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ABSTRACT

Scaling reinforcement learning (RL) has shown strong promise for enhancing the
reasoning abilities of large language models (LLMs), particularly in tasks requiring
long chain-of-thought generation. However, RL training efficiency is often bottle-
necked by the rollout phase, which can account for up to 70% of total training time
when generating long trajectories (e.g., 16k tokens), due to slow autoregressive
generation and synchronization overhead between rollout and policy updates. We
propose SortedRL, an online length-aware scheduling strategy designed to address
this bottleneck by improving rollout efficiency and maintaining training stability.
SortedRL reorders rollout samples based on output lengths, prioritizing short sam-
ples forming groups for early updates. This enables large rollout batches, flexible
update batches, and near on-policy micro-curriculum construction simultaneously.
To further accelerate the pipeline, SortedRL incorporates a mechanism to con-
trol the degree of off-policy training through a cache-based mechanism, and is
supported by a dedicated RL infrastructure that manages rollout and update via
a stateful controller and rollout buffer. Experiments using LLaMA-3.1-8B and
Qwen-2.5-32B on diverse tasks, including logical puzzles, and math challenges
like AIME 24, Math 500, and Minerval, show that SortedRL reduces RL training
bubble ratios by over 50%, while attaining 3.9% to 18.4% superior performance
over baseline given same amount of data.

1 INTRODUCTION

Large language models (LLMs) have achieved remarkable performance across a wide range of
tasks (Achiam et al., 2023; Yang et al., 2025; Gemini; Liu et al., 2024). Recently, reinforcement
learning (RL) has emerged as a key methodology for further enhancing the abilities of pretrained
LLMs (Jaech et al., 2024; Guo et al., 2025; Seed et al., 2025). Notably, several works have focused
on improving the reasoning abilities of LLMs on complex tasks such as mathematical problem
solving (Hendrycks et al., 2021; He et al., 2024) and competition-level coding (Jain et al., 2025).
These methods typically instruct the model to generate intermediate chain-of-thought steps alongside
the final answer, and apply RL using outcome-based rewards (e.g., correctness of the final answer)
as supervision. Concretely, the RL training procedure alternates between a generation step and an
updating step. In the generation step, the model produces rollouts, comprising both the reasoning
process and the answer, given an input question. In the updating step, the model parameters are
updated based on the rewards assigned to the generated rollouts. This paradigm has shown substantial
improvements in the reasoning performance of LLMs (Guo et al., 2025; Team et al., 2025).

A key observation in RL for LLMs is that improvements in model performance during training
are often accompanied by an increase in the length of generated responses. This phenomenon is
commonly attributed to the model’s emergent ability to learn more complex reasoning, and suggests
that encouraging the generation of longer responses, which often contains richer intermediate steps,
plays a crucial role in enhancing overall performance.

However, because LLM generation is an auto-regressive process, producing long rollouts can be
extremely time-consuming, making the generation phase the primary bottleneck in the overall RL
training time. Moreover, because widely-used RL algorithms are all on-policy ones, whose training
iterates between generation and updating, but the updating step can only begin after all responses
in a batch have finished generating. When response lengths vary widely across fed samples, this
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leads to inefficient hardware utilization (commonly referred to as "bubbles") as resources are left
underutilized waiting for the longest generation to complete. Notably, we observe that the distribution
of response lengths follows a long-tailed pattern (see Fig.1c), which exacerbates these bubbles and
makes inefficient utilization especially pronounced during RL-based LLM tuning.

A straightforward way to mitigate those inefficiencies is to use large batches for rollout and employ
optimizations such as continuous batching (Yu et al., 2022) or chunked prefilling (Agrawal et al.,
2024) to reduce idling time and minimize the bubble. However, if the rollout batch is made large
while keeping the update batch size fixed, the model would be updated multiple times using the same
batch of generated data. This forces the model to train on increasingly off-policy data after each
update, which can undermine training stability. On the other hand, forcing the update batch to match
the rollout batch size is not a flexible approach and may not yield optimal results across different
tasks. Thus, these naive solutions have inherent limitations that restrict their applicability in practical
RL-based LLM training.

To address these challenges, we propose SortedRL, a method designed to reconcile sample and
computation efficiency in RL-based LLM tuning. The first key component of SortedRL is online
length-aware scheduling: it sorts incoming data by response length and prioritizes updates with
samples that have shorter responses. This creates a micro-curriculum online without extra overhead.
The updated model is then immediately used to generate rollouts for the remaining longer samples in
the current batch, enabling large rollout batch size, flexible update batch size, and on-policy updates
at the same time. Second, we introduce a mechanism to control the degree of off-policy training
within the algorithm. By caching unfinished samples, SortedRL accelerates the pipeline further by
enabling immediate processing of newly completed generations. Third, we develop a dedicated
infrastructure to support SortedRL, abstracting the data generation and usage flow for RL training.
This infrastructure features a length-aware controller to manage the rollout process and a stateful
rollout buffer to dynamically coordinate the timing of model updates, thereby maximizing throughput
and maintaining training consistency.

Extensive experiments demonstrate the effectiveness of SortedRL in both mitigating the bubble
and mitigating negative impacts from off-policy training compared with the baseline. With Sorte-
dRL, LLaMA-3.1-8B-Instruct attained the same high score using 40.74% fewer samples on logical
reasoning tasks with vanilla Reinforce++ training. Using the same amount of training data, our
approach exhibited 3.9% to 18.4% better performance on competition-level mathematical problems
including OlympiadBench (He et al., 2024), AIME 2024, and AMC 2023. Meanwhile, via end-to-end
performance test, we also observed a sharp drop in bubble ratio, from 74% to less than 6%.

2 MOTIVATION AND PRELIMINARIES

2.1 BACKGROUND

RL for LLMs RL training for LLMs is a compute-intensive, multi-stage process characterized by
heterogeneous components, unlike the uniformity in supervised finetuning. A typical RL pipeline
consists of three key stages: (1) Rollout, where the actor model generates responses from input
prompts; (2) Inference, where inference is performed using critic, reward, and reference models to
compute values, rewards, and log-probabilities; and (3) Model update, where gradients are computed
and applied. Scaling this pipeline has been shown to enhance LLM reasoning capabilities, especially
in generating longer and more coherent Chain-of-Thoughts (CoTs).

Proximal Policy Optimization (PPO) and Reinforce++ PPO (Schulman et al., 2017) and Rein-
force++ (Hu, 2025) are both REINFORCE-based policy optimization methods. Specifically, they
update the policy by maximizing the following objective:

J (θ) = E (q,a)∼D,
o∼πθold (·|q)

[
min

(
πθ(ot | q, o<t)
πθold(ot | q, o<t)

Ât, clip

(
πθ(ot | q, o<t)
πθold(ot | q, o<t)

, 1− ε, 1 + ε

)
Ât

)]
,

(1)
where, (q, a) denotes a question–answer pair sampled from the data distribution D, ε is the clipping
range for the importance sampling ratio, and Ât represents an estimator of the advantage at time
step t. The computation and normalization of Ât can vary across algorithms (Schulman et al., 2017;
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Figure 1: (a) Latency breakdown of RL training for LLMs. (b) GPU wall time per rollout batch with
128 batch size. (c) Length distribution of sampled trajectories during rollout. Visualizations are based
on DeepSeek-R1-Distill-Llama-8B (Guo et al., 2025) with a 4K maximum generation length.

Shao et al., 2024; Liu et al., 2025; Hu, 2025). For example, the advantage functions used in PPO and
Reinforce++ are shown in Eq.(2) and Eq.(3), respectively.

ÂPPO,t =

T−t−1∑
l=0

(γλ)l δt+l, δt = rt + γ Vψ(st+1)− Vψ(st) (2)

ÂReinforce++,t =
Ri − µbatch

σbatch
(3)

2.2 ROLLOUT DOMINANCE IN RL TRAINING COST

RL for LLMs encompasses three primary stages: actor model generation (rollout), evaluation via
critic/reward/reference model inference, and subsequent actor/critic model training. Scaling RL
training demonstrably improves LLM reasoning, notably by facilitating longer Chain-of-Thought
(CoT) generation. However, this introduces a significant bottleneck: the actor model rollout in-
creasingly dominates the training duration, as shown in Fig. 1a. For example, with a maximum
generation length of 16K tokens, rollouts can consume 70% of the computational resources. For a
state-of-the-art (SoTA) 32B parameter reasoning LLM, a single rollout step typically requires 15-20
minutes (Yu et al., 2025). As in most LLM-serving systems, autoregressive rollout throughput is
primarily constrained by limited HBM bandwidth, due to frequent loading of model weights and
KV caches. Moreover, the temporal dominance of rollouts is poised to intensify with more complex
scenarios, such as agent-based interactions or multi-turn reasoning (Wang et al., 2025), which demand
even longer trajectories.

2.3 BUBBLES IN ROLLOUT

A significant challenge stems from the considerable variance in generation lengths across different
rollout trajectories. As illustrated in Fig. 1c, within a sampling batch size of 512, while 80% of
samples are generated within 3K tokens, the remaining 5% can extend up to the token limit. This
heterogeneity in generation length distribution is pervasive across all stages of RL training.

Critically, unlike standard LLM inference scenarios, the rollout model generation process is syn-
chronous with actor model gradient updates. This synchronization precludes the application of
continuous batching techniques (Yu et al., 2022), which are commonly employed in LLMs inference
to optimize GPU resource utilization. Although previous works (Zhong et al., 2025; Mei et al., 2025)
have sought to improve GPU utilization by stage fusion and overlapping rollout generation with actor
model training, the efficacy of this approach diminishes with longer trajectories, leading to substantial
GPU idle periods (i.e., large bubble ratios) during the rollout phase.
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3 SORTEDRL

Following the analysis in §2, we propose SortedRL to reduce the bubble ratio in the rollout stage
and accelerate RL training for LLMs. SortedRL comprises three key components: 1) Online Length-
Aware Scheduling, a length-aware batching mechanism is employed to minimize rollout bubbles by
aligning samples with similar generation lengths within a batch. 2) Controllable Off-Policy Sampling,
supports both on-policy and partial off-policy modes, enabling flexible trade-offs between stability
and sample efficiency during training. 3) Co-Designed RL Infrastructure, includes a length-aware
controller and a stateful rollout buffer, designed to coordinate length scheduling, buffer management,
and model interaction efficiently.

Fully On-policy

Partial

b

 

 

 

 

a c SortedRL

Vanilla

Pipeline Overview

Figure 2: The SortedRL framework. a, The architecture of the SortedRL engine, consisting of
two core modules: a length-aware controller and a stateful rollout buffer. The RL training pipeline
includes five key steps: 1) concatenate buffer and feed prompts, 2) early termination, 3) collect and
update rollout trajectories, and 4) sort and feed training batches; b and c, imaginary timeline and
SortedRL strategy. Samples in same batch are denoted in same color. Dotted lines and boxes indicates
the harvest timing. For fully on-policy mode, the gray bars are partially discarded incomplete samples
or non-scheduled prompts, while there is no discarded trajectories in partial mode.

3.1 ONLINE LENGTH-AWARE SCHEDULING

To alleviate the prolonged rollout duration and high bubble ratio in RL training, we propose an
online length-aware scheduling method. This approach dynamically batches samples with similar
output lengths to minimize idle computation and reduce bubble ratios during rollout. To ensure token
efficiency, we introduce the following key designs:

Length-aware Rollout Schedule. In the RL rollout stage, bubbles primarily arise from mismatches
in generation lengths across samples. Long-tailed generation drastically slows down generation due to
unsaturated device utilization under small batch size. Therefore, effectively reducing the bubble ratio
hinges on accurately sensing generation length. Previous methods (Fu et al., 2024) have attempted to
predict generation length using offline neural networks trained on specific datasets. However, these
approaches often lack generalization to unseen scenarios and are ill-suited for reinforcement learning
settings, which involve multi-sampling and continual updates.

To address this, we propose an generation-length aware rollout schedule that sense the fine-grained
dynamics of generated sequences. Our controller adopts an oversubscription strategy, feeding the
rollout engine with more prompts than its maximum queue capacity in most iterations. This ensures
that the rollout engine consistently operates at its optimal batch size, as captured by hardware runtime
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graphs (e.g., CUDA and HIP graphs), which is essential for maximizing the efficiency of JIT-compiled
kernels.

In conjunction with oversubscription, the controller applies early termination based on batching-
related thresholds. Once the condition is met, both completed and partially generated outputs are
harvested. This mechanism effectively reduces idle time and minimizes computation bubbles during
the rollout phase.

Grouped Rollout and Micro-curriculum. While oversubscription and early termination improve
hardware efficiency, they also introduce a side effect: longer generations are more likely to be
interrupted during training, resulting in a bias toward shorter responses in the collected data. Although
partial generations can be scavenged and resumed in the next rollout iteration, the resumed segments
are inevitably off-policy, and longer sequences are inherently suffering higher impacts from it due to
more interruptions.

To mitigate this, we organize prompts into groups of batches and enforce a cache-aware loading
policy: no new prompts are loaded from the dataloader until all cached prompts have been consumed.
This strategy ensures that all prompts are fully processed within a bounded timespan, avoiding prompt
starvation and maintaining balanced training dynamics.

As a result, SortedRL naturally batches responses of similar lengths together. Since shorter responses
are typically completed earlier, outputs within a time slice tend to be temporally clustered, leading
to length-sorted batching as the rollout progresses. Considering the length-reward correlation
in reasoning models, batches in SortedRL groups naturally constructs micro-curriculum that has
incremental difficulty. This sorting behavior can also substantially affects batch normalization,
together contributing to improved token efficiency, which will be demonstrated and discussed in §4.

Selective Batching for Training. Unlike the canonical RL pipeline, our controller can selectively
batch ready trajectories and feed them to the trainer in a dedicated order and combination. This
is particularly important for algorithms such as Reinforce++, where batch-wise normalization can
substantially impact training outcomes.

3.2 CONTROLLED OFF-POLICINESS

SortedRL supports two switchable modes of operation: fully on-policy and partial mode. As
illustrated in Fig. 2, on-policy mode only feeds trajectories generated from the latest available policy,
and terminates any unfinished requests in the queue. The prompt of terminated requests are scavenged
back to buffer for rollout in next batch, to prevent starvation of certain prompts. Partial mode also
scavenges generated tokens of terminated requests. The corresponding log probabilities used to
generate the tokens are also cached in the buffer. In the incoming batch, the interrupted trajectories
(prompts and generated tokens) are fed into the rollout engine. We concatenate log probabilities used
to generate new sequence with the previously cached ones, to ensure every token can use the exact
log probability value that was used to generate each token during importance sampling (Eq.1).

3.3 CO-DESIGNED RL INFRASTRUCTURE

For SortedRL, we co-design a compute-efficient rollout controller and a stateful rollout buffer to
maximize MFU, support agile algorithmic experimentation, and maintain intermediate stateful results
across rollout iterations. The underlying infrastructure provides the following key capabilities:

Rollout State Manager. The controller maintains a set of states, including: (1) unconsumed
prompts from the dataloader, (2) scavenged response segments obtained upon rollout termination, and
(3) the corresponding log probabilities for these segments. Scavenged segments can be concatenated
with their original prompts to resume generation in subsequent iterations. Additionally, the stored log
probability segments can be reused for importance sampling and serve as πold in Eq. 1 during policy
updates.

Stateful Rollout Buffer. To support different modes in controllable off-policy training, we im-
plement a stateful rollout buffer that stores intermediate results of partially generated trajectories.

5
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Specifically, each entry in the buffer includes: the prompt context, the current partial trajectory,
corresponding log probabilities, a completion flag indicating whether the trajectory is finished, and
a lifecycle indicator used to determine when the entry should be cleared. This design ensures that
partially generated trajectories can be efficiently resumed or discarded based on training mode and
resource constraints.

4 EXPERIMENT

4.1 EXPERIMENT SETUP

Dataset We evaluate our approach on two sets of data with distinct nature, and the ground truth
data are suitable for rule-based evaluation:

First, a logical puzzle dataset, LogicRL (Xie et al., 2025). This dataset is composed of 5000 synthetic
The Knights and Knaves game puzzles (Xie et al., 2024). An example can be checked in Fig.7, the
game instructs players to deduce the roles of the characters mentioned in the statement. The training
dataset is a mixture of 3 to 7 characters (i.e., different difficulties), with each difficulty accounting for
1000 samples. The samples are all shuffled during training. We spare 10% of data for evaluation.

Second is a mixed mathematical dataset, DAPO-Math-17k. This dataset contains a variety type of
mathematical problems from the AoPS website. For easy and precise verification, the problems are
transformed to expect an integer solution.

To evaluate the model’s mathematical capability, we select 6 benchmarks following standard
practice (Yu et al., 2025; Shi et al., 2025; Zeng et al., 2025): GSM8k (Cobbe et al., 2021),
MATH500 (Hendrycks et al., 2021), Minerva Math (Lewkowycz et al., 2022), OlympiadBench (He
et al., 2024), AIME 2024, and AMC 2023. For problems from competition, considering its relatively
small amount, we collect 32 responses for each question and record accuracy (mean@32).

Models We select two scales of base model for two tasks. The model selection is determined by
robust and reproducible baseline performance on specific downstream task. For example, we have
observed that small model (Qwen-2.5-7B) is very limited in test-time scaling on math dataset, after
an abrupt increment at the initial stage of RL training, which is possibly the process of learning
the suitable format for rule-based verification, the model performance stopped improving (Fig.9b).
Instead, Qwen-2.5-32B is free from such concern and exhibits robust and progressive improving
pattern on training and evaluation metrics. As a result, for lightweight exploration on LogicRL, we
employed LLaMA-3.1-8B-Instruct as base model, and Qwen-2.5-32B for mathematical problems.

Compared Baseline For logical Reasoning, following the original practice (Xie et al., 2025), we
train LLaMA-3.1-8B-Instruct on LogicRL dataset with Reinforce++. We set the rollout prompt batch
size to 128 and collect 8 responses from each prompt, then update with a trajectory batch size of
1024.For mathematical tasks, we finetuned Qwen-2.5-32B on the DAPO-Math-17k dataset with PPO.
The rollout prompt batch size, number of responses per prompt, update batch size are 512, 1, and 128,
respectively. We adopt training tricks from DAPO (Yu et al., 2025) in both tasks including clip-higher,
removing KL divergence. Meanwhile, we removed entropy loss for better stability.

Implementation and Settings Our rollout scheme is implemented as a integrated component
of VeRL, an open-source RL training framework (Sheng et al., 2024). Experiments in this work
are conducted with SGLang (Zheng et al., 2024) as rollout engine. Some patches are applied
to facilitate better control of the rollout states and increase stability, including but not limited to:
Incomplete request state retrieval, distributed communication timeout prevention, and platform-
specific optimizations. Our training was conducted on a mixture of NVIDIA H100 and AMD
MI300X GPU cluster, equipped with 96-core Intel Xeon Platinum 8480C CPUs.

4.2 RESULTS ON LOGIC PROBLEMS

We first examine effects of our strategy on LogicRL dataset, on which we can obtain a stable learning
pattern using vanilla methods. For better instruction following in logical games, we choose LLaMA-
3.1-8B as starting point. Both baseline and two modes of SortedRL operates at a rollout batch size

6
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Figure 3: LogicRL overall results. On-Policy and Partial are variants of SortedRL

Table 1: Evaluation results at 600th checkpoint. On-Policy and Partial are variants of SortedRL

GSM8K MATH
500 Minerva Olympiad AIME

(mean@32)
AMC

(mean@32)
On-Policy 91.96 79.20 30.88 47.77 23.33 69.84
Partial 93.56 79.0 30.15 43.77 20.83 63.05
Baseline 95.15 76.2 29.04 44.51 19.69 63.13

of 128 prompts (8 responses per prompt) and update batch size of 1024 trajectories per step. For
SortedRL, we chose fully on-policy mode to mitigate the off-policy update setting in hyperparameters.

The result are shown in Fig.3a. For both trials, the validation score underwent an sudden increase
at initial 25 steps, where the model learnt to robustly capture the correct output format and avoided
points deduction for format. At the same time, the mean response length also dropped to a minima.
Subsequently, on-policy SortedRL rapidly improved in evaluation at around 80 steps, while baseline
approach improves at a slower pace. Until achieving comparable evaluation score (for instance, 2
points), baseline method lagged for around 3 epochs. Interestingly, the leading behavior is also
exhibited in the response length pattern. In SortedRL, the model started to explore lengthy responses
150 steps earlier than baseline. In contrast, the off-policy partial training shortly encountered a
explosion in reasoning length, which finally fell into an unrecoverable degradation in performance.

4.3 RESULTS ON MATH PROBLEMS

To explore the effects of SortedRL in more challenging tasks and identify the impact of off-policiness,
we finetuned Qwen2.5-32B on DAPO-Math-17k dataset. As a baseline, we set rollout batch size to
512 and update batch size to 128, resulting in 4 off-policy updates in each iteration. For both modes
of SortedRL, we set the rollout batch size to 128 and group size of 512, with a update batch size
of 128. This setup indicates 4 on-policy updates and 4 semi-off-policy updates in each iteration,
respectively for on-policy and partial mode.

After 600 update steps, baseline, on-policy and partial SortedRL achieved 23.33%, 20.83%, and
19.69% accuracy (mean@32) in AIME24 (Fig. 4). Furthermore, we took the checkpoint at the 600th

update step to evaluate each approaches’ performances on an ensemble of benchmarks. Results are
shown in Tab.1.

The evaluation metrics and curve clearly demonstrates that following the decreasing order of off-
policiness (on-policy - partial SortedRL- baseline), the token-efficiency increases accordingly. This
aligns with our expectation that off-policiness negatively impacts token-efficiency, and partial Sort-
edRL perfectly sits between fully off-policy baseline and on-policy SortedRL. And performances
on MATH500, Minerva, Olympiad, and AIME24 follows the off-policiness order. However, it is
intriguing that GSM8K seems being inversely impacted from the off-policy training.

Given the effect of off-policiness, we showed that SortedRL provides two relatively on-policy methods
to conduct RL LLM training, yet ensuring the system operates at the maximum batch.
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Figure 4: Mathematical task overall results. On-Policy and Partial are variants of SortedRL

4.4 ANALYSIS

4.4.1 THROUGHPUT OF DIFFERENT METHODS
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Figure 5: Rollout through-
puts under different strate-
gies.

We examined the end-to-end rollout efficiency of our underlying in-
frastructure by testing throughput of the different methods under the
workload of 512 samples in 4 separate batches with a maximum genera-
tion length of 8k. To avoid non-deterministic behavior in generation, we
set the sampling parameters for each sample to let generation lengths
be exactly the same as baseline.

The results (Fig.5) are 3987, 4289, and 5559 output tokens per second
respectively for baseline, fully on-policy mode and partial mode. Equiv-
alent to a speedup of 7.57% and 39.48% for fully on-policy mode and
partial model, respectively. We define a bubble ratio in eq.4, where
Q, T , rk, tk denote running queue size, total elapsed time, running
requests, and duration, respectively. Compared to baseline bubble ratio
of 74%, on-policy and partial mode reduced the number to 5.81% and
3.37%.

Bubble Ratio =

∑(
Q− rk

)
∆tk

T Q
, (4)

4.4.2 ABLATION STUDY ON KEY DESIGNS

We conducted a set of ablation study (Fig.6a) to pinpoint our key designs: In first experiment, we
disabled grouped rollout, but preserved an oversubscription strategy, i.e., feeding a lot prompts
and harvest the first few ready responses. In this way the rollout easily bias to shorter responses.
Consequently, the performance capped at less than 1 in validation score and stopped improving.

Then, we investigated the effect of fully on-policy mode. In ablation settings, we sort the batch post
hoc, after all responses are generated. Here, we set the rollout batch size to 512 prompts, which
is the number of prompts that will be consumed within 1 group in fully on-policy SortedRL. As a
result, the oldest trajectory in this method is 4 times farther away from policy in training than other
strategies. In contrast, in our approach, the prompts are consumed in 4 separate iteration, and trainer
gets freshly generated responses in each step. The validation score shows that even with batch sorting,
the off-policiness is holding back token-efficiency.

4.4.3 SENSITIVITY TO GROUPING SIZE

SortedRL introduced a new hyperparameter, group size n. This refers to the number of prompt
batches to be loaded by the SortedRL controller every time the prompt pool clears. Let rollout batch
size be b, then the total number of prompts to be loaded into rollout buffer is denoted as nb. The
controller does not load new prompts until every sample in current buffer are fed to the trainer.

Therefore, a large n causes the rollout engine to keep generate answers that are clustered in same
length. An extreme case is infinitely big n, at which the trainer only get short data. As shown in
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Fig.6b, it fails to improve. Similar degradation is also identified on n = 8. In contrast, n = 2 results
in a data distribution near the baseline approach, and consequently lead to a baseline-like curve.
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(b) Result with different group size.
Figure 6: Detailed Analysis.

5 RELATED WORK

5.1 RL TRAINING SYSTEMS

RLHF training frameworks have progressed from algorithm-centric libraries such as TRL (von Werra
et al., 2020) and RL4LMs (Ramamurthy et al., 2022) to throughput-oriented systems like ColossalChat
(Li et al., 2023), DeepSpeed-Chat with ZeRO (Rajbhandari et al., 2019; 2021), and NeMo-Aligner
(Shen et al., 2024), which scale to thousands of GPUs. The newest entrants—OpenRLHF (Hu et al.,
2024) and VeRL/HybridFlow (Sheng et al., 2024)—simplify RLHF for non-experts and offer “parallel-
native” execution across heterogeneous hardware, supporting 3-D, ZeRO, and FSDP parallelism out
of the box. However, none of these frameworks yet provides online batch scheduling or fine-grained
rollout control, two capabilities that our work introduces.

5.2 LLM GENERATION OPTIMIZATION

Modern RLHF rollouts piggy-back on high-throughput LLM-serving stacks: both OpenRLHF and
VeRL use vLLM’s PagedAttention for rapid KV-cache access (Kwon et al., 2023), while VeRL can
switch to SGLang’s Radix Attention, which pins shared cache segments to avoid recomputation
(Zheng et al., 2024). These engines pair optimized CUDA/HIP kernels with graph capture, speculative
decoding, continuous batching from Orca (Yu et al., 2022), and chunked prefill from Sarathi (Agrawal
et al., 2024). Yet they still target low-latency, online inference with frozen weights, whereas RLHF
demands high-throughput, batched “semi-offline” generation whose weights shift after every policy
update—changes that invalidate cached kernels, disrupt KV-cache layouts, and create rollout-to-
update “bubbles,” while magnifying sensitivity to speed–accuracy trade-offs such as quantization.
SortedRL closes this gap by shrinking those bubbles and markedly boosting rollout throughput.

6 CONCLUSION

We propose SortedRL, an online length-aware scheduling scheme that delivers high hardware utiliza-
tion and superior sample efficiency. Via fine-grained rollout control, SortedRL can reorder training
batches online to construct sample-efficient micro-curriculum. In experiment verification, we ob-
served robustly superior sample-efficiency with SortedRL on logical reasoning tasks and mathematical
problems. With Qwen-2.5-32B and identical amount of training data, we achieved over 18% accuracy
increment in AIME24 compared to baseline. Moreover, our sorted approach tackled the computation
bubbles in rollout, cutting it from 74% down to less than 5.81%, bringing about up to near 40% boost
in rollout throughput. SortedRL provides RL LLM training with two compute efficient methods
with significantly less off-policy effect compared to canonical large batch training. At the same time,
SortedRL also pronounced the importance of batch-wise normalization and selective batching, which
might be a critical aspect in future research in LLM RL training algorithms.
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A DATASET EXAMPLE

Prompt
------
system
You are a helpful assistant. The assistant first thinks about the reasoning process
in the mind and then provides the user with the answer. The reasoning process and
answer are enclosed within <think> </think> and <answer> </answer> tags, respectively,
i.e., <think> reasoning process here </think><answer> answer here </answer>.
Now the user asks you to solve a logical reasoning problem. After thinking, when
you finally reach a conclusion, clearly state the identity of each character within
<answer> </answer> tags. i.e., <answer> (1) Zoey is a knight
(2)... </answer>.
<|im_end|>
<|im_start|>user
A very special island is inhabited only by knights and knaves. Knights always tell
the truth, and knaves always lie. You meet 3 inhabitants: Michael, Zoey, and Ethan.
Michael was heard saying, "Ethan is a knight if and only if Michael is a knight".
"Zoey is a knight or Ethan is a knight," Zoey mentioned. Ethan asserted:
"Michael is a knave if and only if Zoey is a knave".
So who is a knight and who is a knave?
<|im_end|>
<|im_start|>assistant
<think>assistant

Ground Truth
------
(1) Michael is a knight
(2) Zoey is a knight
(3) Ethan is a knight

Figure 7: Example (prompt, answer) pair for the LogicRL task.

Prompt
------
Solve the following math problem step by step. The last line of your
response should be of the form

Answer: $Answer

(without quotes) where $Answer is the answer to the problem.

In triangle $ABC$, $\sin \angle A = \tfrac{4}{5}$ and $\angle A < 90^
\circ$.Let $D$ be a point outside triangle $ABC$ such that
$\angle BAD = \angle DAC$ and $\angle BDC = 90^\circ$.
Suppose that $AD = 1$ and that $\tfrac{BD}{CD} = \tfrac{3}{2}$.
If $AB + AC$ can be expressed in the form $\tfrac{a\sqrt{b}}{c}$ where
$a, b, c$ are pairwise relatively prime integers, find $a + b + c$.

Remember to put your answer on its own line after "Answer:".

Ground Truth
------
34

Figure 8: Example (prompt, answer) pair for the mathematical reasoning task.

B ADDITIONAL ANALYSIS

Length is highly associated with the model performance. Reportedly in recent discoveries, reasoning
capaility increment comes with increase response length. This aligns with the observations in our
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Figure 9: Additional Analysis.

experiments (Fig.3b,4b). Given our length-sorted training schedule, we can have more insights into
the role of response length in training. Fig.9a is a close-up look into two consecutive groups in
SortedRL training. There is a clear short-short-short-long pattern in the rollout batches. This pattern
forms a micro-curriculum for the training. The prompt remained in the buffer until clearing are
generally questions require more reasoning steps to resolve.

Microscopically, longer responses tend to but not always have lower performance (Fig.9a). This
can be partially explained by the fact that answers in longer sequences are more prone to be clipped.
However, this low-score iteration is not harmful. Instead, the next iteration after long batch can
achieve a higher score than previous short batches. Then the score keep drops as length increases
until the next long batch concludes.

Macroscopically, we have some interesting observation in mathematical tasks. Just like local patterns
mentioned earlier, the improvement of model performance are likely to show up on the falling edge
of response length (310-330 steps, 340-350 steps of SortedRL; 480-550 in Baseline). Meanwhile,
at comparable validation performance, SortedRL-tuned models has longer response length in both
tasks.
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