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Abstract

Few-shot single-table text-to-sql tasks present
considerable challenges due to the constraints
of limited training data. Existing approaches
primarily transform this problem into column-
based classification tasks and utilize self-
training methods to leverage unlabeled texts
with pseudo-labels. The critical challenge,
however, lies in selecting high-quality pseudo-
labels and incorporating them effectively into
model training. Past self-training techniques
selected pseudo SQL predictions based on the
probabilities yielded by column-specific clas-
sifiers. This approach may not align well with
the original queries, especially given the lim-
ited performance of the few-shot classifier. To
address these limitations, we introduce a novel
approach Del.Ve-SQL.: a latent variable model
specifically designed for few-shot text-to-sql
tasks. This model effectively decouples textual
and SQL semantics via distinct latent variables,
enhancing the classifier’s performance. More-
over, we apply an additional GPT2 decoder to
take into account the reconstruction probabili-
ties of the original query given pseudo SQL pre-
dictions, providing a more refined weighting of
pseudo-labels. Our experiments, conducted on
both open-domain and domain-specific bench-
marks, demonstrate that our proposed method
delivers promising results, outperforming exist-
ing methods in few-shot scenarios.

1 Introduction

Text-to-sql generation is a critical component in
the field of natural language processing, enabling
users to interact with databases using natural lan-
guage inputs (Zhong et al., 2017; Yu et al., 2018,
2019; Wang et al., 2020a; Yu et al., 2021; Xu et al.,
2022; Li et al., 2023c). In this landscape, both
single-table and multi-table querying approaches
serve distinct purposes and have broad applications.
The single-table text-to-sql generation approach fo-
cuses on queries within a specific table, offering a
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Figure 1: An example of single table text-to-sql.

simplified way to extract information. This is often
suitable for scenarios where data is neatly struc-
tured within individual tables (Sun et al., 2020;
Chen et al., 2021; Guo et al., 2022) where the intri-
cacy of multiple table interactions is not necessary.

Figure 1 illustrates this concept with an exam-
ple where the SQL statement is uniformly fitted
into a skeleton template with six column attributes,
such as the column for SELECT (Xu et al., 2017;
Hwang et al., 2019). This formulation translates
the SQL statement generation into classification
problems, streamlining the learning process in
fully supervised settings. It is especially effec-
tive when utilizing strong tabular pretrained en-
coders (Yin et al., 2020; Herzig et al., 2020; Yu
et al., 2021; Deng et al., 2022; Giaquinto et al.,
2023), as demonstrated in the open-domain Wik-
iSQL dataset (Zhong et al., 2017).

Despite fully supervised training, few-shot
single-table text-to-sql (Chang et al., 2019; Wang
et al., 2021; Chen et al., 2021; Guo et al., 2022) is
crucial in real-world scenarios where new tables
or databases have limited labeled data. It enables
models to adapt and generate accurate SQL queries
with minimal training examples, reducing the need
for extensive manual annotation. By leveraging
prior knowledge and handling few-shot scenarios,
text-to-SQL models become more scalable, versa-
tile, and adaptable to different domains without
requiring extensive retraining.

There are limited efforts to solve this task.



Chang et al. (2019) pioneered the study of zero-
shot text-to-sql generalization by proposing an aux-
iliary mapping task between language query and
table columns, which still requires heavy supervi-
sion. Chen et al. (2021) and Wang et al. (2021)
apply coarse-grained meta-learning to adapt mod-
els for unseen tables with table content information
understanding. However, their improvements are
limited due to their column-agnostic model param-
eter updating strategy. Guo et al. (2022) propose a
meta self-training approach (MST-SQL) with fine-
grained meta learning dependent on table columns
for few-shot single-table text2sql, achieving signif-
icant improvement. Sun et al. (2023) fine-tunes a
large private PALM' language model for few-shot
text-to-sql task, which is expensive.

In this paper, we investigate the MST-SQL
method proposed by Guo et al. (2022) for few-
shot text-to-SQL tasks. Among the existing few-
shot approaches, MST-SQL stands out for its fine-
grained meta-learning dependent on table columns,
enabling it to overcome limitations observed in pre-
vious work. This unique approach not only aligns
with the complexities of few-shot scenarios but
also offers a promising avenue for significant im-
provement. While self-training techniques have
the potential to utilize unlabeled texts with pseudo-
labels (Liu et al., 2022), they encounter two chal-
lenges in the few-shot scenario. First, ensuring
high-quality pseudo SQL predictions via column-
based classifiers become difficult in few-shot set-
tings, which may lead to diverged synthetic predic-
tions and affect the effectiveness of self-training.
Secondly, the alignment between natural language
query and the table columns are more challenging
due to noisy pseudo labels, leading to optimization
and generalization issues.

Our work aims to address these issues by intro-
ducing a decoupled latent variable model, dubbed
DeLVe-SQL. DeL.Ve-SQL decouples textual and
SQL column label semantics via distinct latent vari-
ables, which has not been previously utilized in the
field of text-to-SQL. The textual semantic refers
to the meaning conveyed at the level of the natural
language text. It encompasses the way different
phrases or expressions in a query can signify the
same underlying intent. For instance, phrases like
“how many”, “count”, or “the total number of” all
share a common semantic purpose for the “count”
aggregator in SQL, even though they are linguis-
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tically distinct. The label semantic pertains to the
structural and syntactic knowledge encapsulated
in the SQL statement. It deals with how certain
keywords or phrases in the natural language query
directly relate to specific SQL components (like
aggregators, conditions, column names, etc.). For
example, the phrase “last year” can be mapped to
the “max’ aggregator in certain situations. The la-
bel latent variables are only responsible for column
classification. The textual latent variables are sent
to a frozen GPT2 (Radford et al., 2019) decoder for
reconstructing the language query. The advantages
of DeLLVe-SQL are manifold. The latent variables
implicitly augment the training data via sampled la-
tent variables and stabilize the training process via
regularization terms between prior and posterior
distributions. By decoupling the semantics and em-
ploying separate latent variables, our model ensures
that the learning of each aspect doesn’t interfere
with each other, leading to better performance. Fur-
thermore, the effective weighting of pseudo-labels,
guided by the reconstruction probabilities, reduces
the noise introduced by incorrect pseudo-labels,
improving the overall quality of generated SQLs.

To validate our approach, we conduct com-
prehensive experiments on two general single-
table text-to-sql benchmarks including both Wik-
iSQL (Zhong et al., 2017) and ESQL (Chen et al.,
2021), which are commonly used in the few-shot
settings. The results demonstrate that Del.Ve-
SQL achieves promising results, surpassing exist-
ing methods in few-shot scenarios. Our codes will
be released.

2 Related Work

Text-to-SQL Text-to-SQL has been explored
meticulously across both single-table and multi-
table contexts, employing datasets like Wik-
iSQL (Zhong et al., 2017) and Spider (Yu et al.,
2018). The multi-table scenarios, bringing forth
their unique set of complexities and challenges,
have seen substantial advancements (Scholak et al.,
2021; Wang et al., 2020b; Qi et al., 2022; Li et al.,
2023a,b) within fully supervised setups.

For single-table text-to-SQL, Seq2SQL (Zhong
et al., 2017) interprets this task through the lens
of sequence generation, utilizing Seq2Seq neural
networks (Sutskever et al., 2014). A coarse-to-fine
decoding method that initially predicts a linearized
sketch, subsequently decoding the full SQL based
on the sketch, is introduced by Dong and Lapata



(2018). SQLNet (Xu et al., 2017) introduces an
innovative approach that partitions the text-to-SQL
task into six discrete sub-tasks, each tasked with
predicting a component in the SQL query. Further
research has explored enhanced encoders (Hwang
et al., 2019), schema linking strategies (He et al.,
2019; Ma et al., 2020; Hui et al., 2021; Xu et al.,
2022), and enhanced decoding methods (Lyu et al.,
2020; Lin et al., 2020), and tabular pre-trained mod-
els (Herzig et al., 2020; Yin et al., 2020; Yu et al.,
2021; Deng et al., 2021; Giaquinto et al., 2023).
Few-shot Learning for Text-to-SQL. Pioneer-
ing the study of zero-shot text-to-sql, Chang et al.
(2019) propose an auxiliary mapping task to ex-
plicitly model relationships between natural lan-
guage entities and table column names, serving as
a supportive model and regularization term, which
enhances the model’s generalization capacity, as
evidenced by a noteworthy improvement in gener-
alizability on a zero-shot subset test. Chen et al.
(2021) employ a meta-learning strategy, leverag-
ing table content information to manage zero-shot
tables without necessitating additional manual an-
notations. Yang et al. (2022) introduce sequen-
tial prompting, which decomposes the text-to-sql
task into sub-level problems at the sub-clause level,
facilitating few-shot compositional semantic pars-
ing. Meanwhile, Guo et al. (2022) use meta self-
training, specifically crafted for single-table text-
to-SQL tasks, and uses self-training to navigate
the complexities of few-shot text-to-SQL problems.
This approach also incorporates a column speci-
ficity meta-learning algorithm to comprehend uni-
versal concepts. Our work takes a leaf from Guo
et al. (2022) but adds a twist by using decoupled
latent variables to provide advantages to both the
few-shot column classifier and the self-trainer.
The recent surge in instruction-tuned large lan-
guage models has unveiled potent capabilities
across zero-shot and few-shot text-to-sql scenar-
ios (Liu et al., 2023; Liu and Tan, 2023; Tai
et al., 2023; Pourreza and Rafiei, 2023; Chang and
Fosler-Lussier, 2023), showcasing formidable re-
sults on benchmarks like Spider (Yu et al., 2018)
and BIRD (Li et al., 2023c). Sun et al. (2023) also
explores finetuning a private large-scale language
model (PalLM) for text-to-SQL tasks. SQLCoder-
70B? even shows the state-of-the-art text-to-SQL
performances in SQL-eval after fine-tuning on
close-sourced data. Although comparisons with
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such models are not considered in our work due to
potential unknown data contamination issues and
high computing costs, the decoupled latent vari-
ables may serve a vital role in selecting effective
demonstrations for in-context learning with mod-
els like ChatGPT and GPT4 (Pourreza and Rafiei,
2023), providing avenues for future research.
Decoupled Latent Variable Models. Yin et al.
(2018) introduce the StructVAE model, implement-
ing tree-structured latent variable models for semi-
supervised semantic parsing. A bi-level latent
model for few-shot compositional text generation
is proposed by Xia et al. (2020), where domain and
action are overseen by two latent variables. Li et al.
(2022) integrate disentangled priors in variational
auto-encoders for low-resource task-specific natu-
ral language generation, incorporating conditional
priors for latent content and label spaces. Mean-
while, Singh and Jamali-Rad (2022) showcase a
variational inference network that isolates class-
specific attributes from image context and seman-
tics in few-shot image classification. Although our
decoupled latent variable models draw from simi-
lar principles to these works, they are specifically
adapted for the text-to-SQL task, which involves
dealing with multiple classifiers and hierarchical
structures. Moreover, our approach combines the
latent variable models with GPT2 (Radford et al.,
2019), providing a distinct methodology compared
to prior research.

3 Decoupled Latent Variable Models for
Few-shot Text-to-SQL

We first discuss the few-shot text-to-SQL setting in
Section 3.1, then describe the training objectives
with latent variable modeling in Section 3.2.

3.1 Few-shot Text-to-SQL

Our approach incorporates self-training for few-
shot text-to-SQL by following the settings of Guo
et al. (2022). The training data is divided into
labeled data, denoted as £, and unlabeled data,
denoted as U/. Labeled data £ consists of a set of
tuples £; = (qi, T, yi), where ¢; represents the
i-th natural language query, 7; denotes the table
corresponds to g;, and y; represents the correct
SQL label for the corresponding ¢; over T;. T;
consists of column-header pairs {(h; ;, C@j)}é\ﬁl,
where M; is the number of columns of 73, h; ; is the
Jj-th column header of T; and C; ; is the cell values
under h; ;. Unlabeled data U comprises a set of
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tuples U; = (q;, T;) without explicit SQL labels. y;
follows a standardized format as shown in Figure 1,
where tokens marked with $ represent slots to be
filled, and * indicates zero or more occurrences.

Following the previous studies (Hwang et al.,
2019; Lyu et al., 2020), generating each y; can be
divided into six tasks: 1) decide the column ($sCOL,
SC) to be included in the SELECT clause; 2) de-
cide the aggregation function ($sOP, SA) within the
SELECT clause; 3) decide the number ($wN, WN)
of conditions in the WHERE clause; 4) decide the
column ($wCOL, WC) for the i-th condition in the
WHERE clause; 5) decide the operator ($wOP, WO)
for the ¢-th condition in the WHERE clause; 6) decide
the value ($wVAL, WYV) for the ¢-th condition in the
WHERE clause.

3.2 Decoupled Latent Variable Model

The overall training objective is to maximize the
log-likelihood on both the label data £ and the
unlabeled data ¢/, which is given by

|£] U]
O =) logp(y:,ai, ) + 3 _logp(a;, T5) (1)
) J

We introduce two latent variables z; and z; for
decoupling the textual and label semantics into
respective terms in Eq 2. Here for simplicity, we
use the first term p(y;, g;, T;) as an example to show
the whole process, which is formally given by

p(Yi,qi, Ti) = //P(yuquiIZuZl)p(Zt,ZZ)ledZt
2
Direct learning objective is intractable in general.
Therefore we turn to the evidence-lower-bound
(ELBO) using a variational posterior distribution

(2,21 | q;, T;) to approximate p(y;, i, T;),

p(Yi, i, Ti) = //P(quszHZtyll)P(Zt,Zl)dZt dz,

p(qi, Ti | 2e, 21)p(yi | ) p(z )p(lt)}
¢(Ztvzl |qi7Ti) .
p(gi |2, 2)p(y; | ZL)P(ZI)P(Zt)}
A(ze, 2 | 43, T;) .

= E¢>(Zt»ZL lq:,T;) |:

~ Eg(ae,2 1 0:,T0) |:

Here p(q;, T; | Z¢, 2;) is the reconstruction probabil-
ity to generate ¢; and 7; based on z; and z;. We
simplify it by only reconstructing the query using
p(qi | 2¢,2;). p(yi, ¢i, T3) is further given by,

log p(yi, q:, T})
p(qi | 2¢,2)p(ys | 2)p(z1)p(2+)
2 Eg(2,21:,10) {log ( bz, | qi, T;) )

_E,, {Em [bg <p(qz- |20, 2)p(ys \Zz)p(Zz)p(Zt)>” _

d2(2e | @i, Ty) b1 (2 | @i, T, 24)

Here ¢(z,2; | q;, T;) is decomposed into two cas-
cade variational posterior distributions, namely
¢1(21 | qi, T;, 2¢) and ¢2(2 | gi, T;) for z; and 2y, re-
spectively. And the ELBO objective is defined as

OtLso = — Eg,Eg, [logp(qi | 2¢,21) + log p(ys | z)] +
Drr(o1(zi | qi, T 2e) || (1)) +

D (¢2(2 | ¢, Ti) | p(22)),
3)

where p(z;) and p(z;) are the two prior distributions
for z; and z;, respectively. Both the prior distribu-
tions and the variational posterior distributions are
assumed to be Gaussian distribution, which can
allow using reparmeterization trick for sampling la-
tent variables and leading to closed KL divergence
solutions for the last two terms defined in Eq 3.

Similarly, the log-likelihood of the unlabeled
data log p(g;, T;) can be approximated by exclud-
ing the labeling term log p(y; | z;) from Eq 3. Eq 3
shows the modeling process by treating y; as a
whole label. In practice, for each column label, we
introduce two latent variables: one for the textual
and the other for SQL column labels as shown in
Figure 2. For example, the textual and label latent
variables for the SC classifier are z,.; and zg ,
respectively.

4 Model Architecture

Figure 2 outlines the structure of our proposed
method, consisting of four main submodules: 1)
The Encoder focuses on learning the input represen-
tation; 2) The Latent Variable Sampler plays a piv-
otal role in drawing decoupled latent variables; 3)
The Submodule Classifier is for column classifica-
tion; 4) Finally, the Query Reconstruction module
is responsible for reconstructing the queries.

4.1 Encoder

We utilize a RoOBERTa Encoder (Liu et al., 2019)
and take a similar approach to Hydranet (Lyu et al.,
2020; Guo et al., 2022) by adopting column-wise
input formation for the ROBERTa encoder. Specif-
ically, the input pair (¢,7") is broken down to
m column-inputs, each represented as (g, h*) for
1 = 1,...,m. The RoBERTa model then gener-
ates hidden states for each (g, h’) pair. This in-
put sequence incorporates special tokens like the
[CLS] symbol, column type t*, column header h’,
table content, and the language query ¢ by follow-
ing Chen et al. (2021). The table content comprises
n cells from C* that hold the highest literal scores.
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Figure 2: An overview of DeL.Ve-SQL. The query is “What is the name of the linebacker at Illinois college?”.

h]; € R4 stands for the vector of the k-th token in
q, and hfc Ls] € R? which serves as the semantic

vector of the entire column-input (g, h?).

4.2 Latent Variable Sampler

Based on hfo Ls)» We generate the decoupled latent
variables. hfc LS| is first encoded by a MLP,

rfCLS} = MLP(h%CLS]v O1)

where 0, € {05C7 Owc, Own, Osa, Owo, 0wv} and de-
notes the specific parameters for different columns.
rfc LS] is used to generate the.: mean 4 anq the vari-
ance parameters o of Gaussian distributions. Tak-
ing the SC task as an example, they are given by

Hi sc,t = Wsc,t,ur[CLS],sc + bSC»iyl“

) ; @
O sc,t = eXp(WSCJqu[CLS],sc + bSCytvU)
where Wy i, bse o Wieo, and by, are model
parameters. The textual latent variable is given by
Ziset = Misct + Opgey - € €1is arandom vec-
tor from a normal distribution. Similarly, we can
generate the label latent variable by conditioning
,L‘ . . .
on botb YioLs] se an'd Zj sc,t USING concatenation &,
which is formally given by

i
Wisel = WseLu[Tlors) se © Zi,se,t] + Dsc,lus
7

o'iz,sc,l = eXp(Wsc,l,U[r[CLS],SC D Zi,sc,t] + bsc,l,o‘) (5)

_ 2
Zi,sc,l = Mi,sc,l + ai,sc,l - €

4.3 Submodule Classifier

The submodule classifier uses the label latent vari-
ables for each column-input to tackle various sub-
tasks. We train a separate MLP for each column
classifier. We start with the essential SC task, rank-
ing the columns based on relevance using

psc(hi = $sCO0L|q) = o(Wsc * Zi,sc,1) (6)

Here, o represents the sigmoid function and w,
is a trainable parameter. The column h’ with the
highest psc is chosen as $sCOL. Similarly, we calcu-
late Pyc(h? € {$wCOL’}|q) for WC using parameter
wwe € R? and the top-A columns A’ with the
highest Py are returned as $wCOL’. The number
of WHERE conditions, NV, is predicted by

pwn(N7 g, h') = softmax(Wwx[j, ] - Zi wn.i)
N = argmax, (" wi - pux(\V7 g, b)) @

Here, Wyyx € R™*? is a model parameter, and w;
is the weight calculated by softmax(wy, - Z; yn,i)-
The remaining sub-tasks can be solved with $sCOL
and $wCOL’. Specifically, $wOP/ is the operator
oF € O with the highest conditional probability,
computed by

Pwo (Ok|q, $wCOLj) = softmax(wwo[kﬁ, :] . Zi,wo,l,j)

where Wy, € RIOI*d, Subsequently, for WV, x’; is
selected as the start of $wVAL’ which possesses the
highest probability

Pt (ak = st|q, $wCOL?) = softmax(hf - (WikZi wv.1))

where W5, € R%4 and h’; € R? is the hidden
vector of x’;. The end index of $wVAL/ is found in
a similar way. Finally, we obtain the SQL program
by filling all slots of the skeleton.

4.4 Query Reconstruction

This module creates natural language queries uti-
lizing a set of sampled latent variables, denoted as
7 = {Zsc,t’ Zoyc,ts Luwn,ts Lsa,ty Lwo,ts Zum,t}- These
latent variables serve as a prefix for a static GPT2
decoder and are strategically masked to inhibit at-
tention towards each other. The language modeling



loss, guided by the constructed query, is propa-
gated back to these latent variables, thereby en-
abling their training to align correspondingly with
the table columns.

In the context of self-training, the probability of
query construction, given as py v (q|Z), is employed
to compute the confidence v of selecting pseudo-
predictions. This is formulated as:

$WCOLI

Y= N+§/pLM(QIZ)psc($SC0LIQ) [T pwe(swcoLi|g),

(®)
where the confidence 1) thoughtfully considers both
text-to-sql and sql-to-text reconstruction probabil-
ities. Specifically, it accounts for the classifier
outputs psc($sCOL|q) and pyc($wCOL?|q), in rela-
tion to text-to-sql, and the sql-to-text reconstruction
probability p;y(q|Z), furnishing a more robust es-
timation for pseudo-labels.

This approach integrates the merits of employ-
ing latent variables in guiding the decoder, as well
as the strategic utility of self-training in generating
high-confidence pseudo-labels. The use of static
GPT-2 ventures to inject a more linguistically nu-
anced, contextually aware mechanism into the SQL
query generation process, thereby nudging the gen-
erated queries to be more in alignment with the in-
tended semantic meaning embedded within the nat-
ural language input. By juxtaposing text-to-sql and
sql-to-text reconstruction probabilities, this mod-
ule strives to curate an environment conducive for
generating SQL queries that are not only syntac-
tically correct but are also semantically coherent
with respect to the input natural language queries.

S Experiments

5.1 Data and Settings

Data We follow the experimental settings of Chen
et al. (2021) and Guo et al. (2022) to evaluate our
proposed models on both WikiSQL (Zhong et al.,
2017) and ESQL (Chen et al., 2021). The data
statistics is shown in Table 5 in Appendix A.1.
Evaluation We use the standard evaluation metrics,
including both Logical Form (LF) and Execution
(EX) accuracies. LF is for exact matching scores
between the predicted SQL and the gold answer.
EX is for comparing the executed results using the
predicted SQLs with the results obtained by gold
SQLs. See Appendix A.10 for more explanations.
Training settings The training settings are shown
in Appendix A.4. The introduction of self-training
is shown in Appendix A.2.

WikiSQL (#shots) ESQL (#shots)

Method 1 2 3 4 5 |10 15| 20

SQLOVA |23.3(40.8|48.7(55.3122.3(39.6(52.0|54.7
HydraNet |64.2(69.9|72.9|74.3|43.6|58.1|70.5|76.7

MC-SQL |52.0162.9(71.0|73.8|36.5|53.2|60.5|67.4
BRIDGE |53.6(689|73.1|77.3| - - - -

TABERT |57.5|67.4|71.2|72.5| - - - -
GRAPPA |72.8|76.8|78.0|78.1| - - - -
MST-SQL |78.4|80.5|82.1|83.2(55.3|67.4|76.7|80.5

DeLVe-SQL | 79.3 | 81.8 | 83.7 [ 84.9 | 56.8 | 68.9 | 78.7 | 82.0

Table 1: Few-shot LF accuracies. The baseline results
are referred from MST-SQL (Guo et al., 2022) and the
empty cells are due to that the corresponding baselines
do not use ESQL.

5.2 Few-shot Results

Table 1 showcases the results in a few-shot learning
scenario for both WikiSQL and ESQL databases.
From this table, we can see that the performance
of all methods improves as the number of shots
increases. This is expected as more examples pro-
vide more information for the models to learn from.
In WikiSQL, the DeL.Ve-SQL model consistently
outperforms the other methods across different shot
counts, with performance improvement as the shot
count increases. For example, in the 1-shot set-
ting, DeL.Ve-SQL achieves a score of 79.3, which
is notably higher than the second best-performing
model, MST-SQL, at 78.4. This trend continues
in the 2-shot, 3-shot, and 4-shot scenarios, and
DeLVe-SQL reaches a score of 84.9 in the 4-shot
setting. The ESQL results follow a similar pat-
tern, and DeLLVe-SQL shows superior performance
across different shot counts. For instance, in the
5-shot setting, DelLVe-SQL attains a score of 56.8,
considerably outperforming MST-SQL’s score of
55.3. As the number of shots increases to 10, 15,
and 20, DeL.Ve-SQL’s performance continues to
surpass the other models.

5.3 Fully-supervised Results

The fully-supervised results are shown in Ap-
pendix A.5. Our proposed model, Del.Ve-SQL,
achieves a LF score of 87.0% and an EX score of
92.5% in the Dev set, and a LF score of 86.5% and
an EX score of 92.1% in the test set, outperforming
the other methods including MST-SQL.

6 Analysis

6.1 Ablation Study

We perform the ablation studies on WikiSQL test
set stemming from its large-scale and diverse na-
ture. With the complexity and assortment it offers,
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Figure 3: Decoupled v.s. Coupled latent variables on
WikiSQL test set. The starting value at the y-axis is 76.

WikiSQL provides a rigorously challenging and
robust testing environment.

Decoupled v.s. Coupled Latent Variables In this
study, we compare the decoupled v.s. coupled la-
tent variables using few-shot learning on WikiSQL.
For coupled latent variables, we set the texutal and
label latent variables to be the same. Figure 3
shows the results. In all settings, the model with de-
coupled latent variables outperforms the one with
coupled latent variables. For instance, in the 1-shot
scenario, the model with decoupled latent variables
achieves a score of 79.3, while the coupled one
scores slightly lower at 78.8. This trend continues
across the remaining shot scenarios, culminating
in a score of 84.9 for the decoupled model in the
4-shot setting, versus 83.9 for the coupled model.
Interestingly, the model with coupled latent vari-
ables still outperforms MST-SQL across all the
three settings (except for 2-shot), which suggests
that even coupled latent variable can provide ad-
vantages for few-shot text-to-sql.

Effect of Different Latent Variables In order to
examine whether all of the latent variables for the
six sub tasks are necessary, we design a probing
method by gradually removing them from both the
submodule classifier and the query deconstruction
module on WikiSQL. Table 2 shows the effect of
different latent variable combinations.

The results indicate that each of these variables
can contribute separately to different aspects of
SQL query generation. The performance decrease
of Zyn, Zsa, Zwo 18 marginal, indicating that these
variables are not critically dependent on any single
one when contributing to the overall performance.
Interestingly, the combination of z. and z,,. with
Zuo achieves a similar result to the full model in
the 4-shot scenario, suggesting that these three vari-
ables might be particularly important for the model
performance. Removing all the three variables re-
sults in the largest decrease in performance. Our
observation is that SC and WC are the most critical

Zsc|Zwe |Zwn |Zsa | Zwo | Zwv | 1-shot|2-shot |3-shot [4-shot
VIiVIiVvIVvIVv v |793 ]| 818 | 837 | 84.9
VIV VIV | Vv 789811833842
VIV IV | Vv |785]809 | 828 | 84.1

VIV | v |787 812831839

v |V v | 78.5 | 80.8 | 83.2 | 83.9

vV IvVIV 78.3 | 80.7 | 82.4 | 83.4

V|V 78.9 | 81.4 | 83.0 | 84.3
Vv v [ 79.0 | 81.5 | 83.7 | 84.6

Table 2: The effect of different latent variables on Wik-
iSQL test set.

for SQL generation, which is consistent with the
findings of Lyu et al. (2020) and Yin et al. (2020).
In addition, we find that z,,, is quite important
since it is directly related to the query content. In
conclusion, while all six latent variables contribute
to the model high performance, the model is quite
robust to the removal of individual variables, and
maintains a close performance to its best result
with different combinations of the variables. Its
robustness also demonstrates the distributed nature
of the model learning and its ability to effectively
make use of various subset information.
Confidence Estimation We investigate the role
of three factors defined in Eq 8 in estimating the
confidence of pseudo-labels. Table 3 shows the
results. Table 3 indicates that the performance
declines whenever any single factor is excluded
from the process. In particular, omitting the query
reconstruction term p;y results in more obvious
performance decrease. The 3-shot and 4-shot per-
formances are decreased from 83.7% and 84.9%
to 82.6% and 84.1%, respectively. The SC and WC
classification probabilities, represented by psc and
Pwc respectively, exhibit comparable performances
when they are excluded.

Interestingly, when only one factor is in play,
pLum appears to be the most robust metric, and sur-
passes the baseline MST-SQL. However, exclusive
reliance on pgc or pyc leads to severely compro-
mised performance. These observations collec-
tively suggest that a combination of all three factors
yields the best performance, with p;y proving to
be the most crucial one among them.

6.2 Case Study

Table 4 delineates a comparative analysis of the
output cases from MST-SQL, Del.Ve-SQL, and
the gold references, across four distinct queries.
In the first case, both MST-SQL and DeLLVe-SQL
mirror the gold reference in their outputs, given
that the columns and the aggregation queries are
explicated lucidly within the question, facilitating



Psc|pwe | 1-shot|2-shot|3-shot|4-shot
Vv 1793 | 81.8 | 83.7 | 84.9
v 79.0 | 81.1 | 83.5 | 84.2
v | 79.0 | 81.2 | 83.4 | 84.5
vV | v | 787 ] 81.0 | 82.6 | 84.1
78.6 | 80.9 | 82.6 | 83.8
v 78.2 | 80.0 | 81.9 | 83.0
v | 78.0 | 803 | 81.2 | 82.8
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Table 3: The effect of confidence estimation on Wik-
iSQL test set.

a straightforward translation into SQL.

Moving to the second case, MST-SQL misinter-
prets the column, opting for “Year” to sift through
games for the 3DS platform. In contrast, Del.Ve-
SQL and the gold reference astutely select the “Plat-
form(s)” column. This deviation possibly springs
from MST-SQL’s difficulty in discerning column
semantics from its attributes, particularly when
"Platform" isn’t overtly stated in the originating
query. DeLVe-SQL, enriched semantically with
a GPT2 decoder, displays a heightened ability to
comprehend implicit column references from the
input query, likely attributing to its accurate column
selection.

In the third case, MST-SQL manages to pre-
dict merely 2 out of 3 requisite columns, while
DeL.Ve-SQL adeptly identifies all. This differential
could potentially stem from MST-SQL’s inability
to semantically correlate *wins total’” with the *To-
tal_wins’ column, suggesting a limitation in its
semantic mapping capabilities.

For the final case, it’s observable that MST-SQL
omits the aggregation function MAX. Contrarily,
DeLVe-SQL, even in the absence of terms like high-
est or largest, astutely outputs the correct aggre-
gator function. This precision can potentially be
attributed to DeLLVe-SQL’s capacity to identify that
the term last semantically corresponds to a MAX
aggregation operation over the *Year’ column, due
to its latent semantic analysis.

In conclusion, these cases empirically show that
DeLVe-SQL, with its adept context comprehension,
skill in understanding aggregate statements, and
proficiency in grasping multi-conditional scenarios,
showcases a formidable and enhanced performance
in text-to-SQL translation.

More analysis Appendix A.6 shows the ablation
study of the query reconstruction module, which
demonstrates that incorporating the query recon-
struction module has a positive effect on the accu-
racy of both MST-SQL and DeLVe-SQL models.
Appendix A.7 and Appendix A.8 show the signifi-

Question:What is the smallest number of European Parliament sets
when the international affiliation is global greens, egp?

Gold: SELECT MIN European_Parliament_seats FROM table
WHERE International_Affiliation = ’Global Greens, EGP’;
MST-SQL: SELECT MIN European_Parliament_seats FROM
table WHERE International_Affiliation = ’Global Greens,
EGP’

DeLVe-SQL: SELECT MIN European_Parliament_seats FROM
table WHERE International_Affiliation = ’Global Greens,
EGP’

Question: What 3ds game did Naohiko Aoyama direct?

Gold: SELECT Title FROM table WHERE Platform(s) = 3ds
AND Director = naohiko aoyama;

MST-SQL: SELECT Title FROM table WHERE Year = 3ds AND
Director = naohiko aoyama;

DeLVe-SQL: SELECT Title FROM table WHERE Platform(s) =
3ds AND Director = naohiko aoyama;

Question: Who was placed fourth when third was Beijing Guoan
and the winner was Dalian Wanda and wins total was 4?

Gold: SELECT fourth-placed FROM table WHERE Third-place
= ’Beijing Guoan’ AND Winners = ’Dalian Wanda’ AND
Total_wins = 4

MST-SQL: SELECT fourth-placed FROM table WHERE
Third-place = ’Beijing Guoan’ AND Winners = ’Dalian
Wanda’

DeLVe-SQL: SELECT fourth-placed FROM table WHERE
Third-place = ’Beijing Guoan’ AND Winners = ’Dalian
Wanda’ AND Total_wins = 4

Question: What was the last year that they had less than 16 points
in class 500cc?

Gold: SELECT MAX Year FROM table WHERE Points < 16 AND
Class = 500cc

MST-SQL: SELECT Year FROM table WHERE Points < 16 AND
Class = 500cc

DeLVe-SQL: SELECT MAX Year FROM table WHERE Points <
16 AND Class = 500cc

Table 4: We compared Del.Ve-SQL’s outputs with the
gold references and the outputs of MST-SQL.

cance test and model variances, respectively. Ap-
pendix A.9 shows the quality of generated queries.

7 Conclusion

This study addresses the challenges of few-shot
single-table Text-to-SQL generation by introducing
a decoupled latent variable model (DeL.Ve-SQL),
effectively separating textual and SQL column la-
bel semantics. DeLVe-SQL not only enhances the
model performance by ensuring independent learn-
ing for each part, but also reduces noise in pseudo-
labels and improves SQL query quality. Experi-
mental results on WikiSQL and ESQL benchmarks
demonstrate that DeL.Ve-SQL outperforms exist-
ing methods in few-shot training scenarios. We
perform extensive ablation studies to investigate
the effective factors for few-shot text-to-sql learn-
ing, demonstrating that both the decoupled latent
variable model and the improved confidence estima-
tion contribute to the performance improvements.
We hope that our method will encourage further
research into robust and versatile Text-to-SQL mod-
els, particularly with limited labeled data.



8 Limitation

Our approach is specifically designed for single-
table text-to-SQL tasks, where the queries involve
a single table and do not consider more complex
scenarios involving multiple tables or joins. The
applicability of our approach is restricted to this
specific domain and may not generalize well to
more complex SQL query generation tasks.

Furthermore, in our approach, we solely utilize
GPT?2 as the decoder for query reconstruction. We
do not incorporate other decoder models or archi-
tectures for this purpose. While GPT2 has shown
promising performance in various natural language
processing tasks, it is important to note that our
approach does not explore the potential benefits
or drawbacks of alternative decoder models in the
context of query reconstruction.
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A Appendix
A.1 Data Statistics

Dataset Train Dev Test
WikiSQL | 56,355 | 8,421 | 15,878
ESQL 10,000 | 1,000 | 2,000

Table 5: Data statistics of the NL-SQL pairs.
Table 5 shows the data statistics of WikiSQL

and ESQL. WikiSQL (Zhong et al., 2017) and
ESQL (Chen et al., 2021). Both of them are single-
table text-to-SQL datasets. The data statistics is
shown in Table 5 in Appendix. WikiSQL is a signif-
icantly large dataset comprising over 20,000 open-
domain tables sourced from Wikipedia. It stands as
the most extensive single-table text-to-SQL dataset
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available to date. On the other hand, ESQL is a
Chinese dataset that focuses on specific domains
and consists of 17 tables.

A.2  Self Training

For self-training, a base model is first trained using
a limited number of training samples. And then the
base model is used to annotate large scale unlabeled
dataset. Third, a confidence metric is designed and
is used to select high-confidence samples. Fourth,
the pseudo-samples are then added to the training
set to re-train the base model. And this process can
be repeated several times until the model converges.
The challenges are three folds. First, a good base
model is necessary. Second, a well-designed confi-
dence metric is required. Third, we need to balance
the ratio of pseudo-labeled and labeled data.

A.3 More introductions on the pretrained
encoders

TAPAS (Herzig et al., 2020) initially designed
for Table QA, also exhibits table encoding capa-
bilities that can be applied to text-to-SQL tasks.
TABERT (Yin et al., 2020) focuses on the joint
understanding of textual and tabular data, in-
corporating table content into the representation.
GRAPPA (Yu et al., 2021) combines table seman-
tic parsing with a grammar-augmented pre-training
framework. STRUG (Deng et al., 2021) proposes
a set of structure-grounded pretraining tasks for
effective text-table alignment. STAMP (Giaquinto
et al., 2023) preforms large-scale multitask pretrain-
ing encoder-decoder models for interacting with
structured knowledge.

A.4 Training settings

For training, we generally follow the settings of
Guo et al. (2022) and run all the experiments on
a platform with 8-V100 GPUs. The number of
table content was set to n = 5. We only change
the self-training module of MST-SQL and keep the
column-specified meta learning unchanged. For
fully supervised training on WikiSQL, we use the
complete training set of WikiSQL as the labeled
data £ and employ WikiTableQuestions (Pasupat
and Liang, 2015) as the unlabeled data U/, consist-
ing of over 2,108 tables and 22,033 natural lan-
guage queries (NLQs) without SQL labels.

For few-shot settings, we use the dataset cre-
ated by Guo et al. (2022), which contains approxi-
mately 9,000 new tables in WikiSQL and 15 tables
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Method Dev.LF | Dev.EX | Test.LF | Test.EX
SQLOVA 81.6 87.2 80.7 86.2
X-SQL 83.8 89.5 83.3 88.7
HydraNet 83.6 89.1 83.8 89.2
SeaD 84.9 90.2 84.7 90.1
MC-SQLt 84.1 89.7 83.7 89.4
BRIDGE{ 86.2 91.7 85.7 91.1
IE-SQL% 84.6 88.7 84.6 88.8
SDSQL1 86.0 91.8 85.6 91.4
TAPASt: 85.1 - 83.6 -
TABERT{t1 84.0 89.6 83.7 89.1
GRAPPATI 85.9 - 84.7 -
MST-SQLtt 86.4 91.9 85.8 91.6
DeLVe-SQL{t1 87.0 92.5 86.5 92.1

Table 6: Fully supervised results on WikiSQL.} denotes
the table-content is used and I denotes the tabular pre-
trained method is used.

in ESQL. {1, 2, 3, 4}-shot and and {5, 10, 15, 20}-
shot for ESQL are constructed for WikiSQL and
ESQL, respectively. The validation and test sets
are constructed with the same settings, consisting
of 4/100 samples for each table in WikiSQL and
ESQL, respectively. For WikiSQL, the remaining
NLQs from the original WikiSQL dataset is used
to construct the unlabeled set /.

A.5 Fully Supervised Results

Table 6 presents the fully supervised results on
WikiSQL, divided into four distinct blocks.

Following the previous best performed model,
namely MST-SQL (Guo et al., 2022), we compare
our model with four kinds of recent approaches on
the WikiSQL dataset. The first category includes
SQLOVA (Hwang et al., 2019), X-SQL (He et al.,
2019), HydraNet (Lyu et al., 2020) and SeaD (Xu
et al., 2022), which did not utilize either table con-
tents or tabular pretrained encoders. The second
category includes BRIDGE (Lin et al., 2020) and
MC-SQL (Chen et al., 2021), which employed ta-
ble content understanding but did not utilize tab-
ular pretraining. The third category contains IE-
SQL (Ma et al., 2020) and SDSQL (Hui et al.,
2021), which uses tabular pretraining but not ta-
ble content. The fourth category which leverages
both tabular pretraining and table contents includes
TABERT (Yin et al., 2020), GRAPPA (Yu et al.,
2021), TAPAS (Herzig et al., 2020), and MST-
SQL (Guo et al., 2022).

In general, the performance of models that did
not leverage table contents or tabular pretraining
was inferior. The inclusion of either table contents
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MST-5QL

MST-SQL w/ query rec.

Delve-SQL Delve-SQL w.o. query rec.

Figure 4: The effect of query reconstruction on Wik-
iSQL test set. The accuracy value starting at the y-axis
is 76.

or tabular pretraining significantly improved model
performance, demonstrating the utility of these el-
ements in generating more accurate SQLs. Our
proposed model, DeLLVe-SQL, achieves a LF score
of 87.0% and an EX score of 92.5% in the Dev
set, and a LF score of 86.5% and an EX score of
92.1% in the test set, outperforming the other meth-
ods including MST-SQL. The results validate the
effectiveness of our proposed decoupled latent vari-
able model in improving the generation of SQL
queries in fully supervised training. The advantage
of DeL.Ve-SQL can be attributed to its decoupled
design, which allows it to align language semantics
with database schema, and thereby improves the
understanding of table structure. The use of latent
variables facilitates fine-grained control over this
alignment and offers an opportunity to disentan-
gle the contribution of different parts of the input.
Moreover, the optimization of these variables via
language modeling loss further refines this align-
ment, thereby boosting performance.

A.6 Effect of Query Reconstruction

We examine the effectiveness of the query recon-
struction module on both MST-SQL and Del.Ve-
SQL. For MST-SQL, the hidden vectors from the
submodule classifier are directly fed to the GPT2
decoder without involving any latent variables. Fig-
ure 4 shows the results. In terms of MST-SQL, we
can observe a slight improvement in performance
when query reconstruction is applied. For exam-
ple, the accuracy increases from 78.4% to 78.7%
for 1-shot, and from 83.2% to 83.8% for 4-shot.
This suggests that incorporating the query recon-
struction module also helps enhance the accuracy
of the MST-SQL model. For DeL.Ve-SQL, we can
observe a decrease in performance when query re-



construction is removed. The accuracy decreases
from 79.3% to 78.9% for 1-shot and from 84.9%
to 84.2% without query reconstruction.

Overall, the results indicate that incorporating
the query reconstruction module has a positive ef-
fect on the accuracy of both MST-SQL and DeL.Ve-
SQL models. This suggests that the query recon-
struction module helps improve the quality of gen-
erated SQL queries, leading to enhanced perfor-
mance in the few-shot text-to-SQL task.

A.7 Significance of the Improvements.

We have done the significant test using the student’s
t-test against the baseline MSQ-SQL. In Table 7,
all the results of DeLVe are significant at the p=0.05
level.

A.8 Model Variances.

Although the baseline MST-SQL does not show
the variance scores, we additionally aly show the
variance scores of 3 runs in Table 8. The variance
numbers, being relatively low, indicate that the im-
provements brought by DeL.Ve-SQL are consistent
and not just the result of random fluctuations or
specificity ties of the dataset.

A.9 Quality of the Generated Query Text

Although the SQL-to-text utility is a byproduct. We
thoroughly evaluate its text generation quality to
show the capabilities of the reconstruction module.
For the generated text, we evaluate them on the
WikSQL and ESQL dev sets using BLEU-1, 2, 3, 4
scores. Table 9 shows the results. For both datasets,
the BLEU scores gradually increase as the shot
number increases. For WikiSQL, the scores remain
relatively lower since at most 4 shots are used. For
ESQL, the scores are higher than WikiSQL due to
more data being available.

We also find some successful examples by read-
ing the generated results. For example, when the
original query is “How many people attended the
game on May 10?”, the generated query is “How
many person attended the game on May 10?”. Sim-
ilarly, for the query “What is the sum of attendance
when the score was 2:07”, the generated result is
“What is the total attendance where the score ended
as 2-07”, which can be seen as paraphrases.

A.10 More on Evaluation Metrics

Logical Form (LF) Accuracy measures how accu-
rately the generated SQL query matches the correct
SQL query in its structure and syntax. It doesn’t
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consider whether the query returns the correct re-
sults when executed against a database. Instead, it
focuses on the syntactical correctness and structural
similarity of the SQL query to a reference query at
the textual level. High LF accuracy indicates that
the system is effective in parsing and structuring
complex queries. The limitation is that a query
might have correct syntax and structure (high LF
accuracy) but still return incorrect results due to
logical errors like incorrect conditions or joins.

Execution (EX) Accuracy assesses whether the
SQL query, when executed, returns the correct data
from the database. It’s a measure of the query’s
functional correctness, regardless of its syntactic
form. For example, given an example query “What
is the total sales amount for 2022?”. The golden
query is “SELECT SUM(sales) FROM transactions
WHERE year = 2022”, suppose that the generated
query is “SELECT SUM(sales) FROM transactions
WHERE year < 2023 and year > 2021”. For the
generated query, the LF accuray is not 100%, since
its syntax structure is different from the gold query.
The EX accuracy is 100% since the results returned
by the generated query are the same as the executed
results of the gold query.

A.11 More on Comparisons with GPT-4

In this study, our method is specifically tailored to
classical few-shot learning settings, which funda-
mentally differ from the prompt-based approaches
used in large language models. While large models
like GPT-4 can be potent for few-shot text-to-SQL
tasks, there are several critical reasons why a direct
comparison is not applicable in our context:

* Privacy Concerns: One of the foremost lim-
itations is the issue of data privacy. In many
cases, especially with private industry data,
it’s not permissible or secure to upload data to
external platforms like GPT-4. Our methodol-
ogy respects and upholds data privacy, an es-
sential aspect for many industry applications.

* Data Exposure Uncertainty: There’s an inher-
ent uncertainty in large language models re-
garding prior exposure to training data. Since
these models are often trained on vast, openly
available datasets, it’s unclear if they have al-
ready seen similar data, potentially skewing
results and comparisons.

* Resource Intensity: The deployment and op-
eration of large language models require sub-



WikiSQL (#shots) ESQL (#shots)
Method 1 2 3 4 5 10 15 20
MST-SQL 78.4 80.5 82.1 83.2 55.3 67.4 76.7 80.5
DeLVe-SQL | 79.3 (p=0.05) | 81.8 (p=0.005) | 83.7 (p=0.005) | 84.9 (p=0.005) | 56.8 (p=0.05) | 68.9 (p=0.05) | 78.7 (p=0.05) | 82.0 (p=0.005)
Table 7: Significance Tests
WikiSQL (#shots) ESQL (#shots)
Method 1 2 3 4 5 10 15 20
MST-SQL 78.4 80.5 82.1 83.2 55.3 67.4 76.7 80.5
DeLVe-SQL | 79.3 (0.7) | 81.8 (0.6) | 83.7 (0.6) | 84.9 (0.5) | 56.8 (1.0) | 68.9 (0.7) | 78.7 (0.5) | 82.0 (0.4)
Table 8: Model Variances
Dataset BLEU-1 BLEU-2 BLEU-3 BLEU-4
WikiSQL 1-shot| 0.60 0.42 0.32 0.20
WikiSQL 2-shot| 0.65 0.48 0.38 0.28
WikiSQL 3-shot | 0.69 0.52 0.42 0.32
WikiSQL 4-shot | 0.74 0.59 0.49 0.39
ESQL 5-shot 0.82 0.67 0.57 0.47
ESQL 10-shot 0.85 0.70 0.60 0.50
ESQL 15-shot 0.86 0.73 0.67 0.57
ESQL 20-shot 0.88 0.77 0.70 0.63

Table 9: BLEU-scores for the reconstructed queries.

stantial computational resources. This high
demand can pose significant challenges for
practical, real-world applications, particularly
in terms of deployment and ongoing service

provision.

In summary, while large language models have
their strengths, their application and comparison in
a classical few-shot learning context are limited by
privacy concerns, data exposure uncertainties, and
high resource requirements. These factors make
our approach more relevant and practical for certain
scenarios, especially those prioritizing data privacy
and computational efficiency.
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