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ABSTRACT
As an indispensable personalized service within Location-Based So-
cial Networks (LBSNs), the Point-of-Interest (POI) recommendation
aims to assist individuals in discovering attractive and engaging
places. However, the accurate recommendation capability relies
on the powerful server collecting a vast amount of users’ histor-
ical check-in data, posing significant risks of privacy breaches.
Although several collaborative learning (CL) frameworks for POI
recommendation enhance recommendation resilience and allow
users to keep personal data on-device, they still share personal
knowledge to improve recommendation performance, thus leaving
vulnerabilities for potential attackers. Given this, we design a new
Physical Trajectory Inference Attack (PITA) to expose users’ his-
torical trajectories. Specifically, for each user, we identify the set of
interacted POIs by analyzing the aggregated information from the
target POIs and their correlated POIs. We evaluate the effectiveness
of PITA on two real-world datasets across two types of decentral-
ized CL frameworks for POI recommendation. Empirical results
demonstrate that PITA poses a significant threat to users’ histori-
cal trajectories. Furthermore, Local Differential Privacy (LDP), the
traditional privacy-preserving method for CL frameworks, has also
been proven ineffective against PITA. In light of this, we propose
a novel defense mechanism (AGD) against PITA based on an ad-
versarial game to eliminate sensitive POIs and their information
in correlated POIs. After conducting intensive experiments, AGD
has been proven precise and practical, with minimal impact on
recommendation performance.

1 INTRODUCTION
The next Point-of-Interest (POI) recommendation recently contin-
ues to bloom due to the widespread application of Location-based
Social Networks (LBSNs) such as Weeplace and Foursquare. Aiming
to understand users’ behavioral patterns and predict their prefer-
ences for the next movement, the next POI recommendation has
diverse applications like urban planning, mobility prediction, and
location-based advertising [13]. Benefiting from constantly improv-
ing computing resources to collect and process massive training
data, current attention-based neural networks have excelled in
delivering quality recommendations [20, 32, 38]. Unfortunately,
sustaining such a powerful central server comes at a financially
and environmentally high cost. In addition, the service timeliness
is extremely precarious as it depends on the internet quality for
uploading requests and downloading results. More notably, due
to the growing emphasis on privacy and the special sensitivity of
real-world trajectories, the POI recommender faces more difficul-
ties in centrally obtaining users’ personal check-in histories, thus
hindering the recommendation quality.

Hence, the decentralized collaborative learning (CL) paradigms
emerge for POI recommendation, aspiring to address the shortcom-
ings of centralized frameworks. Specifically, a precise yet resource-
efficient recommendation model is deployed on end devices for in-
stantaneous inference regardless of the network quality. In addition,

models are all locally trained and further improved by exchanging
knowledge with other users. Therefore, users’ data is kept on the
device, significantly reducing the potential for privacy breaches. As
a widely recognized approach in CL, federated learning (FL) based
POI recommenders (e.g., [10]) employ a cloud server to collect and
aggregate all locally trained models, subsequently redistributing
the aggregated model to all users. Although the FL paradigm has
impressive performance regarding flexibility and generalization
capability, it still heavily relies on the central server for model ag-
gregation and redistribution. More importantly, the paradigm of all
users sharing a standard model inevitably tends to favor popular
POIs, leading to sub-optimal performance.

To achieve a higher degree of personalization, users within the
same group of the decentralized POI recommender [17] are allowed
to collaborate in an end-to-end manner. This diagram effectively
reduces reliance on the central server, demonstrated by the server
only being in charge of model initialization and neighbor identifi-
cation. However, even with intra-group communication, models
are also optimized by sharing parameters/gradients, causing high
communication costs between devices. Moreover, this requires that
all models must be structurally equivalent, weakening the appli-
cability of the decentralized diagram, as in the real world, mobile
devices possess various hardware configurations and the assump-
tion will restrict the overall performance to the capability of the
worst device. As the remedy, Long et al. [18] further proposed a de-
centralized POI recommender that supports collaborative learning
between heterogeneous models, allowing users to customize the
model configurations. Here, locally trained models are enhanced
by the knowledge distillation mechanism, where users only need to
share their soft decisions on a public reference dataset rather than
models/gradients, enabling efficient communication.

With the attention towards CL continuing to increase, recent
research has begun investigating the level of safety it can provide.
Among all the aforementioned CL methods, FL has the highest
privacy risk as the server fully controls the learning process and has
access to all models. Consequently, there are various security and
privacy attacks against FL frameworks (e.g., Poisoning Attacks [8,
24] and Inference Attacks [25]). There has been a slight alleviation
of the privacy risks in decentralized CL after eliminating the central
server. However, this framework still requires exchanging personal
knowledge (e.g., model parameters or soft decisions) within groups,
leaving vulnerabilities for privacy attacks [1, 22].

As a representative and valuable threat, inference attacks aim-
ing to infer user information, have been widely investigated in a
number of CL-based recommendation tasks [8, 19, 24, 36]. However,
they are all dedicated to traditional e-commerce recommendations
instead of POI recommendations, while the latter is more notewor-
thy considering the service’s location-sensitive nature. Once users’
physical trajectories are exposed to attackers, their property and
even their personal safety will be compromised. In detail, knowing
users’ visited places allows attackers to track their movements and
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Figure 1: Build the Shadow POI Model for Knowledge-
Distillation-based CL.

daily routines, which can be exploited for various malicious pur-
poses such as harassment and revealing sensitive information (e.g.,
medical facilities visited). Besides, identifying shared places among
individuals can provide insights into users’ social connections and
networks, potentially exposing social ties that users may wish to
keep private. More notably, the information of POIs can be not only
represented by their own embeddings but also inferred from the
embeddings of related POIs, which is ignored by existing inference
attacks on e-commerce CL recommendations.

On this basis, we propose a novel attack, namely Physical Tra-
jectory Inference Attack (PTIA) to reveal users’ interacted POIs
in decentralized POI recommendations, followed by an effective
defender. Decentralized POI recommenders can be classified into
two types based on different collaboration learning methods includ-
ing (1) Model-Sharing-based CL sharing model parameters, and
(2) Knowledge-Distillation-based CL sharing soft decisions on
the reference dataset. To make our attack compatible in both cases,
as shown in Figure 1, the Knowledge-Distillation-based CL is con-
verted to the first type after building the shadowmodels to simulate
users’ true models by minimizing their response discrepancies on
the reference dataset.

Given the user model, as demonstrated in Figure 2(a), whether
the target user has visited a specific POI can be inferred from its
final feature generated by this model. However, this feature is not
only related to the POI itself but also significantly influenced by
related POIs in the same sequence, where the sequence is kept
on-device, being unavailable to the attacker. As a replacement, the
shadow target sequence is obtained by combining anonymous se-
quences containing the target POI, or assigning POIs to anonymous
category sequences with geographical restrictions when the former
is infeasible. The aggregated sequence can moderately reveal the
real preferences of the target user since two users who have visited
the same POI may have similar preferences, and thus, mutual infor-
mation exists in their historical trajectories. It is worth noting that
we employ a Multi-Layer Perceptron (MLP) as the attack model.

To speed up the attack algorithm, instead of repeating the above
process to all POIs, we first identify visited regions by quantify-
ing and comparing the distances from the embeddings of all POIs
within each region to their corresponding initial embeddings, and
then detect interacted POIs in those regions. After conducting ex-
tensive experiments on two datasets, the high inference accuracy
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has validated the effectiveness of PITA. Even employing Local Dif-
ferential Privacy (LDP), which gains much attention by providing
valid privacy protection of federated recommendations [27], the
inference accuracy is almost unaffected unless there is a significant
sacrifice of recommendation precision.

Hence, we further propose a defense mechanism against PITA
based on an adversarial game (AGD), shown in Figure 2(b). Specif-
ically, we innovatively integrate PITA into the training process
as the attack model. Whenever the selected POI is involved in
training, the probability of being visited which is printed by the
adversary must be the same level as unrelated POIs. Meanwhile, the
attack model is further improved by the visited features returned
by the POI model. In this way, not only the selected POI but also
its implicit information within related POIs will be eliminated. The
experiment results show that the proposed defense mechanism can
nearly paralyze PTIA for selected POIs with negligible sacrifice in
recommendation quality. In conclusion, our contributions can be
summarized as follows:

• To the best of our knowledge, we are the first to explore pri-
vacy concerns related to users’ real mobility trajectories in
decentralized collaborative learning-based POI recommen-
dations. Meanwhile, we propose a novel physical trajectory
inference attack (PITA), aimed at identifying users’ inter-
acted POIs in this scenario.
• As the defense mechanism against PITA, we design a novel
adversarial game (AGD) to eliminate sensitive POIs and their
implicit information within related POIs from the personal
POI recommenders before they are shared for collaborative
learning.
• After conducting extensive experiments with two real-world
datasets, we have demonstrated the effectiveness of our at-
tack (PITA) and defense (AGD) approaches in decentralized
POI recommendation.
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2 PRELIMINARIES
In this section, we first introduce important notations used in this
paper and then formulate our major tasks. LetU, P, and C denote
the sets of users 𝑢, POIs 𝑝 and categories 𝑐 , respectively. Each POI
𝑝 ∈ P is associated with a category tag (e.g., entertainment or
restaurant) 𝑐𝑝 ∈ C and coordinates (𝑙𝑜𝑛𝑝 , 𝑙𝑎𝑡𝑝 ).

Definition 1: Check-in Sequence. A check-in activity of a
user indicates a user 𝑢 ∈ U has visited POI 𝑝 ∈ P at times-
tamp 𝑡 . By sorting a user’s check-ins chronologically, a check-in
sequence contains𝑀𝑖 consecutive POIs visited by a user𝑢𝑖 , denoted
by X(𝑢𝑖 ) = {𝑝1, 𝑝2, ..., 𝑝𝑀𝑖

}.
Definition 2: Category Sequence. A category sequence substi-

tutes all POIs in the check-in sequence X(𝑢𝑖 ) with their associated
category tags, denoted by X𝑐 (𝑢𝑖 ) = {𝑐𝑝1 , 𝑐𝑝2 , ..., 𝑐𝑝𝑀𝑖

}.
Definition 3: Reference Dataset. The reference dataset D =

{X𝑧 }𝑍𝑧=1 contains 𝑍 anonymous check-in sequences covering all
POIs P.

Definition 4: Region. A region 𝑟 is essentially a geograph-
ical segment that can provide additional information about the
POIs within it. Without any assumptions on predefined city dis-
tricts/suburbs, we obtain a set of regions R by applying 𝑘-means
clustering [21] on all POIs’ coordinates in our paper.

Task 1: Physical Trajectory Inference Attack. As mentioned
above, we focus on two types of decentralized CL frameworks
for POI recommendations including model-sharing-based CL and
knowledge-distillation-based CL. In both cases, the adversary’s
goal is uniformly to infer the set of interacted POIs for all clients.
Formally, given a target user 𝑢𝑖 , and the knowledge K𝑖 obtained
by the adversary regarding 𝑢𝑖 , for each POI 𝑝𝑚 ∈ P, the physical
trajectory inference attack A can be defined as:

A : 𝑢𝑖 ,K𝑖 , 𝑝𝑚 → (0, 1), (1)

where 1 indicates𝑢𝑖 has visited 𝑝𝑚 , while 0 is the opposite. However,
the attack knowledge obtained by the adversary is different for the
two cases:
• Model-Sharing-based CL: In this case, users’ personal mod-
els will be sent to other users, and thus, we can assume the
attacker can get the model parameters of the target user 𝑢𝑖 ,
denoted as:

K𝑚𝑠
𝑖 = Θ𝑖 . (2)

• Knowledge-Distillation-based CL: Instead of the model
itself, the attacker here can only get the soft decisions on
the reference dataset from the target user 𝑢𝑖 , which can be
defined as:

K𝑘𝑑
𝑖 = {Θ𝑖 (X),X ∈ D}. (3)

Beyond that, we can assume multiple anonymous sequences
containing the target POI are publicly available to the adversary for
both cases. This is reasonable because some LBSs (e.g.,Weeplace and
Foursquare) have exposed desensitized datasets. This assumption
can be further relaxed by assigning POIs to category sequences
with geographical restrictions.

Task 2: Protect Sensitive POIs Against PITA. The defense
mechanism is performed on-device to avoid the potential trajectory
inference attack on sensitive POIs from other clients after they

receive parameters or soft decisions. Intuitively, given the set of
sensitive POIsH𝑖 for 𝑢𝑖 , our task is to erase them and their infor-
mation hidden within the relevant POIs from the locally trained
model Θ𝑖 before it or its based soft decisions are shared for collabo-
rative learning. As such, the adversary cannot detect whether 𝑢𝑖
has visited those POIs in any case.

3 METHOD
This section first introduces the local objective function that fa-
cilitates the model optimization on each user’s device, and two
types of decentralized CL frameworks for POI recommendations,
followed by the details of the physical trajectory inference attack
against those two frameworks, as well as the corresponding defense
mechanism.

3.1 Local Objective Function
The main objective of this work is to launch the trajectory inference
attack and defender at the personalized POI recommenders, which
are locally trained with users’ private check-in sequences under
the guide of the local objective function:

𝐿𝑙𝑜𝑐 (𝑢𝑖 ) = 𝑙 (Θ𝑖 (X(𝑢𝑖 )) ,Y(𝑢𝑖 )) , (4)

whereΘ𝑖 (X(𝑢𝑖 )) is the prediction made by the recommenderΘ𝑖 (·)
givenX(𝑢𝑖 ). In the POI recommendation setting, the predictions are
made successively on historical POI sequences {𝑝1}, {𝑝1, 𝑝2}, ..., {𝑝1,
𝑝2, ..., 𝑝𝑀𝑖−1}, andY(𝑢𝑖 ) = {𝑝2, 𝑝3, ..., 𝑝𝑀𝑖

} is the set of correspond-
ing ground truth POIs. 𝑙 is the loss function (i.e., cross-entropy in
our case) to quantify the prediction error. It is worth noting that
the proposed attack and defense can be applied to most deep neural
networks for POI recommendations.

3.2 Collaborative Learning Protocols
To alleviate data sparsity caused by training personal models solely
on the device end, those models will be further optimized by collab-
orative learning with others. In this work, we perform the privacy
analysis on two types of decentralized CL-based POI recommenders.
(1) DCLR [17]. Models in this framework are shared within groups
in an end-to-end manner. (2) MAC [18]. Instead of sharing models
like DCLR, similar users communicate with each other by extract-
ing knowledge from soft decisions on the reference datasets. In
summary, to improve recommendation performance, users need
to share either models or prediction results on reference datasets,
leaving attack vulnerabilities.

3.3 Physical Trajectory Inference Attack
Given the model Θ𝑖 or soft decisions {Θ𝑖 (X),X ∈ D}, the adver-
sary aims to infer the interacted POIs of the user 𝑢𝑖 . To achieve this,
for a specific POI 𝑝𝑚 , we focus on exploring its explicit information
and implicit information within related POIs (i.e., POIs in the same
sequence). Intuitively, we propose to distinguish between the in-
teracted POI and irrelevant POIs by comparing their final features
after applying the modelΘ𝑖 on carefully designed sequences, which
requires frequent access to the model. Obviously, it is infeasible to
directly deploy this attack on MAC as the attacker can only get soft
decisions rather than the model from the target user. Consequently,
for MAC, we first utilize shared soft decisions to build the shadow
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model. Specifically, we let the shadow model increasingly approach
the user model by minimizing their disagreement of prediction
results on D via the following:

𝐿𝑠ℎ𝑎𝑑𝑜𝑤 =
∑︁
X∈D

������Θ′𝑖 (X) − Θ𝑖 (X)
������2
2
, (5)

where Θ
′
𝑖
represents the shadow recommender of the local recom-

mender Θ𝑖 possessed by 𝑢𝑖 . Now, the attacker has the model for
model-sharing-based CL (DCLR) or the shadowmodel for knowledge-
distillation-based CL (MAC), putting them in a similar situation
for the rest of the attack. For convenience, they will be uniformly
denoted as Θ𝑖 .

With the user model Θ𝑖 ready, the new challenge is getting the
specific sequence containing the target POI while revealing the
user’s preference, which is unavailable in CL frameworks. Alter-
natively, the anonymous sequence containing the target POI can
be regarded as the shadow sequence. This is because, If two users
have visited the same POIs, their historical trajectories might con-
tain implicit information about each other. Intuitively, the more
shadow sequences there are, the higher the possibility of getting
close to the target user. Thus, for the target user 𝑢𝑖 and POI 𝑝𝑚 , we
prepare multiple shadow sequences, denoted by S(𝑢𝑖 , 𝑝𝑚). In case
we cannot collect enough shadow sequences, we can build them by
randomly assigning POIs to the anonymous category sequence X𝑐
with the restrictions of containing the target POI and the distance
between any two consecutive POIs being less than 5km, where the
category sequence can be obtained more easily from desensitized
datasets.

Given the usermodelΘ𝑖 and the set of shadow sequencesS(𝑢𝑖 , 𝑝𝑚),
a Multi-Layer Perceptron (MLP) is further adopted as the attack
model A to predict whether 𝑢𝑖 has visited 𝑝𝑚 . The input is the av-
erage feature of applying Θ𝑖 to all sequences in S(𝑢𝑖 , 𝑝𝑚), denoted
as:

𝐼𝑛𝑝𝑢𝑡 (𝑢𝑖 , 𝑝𝑚) =
1
𝑉

∑︁
X∈S(𝑢𝑖 ,𝑝𝑚)

Θ𝑖 (X), (6)

where 𝑉 is the number of shadow sequences in S(𝑢𝑖 , 𝑝𝑚). Besides,
the output is a two-dimensional vector where the first (𝛼0𝑛) indicates
the probability of having been to 𝑝𝑚 while the second (𝛼1𝑛) is the
probability of the opposite. The attack model A is trained with the
binary cross-entropy loss:

𝐿𝑝𝑖𝑡𝑎 = −
𝑁∑︁
𝑛=1
(𝑦𝑛𝑙𝑜𝑔𝛼1𝑛 + (1 − 𝑦𝑛)𝑙𝑜𝑔𝛼0𝑛), (7)

where 𝑁 is the number of training sample and 𝑦𝑛 is the ground
truth label. Those training samples come from a public POI model
Θ𝑝𝑢𝑏𝑙𝑖𝑐 trained with anonymous check-in sequences from publicly
available datasets. For each sequence X = {𝑝1, 𝑝2, ..., 𝑝𝑀 } that is
involved in the training process of Θ𝑝𝑢𝑏𝑙𝑖𝑐 , we can obatain one
positive training sample of A where the input is the feature of 𝑝𝑀
after applying Θ𝑝𝑢𝑏𝑙𝑖𝑐 to X. We also sample an equivalent number
of sequences that are not included in the training process ofΘ𝑝𝑢𝑏𝑙𝑖𝑐 ,
and those sequences can be utilized to produce negative training
samples of A in the same way above.

Then, we can get visited POIs for𝑢𝑖 by applyingA to all POIs. Al-
though this approach is straightforward, it becomes inefficient with
the vast number of POIs, requiring a substantial amount of computa-
tional resources. To tackle this problem, we design a novel strategy
to detect 𝑢𝑖 ’ visited regions R𝑖 , which can effectively reduce the
scope of attack implementation. In decentralized CL frameworks,
all models are initialized with the same distribution. Once POIs are
involved in the training process, their parameters will naturally
deviate from this distribution. Thus, regions, where POI represen-
tations are far away from the initial distribution, can be identified
as visited regions. Formally, for each region 𝑟 ∈ R, we first adopt
the Kullback-Leibler (KL) divergence [9] to quantify the differences
between the embeddings of all POIs 𝑒𝑟 within each region and the
initial distribution 𝑒 ′𝑟 :

𝑑𝑟 = 𝐾𝐿
(
𝑒 ′𝑟 | | 𝑒𝑟

)
. (8)

Then, inspired by the elbow method [23], we sort all regions by
their distances to the initial distribution in descending, and mark
regions as visited until the distances start to converge. Given visited
regionsR𝑖 , we applyA to POIs in those regions to obtain interacted
POIs for 𝑢𝑖 .

3.4 Defender: An Adversarial Game to Protect
Sensitive POIs Against PITA

After conducting extensive experiments in Section 4.4, we have
demonstrated the effectiveness of the proposed attack, which poses
a significant threat to users’ privacy for two types of decentralized
CL frameworks, proving the necessity of the defense mechanism.
A widely accepted strategy is Local Differential Privacy (LDP) [27]
which adds a specific level of noise to personal models before shar-
ing themwith others. Unfortunately, as indicated by the experiment
results shown in Table 3, evenly disturbing all model parameters is
invalid since the low noise level does not impact the attack accu-
racy of PITA. On the other hand, a sufficiently high noise level will
significantly sacrifice the recommendation precision, rendering the
POI recommender meaningless.

In this situation, hiding a few sensitive POIs rather than all
visited POIs seems a better way to reach the balance between rec-
ommendation performance and privacy protection. As the key of
the POI recommender, the trained POI embeddings are highly likely
to disclose user privacy, and hence, a simple approach to hide sen-
sitive POIs is replacing their trained embeddings with initial ones.
However, this cannot completely obliterate traces of sensitive POIs
as their information not only exists with their own embeddings
but is also revealed by embeddings of related POIs. In addition, the
final recommendation accuracy is inevitably affected by this abrupt
information loss.

On this basis, we design a novel adversarial game (AGD) to
erase sensitive POIs H𝑖 and their implicit information in related
POIs from the locally trained model Θ𝑖 . In this game, we have
innovatively integrated PTIA A𝑖 into the training process as an
adversary of the POI recommender. Whenever sensitive POIs are
involved in the training of the POI recommender, the probability
of those POIs being visited, which the adversary predicts, must be
the same level as unrelated POIs. In light of this, the defense loss is
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Algorithm 1 The workflow of local model training with the pro-
posed defense mechanism. All processes are implemented on the
user’s device.
1: for 𝑢𝑖 ∈ U do in parallel
2: Initialize Θ𝑖 and A𝑖 ;

/*Pretraining the attacker with shared samples*/
3: repeat
4: Take a gradient w.r.t 𝐿𝑝𝑖𝑡𝑎 to update A𝑖 ;
5: until convergence
6: repeat

/*Training the POI recommender while erasing sensitive POIs*/
7: Take a gradient w.r.t 𝐿𝑙𝑜𝑐 + 𝜇𝐿𝑑𝑒𝑓 to update Θ𝑖 ;

/*Fine-tuning the attacker with samples produced by Θ𝑖 */
8: Take a gradient w.r.t 𝐿𝑝𝑖𝑡𝑎 to update A𝑖 ;
9: until convergence
10: Share Θ𝑖 or soft decisions generated by Θ𝑖 for collaborative

learning;
11: end for

defined as:

𝐿𝑑𝑒𝑓 =
1
𝐺

∑︁
𝑝∈H𝑖

�����A𝑖 (𝑝) −
1
𝑂

𝑂∑︁
𝑜=1
A𝑖 (𝑝𝑜 )

����� , (9)

where 𝐺 is the number sensitive POIs inH𝑖 . For each POI 𝑝 ∈ H𝑖 ,
we randomly sample 𝑂 = 5 unrelated POIs. Meanwhile, the adver-
sary is also improved with samples produced by the recommender.
In this manner, both the POI recommender and the attacker can
grow stronger through continuous adversarial encounters. Conse-
quently, we not only eliminate those sensitive POIs but also remove
the implicit information embedded within related POIs. It is also
worth noting that, in real life, users can customize sensitive POIs
according to their needs. Differently, 𝐺 sensitive POIs in this work
will be randomly selected based on their global access frequency,
meaning that the less frequently accessed POI will have a higher
probability. The rationale is, users tend to prefer hiding private,
niche POIs rather than popular ones.

The workflow of local model training with the proposed defense
mechanism is presented in Algorithm 1. For each user, we first
initialize the POI recommender Θ𝑖 and the adversary A𝑖 , as well
as pretraining the attacker (lines 2-5). The pretraining samples are
obtained from a shadow POI recommender which is trained on the
desensitized datasets which is also described in Section 3.3. This
process can be accomplished personally on the device or delegated
to the server. Then, for each epoch, we first train the personal
recommender Θ𝑖 with the synergic loss 𝐿𝑙𝑜𝑐 + 𝜇𝐿𝑑𝑒𝑓 for achieving
better recommendation and eliminating sensitive POIs and their
implicit information in related POIs where 𝜇 controls the extend
of the attacker’s participation in training (line 7). After that, the
attacker A𝑖 is further improved with the samples produced by
Θ𝑖 (line 8). Finally, the privacy-preserving model or its based soft
decisions are shared for collaborative learning (line 10).

4 EXPERIMENTS
In this section, we conduct comprehensive experiments to evaluate
the performance of the physical trajectory inference attack (PITA),

and the effectiveness of the corresponding defense mechanism
based on an adversarial game (AGD).

Table 1: Dataset statistics.

Foursquare Weeplace
#users 7,507 4,560
#POIs 80,962 44,194
#categories 436 625
#check-ins 1,214,631 923,600
#check-ins per user 161.80 202.54

4.1 Datasets and Evaluation Protocols
We adopt two real-world datasets, Foursquare [31] and Weeplace
[16], and both of them consist of users’ check-in histories in the
cities of New York, Los Angeles and Chicago. Inspired by [2, 13],
we remove users and POIs with less than 10 interactions for better
data quality. The statistics of the two datasets are summarized in
Table 2. Among these, 15% of the check-in sequences will be utilized
as prior knowledge for the attacker while an additional 15% will
serve as the reference dataset for MAC. Each of them is selected
randomly satisfying the constraint of including all POIs. As for
the remaining sequences, we adopt the leave-one-out strategy [26]
for the evaluation of recommendation performance. That is, for
each sequence, the last POI is for testing, the second last is for
validation, and all the others are for training. Furthermore, we set
the maximum sequence length to 200. Following [17], we compare
each ground truth with the 200 nearest unvisited POIs as potential
candidates for ranking, with the expectation that the ground truth
will be ranked at the top. Then, we employ Hit Ratio at Rank k
(HR@K) [28] to evaluate the recommendation performance, which
quantifies the proportion of the ground truth that appears in the
top-k recommendation list.

To assess the effectiveness of PTIA, for each user, we first predict
her visited regions. Then, we need to predict whether the user has
been to each POI of those regions. Since this is a classification task,
we adopt the commonly used F1 score [36, 37] as the metric to
evaluate the attack performance. In addition, for any incorrectly
predicted region, its corresponding F1 score is 0. The situation
varies when evaluating the performance of the defense mechanism.
As our goal is to hide sensitive POIs, we only measure the F1 score
of those specific POIs.

4.2 Baselines
As mentioned above, the proposed attack and defender are applied
to two decentralized CL frameworks including DCLR and MAC.
Besides, we prepare three attacker baselines and two defender base-
lines. Here, the adversary’s knowledge is unified as the personal
model for each user.
Attacker Baselines:
• Random Attack: The set of interacted POIs is randomly
selected from P with equal probability, while the set size is
obtained by averaging true set sizes across all users.
• K-means Attack: Since all POI embeddings are available
to the attacker, we can directly adopt the k-means [21] algo-
rithm to divide POIs into two clusters while the cluster with
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lower SSE (i.e., the sum of squared errors) will be selected as
the set of visited POIs. The rationale is, for a user, positive
POIs exhibit higher similarity to each other compared to
diverse negative items, owing to the coherence principle of
personal interests.
• Interaction-level Membership Inference Attack (IMIA)
[36]: The set of interacted POIs is obtained by comparing
uploaded POI embeddings and trained POI embeddings with
public sequences.

Defender Baselines:
• Local Differential Privacy (LDP): Being a widely adopted
method to protect users’ personal data, LDP has been in-
corporated into many federated recommender systems [27].
The core is to add noise before the model Θ𝑖 is shared for
CL:

Θ𝑖 ← Θ𝑖 + N(0, 𝜆2𝐼 ), (10)
where N referes to the normal distribution while 𝜆 decide
the level of noise.
• EmbeddingReset (ER): A simple approach to hide sensitive
POIs is to replace their trained embeddings with the initial
embeddings before the model Θ𝑖 is shared for CL.

4.3 Experimental Setting
First of all, we adopt STAN [20] as the base POI recommender for
advanced accuracy. Then, as explained in Section 2, we divide each
city into 5 regions with k-means clustering [21]. Besides, the attack
model is an MLP with 3 hidden layers having 64, 32, and 8 units,
respectively. Since MAC supports heterogeneous structures, we
randomly assign the latent dimension 𝑑 ∈ {8, 16, 32, 64, 128} to
users and each one makes up 20%. For fairness, DCLR is evaluated
with the above dimensions separately and final results are averaged.
For hyperparameters, we set 𝑉 to 5, and 𝜇 to 0.6, while the impacts
of the two hyperparameters will be further discussed in Section 4.7.
Apart from this, we set the learning rate to 0.002, the dropout ratio
to 0.2, the batch size to 16, and the maximum training epoch to 50.
It’s worth mentioning that all experimental results are obtained by
averaging multiple trials.

4.4 Attack Performance of PTIA

Table 2: The performance (F1 scores) of attackers.

Model Attack Foursquare Weeplace
Random 0.0354 0.0751

DCLR
K-means 0.1695 0.1634
IMIA 0.3201 0.3172
PITA 0.6103 0.6389

MAC K-means 0.1741 0.1867
IMIA 0.2926 0.3185
PITA 0.5321 0.5413

Table 2 summarizes four attackers’ performances on two decen-
tralized POI recommenders and two datasets, where we have the
following observations. In POI recommendation, decentralized CL
frameworks without deliberate protection pose a significant risk of
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Figure 3: PITA performance for users with different numbers
of interactions.

exposing users’ historical trajectories, which is demonstrated by the
fact that both K-means attack and PITA have better performance
than Random attack. While the K-means attack has been shown to
have some effect, its low attack accuracy lacks practical significance
in real-life scenarios. In addition, IMIA falls significantly short of
PITA in terms of attack accuracy. This is because IMIA solely fo-
cuses on variations in the parameters of target POIs while PITA
combines explicit information from the target POI and implicit
information within related POIs, thus proving the effectiveness of
PITA.

Among the two decentralized CL frameworks, as expected, the
proposed PITA has a worse performance on MAC. This can be
explained by the fact that, in MAC, we can only infer users’ models
based on their response to the reference data, failing to fully restore
users’ preferences. Even though PITA underperforms on MAC
compared to DCLR, the historical trajectories of MAC’s users are
still glaringly exposed under PITA. Besides, PITA has higher attack
accuracy on Weeplace than Foursquare. We believe the reason is
that users in Weeplace have more interactions with POIs, which
contain interconnected information. To further prove this view, we
cluster users into 10 groups and record the attack accuracy of PITA
(F1 Score). The results are shown in Figure 3 where we can observe
that users with more interactions have a higher risk of leakaging
historical trajectories.

4.5 Defense Performance of LDP Against PITA
As mentioned above, LDP is widely applied to various CL frame-
works due to its effectiveness in safeguarding user privacy. Hence,
we conduct extensive experiments to explore whether LDP can
serve as an effective defense mechanism against PITA. Specifically,
table 3 shows the attack performance of PITA against LDP under
different noise levels 𝜆 ∈ {0, 0.001, 0.01, 0.1}, where 𝜆 = 0 means
that LDP is not implemented. The results indicate that when the
noise level is low (𝜆 = 0.001), not only does it fail to protect user
privacy, but it also has a noticeable impact on recommendation
accuracy in a negative manner. As the noise level increases to a
significant extent (𝜆 = 0.1), even though the attack performance
of PITA significantly declines, the recommendation performance
becomes alarmingly damaged. This is attributed to the fact that
PITA is conducted by analyzing the information from target POIs
and their correlated POIs. As a result, unless the noise level be-
comes substantial enough to make the recommender impractical,
LDP remains ineffective against PITA.
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Table 3: The performance of Local Differential Privacy (LDP) against PITA.

Model Dataset Noise Level
𝜆 =0.0 𝜆 =0.001 𝜆 =0.01 𝜆 =0.1

F1 HR@10 F1 HR@10 F1 HR@10 F1 HR@10

DCLR Foursquare 0.6103 0.4297 0.5988 0.3849 0.2768 0.2912 0.2001 0.2424
Weeplace 0.6389 0.4664 0.6153 0.4478 0.4694 0.4237 0.3789 0.3557

MAC Foursquare 0.5321 0.4319 0.5059 0.4216 0.2976 0.4187 0.1914 0.3156
Weeplace 0.5413 0.4843 0.4791 0.4621 0.3242 0.4341 0.2813 0.3926

4.6 Defense Performance of AGD Against PITA
Since LDP fails to protect user privacy against PITA, we propose a
novel adversarial game-based defensemechanism (AGD) tomitigate
the exposure of sensitive POIs. Concurrently, we employ ER as a
baseline, where we utilize initial embeddings to replace trained
embeddings for sensitive POIS before knowledge sharing. Here,
we explore the impact of these two defense approaches against
PITA across varying numbers of sensitive POIs 𝐺 ∈ {0, 1, 5, 10, 20}
where 𝐺 = 0 means no defender is implemented. Table 4 and Table
5 record the results of ER and AGD respectively.

To begin with, for ER, the F1 score decreases as 𝐺 increases.
This is because, when 𝐺 is small, replacing trained embeddings of
sensitive POIs fails to eliminate the implicit information concealed
within POIs correlated to sensitive POIs. When 𝐺 is large, some
of those correlated POIs are also erased, preventing PITA from
accurately inferring target POIs, ultimately leading to a lower F1
score. In contrast, the F1 score under AGD remains consistently low,
regardless of the changes in𝐺 . This proves that AGD outperforms
ER in precisely and effectively protecting sensitive POIs. More im-
portantly, ER significantly impairs recommendation accuracy after
abruptly erasing POIs for all values of𝐺 . When𝐺 ≥ 10, the POI rec-
ommender becomes essentially non-functional. Conversely, AGD
has a negligible impact on recommendation accuracy when𝐺 ≤ 10.
Even with a relatively large 𝐺 (𝐺 ≥ 10), the POI recommender
retains a certain level of functionality. To conclude, AGD has been
proven as an effective and cost-saving defense mechanism.

4.7 Parameter Sensitivity
In this section, we further demonstrate the effect of two hyperpa-
rameters. First, we evaluate the impact of the number of shadow
sequences 𝑉 ∈ {1, 3, 5, 7, 9} on the attack accuracy of PITA. Subse-
quently, we investigate how the weight 𝜇 ∈ {0.2, 0.4, 0.6, 0.8, 1, 1.5}
affects the attack accuracy of PITA and its impact on recommenda-
tion accuracy, where 𝜇 controls the ratio of AGD involved in the
training process. Please note that𝐺 is set to 10 in this section. The
results are shown in Figure 4.

Impact of 𝑉 . From the attacker’s perspective, the attack accu-
racy of PITA benefits from a higher value of 𝑉 for both decentral-
ized frameworks, which proves the fact that a larger quantity of
shadow sequences enhances the chance of approaching the target
user. However, as 𝑉 reaches a certain level, the improvement tends
to stop, and thus, it is essential to maintain 𝑉 within a reasonable
range since higher levels of 𝑉 imply increased expenses.

Impact of 𝜇. From the user’s perspective, we aim for lower
attack accuracy and higher recommendation accuracy. For both
decentralized frameworks, as AGD becomes more involved in the

training process (higher 𝜇), the attack accuracy first decreases and
then stabilizes at a lower level. Meanwhile, recommendation accu-
racy stabilizes at a higher level initially and then declines. Hence,
we set 𝜇 = 0.6 as the balance point, which can achieve a low attack
accuracy and a high recommendation accuracy.

5 RELATEDWORK
This section reviews recent literature on related areas including
centralized models for POI recommendation, collaborative learning
frameworks for POI recommendation, and attacks against collabo-
rative learning frameworks in POI recommendation.

5.1 Next POI Recommendation
POI recommendation systems play an important role in helping
people discover appealing and relevant locations. Early models
utilized matrix factorization [15] and Markov Chains [6, 39] to cap-
ture correlations among users, POIs, and contextual features, while
more recent approaches have employed recurrent neural networks
(RNNs) to effectively capture spatiotemporal dependencies within
sequences of POIs [4, 5, 12, 33, 35]. Additionally, innovative strate-
gies like SGRec [14] constructed graph-augmented POI sequences,
enhancing collaborative signals and achieving accuracy over RNN-
based models. Attentive neural networks [3, 20, 32, 34] have also
been integrated, employing self-attention layers to capture the rela-
tive spatiotemporal information of all check-in activities along the
sequence. It’s worth noting that the main contributions of this work
lie in the security and privacy analysis of collaborative learning
frameworks for POI recommendations, along with the proposed
defensive measures, where most of the aforementioned models can
be utilized as the base model. To obtain enhanced recommendation
performance, we have selected STAN [20] as the base model for
this work.

5.2 Collaborative Learning Frameworks for POI
Recommendation

Collaborative learning frameworks have demonstrated their ef-
ficacy in overcoming the limitations of cloud-based learning for
POI recommendations including the high cost of resources, weak
resilience, and privacy issues. Specifically, Guo et al. [10] intro-
duced a federated learning approach for POI recommendations,
enabling edge servers to collect and aggregate locally trained mod-
els before distributing the aggregated model to all users. However,
these approaches still exhibit a notable reliance on cloud servers.
Subsequently, Jing et al. [17] designed a semi-decentralized learn-
ing paradigm with device collaboration. This paradigm empowers
user devices to gather and merge knowledge from two distinct
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Table 4: The performance of ER against PITA.

Model Dataset Number of Sensitive POIs
G = 0 G = 1 G = 5 G = 10 G = 20

F1 HR@10 F1 HR@10 F1 HR@10 F1 HR@10 F1 HR@10

DCLR Foursquare - 0.4297 0.3213 0.4281 0.2938 0.3787 0.2427 0.3302 0.1849 0.3047
Weeplace - 0.4664 0.3521 0.4667 0.3924 0.4132 0.3012 0.3821 0.2145 0.2878

MAC Foursquare - 0.4319 0.3791 0.4219 0.3457 0.3785 0.2801 0.3483 0.1569 0.2712
Weeplace - 0.4843 0.4021 0.4683 0.3551 0.4072 0.2721 0.3721 0.2035 0.2983

Table 5: The performance of AGD against PITA.

Model Dataset Number of Sensitive POIs
G = 0 G = 1 G = 5 G = 10 G = 20

F1 HR@10 F1 HR@10 F1 HR@10 F1 HR@10 F1 HR@10

DCLR Foursquare - 0.4297 0.1446 0.4327 0.1528 0.4185 0.1592 0.4083 0.1547 0.3523
Weeplace - 0.4664 0.1624 0.4598 0.1723 0.4628 0.1623 0.4313 0.1727 0.3782

MAC Foursquare - 0.4319 0.1433 0.4314 0.1524 0.4389 0.1485 0.4189 0.1578 0.3527
Weeplace - 0.4843 0.1541 0.4815 0.1624 0.4775 0.1727 0.4565 0.1562 0.4095
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Figure 4: Hyperparameter sensitivity.

categories of neighboring devices. Nonetheless, the collaborative
learning-based POI recommenders mentioned above operate under
the assumption that all on-device models must adhere to an identi-
cal design, facilitating user-specific knowledge exchange through
parameter/gradient aggregation. To address this issue, Jing et al.
[18] further proposed a decentralized POI recommender, which
grants users the ability to tailor model configurations according
to their preferences. In this framework, locally trained models are
further improved by the knowledge distillation mechanism. Instead
of exchanging models/gradients, this mechanism only entails users
sharing their soft decisions on a public reference dataset, thereby
optimizing communication efficiency. Unfortunately, all the afore-
mentioned methods require sharing user knowledge in various
ways and extents, leaving vulnerabilities for potential attackers.
Hence, The security concerns and protective measures of CL-based
POI recommenders still require investigation.

5.3 Attacks Against Collaborative Learning
Frameworks for Recommendations

Recently, various attacks have been proposed to threaten the se-
curity and privacy of collaborative learning frameworks for rec-
ommendations. These attacks include poisoning attacks [8, 24],
inference attacks [8, 19, 24, 36], reconstruction attacks [7, 11], and
byzantine attacks [29, 30]. In this work, we primarily focus on in-
ference attacks. Zhang et al. [37] performed an investigation into
privacy preservation for federated recommendations while their

study only exposed risks related to attribute-level information. In
addition, Yuan et al. [36] designed an interaction-level inference
attack to identify the set of interacted items by analyzing the user’s
uploaded parameters. However, focusing on traditional e-commerce
recommendations, this method only considers the change of pa-
rameters about the target item, which is inefficient in POI recom-
mendations. Instead, the proposed PITA identifies the set of visited
POIs by combining the explicit information of the target POI and
implicit information within its related POIs.

6 CONCLUSION
In this paper, we first conduct an in-depth analysis of privacy risks
within CL-based POI recommenders and then design a novel attack
named PITA to reveal users’ historical trajectories in this scenario.
Specifically, we identify the set of interacted POIs by combining
explicit information from target POIs and implicit information
within related POIs.We validate the efficacy of PITA on two datasets
across two types of decentralized CL-based POI recommenders
and empirical evidence unequivocally demonstrates the substantial
threat posed by PITA to users’ historical trajectories. Moreover, the
conventional privacy-preserving method, LDP, has been proven
ineffective in countering PITA. In light of this, we propose a novel
defense mechanism based on an adversarial game called AGD to
protect user privacy against PITA. It can accurately and effectively
erase all sensitive POIs and their implicit information from related
POIs with minimal impact on overall recommendation performance.
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