and f()) as:
(

Since Gaussian is a smooth function over the interval (—oo, +00), we can use the Mean Value
Theorem (MVT) to approximate the difference between the exponentials by their derivative

100 - £60)] < |35 (o0 (JA%—@)) .

The derivative of the Gaussian function can be written as:
d (i — p)? (N — ) (i — p)?
S SAUREN w7/ I IS S R 74 S SAUR oV 13
X, (eXp ( 2(0c)? (002 P\ 2000 (13)

Hence, Eq. @] can be rewritten as:
o A — i — )2
£00 - 100)] < Bt ew (<51 ) e (14

£ = 1 (A) an

Ai — A

(12)

Since |A\; — A;| = |&| and assuming ||€[|2 < &, we can bound the right-hand side by a constant K
that depends on u, o and c as

£ = 7 (A)
Since ||€||]2 < 4, the total deviation across all eigenvalue vectors is bounded by:

IEA) — £N)[2 < K|l¢]l2 < K6 (16)

< K&l (15)

Here we compare the performance of SSGNN and Specformer when subjected to structural pertur-
bations. We randomly remove 2%, 4%, 6%, 10% and 20% of edges from the original dataset and
train both the models 10 times on across different splits / seeds. We then report the average accu-
racy drop for both the models under different levels of perturbations. Table [C]shows that SSGNN
remains significantly stable even under extreme perturbations across all datasets when compared to
Specformer. Notably, SSGNN only underperforms on chameleon under a high perturbation.
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Table 8: Perturbation analysis of SSGNN vs Specformer

Drop Edges(%) Cora Citeseer Chameleon Squirrel
2 0.51 0.66 0.54 0.46
4 0.63 0.56 0.19 0.43
SSGNN 6 0.66 0.58 0.32 0.32
10 1.38 0.62 0.51 0.21
20 1.51 0.92 0.88 0.52
2 1.72 1.09 0.94 2.16
4 1.64 1.25 0.72 2.19
Specformer 6 1.67 1.24 1.06 2.61
10 2.36 1.32 0.23 2.11
20 2.89 1.43 0.54 225

Table 9: Comparision of GFLOPs for Polynormer and our proposed SSGNN model. Bolded values
indicate better metric (lower the better).

Model Roman-Empire | Amazon-Ratings | Minesweeper | Tolokers | Questions
Polynormer 170.64 158.62 84.22 81.27 294.13
SSGNN 1.71 5.22 0.03 0.03 0.60
Model Computer Photo CS Physics WikiCS
Polynormer 56.14 47.22 150.82 133.48 69.58
SSGNN 0.37 0.20 4.04 8.37 0.131

D POLYNORMER CONFIGURATIONS

This section outlines the various configuration details and the corresponding highest test accuracy
achieved by Polynormer, as presented in Table [3] Polynormer was trained for 1000 epochs on
each dataset with extensive gridsearch for optimal hyper-parameters, including hidden dimension
(h), local epochs (LE), global epochs (GE), learning rate (LR), local layers (LL), global layers
(GL), weight decay (WD), and the number of heads (H). The best-performing configuration for
each dataset was selected and trained 10 times to obtain the average accuracy.

For results reported in Table 2| and Table @ we use the default configuration provided by the authors

of Polynormer.

Table 10: Polynormer Configurations and Accuracies for Chameleon dataset

h | LE | GE LR LL | GL | WD | H | Accuracy (%)
32 | 100 | 900 | 0.001 5 2 00 | 2 34.02
32 | 100 | 900 | 0.01 5 2 00 | 2 31.95
32 | 100 | 900 | 0.0001 | 5 2 00 | 2 35.05
64 | 100 | 900 | 0.001 5 2 00 | 2 40.72
32 | 100 | 900 | 0.001 5 2 0.0 | 4 42.78
64 | 100 | 900 | 0.001 5 2 00 | 4 42.78
32 | 100 | 900 | 0.001 5 2 00 | 8 35.56
64 | 100 | 900 | 0.001 5 2 00 | 8 36.08
64 | 100 | 900 | 0.001 7 2 00 | 8 35.56
64 | 100 | 900 | 0.001 5 3 00 | 8 30.92

E BASELINE CONFIGURATIONS

We compare our model against various SOTA GNNs, spectral GNNs, and graph Transformers (GT).
For homophilic datasets, we use a 60%-20%-20% testing split, as given in (He et al., 2021). For
most heterophilic datasets, we adopt a 50%-25%-25% split, following |Platonov et al.[(2023). Ho-
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Table 11: Polynormer Configurations and Accuracies for Squirrel dataset.

h | LE | GE LR LL | GL | WD | H | Accuracy (%)
32 | 100 | 900 | 0.001 5 2 00 | 2 34.73
32 | 100 | 900 | 0.01 5 2 00 | 2 34.73
32 | 100 | 900 | 0.0001 | 5 2 00 | 2 34.73
64 | 100 | 900 | 0.001 5 2 00 | 2 33.62
32 | 100 | 900 | 0.001 5 2 00 | 4 34.82
64 | 100 | 900 | 0.001 5 2 00 | 4 35.73
32 | 100 | 900 | 0.001 5 2 00 | 8 35.73
64 | 100 | 900 | 0.001 5 2 00 | 8 34.73
64 | 100 | 900 | 0.001 7 2 00 | 8 34.12
64 | 100 | 900 | 0.001 5 3 00 | 8 34.717

Table 12: Polynormer Configurations and Accuracies for Cora dataset.

h | LE | GE LR LL | GL | WD | H | Accuracy (%)
32 | 100 | 900 | 0.001 5 2 00 | 2 86.86
32 | 100 | 900 | 0.01 5 2 00 | 2 85.71
32 | 100 | 900 | 0.0001 | 5 2 0.0 | 2 83.57
64 | 100 | 900 | 0.001 5 2 00 | 2 87.02
32 | 100 | 900 | 0.001 5 2 00 | 4 86.20
64 | 100 | 900 | 0.001 5 2 0.0 | 4 85.05
32 | 100 | 900 | 0.001 5 2 00 | 8 87.84
64 | 100 | 900 | 0.001 5 2 00 | 8 87.84
64 | 100 | 900 | 0.001 7 2 00 | 8 86.04
64 | 100 | 900 | 0.001 5 3 00 | 8 85.22

mophilic methods are executed 10 times, while heterophilic methods run across 10 splits, with mean
accuracy and standard deviation reported. We utilize Specformer results for homophilic datasets
and [Platonov et al|(2023) for heterophilic datasets, while Graph Transformers results are sourced
from Polynormer. Both Specformer and Polynormer are trained from scratch on all datasets. We
experiment with hidden dimensions d ranging from 32 to 512 for both SSGNN and Specformer,
while for Polynormer from 32 to 64. The number of heads is varied from 1 to 4 for SSGNN and
Specformer, and from 2 to 8 for Polynormer. Learning rates are explored in the range of 102 to 10*
for all models. For Polynormer, we assess configurations with 5-7 local layers and 2-3 global lay-
ers, with detailed configurations provided in the appendix. In the node classification task, we focus
on large-scale graphs, specifically ogbn-arXiv and Penn94, employing truncated spectral decom-
position. For Penn94, we utilize eigenvectors corresponding to the smallest 3000 (low-frequency)
and largest 3000 (high-frequency) eigenvalues. For arXiv, we select the smallest 5000 eigenvalues
(low-frequency). These are based on the experimental findings that low-pass filtering is effective
for homophilic datasets, while band-rejection or high-pass filtering performs better in heterophilic
scenarios.
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Figure 7: For Chameleon dataset, (left) the learned filter; (middle) GFT output; (right) Graph con-
volution output
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Table 13: Polynormer Configurations and Accuracies for Citeseer dataset.

h | LE | GE LR LL | GL | WD | H | Accuracy (%)
32 | 100 | 900 | 0.001 5 2 00 | 2 81.99
32 | 100 | 900 | 0.01 5 2 00 | 2 80.49
32 | 100 | 900 | 0.0001 | 5 2 00 | 2 80.76
64 | 100 | 900 | 0.001 5 2 00 | 2 80.49
32 | 100 | 900 | 0.001 5 2 00 | 4 77.76
64 | 100 | 900 | 0.001 5 2 00 | 4 79.40
32 | 100 | 900 | 0.001 5 2 00 | 8 79.94
64 | 100 | 900 | 0.001 5 2 0.0 | 8 81.17
64 | 100 | 900 | 0.001 7 2 00 | 8 80.76
64 | 100 | 900 | 0.001 5 3 00 | 8 79.53

Table 14: Polynormer Configurations and Accuracies for Penn94 dataset.

h | LE | GE LR LL | GL | WD | H | Accuracy (%)
32 | 100 | 900 | 0.001 5 2 00 | 2 82.94
32| 100 | 900 | 0.01 5 2 00 | 2 83.45
32 | 100 | 900 | 0.0001 | 5 2 00 | 2 82.56
64 | 100 | 900 | 0.001 5 2 00 | 2 83.72
32 | 100 | 900 | 0.001 5 2 00 | 4 83.67
64 | 100 | 900 | 0.001 5 2 00 | 4 OOM
32 | 100 | 900 | 0.001 5 2 00 | 8 OOM
64 | 100 | 900 | 0.001 5 2 00 | 8 OOM
64 | 100 | 900 | 0.001 7 2 00 | 8 OOM
64 | 100 | 900 | 0.001 5 3 00 | 8 OOM

F VISUAL INSIGHTS OF THE MULT-HEADED DECODER

In this section, we visualize how different heads of the decoder affect the performance of SSGNN.

For the Amazon-Computers dataset, employing a single head results in an accuracy of 90.5116 with
convergence achieved at the 849th epoch. Increasing to two heads improves the accuracy to 90.775
and reduces the convergence time to the 764th epoch. Finally, our configuration with four heads
achieves the best performance, with an accuracy of 91.28 and convergence at the 609th epoch.

Figures and illustrate the filtering patterns learned for the 1-head, 2-head, and 4-
head configurations, respectively. The visualizations reveal that with four heads, the filters exhibit
substantial variation during the initial epochs (e.g., the 25th epoch). By the 250th epoch, the filters
start to align, and by the 575th epoch, they converge to similar patterns. This progression highlights
how multiple heads enable the model to learn diverse filtering patterns in the early stages, ultimately
accelerating convergence and improving overall performance.
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Table 15: Polynormer Configurations and Accuracies for Actor dataset.

h | LE | GE LR LL | GL | WD | H | Accuracy (%)
32 | 100 | 900 | 0.001 5 2 00 | 2 42.05
32 | 100 | 900 | 0.01 5 2 0.0 | 2 40.15
32 | 100 | 900 | 0.0001 | 5 2 00 | 2 36.09
64 | 100 | 900 | 0.001 5 2 0.0 | 2 41.11
32 | 100 | 900 | 0.001 5 2 0.0 | 4 37.42
64 | 100 | 900 | 0.001 5 2 00 | 4 39.89
32 | 100 | 900 | 0.001 5 2 00 | 8 38.88
64 | 100 | 900 | 0.001 5 2 0.0 | 8 41.29
64 | 100 | 900 | 0.001 7 2 00 | 8 39.01
64 | 100 | 900 | 0.001 5 3 00 | 8 42.49

Table 16: Polynormer Configurations and Accuracies for OGBN-Arxiv dataset.

h | LE | GE LR LL | GL | WD | H | Accuracy (%)
32 | 100 | 900 | 0.001 5 2 0.0 | 2 70.56
32 | 100 | 900 | 0.01 5 2 00 | 2 70.86
32 | 100 | 900 | 0.0001 | 5 2 00 | 2 58.29
64 | 100 | 900 | 0.001 5 2 0.0 | 2 72.08
32 | 100 | 900 | 0.001 5 2 00 | 4 72.03
64 | 100 | 900 | 0.001 5 2 00 | 4 OOM
32 | 100 | 900 | 0.001 5 2 0.0 | 8 OOM
64 | 100 | 900 | 0.001 5 2 00 | 8 OOM
64 | 100 | 900 | 0.001 7 2 00 | 8 OOM
64 | 100 | 900 | 0.001 5 3 0.0 | 8 OOM
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Figure 8: For Squirrel dataset, (left) the learned filter; (middle) GFT output; (right) Graph convolu-
tion output
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Figure 9: For Tolokers dataset, (left) the learned filter; (middle) GFT output; (right) Graph convolu-
tion output
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Figure 10: For Minesweeper dataset, (left) the learned filter; (middle) GFT output; (right) Graph
convolution output
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Figure 11: For CS dataset, (left) the learned filter; (middle) GFT output; (right) Graph convolution
output
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Figure 12: For Computer dataset, (left) the learned filter; (middle) GFT output; (right) Graph con-
volution output
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Figure 13: For Arxiv dataset, (left) the learned filter; (middle) GFT output; (right) Graph convolution
output
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Figure 14: For Photo dataset, (left) the learned filter; (middle) GFT output; (right) Graph convolution
output
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Figure 15: For Citeseer dataset, (left) the learned filter; (middle) GFT output; (right) Graph convo-
lution output
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Figure 16: For Cora dataset, (left) the learned filter; (middle) GFT output; (right) Graph convolution
output
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Figure 17: For Penn dataset, (left) the learned filter; (middle) GFT output; (right) Graph convolution
output

20



Under review as a conference paper at ICLR 2025

Frequency Response Graph Fourier Transform Graph Convolution
5.25 0.0008 0.0008
5.00 0.0006 0.0006
4.75 0.0004 0.0004
v
34 0.0002 0.0002
2425
E 0.0000 0.0000
4.00
0.0002 0.0002
375
0.0004 0.0004
3.50
0.0006
325 0.0006
0.0 05 1.0 15 2.0 0.0 05 1.0 15 2.0 0.0 05 1.0 15 2.0
Eigenvalues Eigenvalues Eigenvalues

Figure 18: For Actor dataset, (left) the learned filter; (middle) GFT output; (right) Graph convolution
output
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Figure 19: Filter learnt by decoder for Amazon Computer - 1 head configuration. (left) 25th epoch,
(middle) 725th epoch, (right) 825th epoch
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Figure 20: Filter learnt by decoder for Amazon Computer - 2 head configuration. (left) 25th epoch,
(middle) 550th epoch, (right) 675th epoch
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Figure 21: Filter learnt by decoder for Amazon Computer - 4 head configuration. (left) 25th epoch,
(middle) 250th epoch, (right) 575th epoch
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