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Abstract

Structure-from-Motion (SfM), a task aiming at jointly re-
covering camera poses and 3D geometry of a scene given a
set of images, remains a hard problem with still many open
challenges despite decades of significant progress. The tra-
ditional solution for SfM consists of a complex pipeline of
minimal solvers which tends to propagate errors and fails
when images do not sufficiently overlap, have too little mo-
tion, etc. Recent methods have attempted to revisit this
paradigm, but we empirically show that they fall short of
fixing these core issues. In this paper, we propose instead to
build upon a recently released foundation model for 3D vi-
sion that can robustly produce local 3D reconstructions and
accurate matches. We introduce a low-memory approach
to accurately align these local reconstructions in a global
coordinate system. We further show that such foundation
models can serve as efficient image retrievers without any
overhead, reducing the overall complexity from quadratic to
linear. Overall, our novel SfM pipeline is simple, scalable,
fast and truly unconstrained, i.e. it can handle any collec-
tion of images, ordered or not. Extensive experiments on
multiple benchmarks show that our method provides steady
performance across diverse settings, especially outperform-
ing existing methods in small- and medium-scale settings.

1. Introduction
Structure-from-Motion (SfM) is a long-standing problem of
computer vision that aims to estimate the 3D geometry of a
scene as well as the parameters of the cameras observing it,
given the images from each camera [18]. Since it conve-
niently provides jointly for cameras and map, it constitutes
an essential component for many practical computer vision
applications, such as navigation (mapping and visual local-
ization [10, 35, 46]), dense multi-view stereo reconstruction
(MVS) [37, 47, 60, 67], novel view synthesis [6, 22, 34],
auto-calibration [17] or even archaeology [38, 55].

In reality, SfM is a “needle in a haystack” type of
problem, typically involving a highly non-convex objec-
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Figure 1. Top: Relative rotation (RRA) and translation (RTA)
accuracies on the CO3Dv2 dataset when varying the number of
input views with random subsampling (the more views, the larger
they overlap). In contrast to our competitors, MASt3R-SfM offers
nearly constant performance on the full range, even for very few
views. Bottom: MASt3R-SfM also works without motion, i.e. in
purely rotational settings. We show here a reconstruction from 6
views sharing the same optical center.

tive function with many local minima [59]. Since finding
the global minimum in such a landscape is too challeng-
ing to be done directly, traditional SfM approaches such
as COLMAP [46] decomposes the problem as a series (or
pipeline) of minimal problems, e.g. keypoint extraction and
matching, relative pose estimation, and incremental recon-
struction with triangulation and bundle adjustment. The
presence of outliers, e.g. wrong pixel matches, poses ad-
ditional challenges and compels existing methods to resort
to hypothesis formulation and verification at multiple occa-
sions in the pipeline, typically with RAndom SAmple Con-
sensus (RANSAC) or its many flavors [4, 5, 16, 25, 58, 65].
This approach has been the standard for several decades, yet
it remains brittle and fails when the input images do not suf-
ficiently overlap, or when motion (i.e. translation) between
viewpoints is insufficient [10, 48].

Recently, a set of innovative methods propose to revisit
SfM in order to alleviate the heavy complexity of the tradi-
tional pipeline and solve its shortcomings. VGGSfM [62],
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for instance, introduces an end-to-end differentiable ver-
sion of the pipeline, simplifying some of its components.
Likewise, detector-free SfM [19] replaces the keypoint ex-
traction and matching step of the classical pipeline with
learned components. These changes must, however, be put
into perspective, as they do not fundamentally challenge the
overall structure of the traditional pipeline. In comparison,
FlowMap [50] and Ace-Zero [9] independently propose a
radically novel type of approach to solve SfM, which is
based on simple first-order gradient descent of a global loss
function. Their trick is to train a geometry regressor net-
work during scene optimization as a way to reparameterize
and regularize the scene geometry. Unfortunately, this type
of approach only works in certain configurations, namely
for input images exhibiting high overlap and low illumina-
tion variations. Lastly, DUSt3R [26, 64] demonstrates that
a single forward pass of a transformer architecture can pro-
vide a good estimate of the geometry and cameras parame-
ters of a small two-image scene. These particularly robust
estimates can then be stitched together again using simple
gradient descent, allowing to relax many of the constraints
mentioned earlier. However it yields rather imprecise global
SfM reconstructions and does not scale well.

In this work, we propose MASt3R-SfM, a fully-
integrated SfM pipeline that can handle completely uncon-
strained input image collections, i.e. ranging from a sin-
gle view to large-scale scenes, possibly without any cam-
era motion as illustrated in Fig. 1. We build upon the re-
cently released DUSt3R [64], a foundation model for 3D vi-
sion, and more particularly on its recent extension MASt3R
that is able to perform local 3D reconstruction and match-
ing in a single forward pass [26]. Since MASt3R is funda-
mentally limited to processing image pairs, it scales poorly
to large image collections. To remedy this, we hijack its
frozen encoder to perform fast image retrieval with negli-
gible computational overhead, resulting in a scalable SfM
method with quasi-linear complexity in the number of im-
ages. Thanks to the robustness of MASt3R to outliers, the
proposed method is able to completely get rid of RANSAC.
The SfM optimization is carried out in two successive gra-
dient descents based on local reconstructions output by
MASt3R: first, using a matching loss in 3D space; then with
a 2D reprojection loss to refine the previous estimate. Inter-
estingly, our method goes beyond structure-from-motion, as
it works even when there is no motion (i.e. purely rotational
case), as illustrated in Fig. 1.

In summary, we make three main contributions. First,
we propose MASt3R-SfM, a full-fledged SfM pipeline able
to process unconstrained image collections. To achieve lin-
ear complexity in the number of images, we show as sec-
ond contribution how the encoder from MASt3R can be
exploited for large-scale image retrieval. Note that our
entire SfM pipeline is training-free, provided an off-the-

shelf MASt3R checkpoint. Lastly, we conduct an exten-
sive benchmarking on a diverse set of datasets, showing
that existing approaches are still prone to failure in small-
scale settings, despite significant progress. In comparison,
MASt3R-SfM demonstrates state-of-the-art performance in
a wide range of conditions, as illustrated in Fig. 1.

2. Related Works
Traditional SfM. At the core of Structure-from-Motion
(SfM) lies matching and Bundle Adjustment (BA). Match-
ing, i.e. the task of finding pixel correspondences across dif-
ferent images observing the same 3D points, has been ex-
tensively studied in the past decades, beginning from hand-
crafted keypoints [7, 31, 42] and more recently being sur-
passed by data-driven strategies [11–14, 21, 41, 43, 52, 63].
Matching is critical for SfM, since it builds the basis to for-
mulate a loss function to minimize during BA. BA itself
aims at minimizing reprojection errors for the correspon-
dences extracted during the matching phase by jointly op-
timizing the positions of 3D points and camera parameters.
It is usually expressed as a non-linear least squares prob-
lem [2], known to be brittle in the presence of outliers and
prone to fall into suboptimal local minima if not provided
with a good initialization [1, 51]. For all these reasons,
traditional SfM pipelines like COLMAP are heavily hand-
crafted in practice [19, 29, 46]. By triangulating 3D points
to provide an initial estimate for BA, they incrementally
build a scene, adding images one by one by formulating hy-
pothesis and discarding the ones that are not verified by the
current scene state. Due to the large number of outliers, and
the fact that the structure of the pipeline tends to propagate
errors rather than fix them, robust estimators like RANSAC
are extensively used for relative pose estimation, keypoint
track construction and multi-view triangulation [46].
SfM revisited. There has been a recent surge of meth-
ods aiming to simplify or even completely revisit the tra-
ditional SfM pipeline [9, 19, 50, 62, 64]. The recently pro-
posed FlowMap and Ace-Zero, for instance, both rely on
the idea of training a regressor network at test time. In the
case of FlowMap [50], this network predicts depthmaps,
while for Ace-Zero [9] it regresses dense 3D scene coor-
dinates. While this type of approach is appealing, it raises
several problems such as scaling poorly and depending on
many off-the-shelf components for FlowMap. Most im-
portantly, both methods only apply to constrained settings
where the input image collections offers enough uniformity
and continuity in terms of viewpoints and illuminations.
This is because the regressor network is only able to prop-
agate information incrementally from one image to other
tightly similar images. As a result, they cannot process un-
ordered image collections with large viewpoint and illumi-
nation disparities. On the other hand, VGGSfM, Detector-
Free SfM (DF-SfM) and DUSt3R cast the SfM problem
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Figure 2. Overview of the proposed MASt3R-SfM method. Given an unconstrained image collections, possibly small (1 image) or
large (over 1000 images), we start by computing a sparse scene graph using efficient image retrieval techniques given a frozen MASt3R’s
per-image features. We then compute local 3D reconstruction and matches for each edge using again a frozen MASt3R’s decoder. Global
optimization proceeds with gradient descent of a matching loss in 3D space, followed by refinement in terms of 2D reprojection error.

in a more traditional manner by relying on trained neural
components that are kept frozen at optimization time. VG-
GSfM [62], for its part, essentially manages to train end-
to-end all components of the traditional SfM pipeline but
still piggybacks itself onto handcrafted solvers for initializ-
ing keypoints, cameras and to triangulate 3D points. As a
result, it suffers from the same fundamental issues than tra-
ditional SfM, e.g. it struggles when there are few views or
little camera motion. Likewise, DF-SfM [19] improves for
texture-less scenes thanks to relying on trainable dense pair-
wise matchers, but sticks to the overall COLMAP pipeline.
Finally, DUSt3R [64] is a foundation model for 3D vision
that essentially decomposes SfM into two steps: local re-
construction for every image pair in the form of pointmaps,
and global alignment of all pointmaps in world coordinates.
While the optimization appears considerably simpler than
for previous approaches (i.e. not relying on external mod-
ules, and carried out by minimizing a global loss with first-
order gradient descent), it yields rather imprecise estimates
and does not scale well. Its recent extension MASt3R [26]
adds pixel matching capabilities and improved pointmap re-
gression, but does not address the SfM problem. In this
work, we fill this gap and present a fully-integrated SfM
pipeline based on MASt3R that is both precise and scalable.

Image Retrieval for SfM. Since matching is essentially
considering pairs in traditional SfM, it has a quadratic com-
plexity which becomes prohibitive for large image collec-
tions. Several SfM approaches have proposed to leverage
faster, although less precise, image comparison techniques
relying on comparing global image descriptors, e.g. AP-
GeM [40] for Kapture [20] or by distilling NetVLAD [3]
for HLoc [44]. The idea is to cascade image matching in
two steps: first, a coarse but fast comparison is carried out
between all pairs (usually by computing the similarity be-
tween global image descriptors), and for image pairs that
are similar enough, a second stage of costly keypoint match-
ing is then carried out. This is arguably much faster and
scalable. In this paper, we adopt the same strategy, but
instead of relying on an external off-the-shelf module, we
show that we can simply exploit the frozen MASt3R’s en-
coder for this purpose, considering the token features as lo-
cal features and directly performing efficient retrieval with
Aggregated Selective Match Kernels (ASMK) [56].

3. Preliminaries

The proposed method builds on the recently introduced
MASt3R model which, given two input images In, Im ∈
RH×W×3, performs joint local 3D reconstruction and
pixel-wise matching [26]. We assume here for simplicity
that all images have the same pixel resolution H ×W , but
of course they can differ in practice. In the next section,
we show how to leverage this powerful local predictor for
achieving large-scale global 3D reconstruction.

At a high level, MASt3R can be viewed as a function
f(In, Im) ≡ Dec(Enc(In),Enc(Im)), where Enc(I) → F
denotes the Siamese ViT encoder that represents image I as
a feature map of dimension d, width w and height h, F ∈
Rh×w×d, and Dec(Fn, Fm) denotes twin ViT decoders that
regresses pixel-wise pointmaps X and local features D for
each image, as well as their respective corresponding con-
fidence maps. These outputs intrinsically contain rich geo-
metric information from the scene, to the extent that camera
intrinsics and (metric) depthmaps can straightforwardly be
recovered from the pointmap, see [64] for details. Likewise,
we can recover sparse correspondences (or matches) by ap-
plication of the fastNN algorithm described in [26] with the
regressed local feature maps Dn, Dm. More specifically,
the fast NN searches for a subset of reciprocal correspon-
dences from two feature maps Dn and Dm by initializing
seeds on a regular pixel grid and iteratively converging to
mutual correspondences. We denote these correspondences
between In and Im as Mn,m = {ync ↔ ymc }c=1..|Mn,m|,
where ync , y

m
c ∈ N2 denotes a pair of matching pixels.

4. Proposed Method

Given an unordered collection of N images V =
{In}1≤n≤N of a static 3D scene, captured with respec-
tive cameras Kn = (Kn, Pn), where Kn ∈ R3×3 de-
notes the intrinsic parameters (i.e. calibration in term of fo-
cal length and principal point) and Pn ∈ R4×4 its world-
to-camera pose, our goal is to recover all cameras param-
eters {Kn} as well as the underlying 3D scene geometry
{Xn}, with Xn ∈ RH×W×3 a pointmap relating each pixel
y = (i, j) ∈ N2 from In to its corresponding 3D point Xn

i,j

in the scene expressed in a world coordinate system.



Overview. We present a novel large-scale 3D reconstruc-
tion approach consisting of four steps outlined in Fig. 2.
First, we construct a co-visibility graph using efficient and
scalable image retrieval techniques. Edges of this graph
connect pairs of likely-overlapping images. Second, we per-
form pairwise local 3D reconstruction and matching using
MASt3R for each edge. Third, we coarsely align every local
pointmap in the same world coordinate system using gradi-
ent descent with a matching loss in 3D space. This serves
as initialization for the fourth step, wherein we perform a
second stage of global optimization, this time minimizing
2D pixel reprojection errors. We detail each step below.

4.1. Scene graph

We first aim at spatially relating scene objects seen under
different viewpoints. MASt3R is originally a pairwise im-
age matcher, which has quadratic complexity in the number
N of images and therefore becomes infeasible for large col-
lections if done naively.
Sparse scene graph. Instead, we wish to only feed a
small but sufficient subset of all possible pairs to MASt3R,
which structure forms a scene graph G. Formally, G =
(V, E) is a graph where each vertex I ∈ V is an image,
and each edge e = (n,m) ∈ E is an undirected connection
between two likely-overlapping images In and Im. Impor-
tantly, G must have a single connected component, i.e. all
images must (perhaps indirectly) be linked together.
Image retrieval. To select the right subset of pairs, we
rely on a scalable pairwise image matcher h(In, Im) 7→ s,
able to predict the approximate co-visibility score s ∈
[0, 1] between two images In and Im. While any off-
the-shelf image retriever can in theory do, we propose to
leverage MASt3R’s encoder Enc(·). Indeed, our findings
are that the encoder, due to its role of laying foundations
for the decoder, is implicitly trained for image matching
(see Sec. 5.3). To that aim, we adopt the ASMK (Aggre-
gated Selective Match Kernels) image retrieval method [56]
considering the token features output by the encoder as lo-
cal features. ASMK has shown excellent performance for
retrieval, especially without requiring any spatial verifica-
tion. In a nutshell, we consider the output F of the encoder
as a bag of local features, apply feature whitening, quantize
them according to a codebook previously obtained by k-
means clustering, then aggregate and binarize the residuals
for each codebook element, thus yielding high-dimensional
sparse binary representations. The ASMK similarity be-
tween two image representations can be efficiently com-
puted by summing a small kernel function on binary rep-
resentations over the common codebook elements. Note
that this method is training-free, only requiring to compute
the whitening matrix and the codebook once from a rep-
resentative set of features. We have also tried learning a
small projector on top of the encoder features following the

HOW approach [57], but this leads to similar performances.
We refer to the supplementary for more details. The output
from the retrieval step is a similarity matrix S ∈ [0, 1]N×N .
Graph construction. To get a small number of pairs
while still ensuring a single connected component, we build
the graph G as follows. We first select a fixed number Na

of key images (or keyframes) using farthest point sampling
(FPS) [15] based on S. These keyframes constitute the core
set of nodes and are densely connected together. All re-
maining images are then connected to their closest keyframe
as well as their k nearest neighbors according to S. Such a
graph comprises O(N2

a + (k + 1)N) = O(N) ≪ O(N2)
edges, which is linear in the number of images N . We typ-
ically use Na = 20 and k = 10. Note that, while the
retrieval step has quadratic complexity in theory, it is ex-
tremely fast and scalable in practice, so we ignore it and
report quasi-linear complexity overall.

4.2. Local reconstruction

We run the inference of MASt3R for every pair e =
(n,m) ∈ E , yielding raw pointmaps and sparse pixel
matches Mn,m. Since MASt3R is order-dependent in terms
of its input, we define Mn,m as the union of correspon-
dences obtained by running both f(In, Im) and f(Im, In).
Doing so, we also obtain pointmaps Xn,n, Xn,m, Xm,n

and Xm,m, where Xn,m ∈ RH×W×3 denotes a 2D-to-3D
mapping from pixels of image In to 3D points in the co-
ordinate system of image Im. Since the encoder features
{Fn}n=1..N have already been extracted and cached during
scene graph construction (Sec. 4.1), we only need to run the
ViT decoder Dec(), which substantially saves compute.
Canonical pointmaps. We wish to estimate an initial
depthmap Zn and camera intrinsics Kn for each image
In. These can be easily recovered from a raw pointmap
Xn,n [64], but each pair (n, ·) or (·, n) ∈ E would yield
its own estimate of Xn,n. To average out regression impre-
cision, we hence aggregate these copycat pointmaps into a
canonical pointmap X̃n. Let En = {e|e ∈ E ∧ n ∈ e} be
the set of all edges connected to image In. For each edge
e ∈ En, we have a different estimate of Xn,n and its respec-
tive confidence maps Cn,n, which we will denote as Xn,e

and Cn,e. We compute the canonical pointmap as a simple
per-pixel weighted average of all estimates:

X̃n
i,j =

∑
e∈En Cn,e

i,j X
n,e
i,j∑

e∈En Cn,e
i,j

. (1)

We then recover the canonical depthmap Z̃n = X̃n
:,:,3 and

the focal length using the Weiszfeld algorithm [64]:

f∗ = argmin
f

∑
i,j

∥∥∥∥∥
(
i−W

2
, j−H

2

)
− f

(
X̃n

i,j,1

X̃n
i,j,3

,
X̃n

i,j,2

X̃n
i,j,3

)∥∥∥∥∥ ,
(2)

which, assuming centered principal point and square pixels,
yields the canonical intrinsics K̃n. In this work, we assume
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Figure 3. Factor graph for MASt3R-SfM. Free variables on the
top row serve to construct the constrained pointmap χ, which fol-
lows the pinhole camera model by design and onto which the loss
functions from Eqs. (3) and (4) are defined.

a pinhole camera model without lens distortion, but our ap-
proach could be extended to different camera types.

Constrained pointmaps. Camera intrinsics K, extrinsics
P and depthmaps Z will serve as basic ingredients (or
rather, optimization variables) for the global reconstruction
phase. Let πn : R3 7→ R2 denote the reprojection func-
tion onto the camera screen of In, i.e. πn(x) = KnPnσnx
for a 3D point x ∈ R3 (σn > 0 is a per-camera scale
factor, i.e. we use scaled rigid transformations). To en-
sure that pointmaps perfectly satisfy the pinhole projec-
tive model (they are normally over-parameterized), we de-
fine a constrained pointmap χn ∈ RH×W×3 explicitly
as a function of Kn, Pn, σn and Zn. Formally, the 3D
point χn

i,j seen at pixel (i, j) of image In is defined us-
ing inverse reprojection as χn

i,j = π−1
n (σn,Kn, Pn, Z

n
i,j) =

1/σnP−1
n K−1

n Zn
i,j [i, j, 1]

⊤.

4.3. Coarse alignment

Recently, DUSt3R [64] introduced a global alignment pro-
cedure aiming to rigidly move dense pointmaps in a world
coordinate system based on pairwise relationships between
them. In this work, we simplify and improve this proce-
dure by taking advantage of pixel correspondences, thereby
reducing the overall number of parameters and its memory
and computational footprint.

Specifically, we look for the scaled rigid transformations
σ∗, P ∗ of every canonical pointmaps χ = π−1(σ, K̃ , P, Z̃ )
(i.e. fixing intrinsics K = K̃ and depth Z = Z̃ to their
canonical values) such that any pair of matching 3D points
gets as close as possible:

σ∗, P ∗ = argmin
σ,P

∑
c∈Mn,m

(n,m)∈E

qc ∥χn
c − χm

c ∥λ1 , (3)

where c denotes the matching pixels in each respective
image by a slight abuse of notation. In contrast to the
global alignment procedure in DUSt3R, this minimization

only applies to sparse pixel correspondences ync ↔ ymc
weighted by their respective confidence qc =

√
Qn,e

c Qm,e
c

(with descriptor confidence maps Q·,e ∈ RH×W also out-
put by MASt3R). To avoid degenerate solutions, we enforce
minn σn = 1 by reparameterizing σn = σ′

n/(minnσ
′
n).

Optimization. We minimize this objective using first-
order optimization for simplicity, using Adam [23] for a
fixed number ν1 of iterations. Alternatively, a second-order
LM or Gauss-Newton optimization schemes could result in
faster convergence [36], which we leave for future work.

4.4. Refinement

Coarse alignment converges well and fast in practice, but
restricts itself to rigid motion of canonical pointmaps. Un-
fortunately, pointmaps are bound to be noisy due to depth
ambiguities during local reconstruction. To further refine
cameras and scene geometry, we thus perform a second
round of global optimization akin to bundle adjustment [59]
with gradient descent for ν2 iterations and starting from
the coarse solution σ∗, P ∗ obtained from Eq. (3). In other
words, we minimize the 2D reprojection error of 3D points
in all cameras:

Z∗,K∗, P ∗, σ∗ = argmin
Z,K,P,σ

L2, with (4)

L2 =
∑

c∈Mn,m

(n,m)∈E

qc [ρ (y
n
c − πn (χ

m
c )) + ρ (ymc − πm (χn

c ))] ,

with ρ : R2 7→ R+ a robust error function able to deal with
potential outliers among all extracted correspondences. We
typically set ρ(x)= ∥x∥λ2 with 0 < λ2 ≤ 1 (e.g. λ2=0.5).
Forming pseudo-tracks. Optimizing Eq. (4) has little ef-
fect, because sparse pixel correspondences Mn,m are rarely
exactly overlapping across several pairs. As an illustra-
tion, two correspondences ym·,· ↔ yni,j and yni+1,j ↔ yl·,·
from image pairs (m,n) and (n, l) would independently
optimize the two 3D points χn

i,j and χn
i+1,j , possibly mov-

ing them very far apart despite this being very unlikely as
(i, j) ≃ (i+1, j). Traditional SfM methods resort to form-
ing point tracks, which is relatively straightforward with
keypoint-based matching [12, 29, 31, 43, 46]. We propose
instead to form pseudo-tracks by defining anchor points and
rigidly tying together every pixel with their closest anchor
point. This way, correspondences that do not overlap ex-
actly are still both tied to the same anchor point with a high
probability. Formally, we define anchor points with a regu-
lar pixel grid ẏ ∈ RH/s×W/s×2 spaced by δ pixels:

ẏu,v =

(
uδ +

δ

2
, vδ +

δ

2

)
. (5)

We then tie each pixel (i, j) in In with its closest anchor
ẏu,v at coordinate (u, v) = (⌊i/δ⌋ , ⌊j/δ⌋). Concretely, we
simply index the depth value at pixel (i, j) to the depth
value Żu,v of its anchor point, i.e. we define Zi,j = oi,jŻu,v



Method 25 views 50 views 100 views 200 views full

ATE↓ Reg.↑ ATE↓ Reg.↑ ATE↓ Reg.↑ ATE↓ Reg.↑ ATE↓ Reg.↑

COLMAP [46] 0.03840 44.4 0.02920 60.5 0.02640 85.7 0.01880 97.0 - -
ACE-Zero [9] 0.11160 100.0 0.07130 100.0 0.03980 100.0 0.01870 100.0 0.01520 100.0
FlowMap [50] 0.10700 100.0 0.07310 100.0 0.04460 100.0 0.02420 100.0 N/A 66.7
VGGSfM [62] 0.05800 96.2 0.03460 98.7 0.02900 98.5 N/A 47.6 N/A 0.0
DF-SfM [19] 0.08110 99.4 0.04120 100.0 0.02710 99.9 N/A 33.3 N/A 76.2

MASt3R-SfM 0.03360 100.0 0.02610 100.0 0.01680 100.0 0.01300 100.0 0.01060 100.0

Method MIP-360 LLFF T&T CO3Dv2

NoPE-NeRF [8] 0.04429 0.03920 0.03709 0.03648
DROID-SLAM [54] 0.00017 0.00074 0.00122 0.01728
FlowMap [50] 0.00055 0.00209 0.00124 0.01589
ACE-Zero [9] 0.00173 0.00396 0.00973 0.00520

MASt3R-SfM 0.00079 0.00098 0.00215 0.00538

Table 1. Results on Tanks&Temples in terms of ATE and overall registration rate (Reg.). For easier readability, we color-code ATE results
as a linear gradient between worst and best ATE for a given dataset or split; and Reg results with linear gradient between 0% and 100%.
Left: Impact of the number of input views, regularly sampled from the full set. ‘N/A’ indicates that at least one scene did not converge.
Right: ATE↓ on different datasets with the arbitrary splits defined in FlowMap [50].

where oi,j = Z̃i,j/Z̃u,v is a constant relative depth offset
calculated at initialization from the canonical depthmap Z̃ .
Here, we make the assumption that canonical depthmaps
are locally accurate. All in all, optimizing a depthmap
Zn ∈ RH×W thus only comes down to optimizing a re-
duced set of anchor depth values Żn ∈ RH/δ×W/δ (e.g.
reduced by a factor of 64 if δ = 8).

5. Experimental Results

After presenting the datasets and metrics, we extensively
compare our approach with state-of-the-art SfM methods in
diverse conditions. We finally present several ablations.

5.1. Experimental setup

We use the publicly available MASt3R checkpoint for
our experiments, which we do not finetune unless other-
wise mentioned. When building the sparse scene graph in
Sec. 4.1, we use Na = 20 anchor images and k = 10 non-
anchor nearest neighbors. We use the same grid spacing
of δ = 8 pixels for extracting sparse correspondences with
fastNN (Sec. 4.2) and defining anchor points (Sec. 4.4). For
the two gradient descents, we use the Adam optimizer [23]
with a learning rate of 0.07 (resp. 0.014) for ν1 = 300 iter-
ations and λ1 = 1.5 (resp. ν2 = 300 and λ2 = 0.5) for the
coarse (resp. refinement) optimization, each time with a co-
sine learning rate schedule and without weight decay. Un-
less otherwise mentioned, we assume shared intrinsics and
optimize a shared per-scene focal parameter for all cameras.

Datasets. To showcase the robustness of our approach, we
experiment in different conditions representative of diverse
experimental setups (video or unordered image collections,
simple or complex scenes, outdoor, indoor or object-centric,
etc.). Namely, we employ Tanks&Temples [24] (T&T),
a 3D reconstruction dataset comprising 21 scenes ranging
from 151 to 1106 images; ETH3D [49], a multi-view stereo
dataset with 13 scenes for which ground-truth is avail-
able; CO3Dv2 [39], an object-centric dataset for multi-view
pose estimation; and RealEstate10k [70], MIP-360 [6] and
LLFF [33], three datasets for novel view synthesis. We
note that 14 scenes of T&T are part of MegaDepth [27],
which is used for training the MASt3R checkpoint we used.

Method Co3Dv2↑ RealEstate10K↑
RRA@15 RTA@15 mAA(30) mAA(30)

(a)

Colmap+SG [12, 43] 36.1 27.3 25.3 45.2
PixSfM [29] 33.7 32.9 30.1 49.4
RelPose [68] 57.1 - - -
PosReg [61] 53.2 49.1 45.0 -
PoseDiff [61] 80.5 79.8 66.5 48.0
RelPose++ [28] (85.5) - - -
RayDiff [69] (93.3) - - -
DUSt3R-GA [64] 96.2 86.8 76.7 67.7
MASt3R-SfM 96.0 93.1 88.0 86.8

(b) DUSt3R [64] 94.3 88.4 77.2 61.2
MASt3R [26] 94.6 91.9 81.8 76.4

Table 2. Multi-view pose regression on CO3Dv2 [39] and
RealEstate10K [70] with 10 random frames. Parenthesis () de-
note methods that do not report results on the 10 views set, we re-
port their best for comparison (8 views). We distinguish between
(a) multi-view and (b) pairwise methods.

As shown in the detailed results provided in Section 4 of
the supplementary material, we do not observe any signif-
icant differences between seen and unseen scenes in terms
of accuracies and comparison with the state of the art.

Evaluation metrics. We evaluate all methods w.r.t.
ground-truth cameras poses. For Tanks&Temples where
it is not provided, we make a pseudo ground-truth with
COLMAP [46] using all frames. Even though this is not
perfect, COLMAP is known to be reliable in conditions
where there is a large number of frames with high over-
lap. We evaluate the average translation error (ATE) as in
FlowMap [50], i.e. we align estimated camera positions to
ground-truth ones with Procrustes [32] and report an aver-
age normalized error. We ignore unregistered cameras when
doing Procrustes, which favors methods that can reject hard
images (such as COLMAP [46] or VGGSfM [62]). Note
that our method always outputs a pose estimate for all cam-
eras by design, thus negatively impacting our results with
this metric. We also report the relative rotation and trans-
lation accuracies (resp. RTA@τ and RRA@τ , where τ in-
dicates the threshold in degrees), computed at the pairwise
level and averaged over all image pairs [61]. Similarly, the
mean Average Accuracy (mAA)@τ is defined as the area
under the curve of the angular differences at min(RRA@τ ,
RTA@τ ). Finally, we report the successful registration rate
as a percentage, denoted as Reg. When reported at the
dataset level, metrics are averaged over all scenes.



Scenes COLMAP [46] ACE-Zero [9] FlowMap [50] VGGSfM [62] DF-SfM [19] MASt3R-SfM

RRA@5 RTA@5 RRA@5 RTA@5 RRA@5 RTA@5 RRA@5 RTA@5 RRA@5 RTA@5 RRA@5 RTA@5

courtyard 56.3 60.0 4.0 1.9 7.5 3.6 50.5 51.2 80.7 74.8 89.8 64.4
delivery area 34.0 28.1 27.4 1.9 29.4 23.8 22.0 19.6 82.5 82.0 83.1 81.8
electro 53.3 48.5 16.9 7.9 2.5 1.2 79.9 58.6 82.8 81.2 100.0 95.5
facade 92.2 90.0 74.5 64.1 15.7 16.8 57.5 48.7 80.9 82.6 74.3 75.3
kicker 87.3 86.2 26.2 16.8 1.5 1.5 100.0 97.8 93.5 91.0 100.0 100.0
meadow 0.9 0.9 3.8 0.9 3.8 2.9 100.0 96.2 56.2 58.1 58.1 58.1
office 36.9 32.3 0.9 0.0 0.9 1.5 64.9 42.1 71.1 54.5 100.0 98.5
pipes 30.8 28.6 9.9 1.1 6.6 12.1 100.0 97.8 72.5 61.5 100.0 100.0
playground 17.2 18.1 3.8 2.6 2.6 2.8 37.3 40.8 70.5 70.1 100.0 93.6
relief 16.8 16.8 16.8 17.0 6.9 7.7 59.6 57.9 32.9 32.9 34.2 40.2
relief 2 11.8 11.8 7.3 5.6 8.4 2.8 69.9 70.3 40.9 39.1 57.4 76.1
terrace 100.0 100.0 5.5 2.0 33.2 24.1 38.7 29.6 100.0 99.6 100.0 100.0
terrains 100.0 99.5 15.8 4.5 12.3 13.8 70.4 54.9 100.0 91.9 58.2 52.5

Average 49.0 47.8 16.4 9.7 10.1 8.8 65.4 58.9 74.2 70.7 81.2 79.7

Table 3. Detailed per-scene translation and rotation accuracies (↑) on ETH-3D. For clarity, we color-code results with a linear gradient
between the worst and best result for a given scene.

5.2. Comparison with the state of the art

We first evaluate the impact of the amount of overlap be-
tween images on the quality of the SfM output for dif-
ferent state-of-the-art methods. To that aim, we choose
Tanks&Temple, a standard reconstruction dataset captured
with high overlap (originally video frames). We form new
splits by regularly subsampling the original images for 25,
50, 100 and 200 frames. Following [50], we report results
in terms of Average Translation Error (ATE) against the
COLMAP pseudo ground-truth in Tab. 1 (left), computed
from the full set of frames and likewise further subsampled.
MASt3R-SfM provides nearly constant performance for all
ranges, significantly outperforming COLMAP, Ace-Zero,
FlowMap and VGGSfM in all settings. Unsurprisingly, the
performance of these methods strongly degrades in small-
scale settings (or does not even converge on some scenes
for COLMAP). On the other hand, we note that FlowMap
and VGGSfM crash when dealing with large collections due
to insufficient memory despite using 80GB GPUs.
FlowMap splits. We also report results on the custom
splits from the FlowMap paper [50], which concerns 3 addi-
tional datasets beyond T&T (LLFF, Mip-360 and CO3Dv2).
We point out that, not only these splits select a subset of
scenes for each dataset (in details: 3 scenes from Mip-360,
7 from LLFF, 14 from T&T and 2 from CO3Dv2), they also
select an arbitrary subset of consecutive frames in the cor-
responding scenes. Results in Tab. 1 (right) show that our
method achieves better results than NopeNeRF and ACE-
Zero, on par with FlowMap overall and slightly worse than
DROID-SLAM [54], a method that only works in video set-
tings. Since we largely outperform FlowMap when using
regularly sampled splits, we hypothesize that FlowMap is
very sensitive to the input setting.
Multi-view pose estimation. In Fig. 1 (top), we evaluate
on CO3Dv2 and RealEstate10K, varying the number of in-
put images by random sampling. We follow the PoseDiffu-
sion [61] splits and protocol. We provide detailed compar-

isons in Tab. 2 with state-of-the-art multi-view pose estima-
tion methods, whose goal is only to recover cameras poses
but not the scene geometry. Our approach compares favor-
ably to existing methods, particularly when the number of
input images is low. Overall, this highlights that MASt3R-
SfM is extremely robust to sparse view setups, with its per-
formance not degrading when decreasing the number of
views, even for as little as three views.

Unordered collections. We note that benchmarks in pre-
vious experiments were originally acquired as videos later
subsampled into frames. This might introduce biases that
may not well represent the general case of unconstrained
SfM. We thus experiment on the ETH3D dataset, a pho-
tograph dataset, composed of 13 scenes with up to to 76
images per scene. Results reported in Tab. 3 shows that
MASt3R-SfM outperforms all competing approaches by a
large margin on average. This is not surprising, as neither
ACE-Zero nor FlowMap can handle non-video setups. The
fact that COLMAP and VGGSfM also perform relatively
poorly indicates a high sensitivity to not having highly over-
lapping images, meaning that in the end these methods can-
not really handle truly unconstrained collections, in spite of
some opposite claims [62].

5.3. Ablations

We now study the impact of various design choices. All
experiments are conducted on the Tanks&Temples dataset
regularly subsampled for 200 views per scene.

Scene graph. We evaluate different construction strate-
gies for the scene graph in Tab. 4: ‘complete’ means that
we extract all pairs, ‘local window‘ is an heuristic for video-
based collections that connects every frame with its neigh-
boring frames, and ‘random’ means that we sample ran-
dom pairs. Except for the ‘complete’ case, we try to match
the number of pairs used in the baseline retrieval strategy.
Slightly better results are achieved with the complete graph,
but it is about 10x slower than retrieval-based graph and not



Scene Graph ATE↓ RTA@5↑ RRA@5↑ #Pairs GPU MEM Avg. T

Complete 0.01256 75.9 74.8 39,800 29.9 GB 2.2 h
Local window 0.02509 33.1 28.8 2,744 7.6 GB 14.1 min
Random 0.01558 55.2 48.8 2,754 6.9 GB 14.7 min
Retrieval 0.01243 70.9 67.6 2,758 8.4 GB 14.3 min

Table 4. Ablation of scene graph construction on
Tanks&Temples (200 view subset).

Ablation ATE↓ RTA@5↑ RRA@5↑ #Pairs

Retrieval
kNN 0.01440 64.1 61.9 3,042
Keyframes 0.01722 58.1 57.1 740
Keyframes + kNN 0.01243 70.9 67.6 2,758

Optimization level
Coarse 0.01504 47.4 57.7 2,758
Fine (w/o depth) 0.01315 67.3 66.9 2758
Fine 0.01243 70.9 67.6 2,758

Intrinsics Separate 0.01329 66.9 64.2 2,758
Shared 0.01243 70.9 67.6 2,758

Table 5. Other ablations on Tanks&Temples (200 view subset).

scalable in general. Assuming we use retrieval, we further
ablate the scene graph building strategy from the similarity
matrix in Tab. 5. As a reminder, it consists of building a
small but complete graph of keyframes, and then connect-
ing each image with the closest keyframe and with k nearest
non-keyframes. We experiment with using only k-NN with
an increased k = 13 to compensate for the missing edges,
denoted as ‘k-NN’, or to only use the keyframe graph (i.e.
k = 0), denoted as ‘Keyframe’. Overall, we find that com-
bining short-range (k-NN) and long-range (keyframes) con-
nections is important for reaching top performance.

Retrieval with MASt3R. To better assess the effective-
ness of our image retrieval strategy alone, we conduct ex-
periments for the task of retrieval-assisted visual localiza-
tion. We follow the protocol from [26] and retrieve the top-k
posed images in the database for each query, extract 2D-3D
correspondences and run RANSAC to predict camera poses.
We compare ASMK on MASt3R features to the off-the-
shelf FIRe retrieval method [66], also based on ASMK, on
Aachen-Day-Night [45] and InLoc [53]. We report standard
visual localization accuracy metrics, i.e. the percentages of
images successfully localized within (0.25m,2°) / (0.5m,5°)
/ (5m,10°) and (0.25m,2°) / (0.5m,10°) / (1m,10°) respec-
tively.1 in Tab. 6. Interestingly, using frozen MASt3R fea-
tures for retrieval performs on par with FIRe, a state-of-the-
art method specifically trained for image retrieval and oper-
ating on multi-scale features (bottom row). Our method is
also competitive with dedicated visual localization pipelines
(top rows), even setting a new state of the art for InLoc. We
refer to the supplementary material for further comparisons.

Optimization level. We study the impact of the coarse
optimization and refinement (Tab. 5). Coarse optimization
alone, which is somewhat comparable to the global align-
ment of DUSt3R (except we are using sparse matches and
less optimization variables), yields significantly less precise
pose estimates. Fig. 4 shows the pose accuracy as a func-

1https://www.visuallocalization.net/

Method Aachen-Day-Night↑ InLoc↑
Day Night DUC1 DUC2

Kapture [20]+R2D2 [41] 91.3/97.0/99.5 78.5/91.6/100 41.4/60.1/73.7 47.3/67.2/73.3
SuperPoint [12]+LightGlue [30] 90.2/96.0/99.4 77.0/91.1/100 49.0/68.2/79.3 55.0/74.8/79.4
LoFTR [52] 88.7/95.6/99.0 78.5/90.6/99.0 47.5/72.2/84.8 54.2/74.8/85.5
DKM [13] - - 51.5/75.3/86.9 63.4/82.4/87.8

MASt3R (FIRe top20) 89.8/96.8/99.6 75.9/92.7/100 60.6/83.3/93.4 65.6/86.3/88.5
MASt3R (MASt3R-ASMK top20) 88.7/94.9/98.2 77.5/90.6/97.9 58.1/82.8/94.4 69.5/90.8/92.4

Table 6. Comparison of retrieval based on MASt3R features
using ASMK with the state-of-the-art FIRe method when localiz-
ing with MASt3R (bottom rows), as well as with other state-of-
the-art visual localization methods (top rows).
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Figure 4. Pose accuracy (↑) on T&T-200 w.r.t. the number of
iterations of the coarse and refinement stages (resp. ν1 and ν2).

tion of the number of iterations during coarse optimization
and refinement. As expected, refinement, a strongly non-
convex bundle-adjustment problem, cannot recover from a
random initialization (ν1 = 0). Good enough poses are typ-
ically obtained after ν1 ≃ 250 iterations of coarse optimiza-
tion, from which point refinement consistently improves.
We also try to perform the optimization without optimizing
depth (i.e. using frozen canonical depthmaps, which proves
useful for purely rotational cases, denoted as ‘Fine without
depth’ in Tab. 5), in which case we observe a smaller impact
on the performance, indicating the high-quality of canonical
depthmaps output by MASt3R (Sec. 4.2).
Shared intrinsics. We also report the impact of only op-
timizing one set of intrinsics for all views (‘shared’), which
is small: our method is not sensitive to varying intrinsics.
Limitations. Convergence for large scenes can be slow
as we use a first-order optimization only. Moreover, our
method can be sensible to a poor initialization of the sparse
scene graph, which can occur e.g. with symmetric structures
that looks similar but are not connected, see Section 3 and
Figure 2 of the supplementary material. Robust methods
like RANSAC would also fail in such cases.

6. Conclusion
We have introduced MASt3R-SfM, a fully-integrated
solution for unconstrained SfM. In contrast with existing
pipelines, it can handle very small image collections.
Thanks to the strong priors encoded in the underlying
MASt3R foundation model upon which our approach is
built, it can even deal with cases without motion, and does
not rely at all on RANSAC, both features that are nor-
mally not possible with standard triangulation-based SfM.

https://www.visuallocalization.net/
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