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Abstract

Few-shot single-table text-to-sql tasks present001
considerable challenges due to the constraints002
of limited training data. Existing approaches003
primarily transform this problem into column-004
based classification tasks and utilize self-005
training methods to leverage unlabeled texts006
with pseudo-labels. The critical challenge,007
however, lies in selecting high-quality pseudo-008
labels and incorporating them effectively into009
model training. Past self-training techniques010
selected pseudo SQL predictions based on the011
probabilities yielded by column-specific clas-012
sifiers. This approach may not align well with013
the original queries, especially given the lim-014
ited performance of the few-shot classifier. To015
address these limitations, we introduce a novel016
approach DeLVe-SQL: a latent variable model017
specifically designed for few-shot text-to-sql018
tasks. This model effectively decouples textual019
and SQL semantics via distinct latent variables,020
enhancing the classifier’s performance. More-021
over, we apply an additional GPT2 decoder to022
take into account the reconstruction probabili-023
ties of the original query given pseudo SQL pre-024
dictions, providing a more refined weighting of025
pseudo-labels. Our experiments, conducted on026
both open-domain and domain-specific bench-027
marks, demonstrate that our proposed method028
delivers promising results, outperforming exist-029
ing methods in few-shot scenarios.030

1 Introduction031

Text-to-sql generation is a critical component in032

the field of natural language processing, enabling033

users to interact with databases using natural lan-034

guage inputs (Zhong et al., 2017; Yu et al., 2018,035

2019; Wang et al., 2020a; Yu et al., 2021; Xu et al.,036

2022; Li et al., 2023c). In this landscape, both037

single-table and multi-table querying approaches038

serve distinct purposes and have broad applications.039

The single-table text-to-sql generation approach fo-040

cuses on queries within a specific table, offering a041

How many County Kerry have 53% Irish speakers?

SELECT COUNT (English name) FROM 
table WHERE Irish speakers = 53% 
AND County = County Kerry

LabelDescriptionColumn
CountAggregation Operator for SelectsOP

English nameSelect ColumnsCOL
2Number of Where conditionswN

Irish speakersThe first Where columnwCOL1

CountyThe second Where ColumnwCOL2

=The operator of the 1st conditionwOP1

=The operator of the 2nd conditionwOP2

53%The value of the 1st conditionwVAL1

County KerryThe value of the 2nd conditionwVAL2

SELECT $sOP $sCOL FROM table 
WHERE $wCOL1 $wOP1 $wVAL1 (AND
$wCOLi $wOPi $wVALi)* 

Query

Column
Classifier

SQL Skeleton Template

SQL Statement

Figure 1: An example of single table text-to-sql.

simplified way to extract information. This is often 042

suitable for scenarios where data is neatly struc- 043

tured within individual tables (Sun et al., 2020; 044

Chen et al., 2021; Guo et al., 2022) where the intri- 045

cacy of multiple table interactions is not necessary. 046

Figure 1 illustrates this concept with an exam- 047

ple where the SQL statement is uniformly fitted 048

into a skeleton template with six column attributes, 049

such as the column for SELECT (Xu et al., 2017; 050

Hwang et al., 2019). This formulation translates 051

the SQL statement generation into classification 052

problems, streamlining the learning process in 053

fully supervised settings. It is especially effec- 054

tive when utilizing strong tabular pretrained en- 055

coders (Yin et al., 2020; Herzig et al., 2020; Yu 056

et al., 2021; Deng et al., 2022; Giaquinto et al., 057

2023), as demonstrated in the open-domain Wik- 058

iSQL dataset (Zhong et al., 2017). 059

Despite fully supervised training, few-shot 060

single-table text-to-sql (Chang et al., 2019; Wang 061

et al., 2021; Chen et al., 2021; Guo et al., 2022) is 062

crucial in real-world scenarios where new tables 063

or databases have limited labeled data. It enables 064

models to adapt and generate accurate SQL queries 065

with minimal training examples, reducing the need 066

for extensive manual annotation. By leveraging 067

prior knowledge and handling few-shot scenarios, 068

text-to-SQL models become more scalable, versa- 069

tile, and adaptable to different domains without 070

requiring extensive retraining. 071

There are limited efforts to solve this task. 072
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Chang et al. (2019) pioneered the study of zero-073

shot text-to-sql generalization by proposing an aux-074

iliary mapping task between language query and075

table columns, which still requires heavy supervi-076

sion. Chen et al. (2021) and Wang et al. (2021)077

apply coarse-grained meta-learning to adapt mod-078

els for unseen tables with table content information079

understanding. However, their improvements are080

limited due to their column-agnostic model param-081

eter updating strategy. Guo et al. (2022) propose a082

meta self-training approach (MST-SQL) with fine-083

grained meta learning dependent on table columns084

for few-shot single-table text2sql, achieving signif-085

icant improvement. Sun et al. (2023) fine-tunes a086

large private PALM1 language model for few-shot087

text-to-sql task, which is expensive.088

In this paper, we investigate the MST-SQL089

method proposed by Guo et al. (2022) for few-090

shot text-to-SQL tasks. Among the existing few-091

shot approaches, MST-SQL stands out for its fine-092

grained meta-learning dependent on table columns,093

enabling it to overcome limitations observed in pre-094

vious work. This unique approach not only aligns095

with the complexities of few-shot scenarios but096

also offers a promising avenue for significant im-097

provement. While self-training techniques have098

the potential to utilize unlabeled texts with pseudo-099

labels (Liu et al., 2022), they encounter two chal-100

lenges in the few-shot scenario. First, ensuring101

high-quality pseudo SQL predictions via column-102

based classifiers become difficult in few-shot set-103

tings, which may lead to diverged synthetic predic-104

tions and affect the effectiveness of self-training.105

Secondly, the alignment between natural language106

query and the table columns are more challenging107

due to noisy pseudo labels, leading to optimization108

and generalization issues.109

Our work aims to address these issues by intro-110

ducing a decoupled latent variable model, dubbed111

DeLVe-SQL. DeLVe-SQL decouples textual and112

SQL column label semantics via distinct latent vari-113

ables, which has not been previously utilized in the114

field of text-to-SQL. The textual semantic refers115

to the meaning conveyed at the level of the natural116

language text. It encompasses the way different117

phrases or expressions in a query can signify the118

same underlying intent. For instance, phrases like119

“how many”, “count”, or “the total number of” all120

share a common semantic purpose for the “count”121

aggregator in SQL, even though they are linguis-122

1https://ai.google/discover/palm2/

tically distinct. The label semantic pertains to the 123

structural and syntactic knowledge encapsulated 124

in the SQL statement. It deals with how certain 125

keywords or phrases in the natural language query 126

directly relate to specific SQL components (like 127

aggregators, conditions, column names, etc.). For 128

example, the phrase “last year” can be mapped to 129

the “max” aggregator in certain situations. The la- 130

bel latent variables are only responsible for column 131

classification. The textual latent variables are sent 132

to a frozen GPT2 (Radford et al., 2019) decoder for 133

reconstructing the language query. The advantages 134

of DeLVe-SQL are manifold. The latent variables 135

implicitly augment the training data via sampled la- 136

tent variables and stabilize the training process via 137

regularization terms between prior and posterior 138

distributions. By decoupling the semantics and em- 139

ploying separate latent variables, our model ensures 140

that the learning of each aspect doesn’t interfere 141

with each other, leading to better performance. Fur- 142

thermore, the effective weighting of pseudo-labels, 143

guided by the reconstruction probabilities, reduces 144

the noise introduced by incorrect pseudo-labels, 145

improving the overall quality of generated SQLs. 146

To validate our approach, we conduct com- 147

prehensive experiments on two general single- 148

table text-to-sql benchmarks including both Wik- 149

iSQL (Zhong et al., 2017) and ESQL (Chen et al., 150

2021), which are commonly used in the few-shot 151

settings. The results demonstrate that DeLVe- 152

SQL achieves promising results, surpassing exist- 153

ing methods in few-shot scenarios. Our codes will 154

be released. 155

2 Related Work 156

Text-to-SQL Text-to-SQL has been explored 157

meticulously across both single-table and multi- 158

table contexts, employing datasets like Wik- 159

iSQL (Zhong et al., 2017) and Spider (Yu et al., 160

2018). The multi-table scenarios, bringing forth 161

their unique set of complexities and challenges, 162

have seen substantial advancements (Scholak et al., 163

2021; Wang et al., 2020b; Qi et al., 2022; Li et al., 164

2023a,b) within fully supervised setups. 165

For single-table text-to-SQL, Seq2SQL (Zhong 166

et al., 2017) interprets this task through the lens 167

of sequence generation, utilizing Seq2Seq neural 168

networks (Sutskever et al., 2014). A coarse-to-fine 169

decoding method that initially predicts a linearized 170

sketch, subsequently decoding the full SQL based 171

on the sketch, is introduced by Dong and Lapata 172
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(2018). SQLNet (Xu et al., 2017) introduces an173

innovative approach that partitions the text-to-SQL174

task into six discrete sub-tasks, each tasked with175

predicting a component in the SQL query. Further176

research has explored enhanced encoders (Hwang177

et al., 2019), schema linking strategies (He et al.,178

2019; Ma et al., 2020; Hui et al., 2021; Xu et al.,179

2022), and enhanced decoding methods (Lyu et al.,180

2020; Lin et al., 2020), and tabular pre-trained mod-181

els (Herzig et al., 2020; Yin et al., 2020; Yu et al.,182

2021; Deng et al., 2021; Giaquinto et al., 2023).183

Few-shot Learning for Text-to-SQL. Pioneer-184

ing the study of zero-shot text-to-sql, Chang et al.185

(2019) propose an auxiliary mapping task to ex-186

plicitly model relationships between natural lan-187

guage entities and table column names, serving as188

a supportive model and regularization term, which189

enhances the model’s generalization capacity, as190

evidenced by a noteworthy improvement in gener-191

alizability on a zero-shot subset test. Chen et al.192

(2021) employ a meta-learning strategy, leverag-193

ing table content information to manage zero-shot194

tables without necessitating additional manual an-195

notations. Yang et al. (2022) introduce sequen-196

tial prompting, which decomposes the text-to-sql197

task into sub-level problems at the sub-clause level,198

facilitating few-shot compositional semantic pars-199

ing. Meanwhile, Guo et al. (2022) use meta self-200

training, specifically crafted for single-table text-201

to-SQL tasks, and uses self-training to navigate202

the complexities of few-shot text-to-SQL problems.203

This approach also incorporates a column speci-204

ficity meta-learning algorithm to comprehend uni-205

versal concepts. Our work takes a leaf from Guo206

et al. (2022) but adds a twist by using decoupled207

latent variables to provide advantages to both the208

few-shot column classifier and the self-trainer.209

The recent surge in instruction-tuned large lan-210

guage models has unveiled potent capabilities211

across zero-shot and few-shot text-to-sql scenar-212

ios (Liu et al., 2023; Liu and Tan, 2023; Tai213

et al., 2023; Pourreza and Rafiei, 2023; Chang and214

Fosler-Lussier, 2023), showcasing formidable re-215

sults on benchmarks like Spider (Yu et al., 2018)216

and BIRD (Li et al., 2023c). Sun et al. (2023) also217

explores finetuning a private large-scale language218

model (PaLM) for text-to-SQL tasks. SQLCoder-219

70B2 even shows the state-of-the-art text-to-SQL220

performances in SQL-eval after fine-tuning on221

close-sourced data. Although comparisons with222

2https://github.com/defog-ai/sqlcoder

such models are not considered in our work due to 223

potential unknown data contamination issues and 224

high computing costs, the decoupled latent vari- 225

ables may serve a vital role in selecting effective 226

demonstrations for in-context learning with mod- 227

els like ChatGPT and GPT4 (Pourreza and Rafiei, 228

2023), providing avenues for future research. 229

Decoupled Latent Variable Models. Yin et al. 230

(2018) introduce the StructVAE model, implement- 231

ing tree-structured latent variable models for semi- 232

supervised semantic parsing. A bi-level latent 233

model for few-shot compositional text generation 234

is proposed by Xia et al. (2020), where domain and 235

action are overseen by two latent variables. Li et al. 236

(2022) integrate disentangled priors in variational 237

auto-encoders for low-resource task-specific natu- 238

ral language generation, incorporating conditional 239

priors for latent content and label spaces. Mean- 240

while, Singh and Jamali-Rad (2022) showcase a 241

variational inference network that isolates class- 242

specific attributes from image context and seman- 243

tics in few-shot image classification. Although our 244

decoupled latent variable models draw from simi- 245

lar principles to these works, they are specifically 246

adapted for the text-to-SQL task, which involves 247

dealing with multiple classifiers and hierarchical 248

structures. Moreover, our approach combines the 249

latent variable models with GPT2 (Radford et al., 250

2019), providing a distinct methodology compared 251

to prior research. 252

3 Decoupled Latent Variable Models for 253

Few-shot Text-to-SQL 254

We first discuss the few-shot text-to-SQL setting in 255

Section 3.1, then describe the training objectives 256

with latent variable modeling in Section 3.2. 257

3.1 Few-shot Text-to-SQL 258

Our approach incorporates self-training for few- 259

shot text-to-SQL by following the settings of Guo 260

et al. (2022). The training data is divided into 261

labeled data, denoted as L, and unlabeled data, 262

denoted as U . Labeled data L consists of a set of 263

tuples Li = (qi, Ti, yi), where qi represents the 264

i-th natural language query, Ti denotes the table 265

corresponds to qi, and yi represents the correct 266

SQL label for the corresponding qi over Ti. Ti 267

consists of column-header pairs {(hi,j , Ci,j)}Mi
j=1, 268

whereMi is the number of columns of Ti, hi,j is the 269

j-th column header of Ti and Ci,j is the cell values 270

under hi,j . Unlabeled data U comprises a set of 271

3

https://github.com/defog-ai/sqlcoder


tuples Ui = (qi, Ti) without explicit SQL labels. yi272

follows a standardized format as shown in Figure 1,273

where tokens marked with $ represent slots to be274

filled, and * indicates zero or more occurrences.275

Following the previous studies (Hwang et al.,276

2019; Lyu et al., 2020), generating each yi can be277

divided into six tasks: 1) decide the column ($sCOL,278

SC) to be included in the SELECT clause; 2) de-279

cide the aggregation function ($sOP, SA) within the280

SELECT clause; 3) decide the number ($wN, WN)281

of conditions in the WHERE clause; 4) decide the282

column ($wCOL, WC) for the i-th condition in the283

WHERE clause; 5) decide the operator ($wOP, WO)284

for the i-th condition in the WHERE clause; 6) decide285

the value ($wVAL, WV) for the i-th condition in the286

WHERE clause.287

3.2 Decoupled Latent Variable Model288

The overall training objective is to maximize the289

log-likelihood on both the label data L and the290

unlabeled data U , which is given by291

O =

|L|∑
i

log p(yi, qi, Ti) +

|U|∑
j

log p(qj , Tj) (1)292

We introduce two latent variables zt and zl for293

decoupling the textual and label semantics into294

respective terms in Eq 2. Here for simplicity, we295

use the first term p(yi, qi, Ti) as an example to show296

the whole process, which is formally given by297

p(yi, qi, Ti) =

∫ ∫
p(yi, qi, Ti|zt, zl)p(zt, zl)dzldzt

(2)298

Direct learning objective is intractable in general.299

Therefore we turn to the evidence-lower-bound300

(ELBO) using a variational posterior distribution301

ϕ(zt, zl | qi, Ti) to approximate p(yi, qi, Ti),302

p(yi, qi, Ti) =

∫∫
p(yi, qi, Ti| zt, zl) p(zt,zl) dzt dzl,

= Eϕ(zt,zl | qi,Ti)

[
p(qi, Ti | zt, zl)p(yi | zl)p(zl)p(zt)

ϕ(zt, zl | qi, Ti)

]
.

≈ Eϕ(zt,zl | qi,Ti)

[
p(qi | zt, zl)p(yi | zl)p(zl)p(zt)

ϕ(zt, zl | qi, Ti)

]
.

303

Here p(qi, Ti | zt, zl) is the reconstruction probabil-304

ity to generate qi and Ti based on zt and zl. We305

simplify it by only reconstructing the query using306

p(qi | zt, zl). p(yi, qi, Ti) is further given by,307

log p(yi, qi, Ti)

⩾ Eϕ(zt,zl|qi,Ti)

[
log

(
p(qi | zt, zl)p(yi | zl)p(zl)p(zt)

ϕ(zt, zl | qi, Ti)

)]
,

= Eϕ2

[
Eϕ1

[
log

(
p(qi | zt, zl)p(yi | zl)p(zl)p(zt)
ϕ2(zt | qi, Ti)ϕ1(zl | qi, Ti, zt)

)]]
.

308

Here ϕ(zt, zl | qi, Ti) is decomposed into two cas- 309

cade variational posterior distributions, namely 310

ϕ1(zl | qi, Ti, zt) and ϕ2(zt | qi, Ti) for zl and zt, re- 311

spectively. And the ELBO objective is defined as 312

OELBO =− Eϕ2Eϕ1 [log p(qi | zt, zl) + log p(yi | zl)]+

DKL

(
ϕ1(zl | qi, Ti, zt)∥ p(zl)

)
+

DKL

(
ϕ2(zt | qi, Ti)∥ p(zt)

)
,

(3)

313

where p(zl) and p(zt) are the two prior distributions 314

for zl and zt, respectively. Both the prior distribu- 315

tions and the variational posterior distributions are 316

assumed to be Gaussian distribution, which can 317

allow using reparmeterization trick for sampling la- 318

tent variables and leading to closed KL divergence 319

solutions for the last two terms defined in Eq 3. 320

Similarly, the log-likelihood of the unlabeled 321

data log p(qj , Tj) can be approximated by exclud- 322

ing the labeling term log p(yi | zl) from Eq 3. Eq 3 323

shows the modeling process by treating yi as a 324

whole label. In practice, for each column label, we 325

introduce two latent variables: one for the textual 326

and the other for SQL column labels as shown in 327

Figure 2. For example, the textual and label latent 328

variables for the SC classifier are zsc,t and zst,l, 329

respectively. 330

4 Model Architecture 331

Figure 2 outlines the structure of our proposed 332

method, consisting of four main submodules: 1) 333

The Encoder focuses on learning the input represen- 334

tation; 2) The Latent Variable Sampler plays a piv- 335

otal role in drawing decoupled latent variables; 3) 336

The Submodule Classifier is for column classifica- 337

tion; 4) Finally, the Query Reconstruction module 338

is responsible for reconstructing the queries. 339

4.1 Encoder 340

We utilize a RoBERTa Encoder (Liu et al., 2019) 341

and take a similar approach to Hydranet (Lyu et al., 342

2020; Guo et al., 2022) by adopting column-wise 343

input formation for the RoBERTa encoder. Specif- 344

ically, the input pair (q, T ) is broken down to 345

m column-inputs, each represented as (q, hi) for 346

i = 1, ...,m. The RoBERTa model then gener- 347

ates hidden states for each (q, hi) pair. This in- 348

put sequence incorporates special tokens like the 349

[CLS] symbol, column type ti, column header hi, 350

table content, and the language query q by follow- 351

ing Chen et al. (2021). The table content comprises 352

n cells from Ci that hold the highest literal scores. 353
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Figure 2: An overview of DeLVe-SQL. The query is “What is the name of the linebacker at Illinois college?”.

hk
q ∈ Rd stands for the vector of the k-th token in354

q, and hi
[CLS] ∈ Rd which serves as the semantic355

vector of the entire column-input (q, hi).356

4.2 Latent Variable Sampler357

Based on hi
[CLS], we generate the decoupled latent358

variables. hi
[CLS] is first encoded by a MLP,359

ri[CLS] = MLP(hi
[CLS], θlv)360

where θlv ∈ {θSC, θWC, θWN, θSA, θWO, θWV} and de-361

notes the specific parameters for different columns.362

ri[CLS] is used to generate the mean µ and the vari-363

ance parameters σ of Gaussian distributions. Tak-364

ing the SC task as an example, they are given by365

µi,sc,t = Wsc,t,µr
i
[CLS],sc + bsc,t,µ,

σ2
i,sc,t = exp(Wsc,t,σr

i
[CLS],sc + bsc,t,σ)

(4)366

where Wsc,µ, bsc,µ, Wsc,σ, and bsc,σ are model367

parameters. The textual latent variable is given by368

zi,sc,t = µi,sc,t + σ2
i,sc,t · ϵ. ϵ is a random vec-369

tor from a normal distribution. Similarly, we can370

generate the label latent variable by conditioning371

on both ri[CLS],sc and zi,sc,t using concatenation ⊕,372

which is formally given by373

µi,sc,l = Wsc,l,µ[r
i
[CLS],sc ⊕ zi,sc,t] + bsc,l,µ,

σ2
i,sc,l = exp(Wsc,l,σ[r

i
[CLS],sc ⊕ zi,sc,t] + bsc,l,σ)

zi,sc,l = µi,sc,l + σ2
i,sc,l · ϵ

(5)374

4.3 Submodule Classifier375

The submodule classifier uses the label latent vari-376

ables for each column-input to tackle various sub-377

tasks. We train a separate MLP for each column378

classifier. We start with the essential SC task, rank-379

ing the columns based on relevance using380

pSC(h
i = $sCOL|q) = σ(wsc · zi,sc,l) (6)381

Here, σ represents the sigmoid function and wsc 382

is a trainable parameter. The column hi with the 383

highest pSC is chosen as $sCOL. Similarly, we calcu- 384

late PWC(h
i ∈ {$wCOLj}|q) for WC using parameter 385

wWC ∈ Rd, and the top-N columns hi with the 386

highest PWC are returned as $wCOLj . The number 387

of WHERE conditions, N , is predicted by 388

pWN(N j |q, hi) = softmax(WWN[j, :] · zi,wn,l)

N = argmaxj(
∑
i

ωi · pWN(N j |q, hi)) (7) 389

Here, WWN ∈ Rn×d is a model parameter, and ωi 390

is the weight calculated by softmax(wω · zi,wn,l). 391

The remaining sub-tasks can be solved with $sCOL 392

and $wCOLj . Specifically, $wOPj is the operator 393

ok ∈ O with the highest conditional probability, 394

computed by 395

PWO(o
k|q, $wCOLj) = softmax(WWO[k, :] · zi,wo,l,j) 396

where WWO ∈ R|O|×d. Subsequently, for WV, xkq is 397

selected as the start of $wVALj which possesses the 398

highest probability 399

P st
WV(x

k
q = st|q, $wCOLj) = softmax(hk

q · (Wst
WVzi,wv,l)) 400

where Wst
WV ∈ Rd×d, and hk

q ∈ Rd is the hidden 401

vector of xkq . The end index of $wVALj is found in 402

a similar way. Finally, we obtain the SQL program 403

by filling all slots of the skeleton. 404

4.4 Query Reconstruction 405

This module creates natural language queries uti- 406

lizing a set of sampled latent variables, denoted as 407

Z = {zsc,t, zwc,t, zwn,t, zsa,t, zwo,t, zwn,t}. These 408

latent variables serve as a prefix for a static GPT2 409

decoder and are strategically masked to inhibit at- 410

tention towards each other. The language modeling 411
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loss, guided by the constructed query, is propa-412

gated back to these latent variables, thereby en-413

abling their training to align correspondingly with414

the table columns.415

In the context of self-training, the probability of416

query construction, given as pLM(q|Z), is employed417

to compute the confidence ψ of selecting pseudo-418

predictions. This is formulated as:419

ψ = N+2

√
pLM(q|Z)pSC($sCOL|q)

∏
$wCOLj

pWC($wCOLj |q),

(8)
420

where the confidence ψ thoughtfully considers both421

text-to-sql and sql-to-text reconstruction probabil-422

ities. Specifically, it accounts for the classifier423

outputs pSC($sCOL|q) and pWC($wCOL
j |q), in rela-424

tion to text-to-sql, and the sql-to-text reconstruction425

probability pLM(q|Z), furnishing a more robust es-426

timation for pseudo-labels.427

This approach integrates the merits of employ-428

ing latent variables in guiding the decoder, as well429

as the strategic utility of self-training in generating430

high-confidence pseudo-labels. The use of static431

GPT-2 ventures to inject a more linguistically nu-432

anced, contextually aware mechanism into the SQL433

query generation process, thereby nudging the gen-434

erated queries to be more in alignment with the in-435

tended semantic meaning embedded within the nat-436

ural language input. By juxtaposing text-to-sql and437

sql-to-text reconstruction probabilities, this mod-438

ule strives to curate an environment conducive for439

generating SQL queries that are not only syntac-440

tically correct but are also semantically coherent441

with respect to the input natural language queries.442

5 Experiments443

5.1 Data and Settings444

Data We follow the experimental settings of Chen445

et al. (2021) and Guo et al. (2022) to evaluate our446

proposed models on both WikiSQL (Zhong et al.,447

2017) and ESQL (Chen et al., 2021). The data448

statistics is shown in Table 5 in Appendix A.1.449

Evaluation We use the standard evaluation metrics,450

including both Logical Form (LF) and Execution451

(EX) accuracies. LF is for exact matching scores452

between the predicted SQL and the gold answer.453

EX is for comparing the executed results using the454

predicted SQLs with the results obtained by gold455

SQLs. See Appendix A.10 for more explanations.456

Training settings The training settings are shown457

in Appendix A.4. The introduction of self-training458

is shown in Appendix A.2.459

WikiSQL (#shots) ESQL (#shots)
Method 1 2 3 4 5 10 15 20

SQLOVA 23.3 40.8 48.7 55.3 22.3 39.6 52.0 54.7
HydraNet 64.2 69.9 72.9 74.3 43.6 58.1 70.5 76.7
MC-SQL 52.0 62.9 71.0 73.8 36.5 53.2 60.5 67.4
BRIDGE 53.6 68.9 73.1 77.3 - - - -
TABERT 57.5 67.4 71.2 72.5 - - - -
GRAPPA 72.8 76.8 78.0 78.1 - - - -
MST-SQL 78.4 80.5 82.1 83.2 55.3 67.4 76.7 80.5

DeLVe-SQL 79.3 81.8 83.7 84.9 56.8 68.9 78.7 82.0

Table 1: Few-shot LF accuracies. The baseline results
are referred from MST-SQL (Guo et al., 2022) and the
empty cells are due to that the corresponding baselines
do not use ESQL.

5.2 Few-shot Results 460

Table 1 showcases the results in a few-shot learning 461

scenario for both WikiSQL and ESQL databases. 462

From this table, we can see that the performance 463

of all methods improves as the number of shots 464

increases. This is expected as more examples pro- 465

vide more information for the models to learn from. 466

In WikiSQL, the DeLVe-SQL model consistently 467

outperforms the other methods across different shot 468

counts, with performance improvement as the shot 469

count increases. For example, in the 1-shot set- 470

ting, DeLVe-SQL achieves a score of 79.3, which 471

is notably higher than the second best-performing 472

model, MST-SQL, at 78.4. This trend continues 473

in the 2-shot, 3-shot, and 4-shot scenarios, and 474

DeLVe-SQL reaches a score of 84.9 in the 4-shot 475

setting. The ESQL results follow a similar pat- 476

tern, and DeLVe-SQL shows superior performance 477

across different shot counts. For instance, in the 478

5-shot setting, DeLVe-SQL attains a score of 56.8, 479

considerably outperforming MST-SQL’s score of 480

55.3. As the number of shots increases to 10, 15, 481

and 20, DeLVe-SQL’s performance continues to 482

surpass the other models. 483

5.3 Fully-supervised Results 484

The fully-supervised results are shown in Ap- 485

pendix A.5. Our proposed model, DeLVe-SQL, 486

achieves a LF score of 87.0% and an EX score of 487

92.5% in the Dev set, and a LF score of 86.5% and 488

an EX score of 92.1% in the test set, outperforming 489

the other methods including MST-SQL. 490

6 Analysis 491

6.1 Ablation Study 492

We perform the ablation studies on WikiSQL test 493

set stemming from its large-scale and diverse na- 494

ture. With the complexity and assortment it offers, 495
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Figure 3: Decoupled v.s. Coupled latent variables on
WikiSQL test set. The starting value at the y-axis is 76.

WikiSQL provides a rigorously challenging and496

robust testing environment.497

Decoupled v.s. Coupled Latent Variables In this498

study, we compare the decoupled v.s. coupled la-499

tent variables using few-shot learning on WikiSQL.500

For coupled latent variables, we set the texutal and501

label latent variables to be the same. Figure 3502

shows the results. In all settings, the model with de-503

coupled latent variables outperforms the one with504

coupled latent variables. For instance, in the 1-shot505

scenario, the model with decoupled latent variables506

achieves a score of 79.3, while the coupled one507

scores slightly lower at 78.8. This trend continues508

across the remaining shot scenarios, culminating509

in a score of 84.9 for the decoupled model in the510

4-shot setting, versus 83.9 for the coupled model.511

Interestingly, the model with coupled latent vari-512

ables still outperforms MST-SQL across all the513

three settings (except for 2-shot), which suggests514

that even coupled latent variable can provide ad-515

vantages for few-shot text-to-sql.516

Effect of Different Latent Variables In order to517

examine whether all of the latent variables for the518

six sub tasks are necessary, we design a probing519

method by gradually removing them from both the520

submodule classifier and the query deconstruction521

module on WikiSQL. Table 2 shows the effect of522

different latent variable combinations.523

The results indicate that each of these variables524

can contribute separately to different aspects of525

SQL query generation. The performance decrease526

of zwn, zsa, zwo is marginal, indicating that these527

variables are not critically dependent on any single528

one when contributing to the overall performance.529

Interestingly, the combination of zsc and zwc with530

zwv achieves a similar result to the full model in531

the 4-shot scenario, suggesting that these three vari-532

ables might be particularly important for the model533

performance. Removing all the three variables re-534

sults in the largest decrease in performance. Our535

observation is that SC and WC are the most critical536

zsc zwc zwn zsa zwo zwv 1-shot 2-shot 3-shot 4-shot
✓ ✓ ✓ ✓ ✓ ✓ 79.3 81.8 83.7 84.9

✓ ✓ ✓ ✓ ✓ 78.9 81.1 83.3 84.2
✓ ✓ ✓ ✓ 78.5 80.9 82.8 84.1

✓ ✓ ✓ 78.7 81.2 83.1 83.9
✓ ✓ ✓ 78.5 80.8 83.2 83.9
✓ ✓ ✓ 78.3 80.7 82.4 83.4

✓ ✓ 78.9 81.4 83.0 84.3
✓ ✓ ✓ 79.0 81.5 83.7 84.6

Table 2: The effect of different latent variables on Wik-
iSQL test set.

for SQL generation, which is consistent with the 537

findings of Lyu et al. (2020) and Yin et al. (2020). 538

In addition, we find that zwv is quite important 539

since it is directly related to the query content. In 540

conclusion, while all six latent variables contribute 541

to the model high performance, the model is quite 542

robust to the removal of individual variables, and 543

maintains a close performance to its best result 544

with different combinations of the variables. Its 545

robustness also demonstrates the distributed nature 546

of the model learning and its ability to effectively 547

make use of various subset information. 548

Confidence Estimation We investigate the role 549

of three factors defined in Eq 8 in estimating the 550

confidence of pseudo-labels. Table 3 shows the 551

results. Table 3 indicates that the performance 552

declines whenever any single factor is excluded 553

from the process. In particular, omitting the query 554

reconstruction term pLM results in more obvious 555

performance decrease. The 3-shot and 4-shot per- 556

formances are decreased from 83.7% and 84.9% 557

to 82.6% and 84.1%, respectively. The SC and WC 558

classification probabilities, represented by pSC and 559

pWC respectively, exhibit comparable performances 560

when they are excluded. 561

Interestingly, when only one factor is in play, 562

pLM appears to be the most robust metric, and sur- 563

passes the baseline MST-SQL. However, exclusive 564

reliance on pSC or pWC leads to severely compro- 565

mised performance. These observations collec- 566

tively suggest that a combination of all three factors 567

yields the best performance, with pLM proving to 568

be the most crucial one among them. 569

6.2 Case Study 570

Table 4 delineates a comparative analysis of the 571

output cases from MST-SQL, DeLVe-SQL, and 572

the gold references, across four distinct queries. 573

In the first case, both MST-SQL and DeLVe-SQL 574

mirror the gold reference in their outputs, given 575

that the columns and the aggregation queries are 576

explicated lucidly within the question, facilitating 577
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pLM pSC pWC 1-shot 2-shot 3-shot 4-shot
✓ ✓ ✓ 79.3 81.8 83.7 84.9
✓ ✓ 79.0 81.1 83.5 84.2
✓ ✓ 79.0 81.2 83.4 84.5

✓ ✓ 78.7 81.0 82.6 84.1
✓ 78.6 80.9 82.6 83.8

✓ 78.2 80.0 81.9 83.0
✓ 78.0 80.3 81.2 82.8

Table 3: The effect of confidence estimation on Wik-
iSQL test set.

a straightforward translation into SQL.578

Moving to the second case, MST-SQL misinter-579

prets the column, opting for “Year” to sift through580

games for the 3DS platform. In contrast, DeLVe-581

SQL and the gold reference astutely select the “Plat-582

form(s)” column. This deviation possibly springs583

from MST-SQL’s difficulty in discerning column584

semantics from its attributes, particularly when585

"Platform" isn’t overtly stated in the originating586

query. DeLVe-SQL, enriched semantically with587

a GPT2 decoder, displays a heightened ability to588

comprehend implicit column references from the589

input query, likely attributing to its accurate column590

selection.591

In the third case, MST-SQL manages to pre-592

dict merely 2 out of 3 requisite columns, while593

DeLVe-SQL adeptly identifies all. This differential594

could potentially stem from MST-SQL’s inability595

to semantically correlate ’wins total’ with the ’To-596

tal_wins’ column, suggesting a limitation in its597

semantic mapping capabilities.598

For the final case, it’s observable that MST-SQL599

omits the aggregation function MAX. Contrarily,600

DeLVe-SQL, even in the absence of terms like high-601

est or largest, astutely outputs the correct aggre-602

gator function. This precision can potentially be603

attributed to DeLVe-SQL’s capacity to identify that604

the term last semantically corresponds to a MAX605

aggregation operation over the ’Year’ column, due606

to its latent semantic analysis.607

In conclusion, these cases empirically show that608

DeLVe-SQL, with its adept context comprehension,609

skill in understanding aggregate statements, and610

proficiency in grasping multi-conditional scenarios,611

showcases a formidable and enhanced performance612

in text-to-SQL translation.613

More analysis Appendix A.6 shows the ablation614

study of the query reconstruction module, which615

demonstrates that incorporating the query recon-616

struction module has a positive effect on the accu-617

racy of both MST-SQL and DeLVe-SQL models.618

Appendix A.7 and Appendix A.8 show the signifi-619

Question:What is the smallest number of European Parliament sets
when the international affiliation is global greens, egp?
Gold: SELECT MIN European_Parliament_seats FROM table
WHERE International_Affiliation = ’Global Greens, EGP’;

MST-SQL: SELECT MIN European_Parliament_seats FROM
table WHERE International_Affiliation = ’Global Greens,
EGP’

DeLVe-SQL: SELECT MIN European_Parliament_seats FROM
table WHERE International_Affiliation = ’Global Greens,
EGP’

Question: What 3ds game did Naohiko Aoyama direct?
Gold: SELECT Title FROM table WHERE Platform(s) = 3ds
AND Director = naohiko aoyama;

MST-SQL: SELECT Title FROM table WHERE Year = 3ds AND
Director = naohiko aoyama;

DeLVe-SQL: SELECT Title FROM table WHERE Platform(s) =
3ds AND Director = naohiko aoyama;

Question: Who was placed fourth when third was Beijing Guoan
and the winner was Dalian Wanda and wins total was 4?
Gold: SELECT fourth-placed FROM table WHERE Third-place
= ’Beijing Guoan’ AND Winners = ’Dalian Wanda’ AND
Total_wins = 4

MST-SQL: SELECT fourth-placed FROM table WHERE
Third-place = ’Beijing Guoan’ AND Winners = ’Dalian
Wanda’

DeLVe-SQL: SELECT fourth-placed FROM table WHERE
Third-place = ’Beijing Guoan’ AND Winners = ’Dalian
Wanda’ AND Total_wins = 4

Question: What was the last year that they had less than 16 points
in class 500cc?
Gold: SELECT MAX Year FROM table WHERE Points < 16 AND
Class = 500cc

MST-SQL: SELECT Year FROM table WHERE Points < 16 AND
Class = 500cc

DeLVe-SQL: SELECT MAX Year FROM table WHERE Points <
16 AND Class = 500cc

Table 4: We compared DeLVe-SQL’s outputs with the
gold references and the outputs of MST-SQL.

cance test and model variances, respectively. Ap- 620

pendix A.9 shows the quality of generated queries. 621

7 Conclusion 622

This study addresses the challenges of few-shot 623

single-table Text-to-SQL generation by introducing 624

a decoupled latent variable model (DeLVe-SQL), 625

effectively separating textual and SQL column la- 626

bel semantics. DeLVe-SQL not only enhances the 627

model performance by ensuring independent learn- 628

ing for each part, but also reduces noise in pseudo- 629

labels and improves SQL query quality. Experi- 630

mental results on WikiSQL and ESQL benchmarks 631

demonstrate that DeLVe-SQL outperforms exist- 632

ing methods in few-shot training scenarios. We 633

perform extensive ablation studies to investigate 634

the effective factors for few-shot text-to-sql learn- 635

ing, demonstrating that both the decoupled latent 636

variable model and the improved confidence estima- 637

tion contribute to the performance improvements. 638

We hope that our method will encourage further 639

research into robust and versatile Text-to-SQL mod- 640

els, particularly with limited labeled data. 641
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8 Limitation642

Our approach is specifically designed for single-643

table text-to-SQL tasks, where the queries involve644

a single table and do not consider more complex645

scenarios involving multiple tables or joins. The646

applicability of our approach is restricted to this647

specific domain and may not generalize well to648

more complex SQL query generation tasks.649

Furthermore, in our approach, we solely utilize650

GPT2 as the decoder for query reconstruction. We651

do not incorporate other decoder models or archi-652

tectures for this purpose. While GPT2 has shown653

promising performance in various natural language654

processing tasks, it is important to note that our655

approach does not explore the potential benefits656

or drawbacks of alternative decoder models in the657

context of query reconstruction.658
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A Appendix895

A.1 Data Statistics896

Dataset Train Dev Test
WikiSQL 56,355 8,421 15,878

ESQL 10,000 1,000 2,000

Table 5: Data statistics of the NL-SQL pairs.
Table 5 shows the data statistics of WikiSQL897

and ESQL. WikiSQL (Zhong et al., 2017) and898

ESQL (Chen et al., 2021). Both of them are single-899

table text-to-SQL datasets. The data statistics is900

shown in Table 5 in Appendix. WikiSQL is a signif-901

icantly large dataset comprising over 20,000 open-902

domain tables sourced from Wikipedia. It stands as903

the most extensive single-table text-to-SQL dataset904

available to date. On the other hand, ESQL is a 905

Chinese dataset that focuses on specific domains 906

and consists of 17 tables. 907

A.2 Self Training 908

For self-training, a base model is first trained using 909

a limited number of training samples. And then the 910

base model is used to annotate large scale unlabeled 911

dataset. Third, a confidence metric is designed and 912

is used to select high-confidence samples. Fourth, 913

the pseudo-samples are then added to the training 914

set to re-train the base model. And this process can 915

be repeated several times until the model converges. 916

The challenges are three folds. First, a good base 917

model is necessary. Second, a well-designed confi- 918

dence metric is required. Third, we need to balance 919

the ratio of pseudo-labeled and labeled data. 920

A.3 More introductions on the pretrained 921

encoders 922

TAPAS (Herzig et al., 2020) initially designed 923

for Table QA, also exhibits table encoding capa- 924

bilities that can be applied to text-to-SQL tasks. 925

TABERT (Yin et al., 2020) focuses on the joint 926

understanding of textual and tabular data, in- 927

corporating table content into the representation. 928

GRAPPA (Yu et al., 2021) combines table seman- 929

tic parsing with a grammar-augmented pre-training 930

framework. STRUG (Deng et al., 2021) proposes 931

a set of structure-grounded pretraining tasks for 932

effective text-table alignment. STAMP (Giaquinto 933

et al., 2023) preforms large-scale multitask pretrain- 934

ing encoder-decoder models for interacting with 935

structured knowledge. 936

A.4 Training settings 937

For training, we generally follow the settings of 938

Guo et al. (2022) and run all the experiments on 939

a platform with 8-V100 GPUs. The number of 940

table content was set to n = 5. We only change 941

the self-training module of MST-SQL and keep the 942

column-specified meta learning unchanged. For 943

fully supervised training on WikiSQL, we use the 944

complete training set of WikiSQL as the labeled 945

data L and employ WikiTableQuestions (Pasupat 946

and Liang, 2015) as the unlabeled data U , consist- 947

ing of over 2,108 tables and 22,033 natural lan- 948

guage queries (NLQs) without SQL labels. 949

For few-shot settings, we use the dataset cre- 950

ated by Guo et al. (2022), which contains approxi- 951

mately 9,000 new tables in WikiSQL and 15 tables 952
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Method Dev.LF Dev.EX Test.LF Test.EX
SQLOVA 81.6 87.2 80.7 86.2
X-SQL 83.8 89.5 83.3 88.7

HydraNet 83.6 89.1 83.8 89.2
SeaD 84.9 90.2 84.7 90.1

MC-SQL† 84.1 89.7 83.7 89.4
BRIDGE† 86.2 91.7 85.7 91.1
IE-SQL‡ 84.6 88.7 84.6 88.8
SDSQL‡ 86.0 91.8 85.6 91.4
TAPAS†‡ 85.1 - 83.6 -

TABERT†‡ 84.0 89.6 83.7 89.1
GRAPPA†‡ 85.9 - 84.7 -
MST-SQL†‡ 86.4 91.9 85.8 91.6

DeLVe-SQL†‡ 87.0 92.5 86.5 92.1

Table 6: Fully supervised results on WikiSQL.† denotes
the table-content is used and ‡ denotes the tabular pre-
trained method is used.

in ESQL. {1, 2, 3, 4}-shot and and {5, 10, 15, 20}-953

shot for ESQL are constructed for WikiSQL and954

ESQL, respectively. The validation and test sets955

are constructed with the same settings, consisting956

of 4/100 samples for each table in WikiSQL and957

ESQL, respectively. For WikiSQL, the remaining958

NLQs from the original WikiSQL dataset is used959

to construct the unlabeled set U .960

A.5 Fully Supervised Results961

Table 6 presents the fully supervised results on962

WikiSQL, divided into four distinct blocks.963

Following the previous best performed model,964

namely MST-SQL (Guo et al., 2022), we compare965

our model with four kinds of recent approaches on966

the WikiSQL dataset. The first category includes967

SQLOVA (Hwang et al., 2019), X-SQL (He et al.,968

2019), HydraNet (Lyu et al., 2020) and SeaD (Xu969

et al., 2022), which did not utilize either table con-970

tents or tabular pretrained encoders. The second971

category includes BRIDGE (Lin et al., 2020) and972

MC-SQL (Chen et al., 2021), which employed ta-973

ble content understanding but did not utilize tab-974

ular pretraining. The third category contains IE-975

SQL (Ma et al., 2020) and SDSQL (Hui et al.,976

2021), which uses tabular pretraining but not ta-977

ble content. The fourth category which leverages978

both tabular pretraining and table contents includes979

TABERT (Yin et al., 2020), GRAPPA (Yu et al.,980

2021), TAPAS (Herzig et al., 2020), and MST-981

SQL (Guo et al., 2022).982

In general, the performance of models that did983

not leverage table contents or tabular pretraining984

was inferior. The inclusion of either table contents985

Figure 4: The effect of query reconstruction on Wik-
iSQL test set. The accuracy value starting at the y-axis
is 76.

or tabular pretraining significantly improved model 986

performance, demonstrating the utility of these el- 987

ements in generating more accurate SQLs. Our 988

proposed model, DeLVe-SQL, achieves a LF score 989

of 87.0% and an EX score of 92.5% in the Dev 990

set, and a LF score of 86.5% and an EX score of 991

92.1% in the test set, outperforming the other meth- 992

ods including MST-SQL. The results validate the 993

effectiveness of our proposed decoupled latent vari- 994

able model in improving the generation of SQL 995

queries in fully supervised training. The advantage 996

of DeLVe-SQL can be attributed to its decoupled 997

design, which allows it to align language semantics 998

with database schema, and thereby improves the 999

understanding of table structure. The use of latent 1000

variables facilitates fine-grained control over this 1001

alignment and offers an opportunity to disentan- 1002

gle the contribution of different parts of the input. 1003

Moreover, the optimization of these variables via 1004

language modeling loss further refines this align- 1005

ment, thereby boosting performance. 1006

A.6 Effect of Query Reconstruction 1007

We examine the effectiveness of the query recon- 1008

struction module on both MST-SQL and DeLVe- 1009

SQL. For MST-SQL, the hidden vectors from the 1010

submodule classifier are directly fed to the GPT2 1011

decoder without involving any latent variables. Fig- 1012

ure 4 shows the results. In terms of MST-SQL, we 1013

can observe a slight improvement in performance 1014

when query reconstruction is applied. For exam- 1015

ple, the accuracy increases from 78.4% to 78.7% 1016

for 1-shot, and from 83.2% to 83.8% for 4-shot. 1017

This suggests that incorporating the query recon- 1018

struction module also helps enhance the accuracy 1019

of the MST-SQL model. For DeLVe-SQL, we can 1020

observe a decrease in performance when query re- 1021

12



construction is removed. The accuracy decreases1022

from 79.3% to 78.9% for 1-shot and from 84.9%1023

to 84.2% without query reconstruction.1024

Overall, the results indicate that incorporating1025

the query reconstruction module has a positive ef-1026

fect on the accuracy of both MST-SQL and DeLVe-1027

SQL models. This suggests that the query recon-1028

struction module helps improve the quality of gen-1029

erated SQL queries, leading to enhanced perfor-1030

mance in the few-shot text-to-SQL task.1031

A.7 Significance of the Improvements.1032

We have done the significant test using the student’s1033

t-test against the baseline MSQ-SQL. In Table 7,1034

all the results of DeLVe are significant at the p=0.051035

level.1036

A.8 Model Variances.1037

Although the baseline MST-SQL does not show1038

the variance scores, we additionally aly show the1039

variance scores of 3 runs in Table 8. The variance1040

numbers, being relatively low, indicate that the im-1041

provements brought by DeLVe-SQL are consistent1042

and not just the result of random fluctuations or1043

specificity ties of the dataset.1044

A.9 Quality of the Generated Query Text1045

Although the SQL-to-text utility is a byproduct. We1046

thoroughly evaluate its text generation quality to1047

show the capabilities of the reconstruction module.1048

For the generated text, we evaluate them on the1049

WikSQL and ESQL dev sets using BLEU-1, 2, 3, 41050

scores. Table 9 shows the results. For both datasets,1051

the BLEU scores gradually increase as the shot1052

number increases. For WikiSQL, the scores remain1053

relatively lower since at most 4 shots are used. For1054

ESQL, the scores are higher than WikiSQL due to1055

more data being available.1056

We also find some successful examples by read-1057

ing the generated results. For example, when the1058

original query is “How many people attended the1059

game on May 10?”, the generated query is “How1060

many person attended the game on May 10?”. Sim-1061

ilarly, for the query “What is the sum of attendance1062

when the score was 2:0?”, the generated result is1063

“What is the total attendance where the score ended1064

as 2-0?”, which can be seen as paraphrases.1065

A.10 More on Evaluation Metrics1066

Logical Form (LF) Accuracy measures how accu-1067

rately the generated SQL query matches the correct1068

SQL query in its structure and syntax. It doesn’t1069

consider whether the query returns the correct re- 1070

sults when executed against a database. Instead, it 1071

focuses on the syntactical correctness and structural 1072

similarity of the SQL query to a reference query at 1073

the textual level. High LF accuracy indicates that 1074

the system is effective in parsing and structuring 1075

complex queries. The limitation is that a query 1076

might have correct syntax and structure (high LF 1077

accuracy) but still return incorrect results due to 1078

logical errors like incorrect conditions or joins. 1079

Execution (EX) Accuracy assesses whether the 1080

SQL query, when executed, returns the correct data 1081

from the database. It’s a measure of the query’s 1082

functional correctness, regardless of its syntactic 1083

form. For example, given an example query “What 1084

is the total sales amount for 2022?”. The golden 1085

query is “SELECT SUM(sales) FROM transactions 1086

WHERE year = 2022”, suppose that the generated 1087

query is “SELECT SUM(sales) FROM transactions 1088

WHERE year < 2023 and year > 2021”. For the 1089

generated query, the LF accuray is not 100%, since 1090

its syntax structure is different from the gold query. 1091

The EX accuracy is 100% since the results returned 1092

by the generated query are the same as the executed 1093

results of the gold query. 1094

A.11 More on Comparisons with GPT-4 1095

In this study, our method is specifically tailored to 1096

classical few-shot learning settings, which funda- 1097

mentally differ from the prompt-based approaches 1098

used in large language models. While large models 1099

like GPT-4 can be potent for few-shot text-to-SQL 1100

tasks, there are several critical reasons why a direct 1101

comparison is not applicable in our context: 1102

• Privacy Concerns: One of the foremost lim- 1103

itations is the issue of data privacy. In many 1104

cases, especially with private industry data, 1105

it’s not permissible or secure to upload data to 1106

external platforms like GPT-4. Our methodol- 1107

ogy respects and upholds data privacy, an es- 1108

sential aspect for many industry applications. 1109

• Data Exposure Uncertainty: There’s an inher- 1110

ent uncertainty in large language models re- 1111

garding prior exposure to training data. Since 1112

these models are often trained on vast, openly 1113

available datasets, it’s unclear if they have al- 1114

ready seen similar data, potentially skewing 1115

results and comparisons. 1116

• Resource Intensity: The deployment and op- 1117

eration of large language models require sub- 1118
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WikiSQL (#shots) ESQL (#shots)
Method 1 2 3 4 5 10 15 20

MST-SQL 78.4 80.5 82.1 83.2 55.3 67.4 76.7 80.5
DeLVe-SQL 79.3 (p=0.05) 81.8 (p=0.005) 83.7 (p=0.005) 84.9 (p=0.005) 56.8 (p=0.05) 68.9 (p=0.05) 78.7 (p=0.05) 82.0 (p=0.005)

Table 7: Significance Tests
.

WikiSQL (#shots) ESQL (#shots)
Method 1 2 3 4 5 10 15 20

MST-SQL 78.4 80.5 82.1 83.2 55.3 67.4 76.7 80.5
DeLVe-SQL 79.3 (0.7) 81.8 (0.6) 83.7 (0.6) 84.9 (0.5) 56.8 (1.0) 68.9 (0.7) 78.7 (0.5) 82.0 (0.4)

Table 8: Model Variances
.

Dataset BLEU-1 BLEU-2 BLEU-3 BLEU-4

WikiSQL 1-shot 0.60 0.42 0.32 0.20
WikiSQL 2-shot 0.65 0.48 0.38 0.28
WikiSQL 3-shot 0.69 0.52 0.42 0.32
WikiSQL 4-shot 0.74 0.59 0.49 0.39

ESQL 5-shot 0.82 0.67 0.57 0.47
ESQL 10-shot 0.85 0.70 0.60 0.50
ESQL 15-shot 0.86 0.73 0.67 0.57
ESQL 20-shot 0.88 0.77 0.70 0.63

Table 9: BLEU-scores for the reconstructed queries.

stantial computational resources. This high1119

demand can pose significant challenges for1120

practical, real-world applications, particularly1121

in terms of deployment and ongoing service1122

provision.1123

In summary, while large language models have1124

their strengths, their application and comparison in1125

a classical few-shot learning context are limited by1126

privacy concerns, data exposure uncertainties, and1127

high resource requirements. These factors make1128

our approach more relevant and practical for certain1129

scenarios, especially those prioritizing data privacy1130

and computational efficiency.1131
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