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ABSTRACT

The framework of Pearl’s Causal Hierarchy (PCH) formalizes three types of reason-
ing: probabilistic (i.e. purely observational), interventional, and counterfactual, that
reflect the progressive sophistication of human thought regarding causation. We
investigate the computational complexity aspects of reasoning in this framework
focusing mainly on satisfiability problems expressed in probabilistic and causal
languages across the PCH. That is, given a system of formulas in the standard
probabilistic and causal languages, does there exist a model satisfying the formulas?

Our main contribution is to prove the exact computational complexities showing
that languages allowing addition and marginalization (via the summation operator)
yield NPPP-, PSPACE-, and NEXP-complete satisfiability problems, depending
on the level of the PCH. These are the first results to demonstrate a strictly increas-
ing complexity across the PCH: from probabilistic to causal and counterfactual
reasoning. On the other hand, in the case of full languages, i.e. allowing addition,
marginalization, and multiplication, we show that the satisfiability for the counter-
factual level remains the same as for the probabilistic and causal levels, solving an
open problem in the field.

1 INTRODUCTION

The development of the modern causal theory in Al and empirical sciences has greatly benefited from
an influential structured approach to inference about causal phenomena, which is based on a reasoning
hierarchy named “Ladder of Causation”, also often referred to as the “Pearl’s Causal Hierarchy”
(PCH) ((Shpitser & Pearl, 2008} |Pearl, |2009; [Bareinboim et al., 2022), see also (Pearl & Mackenzie,
2018) for a gentle introduction to the topic). This three-level framework formalizes various types
of reasoning that reflect the progressive sophistication of human thought regarding causation. It
arises from a collection of causal mechanisms that model the “ground truth” of unobserved nature
formalized within a Structural Causal Model (SCM). These mechanisms are then combined with
three patterns of reasoning concerning observed phenomena expressed at the corresponding layers of
the hierarchy, known as probabilistic (also called associational in the Al literature), interventional,
and counterfactual (for formal definitions of these concepts, see Sec. @

A basic term at the probabilistic/associational layer is expressed as a common probability, such
a{] P(z,y). This may represent queries like “How likely does a patient have both diabetes (X = x)
and high blood pressure (Y = y)?” From basic terms, we can build more complex terms by using
additions (linear terms) or even arbitrary polynomials (polynomial terms). This can be combined
with the use of unary summation operator, which allows to express marginalization in a compact
way. Formulas at this layer consist of Boolean combinations of (in)equalities of basic, linear or,
in the general case, polynomial terms. The interventional patterns extend the basic probability
terms by allowing the use of Pearl’s do-operator (Pearl, |2009) which models an experiment like a
Randomized Controlled Trial (Fisher, [1936). For instance, P([z]y) whic in general differs from

'In our paper, we consider random variables over discrete, finite domains. By an event we mean a propo-
sitional formula over atomic events of the form X = z, suchas (X =2z AY =y)or (X =z VY # y).
Moreover, by P(Y=y, X=z), etc., we mean, as usually, P(X=x A Y=y). Finally by P(z, y) we abbreviate
P(Y =y, X=x).

%A common and popular notation for the post-interventional probability is P(Y =y|do(X =x)). In this paper,
however, we use the notation P([X =x]Y =y) since it is more convenient for our analysis.
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P(y|z), allows to ask hypothetical questions such as, e.g., “How likely is it that a patient’s headache
will be cured (Y = y) if he or she takes aspirin (X = z)?”. An example formula at this layer is
P([z]y) = >, P(y|z, 2)P(z) which estimates the causal effect of the intervention do(X = x) (all
patients take aspirin) on outcome variable Y = y (headache cure). It illustrates the use of a prominent
back-door adjustment to eliminate the confounding effect of a factor represented by variable Z (Pearl}
2009). The basic terms at the highest level of the hierarchy enable us to formulate queries related
to counterfactual situations. For example, P([ X =z]Y =y|(X =z, Y=y’)) expresses the probability
that, for instance, a patient who did not receive a vaccine (X = z’) and died (Y = y’) would have
lived (Y = y) if he or she had been vaccinated (X = x).

The computational complexity aspects of reasoning about uncertainty in this framework have been
the subject of intensive studies in the past decades, especially in the case of probabilistic inference
with the input probability distributions encoded by Bayesian networks (see, e.g., (Pearl,|1988}; (Cooper,
1990; IDagum & Lubyl, |1993} |[Roth, 1996} |Park & Darwichel 2004)). The main focus of our work
is on the computational complexity of satisfiability problems and their validity counterparts which
enable formulating precise assumptions on data and implications of causal explanations.

The problems take as input a Boolean combination of (in)equalities of terms at the PCH-layer of
interest with the task to decide if there exists a satisfying SCM for the input formula or if the formula
is valid for all SCMs, respectively. For example, for binary random variables X and Y, the formula
consisting of the single equality > > P((X=z) A (X#zVY=y) A (X#2VY+#y)) = 0inthe
language of the probabilistic layer is satisfied since there exists an SCM in which it is true (in fact,
the formula holds in any SCM)°| An SCM for inputs at this layer can be identified with the standard
joint probability distribution, in our case, with P(X=x,Y=y), for z,y € {0, 1}.

The complexity of the studied satisfiability problems depends on the combination of two factors:
(1) the PCH-layer to which the basic terms belong and (2) the operators which can be used to specify
the (in)equalities of the input formula. The most basic operators are “+” and “-” (leading to get
linear, resp., polynomial terms) and, meaningful in causality, the unary summation operator > used
to express marginalization. Of interest is also conditioning, which will be discussed in our paper, as
well. The main interest of our research is focused on the precise characterization of the computational
complexity of satisfiability problems (and their validity counterparts) for languages of all PCH layers,
combined with increasing the expressiveness of (in)equalities by enabling the use of more complex
operators.

Related Work to our Study. In their seminal paper, Fagin, Halpern, and Megiddo (1990) ex-
plore the language of the lowest probabilistic layer of PCH consisting of Boolean combinations of
(in)equalities of basic and linear terms. Besides the complete axiomatization for the used logic,
they show that the problem of deciding satisfiability is NP-complete indicating that the complexity
is surprisingly no worse than that of propositional logic. The authors subsequently extend the lan-
guage to include (in)equalities of polynomial terms, aiming to facilitate reasoning about conditional
probabilities. While they establish the existence of a PSPACE algorithm for deciding if such a
formula is satisfiable, they leave the exact complexity open. Recently, Mossé, Ibeling, and Icard
(2022)) resolved this issue by demonstrating that deciding satisfiability is IR-complete, where IR
represents the well-studied class defined as the closure of the Existential Theory of the Reals (ETR)
under polynomial-time many-one reductions. Furthermore, for the higher, more expressive PCH
layers Mossé et al. prove that for (in)equalities of polynomial terms both at the interventional and the
counterfactual layer the decision problems still remain JR-complete (we recall the definitions of the
complexity classes in Sec.[2.2)).

The languages used in these studies, and also in other works as, e.g., (Nilsson, |1986; |Georgakopou+
los et al.| |1988; [Ibeling & Icard, [2020)), are able to fully express probabilistic reasoning, resp.,
inferring interventional and counterfactual predictions. In particular, they allow one to express
marginalization which is a common paradigm in this field. However, since the languages do not
include the unary summation operator 3, the abilities of expressing marginalization are relatively
limited. Thus, for instance, to express the marginal distribution of a random variable Y over a subset
of (binary) variables {Z1,...,Z,,} C {X1,..., X, } as 221,_“7% P(y, z1, ..., zm), an encoding
without summation requires an expansion P(y, Z1=0, ..., Z,,=0) + ...+ P(y, Z1=1,..., Zn=1)
of exponential size in m. Consequently, to analyze the complexity aspects of the problems under

3Interestingly, the instance can be seen as a result of reduction from the not-satisfiable Boolean formula
aN(@Vb)A(@Vvhb).
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study, languages allowing standard notation for encoding marginalization using the > operator are
needed. In (van der Zander et al.| 2023)), the authors present a first systematic study in this setting.
They introduce a new natural complexity class, named succ-dR, which can be viewed as a succinct
variant of R, and show that the satisfiability for the (in)equalities of polynomial terms, both at
the probabilistic and interventional layer, are complete for succ-JR. They leave open the exact
complexity for the counterfactual case. Moreover, the remaining variants (basic and linear terms)
remain unexplored for all PCH layers.

Our Contribution. The previous research establishes that, from a computational perspective, many
problems for the interventional and counterfactual reasoning are not harder than for pure probabilistic
reasoning. In our work, we show that the situation changes significantly if, to express marginalization,
the common summation operator is used. Below we highlight our main contributions, partially
summarized also in Table |1 which involve complexity classes related to each other as followﬂ

NP C 3R, NPPP C PSPACE C NEXP C succ-IR C EXPSPACE (1)

e For combinations of (in)equalities
of basic and linear terms, unlike pre- Terms Ly (prob.) | Lz (interv.) | L3 (count.)
vious results, the compact summation
for marginalization increases the com-
plexity, depending on the level of the
PCH: from NPPP-, through PSPACE-, poly IR (b)
to NEXP-completeness.

basic
lin

NP (a)

basic & marg.
e The counterfactual satisfiability for lin & marg.
(in)equalities of polynomial terms is
succ-dR-complete, which solves the
open problem in (van der Zander et al, mype 1. Completeness results for the satisfiability problems (a)
2023). for £1 (Fagin et al.,[1990), for L2 and L3 (Mossé et al.} [2022),
e Accordingly, the validity problems (b) (Mossé et al.}[2022), (c) for £1 and L2 (van der Zander et al.}
for the languages above are complete [2023). Our results (1)-(4): Theorem[4] [8] Bl resp. Theorem |10}
for the corresponding complement

complexity classes. Interestingly, both satisfiability and validity for basic and linear languages with
marginalization are PSPACE-complete at the interventional layer.

NPPP (1) | PSPACE (2) | NEXP (3)

poly & marg. succ-IR (¢, 4)

Our results demonstrate, for the first time, a strictly increasing complexity of reasoning across
the PCH — from probabilistic to causal to counterfactual reasoning — under the widely accepted
assumption that the inclusions NPP? C PSPACE C NEXP in Eg. above are proper. This
relation, in the case of basic and linear languages with marginalization, aligns with the strength of
their expressive power: From previous research we know that the probabilistic languages are less
expressive than the causal languages, and the causal languages, in turn, are less expressive than the
corresponding counterfactual languages (for more discussion on this, see Sec. 3).

In addition, the impact of establishing exact completeness results for probabilistic, causal, and
counterfactual reasoning, as stated in our work, lies in their implications for algorithmic approaches
to solve these problems. Under widely accepted complexity assumptions like, e.g., NP £ PSPACE,
the completeness of a problem highlights inherent limitations in applying algorithmic techniques,
such as dynamic programming, divide-and-conquer, SAT- or ILP-solvers, which are only effective
for NP-complete problems. This, in turn, justifies the use of heuristics or algorithms of exponential
worst-case complexity. Moreover, using the succ-JR-completeness as a yardstick for measuring
computational complexity of problems, we show that the complexity of counterfactual reasoning (for
the most general queries) remains the same as for common probabilistic reasoning. This is quite a
surprising result, as the difference between the expressive power of both settings is huge.

Structure of the Paper. In Sec.|2| we provide the main concepts of causation and define formally
problems considered in this work. We derive the complexity of satisfiability for basic and linear
languages in Sec. [3|and for polynomial languages in Sec.[] Due to space constraints, some proofs are
omitted from the main text, and only proof outlines are provided. The complete proofs can be found
in Sec.[A]in the appendix. Furthermore, Sec. [B]in the appendix, provides an example illustrating the
three types of reasoning in the framework of PCH and in Sec. [C]we give formal definitions for syntax
and semantics of the languages of the hierarchy.

*The relationship between IR and NPP" is unknown.
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2 PRELIMINARIES

In this section, we give definitions of the main concepts of the theory of causation, including the
Structural Causal Model (SCM), provide syntax and semantics for the languages of the PCH, and
discuss the complexity classes used in the paper. To help understand the formal definitions, we
encourage the reader unfamiliar with the theory of causation to refer to Section [B]in the appendix,
where we provide an example that, we hope, will make it easier to understand the formal definitions
and the intuitions behind them.

2.1 THE LANGUAGES OF CAUSAL HIERARCHY

We give here an informal but reasonably precise description of the syntax and semantics of the
languages studied in this paper. For formal definitions, see Section[C|in the appendix.

We always consider discrete distributions and represent the values of the random variables as
Val = {0,1,...,c — 1}. We denote by X the set of variables used in a system and by capital letters
X1, Xs,..., we denote the individual variables. We assume that Val is fixed and of cardinality at least
two, and that all variables X; share the same domain Val. A value of X is often denoted by x; or a
natural number. By an atomic event, we mean an event of the form X = z, where X is a random
variable and z is a value in the domain of X. The language &,,,, of propositional formulas J over
atomic events is defined as the closure of such events under the Boolean operators A and —. The
atomic intervention is either empty L or of the form X = x. An intervention formula is a conjunction
of atomic interventions. The language of post-interventional events, denoted as &pygr.ins, cOnsists the
formulas of the form [«]d where « is an intervention and § is in &,,,p. The language of counterfactual
events, Eounterfuct» 15 the set Eypgr.ins closed under A and —.

The PCH consists of languages on three layers each of which is based on terms of the form P(J;),
with ¢ = 1,2, 3. For the observational (associational) language (Layer 1), we have §; € &,,,p, for
the interventional language (Layer 2), we have do € &,o4.im» and, for the counterfactual language
(Layer 3), 03 € Ecounterfacr- The expressive power and computational complexity properties of the
languages depend largely on the operations that are allowed to apply on terms P(J;). Allowing
gradually more complex operators, we define the languages which are the subject of our studies.
The terms for levels ¢ = 1,2, 3 are described as follows. The basic terms, denoted as 7;}’““'“, are
probabilities P(d;) as, e.g., P(X1=x1 V Xo=12) in 7% or P([X1=21]Xo=12) in T**. From
basic terms, we build more complex linear terms 7./ by using additions and polynomial terms 7;” oly

by using arbitrary polynomials. By 7;°“® 7"} ‘and 77" we denote the corresponding sets
of terms when including a unary marginalization operator of the form )t for a term t. In the
summation, we have a dummy variable  which ranges over all values 0, 1, ..., c— 1. The summation
>t is a purely syntactical concept which represents the sum t[0/z] + t[1/z] + ... + t[c —1/z],
where by t[v/z], we mean the expression in which all occurrences of x are replaced with value
v. For example, for Val = {0,1}, the expression ) P(Y'=1, X=x) semantically represents
P(Y=1,X=0)+P(Y=1,X=1).

Now, let Lab = {base, base(%), lin, lin(X), poly, poly(¥) } denote the labels of all variants of lan-
guages. Then for each * € Lab and i = 1, 2, 3 we define the languages L} of Boolean combinations
of inequalities in a standard way by the grammars: f :=t < t' | =f | £ A f where t,t’ are terms in
T.*. Although the languages and their operations can appear rather restricted, all the usual elements
of probabilistic and causal formulas can be encoded in a natural way (see Section [C]in the appendix
for more discussion).

To define the semantics, we use SCMs as in (Pearl, 2009, Sec. 3.2). An SCM is a tuple 9 =
(F, P, U,X), with exogenous variables U and endogenous variables X = {X;,..., X, }. F =
{F1,..., F,,} consists of functions such that F; calculates the value of variable X; from the values
(x,u) as F;(pa,,u;), wherd’| Pa; C X and U; C U. Pa; are all endogenous variables that
influence X; and pa,; are their Valueﬂ P specifies a probability distribution of all exogenous
variables U. Without loss of generality, we assume that the domains of exogenous variables are also
discrete and finite. The functions F; are deterministic, i.e., the value of every endogenous variable

>We consider recursive models, that is, we assume the endogenous variables are ordered such that variable
X (i.e. function F3) is not affected by any X; with j > <.

8SCMs are often represented as graphs, in which case the variables Pa; can be represented as the parents of
variable X;. However, the definition using functions does not refer to any graphs.
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is uniquely determined given the values of the exogenous variables. Since the exogenous variables
follow a probability distribution, this implies a probability distribution over the endogenous variables.

For any basic intervention formula [X;=x;] (which is our notation for Pearl’s do-operator
do(X;=x;)), we denote by Fx,—,, the functions obtained from F by replacing F; with the constant
function F;(pa;, u;) := x,. We generalize this definition for any intervention « in a natural way and
denote as F,, the resulting functions. For any ¢ € &,,,,, we write F, u |= ¢ if ¢ is satisfied for the
values of X calculated from the values u. For any intervention a, we write 7, u |= [a]p if Fo,u = .
And for all ¥, 1,12 € Ecounterfacr, We write (1) F,u |= —p if F,u = ¢ and (i) F,u = 1 A o
if F,u = 91 and F,u = 9. Finally, for ¥ € Eoumerfacr let Sm(y) = {u | F,u = ¢} be
the set of values of U satisfying . For some expression e, we define the value [e]on of the ex-
pression e given a model 91, recursively in a natural way, starting with basic terms as follows
[P = S ueson () P(w) and, for & € Emp. [PI8)]an = [B(& A 6)Jan/[P(8)]on. assum-
ing that the expression is undefined if [P(9)]on = 0. We will sometimes write Py (1)) instead of
[P(2))]om, for short. For two expressions e; and eq, we define I = €1 < ey, iff, [e1]om < [e2]om-
The semantics for negation and conjunction are defined in the usual way, giving the semantics for
M = o for any formula ¢ in L3.

2.2  SATISFIABILITY FOR PCH LANGUAGES AND RELEVANT COMPLEXITY CLASSES

The (decision) satisfiability problems for languages of PCH, denoted by SAT;. , withi = 1,2, 3 and
% € Lab, take as input a formula ¢ in £} and ask whether there exists a model 97 such that 07 = .
Analogously, the validity problems for £ consists in deciding whether, for a given ¢, 0% |= ¢ holds
for all models 21. From the definitions, it is obvious that variants of the problems for the level ¢ are
at least as hard as their counterparts at a lower level.

We note, that the satisfiability problem (and its complement, the validity problem) does not assume
anything about SCMs, including their structure. However, our languages allow queries of the form
1) = , which enable us to verify satisfiability, resp., the validity, for the formula ¢ in SCMs which
satisfy properties expressed by the formula i), whereby, e.g., 1 can encode a graph structure of the
model. Thus, the formalism used in our work allows for the formulation of a wide range of queries.

To measure the computational complexity of SAT}. , a central role play the following, well-known
Boolean complexity classes NP, PSPACE, NEXP, and EXPSPACE (for formal definitions see, e.g.,
Arora & Barak| (2009)). Recent research has shown that the precise complexity of several natural
satisfiability problems can be expressed in terms of the classes over the real numbers JR and succ-JR.
For a comprehensive compendium on JR, see |Schaefer et al.|(2024). Recall, that the existential
theory of the reals (ETR) is the set of true sentences of the form

1 .. Fxnp(zr, ... 20), 2)

where ¢ is a quantifier-free Boolean formula over the basis {V, A, -} and a signature consisting
of the constants 0 and 1, the functional symbols + and -, and the relational symbols <, <, and
=. The sentence is interpreted over the real numbers in the standard way. The theory forms its
own complexity class IR which is defined as the closure of ETR under polynomial time many-one
reductions (Grigoriev & Vorobjov, [1988; (Canny} [1988}; [Schaefer, 2009). A succinct variant of ETR,
denoted as succ-ETR, and the corresponding class succ-3R, have been introduced by [van der Zander
et al.[(2023). succ-ETR is the set of all Boolean circuits C' that encode a true sentence as in ([2)) as
follows. Assume that C' computes a function {0, 1}* — {0, 1}*. Then {0, 1}V represents the node
set of the tree underlying ¢ and C(i) is an encoding of the description of node i, consisting of the
label of 4, its parent, and its two children. The variables in ¢ are x1, . .., To~. As in the case of AR,
to succ-IR belong all languages which are polynomial time many-one reducible to succ-ETR.

For two computational problems A, B, we will write A <p B if A can be reduced to B in
polynomial time, which means A is not harder to solve than B. A problem A is complete for a
complexity class C, if A € C and, for every other problem B € C, itholds B <p A. By co-C, we
denote the class of all problems A such that its complements A belong to C.

3 THE INCREASING COMPLEXITY OF SATISFIABILITY IN PCH FOR LINEAR
LANGUAGES WITH MARGINALIZATION

The expressive power of the languages L}, with x € {base, lin, poly} and the layers i = 1,2, 3 has
been the subject of intensive research. It is well known, see e.g. (Pearl, 2009; [Bareinboim et al.| 2022
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Mossé et al., [2022; |Suppes & Zanotti, |I981)), that they form strict hierarchies along two dimensions:
First, on each layer 4, the languages £2%¢, £!" and E’i’”ly have increasing expressiveness; Second, for
every * € {base, lin, poly}

Ly C Ly C L] (€)]
where the proper inclusion means that the language L7 is less expressive than £}, . Note that since

addlng marginalization does not change the expressiveness of the language L7, the strict inclusions
in (3) hold also for x € {base(X), lin(%), poly(X)}.

To prove such a proper inclusion, it suffices to show two SCMs that are indistinguishable in the
less expressive language, but that can be distinguished by some formula in the more expressive
language. E.g., the SCMs: 9 = (F, P, U,X) and M’ = (F', P, U, X), with binary variables
U = {U;,U2},X = {X;, X3}, probabilities P(U; = 0) = 1/2, and mechanism F: X; := Uj,
resp. F': X1 := U Us + (1= Uy )(1 = Us), Xo := Uy + X1 (1 — Uy)Us, have the same distributions
Py (X1, X2) = Por (X1, X3). Thus, I and 9 are indistinguishable in any language of the
probabilistic layer. On the other hand, after the intervention X; = 1, we get Py ([X1=1]X2=1) =
1/2 and Py ([X1=1]X2=1) = 3/4. Then, e.g., for the £5%¢ formula ¢ : P([X;=1]X>=1) =
P([X1=1]X2=0), we have 9 = ¢, but M’ [~ ¢ which means that ¢ distinguishes 9t from M'.

This section focuses on the basic and linear languages across PCH (the case of polynomial
languages will be discussed in Sec. ] separately). As mentioned in the introduction, a comparison
of these languages from the perspective of computational complexity reveals surprisingly different
properties than the ones described above. For basic and linear languages disallowing marginalization,
the satisfiability for the counterfactual level remains the same as for the probabilistic and causal
levels: problems SATY* and SATI’” for all i = 1,2, 3 are NP-complete, i.e., as hard as reasoning
about propositional loglc formulas ((Fagin et al.l|1990; Mossé€ et al., [2022)), cf. also Table E]) In this
section, we show that the situation changes drastically when marginalization is allowed: satisfiability

problems SAThW< ) and SATIm(Z> became NPF-, PSPACE-, resp. NEXP- complete depending on
the level ¢ Th1s demonstrates the first strictly increasing complex1ty of reasoning across the PCH,
assuming the widely accepted assumption that the inclusions NPPP C PSPACE C NEXP are proper.

3.1 THE PROBABILISTIC (OBSERVATIONAL) LEVEL

Marginalization via the summation operator, combined with the language expressing events § on a
specific level of PCH, increases the complexity of reasoning to varying degrees, depending on the
level. In the probabilistic case, it jumps from NP- to NPPP-completeness since the atomics terms
P(6) can contain Boolean formulas 0, which, combined with the summation operator, allows to
count the number of all satisfying assignments of a Boolean formula by summing over all possible
values for the random variables in the formula. Determining this count is the canonical PP-complete
problem, so evaluating the equations given a model is PP-hard. From this, together with the need of

finding a model, we will conclude in this section that SATbLm< ) and are SATlm< ) NPPP_complete.

We start with a technical but useful fact that a sum in the probabilistic language can be partitioned
into a sum over probabilities and a sum over purely logical terms. This generalizes the property
shown by [Fagin et al.|(1990) in Lemma 2.3 for languages without the summation operator.

Fact 2. Let 6 € &,,p be a propositional formula over variables X;,...,X;. A sum
Zw” D ]P’( )isequalto ; ...> 5 Di,. i, Zw” . Zx” 0%y, (Tiy, ..., i) where the

range of the sums is the entire domazn Di, ..z, IS the probability of ]P’(leozl Ao AN Xp=iy)

and 0z, . 2, (Tiy, ..., T ) afunction that returns 1 if the implication (X1=&1 N\ ... A anfcn) —
§(ziyy. ..,y isa tautology and 0 otherwise.

The canonical satisfiability problem SAT, where instances consist of Boolean formulas in proposi-
tional logic, plays a key role in a broad range of research fields, since all problems in NP, including
many real-world tasks can be naturally reduced to it. As discussed earlier, SATb“” and SAT’”’ do

not provide greater modeling power than SAT. Enabling the use of summation 51gn1ﬁcantly ehanges

base(s)

this situation: below we demonstrate the expressiveness of SAT, “*, showing that any problem in

NPPP can be reduced to it in polynomial time.
Lemma 3. SAT"*® is NPPP-hard.

Proof. The canonical NPPP-complete problem E-MajSat is deciding the satisfiability of a formula

Wi3xy .. Ty FHY1 ... Ynd > 2771 ie. deciding whether the Boolean formula ¢ has a majority
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of satisfying assignments to Boolean variables y; after choosing Boolean variables x; existen-

tially (Littman et al.,|1998). We will reduce this to SATIZ?€<E>. Let there be 2n random variables
Xyq,..., X, Y1, ..., Y, associated with the Boolean variables. Assume w.l.o.g. that these random
variables have domain {0,1}. Let ¢’ be the formula ¢ after replacing Boolean variable x; with
X; =0andy; withY; = y,.

Consider the probabilistic inequality ¢ : >, ... >, P(¢') > 27~1 whereby 27! is encoded as
Yo, - 2ue, , P(T). The left hand side equals

Dby e i D e D Pir B G Doy + Dy 081 g1 (Y15 -+ -1 Yn)

according to Fact[2] Since the last sum ranges over all values of y;, it counts the number of
satisfying a551gnments to ¢ given &;. Writing this count as #, (¢(Z1 . . . £,)), the expression becomes:

le - 'Zm" Z Ey” Diy.in i oy (P(T1 - En)).

Since #,(¢(&1...2,)) does not depend on ¢, we can write the expression as
Dby s pazl...@n#y(¢(f1 ... &n)) Whereby Pz, ..z, =D 5 - D g Parednndn-

If ¢ is satisfiable, there is an assignment 21, . .., &, with #,(4(&1 ... 2,)) > 2"~ L. If we set
D#,..z, = 1 and every other probability P, = 0  is satisfied.

If ¢ is satisfiable, let x}"”,...,xr’?” be the assignment that maximizes

#y (G(2"7 . 2 07)). Then 2771 < 35 .35 Paraudry(0(E1..3n)) <
Dy g, oy (BT o)) = (3, - anpwl @) Fy(P(@POT L 2T)) =

#y(qS( mer | gmer)). Hence ) is satisfied for xm‘”” U L O
Theorem 4. For probabilistic reasoning, the satisfiability problems S AT ﬁa ) and SATlm<E , for the

pPP_

basic and linear languages respectively, are N complete.

Proof idea: Having Lemma [3| it remains to prove that the problem is in NPPP. To this aim,

we show that any satisfiable instance has a solution of polynomial size: we rewrite the sums

Y ow. -2 PP(d) in the expressions according to Fact which allows to encode the instance as a
i i

system of m linear equations with unknown coefficients p;z, . s, , where m is bounded by the instance
size. Such a system has a non-negative solution with at most m entries positive of polynomial size.
Then, we guess nondeterministically such solutions and verify its correctness estimating the values
Zmil Ezil 03,4, (X4, -, x;, ) using the PP oracle. A full proof, as for all further proof ideas, can

be found in the appendix. O

Remark 5. NPP? is the class describing the complexity of another, relevant primitive of the proba-
bilistic reasoning which consists in finding the Maximum a Posteriori Hypothesis (MAP). To study its
computational complexity, the corresponding decision problem is defined which asks if for a given
Bayesian network B = (G, Pg), where probability Pg factorizes according to the structure of network
G, a rational number T, evidence e, and some subset of variables Q, there is an instantiation q to
Q such that Pg(q,e) = Zy Ps(q,y,e) > 7. It is well known that the problem is NPPP-complete
(Roth, |1996} |Park & Darwiche| |2004)).

Finally, we draw our attention to the impact of negation on the complexity of reasoning for such

languages of the probabilistic layer. The hardness of SATIZ'< ) depends on negations in the Boolean

formulas 0 of basic terms IP(¢), which make it difficult to count all satisfying assignments. Without
negations, marginalization just removes variables, e.g. > P(X=x A Y'=y) becomes P(Y'=y). This
observation leads to the following:

bave( ) lin(=)

Proposition 6. SAT . and SAT |

not contain negatlons

are NP-complete if the primitives in E,og.in are restricted to

3.2 THE INTERVENTIONAL (CAUSAL) LEVEL

In causal formulas, one can perform interventions to set the value of a variable, which can recursively
affect the value of all endogenous variables that depend on the intervened variable. This naturally
corresponds to the choice of a variable value by an existential or universal quantifier in a Boolean
formula, since in a Boolean formula with multiple quantifiers, the value chosen by each quantifier
can depend on the values chosen by earlier quantiﬁers Thus, an interventional equation can encode a

quantified Boolean formula. This makes SATZ” PSPACE-hard. As we will show below, it is even
PSPACE-complete.
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Lemma 7. SAT*®* is PSPACE hard.

Proof. We reduce from the canonical PSPACE-complete problem QBF. Let Q121 Q222 - -+ Qnznt
be a quantified Boolean formula with arbitrary quantifiers Q1,...,Q, € {3,V}. We introduce
Boolean random variables X = {X7,..., X,,} to represent the values of the variables and denote
by Y = {¥7,...Y%} C X the universally quantified variables. By Lemma we can enforce an
ordering X; < X3 < ... < X, of variables, i.e. variable X; can only depend on variables X ; with
7 < 4. Our only further constraint is

>y P(lyly') =2 4

where 1)’ is obtained from ¢ be replacing positive literals z; by X; = 1 and negative literals T; by
X, =0.
lin(s)

Suppose the constructed SAT, ™ formula is satisfied by a model 9. We show that
Q171 Q2 - -+ Qpay, is satisfiable. Each probability implicitly sums over all possible values u of
the exogenous variables. Fix one such u with positive probability. Combined with X; < ... < X,
this implies all random variables now deterministically depend only on any of the previous variables.
Equation () enforces P([y]1’) = 1 for every choice of y and thus simulates the Y being universally
quantified. As the existential variables x;, we then choose the value z; of X; which can only depend
on X; with j < 4. The formula ' and thus ¢ is then satisfied due to P([y]¢’) = 1.

On the other hand, suppose Q171 Q22 - - - Qpx,1 is satisfiable, We create a deterministic model
N as follows: The value of existentially quantified variables X is then computed by the function
Fi(z1,...,m;—1) defined as the existentially chosen value when the previous variables are set to
z1,...,Z;—1. The values of the universally quantified variables do not matter since we intervene on
them before every occurrence. This satisfies the required order of variables and since 1 is satisfied
we have P([y]y’) = 1 for every choice of the universally quantified variables y, thus satisfying
equation (). O
Theorem 8. For causal reasoning, the satisfiability problems SAT]ZI,:AE) and SATZ<E>, for the basic
and linear languages respectively, are PSPACE-complete.

Proof idea: After Lemma we only have to show that SATZZ<E> is in PSPACE. For the proof details,
see the appendix. The basic idea is to evaluate interventions one at a time without storing the entire
model because each primitive can only contain one intervention. For each sum, we only need to store
the total probability of all its primitives, and increment this probability, if a new intervention satisfies
some of the primitives.

As with SATZ"I<XJ> , there can only be polynomially many exogenous variable assignments u with non-

zero probability p,,, which are independent of each other and can be guessed non-deterministically.
We can also guess a causal order of the endogenous variables, such that variables can only depend on
the variables preceding them in the causal order. This causal order allows one to guess the variables
affected by any intervention in a sound way.

We enumerate all exogenous variable assignments u, each having probability p,,. Recursively, we
can enumerate all possible interventions o, which yield the values x of the endogenous variables,
which—given the exogenous variables—also have probability p,,. Then we count for each sum how
many of its primitives are satisfied by o and x, and increment the accumulated value of the sum by
pu for each.

After this enumeration, we know the numeric value of every sum, and can verify the resulting
equation system. O

3.3 THE COUNTERFACTUAL LEVEL

On the counterfactual level, one can perform multiple interventions, and thus compare different
functions of the model to each other. Hence, the formulas can only be evaluated if the entire,
exponential-sized model is known. Thus deciding the satisfiability requires exponential time and

non-determinism to find the model, making SATlZ;<E> NEXP-complete.

Theorem 9. For counterfactual reasoning, the satisfiability problems SATIZ;‘3<E> and SATlg;(E), for
the basic and linear languages respectively, are NEXP-complete.
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Proof idea: This NEXP-hardness follows from a reduction from the NEXP-complete problem of
checking satisfiability of a Schonfinkel-Bernays sentence to the satisfiability of SAT?;"@). These are
first-order logic formulas of the form 3xVy1 where ¢/ cannot contain any quantifiers or functions.
The x and y are encoded as Boolean random variables, where the existentially quantified x are
encoded into the existence of a satisfying SCM, while the universally quantified y are encoded
by marginalization, i.e. a condition ) P([y]y) = 2" for some formula ) derived from v and
where n denotes the number of variables y. The counterfactuals now allow us to ensure that the
random variables R; representing the relations within 1) deterministically depend on their respective
inputs by comparing whether R; changes between an intervention on all variables (except R;)
versus an intervention on only its dependencies. Marginalization finally allows us to combine these
exponentially many checks for all possible values of all variables into a single equation.

The containment in NEXP follows from expanding the formulas with sums to exponentially larger
formulas without sums.

4 THE COMPLEXITY OF SATISFIABILITY FOR POLYNOMIAL LANGUAGES
WITH MARGINALIZATION

Van der Zander et al{(2023) prove that SAT)" ) and SAT’ZZMZ> are complete for succ-IR whenever
the basic terms are allowed to also contain conditional probabilities. They, however, leave open the

exact complexity status of SAT’Z’? ) Here we show that the problem is in succ-JR, with and without
conditional probabilities, which proves its succ-JR-completeness.

Theorem 10. SAT’ZZ’V<Z> € succ-JR. This also holds true if we allow the basic terms to contain
conditional probabilities.

Proof idea: |Bliser et al.[(2024) introduced the NEXP ., machine model, where succ-JR is precisely
the set of all languages decidable by exponential-time non-deterministic real RAMs. Combined with
the algorithm proving SAT’Z? € IR (however without subtrations or conditional probabilities) from
Mossé et al.| (2022) and the classification IR = NP, from [Erickson et al. (2022), i.e. R being
the set of all languages decidable by polynomial-time non-deterministic real RAMs, we can expand
the unary sums explicitly and then run the non-deterministic real RAM algorithm for the resulting
SATZU instance. Special care has to be taken in dealing with subtractions or conditional probabilities,
here we use a trick by Tsaitin, the details of which can be found in Lemma[T6]in the appendix. [

We note that[Ibeling et al.| (2024, Theorem 3) independently obtained a variant of the above result,
also using the machine characterization of succ-3R given by Blaser et al.| (2024).

Remark 11. It can be shown that the hardness proofs for SATpLolly <E>, SAT’ZZ””, and SATIZO;y ) 4o
not need conditional probabilities in the basic terms.

5 DISCUSSION

This work studies the computational complexities of satisfiability problems for languages at all levels
of the PCH. Our new completeness results nicely extend and complement the previous achievements
by [Fagin et al.|(1990), Mossé et al.|(2022), ivan der Zander et al.|(2023)), and Blaser et al.|(2024). The
main focus of our research was on languages allowing the use of marginalization which is expressed
in the languages by a summation operator 3 over the domain of the random variables. This captures
the standard notation commonly used in probabilistic and causal inference.

A very interesting feature of the satisfiability problems for the full, polynomial languages is the
following property. For both variants, with and without summation operators, while the expressive
powers of the corresponding languages differ, the complexities of the corresponding satisfiability
problems at all three levels of the PCH are the same. Interestingly, the same holds for linear languages
without marginalization, too (cf. Table[I]). We find that the situation changes drastically in the case
of linear languages allowing the summation operator . One of our main results characterizes the
complexities of SATZZI<E> , SAT[Z'<Z>, and SATZ"<2> problems as NPPF, PSPACE, and NEXP-complete,

1 2 3
resp. The analogous completeness results hold for SATlZ?e(E).

Another interesting feature is that the completeness results for linear languages are expressed in
terms of standard Boolean classes while the completeness of satisfiability for languages involving
polynomials over the probabilities requires classes over the reals.
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A TECHNICAL DETAILS AND PROOFS

In this section we prove the completeness results in Table[T} the first result will follow from Lemma|[T3)
and[3] Result (2) from Lemma[I4]and[7] and (3) will follow from Lemma[I5] We also show the proof
of Proposition [6]

A.1 PROOFS OF SECTION[3.T]
We frst prove the completeness results in Theorem A which will follow from Lemma[T3]and

Proof of Fact} >, ...>., P(0)isequivalent to
@i, i,

DTN LD P(Xa=d AL A Xy=E,) A D)

Ty Ty 21 Zn

=D D ) DY P(Xa=d A A Xy =) A D)
21 Bp Tiy Ty

= Z e Z Z T pryuinéi’lmin(iviw e 7$i1,)
T Tn Tiy T

:Zszlm Z-nzdﬁl...;ﬁn(xi]a e Ty ),
& Ty Tiy Tiy

which completes the proof. O

Since the second sum only depend on Z; ... Z, and not on p;, .. s, , they can be calculated without
knowing the probability distribution. Due to the dependency on Z; . .. Z,, the expression cannot be
simplified further in general. However, if § contains no constant events like X;, = 0 but only events
Xi; = x;; depending on the summation variables z;,, the sum always includes one iteration where the
event occurs and ¢ — 1 iterations where it does not. Thus the sum Zril e in’ 0y in (Tiyy ooy i)

is constant and effectively counts the number of satisfying assignments to the formula §. Since the

sum ) . ...> s Day..a, is always 1, the original sum » ...> IP(0) also counts the number
g Cn, 3 i1 i

of satisfying assignments.

Lemma 12. In L, one can encode a causal ordering.

Proof of Lemma[I2] Given (in-)equalities in £, we add a new variable C' and add to each primitive
the intervention [C' = 0]. This does not change the satisfiability of (in-)equalities.

Given a causal order V;, < V;, < ..., we add c equations for each variable V,;j , 7> 1

P([C=1,V;,_,=k|V;,;=k) =1fork =1,...,c

The equations ensure, that if one variable is changed, and C' = 1 is set, the next variable in the
causal ordering has the same value, thus fixing an order from the first to the last variable. O

Lemma 13. SATlli:"l<E> is in NPPP,
Proof. First we need to show that satisfiable instances have solutions of polynomial size.
We write each (sum of a) primitive in the arithmetic expressions as

Z e Zp5i1~~jn Z . Z (5931“_@”(1}1‘1, ey LI,‘il)
Z1 Zn

Z,;l I,l

according to Fact[Z}

The value of all p;,. s, can be encoded as a vector p’ € R<". For each 21,...,&,, the sum
inl e Z% 82,4, (Tiy,...,x;) is a constant integer < c!. Suppose there are m such sums or
primitives in the instance, whose values can be encoded as a matrix A € Rmx*e",

Then the value of every sum in the instance is given by the vector Ap' € R™.

There exists a non-negative vector ¢ € Q°" containing at most m non-zero entries with A7 = Ap
(Lemma 2.5 in [Fagin et al.[(1990)). By including a constraint Zil o Zin Di, ..z, = 1 when
constructing the matrix A, we can ensure that all values in ¢ are valid probabilities. ¢'is a polynomial
sized solution and can be guessed non-deterministically.

12
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For this solution, the sum Z:zl Y 2, Diy..z, can then be evaluated (over all non-zero entries

P#,...#,) in polynomial time. Eachsum >~ ...>" = 0z, 4, (@i,...,2;) can be evaluated using
i i

the PP oracle because a PP oracle is equivalent to a #P oracle which can count the number of

satisfying assignments of §. O

Finally, we give the proof of Proposition [6]

Proof of Proposition[6] In the proof of Lemma we require a PP-oracle to evaluate the sum
0, ..z, (Tiy, - - ., Ty, ), Which counts the number of assignments z;, . . ., z;, that make

z; Ti,

1
(Xi=T1N...ANXp=23n) = 6(z4y,...,2,) atautology for given Z;.

Without negations, there are also no disjunctions, so d consists of a conjunction of terms that
compare some variable to some constant, X; = j, or to some variable X; = x;, used in the
summation. For any constant X; = j, we check whether z; = j. If that is false, the number of
satisfying assignments to ¢ is zero. From any condition X; = x;,, we learn that z;;, has to be equal to
Z;. If there is any contradiction, i.e., X; = x;; A X}, = x;; and I; # I, the number of assignments
is also zero. This determines the value of each x;; occurring in ¢ and makes ¢ a tautology.

It leaves the value of x;; not occurring in ¢ undefined, but those do not affect §, and can be chosen
arbitrarily, so the number of assignments is just multiplied by the size of the domain c¢ for each
not-occurring variable.

This can be evaluated in polynomial time, so the complexity is reduced to NPY = NP.

The problems remain NP-hard since a Boolean formula can be encoded in the language E}I’W of
combinations of Boolean inequalities. Each Boolean variable x is replaced by P(X) > 0 for a
corresponding random variable X. For example, a 3-SAT instance like (z;, , V —2;, , V 24, ;) A
(®iy, V iy, V Tiy,) A ... can be encoded as (P(X;, ) > 0V -P(X;,,) >0V P(X;, ,) >
0) A (P(Xi,,) > 0V =P(X;,,) > 0V —=P(X;,,) > 0) A ..., which clearly has the same
satisfiability. ' O

A.2 PROOFS OF SECTION[3.2]
Lemma 14. ST is in PSPACE.

2

Proof. We need to show that Algorithm[I]is correct and in PSPACE. The basic idea of the algorithm
is that rather than guessing a model and evaluating each sum with its interventionsﬂ we enumerate all
possible interventions (and resulting values) and increment each sum that includes the intervention.
Thereby, rather than storing the functions and interventions, we only need to store and update the
value of the sums.

By definition, each sum 3 P([c]d;) in the input can be written as 3°, pu > . 7 uifau]s; b
where the second sum does not depend on p,,. As in Lemma[I3] one can write the probabilities as a
single vector py, each sum } . = (4.5, 1 as row in a matrix A, such that an entry of the row is 1

if 7, u |= [a;]6; holds and 0 otherwise. Then one obtains the value of all sums as product Apy;,. A
small model propertyﬁ follows that there are only polynomial many, rational probabilities p,,. These
can be guessed non-deterministicallyf’]

’For example, a sum like > P([X=x]Y =y) performs multiple interventions on X, which is difficult to
evaluate. Sums containing only a single intervention could be evaluated trivially.

8Small model property means that whenever there is a satisfying probability distribution, then there is also
one with only polynomially many positive elementary probabilities. Note that, e.g., the probability distribution
on n binary random variables has 2™ entries. Some of the previous results we refer to, e.g., Fagin et al.|(1990);
Ibeling & Icard) (2020), are based on this small property.

“The algorithm just guesses them without doing any rewriting of the equations. This paragraph just explains
why this guessing is possible.

13
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Input: SATZ(E) instance

Output: Is the instance satisfiable?
Guess small model probabilities py;
Guess a causal order X1,..., X,;
Rewrite each sum 3 P([a;]0;) in the inputas 3°, pu D=y 7 uifais; L
Initialize a counter ¢; to zero for each such sum
for p, > 0do
Guess values 1, .., Tn,;
Simulate-Interventions(1, {}, z1, ..., )
end
Replace the sums by ¢; and verify whether the (in-)equalities are satisfied;

Function Simulate-Interventions(i, o, x1, . . ., Tp,)
Input: Current variable X;; set of interventions «; values z1, ..., T,
if i > n then

for each sum counter c; do
for all possible values y ; of the sum do
if o (after inserting y;) is [{X; = z; fori € a}| and x4, .., x,, satisfy 6; (after
inserting y;) then
| increment c; by py
end
end
end
else
Simulate-Interventions(i + 1, @, x1, ..., ) ;
for value v do
Let 2y, ..., a), := a1, ..., Ty}
xf =
if v # x; then
| guess new values 7}, 1, ..., ],
end
Simulate-Interventions(i + 1, & U {i}, 2}, ..., z}) ;
end

end

Algorithm 1: Solving SATZ";E)

Next, we combine the terms Eu pu of all sums (implicitly). For example, two sums
>y, P(leid:) + Zyj P([e;]9,) can be rewritten as

S P(add) + S Plalo) =S pe S 1+ Y 1

yiiFukE=[ag)s; v FuE[e;]6;

=§u:pu oo+ Y 1

vi:Ful=la;]d; v FulE(eg;]d;

The algorithm performs this sum over u in line [5]and calculates the next sums in the subfunction. We
can and will ignore the actual values u. Relevant is only that the value of the sums is multiplied by
pu and that the functions F might change in each iteration.

Recall that the functions F = (F},..., F},) determine the values of the endogenous variables,
that is the value of variable X is given by z; = F;(u,x1,...,2;—1). Thereby the functions (i.e.
variables) have a causal order X < ... < X, such that the value x; only depends on variables X
with j < 4. In reverse, this means that each intervention on a variable X; can only change variables
X; with j > 4.

Rather than storing the functions F = (Fi, ..., F,), the algorithm only stores the values x; =
Fi(u,21,...,2;_1), i.e. the values of the endogenous variables. The algorithm knows these values
as well as the causal order, since they can be guessed non-deterministically.

14
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The subfunction Simulate-Interventions then performs all possible interventions recursively, in-
tervening first on variable X7, then Xo, ..., until X,,. The parameter ¢ means an intervention on
variable X, « is the set of all previous interventions, and 1, . . ., z,, the current values.

In line[20] it proceeds to the next variable, without changing the current variable X; (simulating all
possible interventions includes interventing on only a subset of variables). In line 21} it enumerates
all values z; for variable X;. If z; = z}, then the intervention does nothing. If z;; # zj, then the
intervention might change all variables X; with j > 4 (because the function F); might depend on X;
and change its value). This is simulated by guessing the new values xj Thereby, we get the new
values without considering the functions.

In the last call, line |27} it has completed a set of interventions «. The function then searches every
occurrence of the interventions « in the (implicitly expanded) input formula. That is, for each sum
Zyj: Foul=[ay]e, 1 it counts how often a;; = cv occurs in the sum while the values x; satisfy d;. m

Since each intervention is enumerated only once, in the end, it obtains for all sums their exact value.
It can then verify whether the values satisfy the (in-)equalities of the input.

If a satisfying model exists, the algorithm confirms it, since it can guess the probabilities and the
values of the functions. In reverse, if the algorithm returns true, a satisfying model can be constructed.
The probabilities directly give a probability distribution P(u). The functions F; can be constructed

because, for each set of values u, z1,...,x;_1, only a single value for x; is guessed, which becomes
the value of the function.
Algorithm|[T]runs in non-deterministical polynomial space and thus in PSPACE. O

A.3 PROOFS OF SECTION[3.3]

Lemma 15. SATZZ‘56<E> and SATIZ'<E> are NEXP-complete.

3

Proof. We will reduce the satisfiability of a Schonfinkel-Bernays sentence to the satisfiability of
SAT?;e<Z>. The class of Schonfinkel-Bernays sentences (also called Effectively Propositional Logic,
EPR) is a fragment of first-order logic formulas where satisfiability is decidable. Each sentence in
the class is of the form IxVy1) whereby ) can contain logical operations A, V, =, variables x and
y, equalities, and relations R;(x,y) which depend on a set of variables, but ¢) cannot contain any
quantifier or functions. Determining whether a Schonfinkel-Bernays sentence is satisfiable is an
NEXP-complete problem |Lewis|(1980) even if all variables are restricted to binary values|Achilleos
(2015).

We will represent Boolean values as the value of the random variables, with 0 meaning FALSE and 1
meaning TRUE. We will assume that ¢ = 2, so that all random variables are binary, i.e. Val = {0, 1}.

In the proof, we will write (in)equalities between random variables as = and #. In the binary
setting, X = Y is an abbreviation for (X = 0AY =0)V(X =1AY =1),and X # Y
an abbreviation for =(X = Y'). To abbreviate interventions, we will write [w] for [W = w], [w]
for interventions on multiple variables [W = w], and [v \ w] for interventions on all endogenous
variables except W.

We use random variables X = {X;,... X,,} and Y = {Y7,...Y,,} for the quantified Boolean

variables x, y in the sentence IxVy1. For each distinct k-ary relation R;(z1, ..., z;) in the formula,
we define a random variable R; and variables Z}, ..., ZF for the arguments. For the j-th occurrence
of that relation R;(tj;,...,t5;) with ti; € {21,...,2,,51,...,yn}, We define another random

variable R{ .
We use the following constraint to ensure that I?; only depends on its arguments:

ZP([22‘17 2R # v\ ] R:) = 0 (%)

Thereby  _, refers to summing over all values of all endogenous variableﬂ in the model and the
constraint says that an intervention on Z}, ..., Z¥ gives the same result for ; as an intervention on
Z}, ..., ZF and the remaining variables, excluding R;.

We use the following constraint to ensure that Rg only depends on its arguments:

!%Rather than incrementing the counter ¢; by 1 and then multiplying the final result by p,,, we increment it
directly by pu.
Al variables include variables Z}, . .., ZF.
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> P([t, . IR # [V r]R) =0 (6)

v

and that R{ and R; have an equal value for equal arguments:

> P(Th=t, . TE=t|R] # (Z=t);, ..., ZF=t};|R;) = 0. (7)

iy g0 5

1 k
thoth

We add the following constraint for each X; to ensure that the values of X are not affected by the
values of Y:
ZZP \ 23] X; # v\ (21,y), Y=y']X;) = 0 (8)

Here the first sum sums over all values v of all endogenous variables V (including X; and Y), and
the second sums sums over values for variables Y. The intervention [v \ ;] intervenes on all variables
except X; and sets the values y to the values of the first sum. The intervention [v \ (2;,y),Y = y’]
intervenes on all variables except X; and sets the values y to the values y’ of the second sum. The
constraint thus ensures that the value of X; does not change when changing Y from y to y’.

Let ¢/’ be obtained from 1 by replacing equality and relations on the Boolean values with the
corresponding definitions for the random variables:

Z P(lyly") = 2" C))

Suppose the SAThme(E) instance is satisfied by a model 9)t. We need to show IxVy1 is satisfiable.

Each probability IP’( .) implicitly sums over all possible values u of the exogenous variables. The
values x of the variables X might change together with the values u, however, any values x that are
taken at least once can be used to satisfy IxVy1: If there was any x that would not satisfy v for
all values of y, P([y]¢’) would be less than 1 for these values of x (determined by u) and y, and
equation (9) would not be satisfied.

For each relation R;, we choose the values given by the random variable R;. Each occurrence

RI(tL,... %) has a value that is given by [Z} = t};,..., ZF = t¥]R; in the model 2. Due to
equations (7) and equations (@) that is the same value as [T1 = tl17, e ,TZ} = tfj]Rg , which is the
value used in [y]¢’ . Since [y|v is satisfied, so is ¢) and IxVy).

Suppose IxVy is satisfiable. We create a deterministic model 2t as follows: The value of random
variables X is set to the values chosen by 3x. The relation random variables R; are functions depend-
ing on random variables Z}, ..., ZF that return the value of the relation R;(z1, ..., 21 ). The relation
random variables R’ on arguments T1 .. Tj; return the value of the relation R; (tzlj, N J) This
satisfies Equation E] and [6] because the functions only depend on their arguments, and Equation 7]
because the functions result from the same relation (so the functions are dependent, but causally
independent, which yields a non-faithful model. But the equations do not test for faithfulness or
dependences). All other random variables can be kept constant, which satisfies Equation 8] (despite
being constant in the model, the causal interventions can still change their values). Finally, EquationJ]
holds, because 1) is satisfied for all Y.

(=)

The problem can be solved in NEXP because expanding all sums of a SATlZ; instance creates a

SATI’” instance of exponential size, which can be solved non-deterministically in a time polynomial
to the expanded size as shown by Mossé et al.| (2022)).

A.4 PROOFS OF SECTION[]

Mossé et al.[(2022) already prove SAT, ? € 3R when the £ oD _formula is allowed to neither contain
subtractions nor conditional probabilities. We slightly strengthen this result to allow both of them.

Lemma 16. SAT'Z’;Y € dR. This also holds true if we allow the basic terms to contain conditional
probabilities.

Proof. (Mossé et al., 2022)) show that SAT” °lv without subtraction or conditional probabilities is in

JR. Their algorithm is given in the form of a NP-reduction from SAT’ZD;y to ETR and using the
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closure of IR under NP-reductions. In particular given a £3°”-formula ¢, they replace each event
P(€) by the sum 266A+:5\:e P(6) where A" C Epunerfaer 1s @ subset of size at most |¢|. They add
the constraint ) s+ P(6) = 1 and then replace each of the IP(4) by a variable constrained to be
between 0 and 1 to obtain a ETR-formula. Note that the final ETR-formula allows for subtraction, so
 is allowed to have subtractions aswell. Remains to show how to deal with conditional probabilities.
We define conditional probabilities P(§|d”) to be undefined if P(§”) = O (this proof works similarly

for other definitions). In ¢ replace P(§|0") by Pﬂﬁfgf;) . The resulting ETR-formula then contains some

divisions. To remove some division %, we use Tsaitin’s trick and replace % by a fresh variable z. We
then add the constraints & = z - 5 and 8 # 0 to the formula. O

Now we are ready to show that SAT’ZZ’V<Z> can be solved in NEXP over the Reals.

Proof of Theorem[I0} By Lemmawe know that SAT’ZZ}’ is in dR. Thus, by (Erickson et al.,[2022),

there exists an NP, algorithm, call it A, which for a given £§"ly -formula decides if is satisfiable.

To solve the SAT’ZZy (=) problem, a NEXP,, algorithm expands firstly all sums of a given instance

and creates an equivalent SAT"Z? instance of size bounded exponentially in the size of the initial
input formula. Next, the algorithm A is used to decide if the expanded instance is satisfiable. O
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B LEVELS OF PEARL’S CAUSAL HIERARCHY: AN EXAMPLE

To illustrate the main ideas behind the causality notions, we present in this section an example that,
we hope, will make it easier to understand the formal definitions. In the example, we consider a
(hypothetical) scenario involving three attributes represented by binary random variables: pneumonia
modeled by Z = 1, drug treatment (e.g., with antibiotics) represented by X = 1, and recovery, with
Y =1 (and Y = 0 meaning mortality). Below we describe an SCM which models an unobserved
true mechanism behind this setting and the canonical patterns of reasoning that can be expressed at
appropriate layers of the hierarchy.

Structural Causal Model An SCM is defined as a tuple [, i, Us | Pw) | Z XY
(F, P,U,X) which is of unobserved nature from the perspective. =500 T 003 11 0 0
of a researcher who studies the scenario. The SCM modelsthe ¢ ¢ 1| 002 |1 0 1
ground truth for the distribution P(U) of the populationandthe o 1 0| 012 |1 0 0
mechanism F. In our example, the model assumes three indepen- 0 1 1 | 008 | 1 0 1
dent binary random variables U = {U;, U, Us}, with probabilities: 1 0 0 | 009 | 0 0 0
P(U;=1) = 0.75, P(Us=1) = 0.8, P(Us=1) = 0.4, and specifies 1 0 1| 0.06 | 0 0 1
the mechanism F = {F}, Fy, F3} for the evaluation of the three 1 1 0] 036 | 0 10
endogenous (observed) random variables L1 1]024]011

Z, X, Y as follows: Z := Fl(Ul) = 1—U1; X = FQ(Z, UQ) = (]. _Z)U27 Y = F3(X, Ul, Ug) =
X(1-U1)1-Us)+ (1 = X)(1 —Uy)Us + UyUs. Thus, our model determines the distribution
P(u), for u = (u1,us, us), and the values for the observed variables, as can be seen above.

The unobserved random variable U; models all circumstances that lead to pneumonia and Z is
a function of U; (which may be more complex in real scenarios). Getting a treatment depends
on having pneumonia but also on other circumstances, like having similar symptoms due to other
diseases, and this is modeled by Us. So X is a function of Z and U,. Finally, mortality depends on all
circumstances that lead to pneumonia, getting the treatment, and on further circumstances like having
other diseases, which are modeled by Us. So Y is a function of Uy, X, and Us. We always assume
that the dependency graph of the SCM is acyclic. This property is also called semi-Markovian.

Layer 1 Empirical sciences rely heavily on the use of observed data, which 7 x y | P(z,2,y)
are typically represented as probability distributions over observed (measur-

able) variables. In our example, this is the distribution P over Z, X, and 8 8 (1) 882
Y. The remaining variables Uy, Us, Us, as well as the mechanism F,areof (g 1 0 0.36
unobserved nature. Thus, in our scenario, a researcher gets the probabilities 011 0.24
(shown to the right) P(z,2,y) = >, 07 u(2,2,y) - P(u), where vectors 1 0 0 0.15

01 0.10

u = (uy,uz,u3) € {0,1}3 and 1
drulz, z,y) = 1if Fi(u1)=%, Fa(z,uz2)=x, and F3(x,u1,uz)=y; otherwise 0r u(z,2,y) =
0. The relevant query in our scenario P(Y'=1|X=1) can be evaluated as P(Y=1|X=1) =
P(Y=1,X=1)/P(X=1) =0.24/0.6 = 0.4 which says that the probability for recovery (Y'=1) is
only 40% given that the patient took the drug (X=1). On the other hand, the query for X =0 can be
evaluated as P(Y=1|X=0) = P(Y=1, X=0)/P(X=0) = 0.16/0.4 = 0.4 which may lead to the
(wrong, see the next layer) opinion that the drug is irrelevant to recovery.

Layer 2 Consider a randomized drug {7, v/, U, | Pw) | Z X=1Y

trial in which each sztient r)eceives treat- =450 01003 11 1 1

ment, denoted as do(X=1), regardless

of pneumonia (Z) and other conditions 8 (1) (1) 8(1)3 } 1 (1] Z Y| P(X=1]zy)
(Uz). We model this by performinga 0 1 1] 008 |1 1 0 00 0.45
hypothetical intervention in whichwere- 1 0 0] 009 |0 1 0 01 0.30
place in F the mechanism F5(Z,Us)by 1 0 1006 | 0 1 1 i (1] 8ig

the constant function 1 and leaving the 1 1 0] 036 |0 1 0 :
remaining 1 1 11024 |0 1 1

functions unchanged. If Fx—; = {F{=F}, Fj=1, F{=F3} denotes the new mechanism, then the
post-interventional distribution P([X=1]Z,Y) is specified as P([X=1]z,y) = >, 0rx_,.u(2,¥y) -
P(u), where § ,,_, ., denotes function § as above, but for the new mechanism Fx—; (the distribution
is shown on the right-hand side). A common and popular notation for the post-interventional
probability is P(Z,Y|do(X=1)). In this paper, we use the notation P([X=1]Z,Y) since it is
more convenient for analyses involving counterfactuals. To determine the causal effect of the
drug on recovery, we compute, in an analogous way, the distribution P([X=0]Z,Y") after the
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intervention do(X =0), which means that all patients receive placebo. Then, comparing the value
P([X=1]Y=1) = 0.45 with P([X=0]Y'=1) = 0.40, we can conclude that P([X=1]Y'=1) —
P([X=0]Y=1) > 0. This can be interpreted as a positive (average) effect of the drug in the
population which is in opposite to what has been inferred using the purely probabilistic reasoning of
Layer 1. Note that it is not obvious how to compute the post-interventional distributions from the
observed probability P(Z, X,Y"); Indeed, this is a challenging task in the field of causality.

Layer 3 The key phenomena that can be modeled and analyzed at this level are counterfactual
situations. Imagine, e.g., in our scenario there is a group of patients who did not receive the treatment
and died (X'=0, Y =0). One may ask, what would be the outcome Y had they been given the treatment
(X=1). In particular, one can ask what is the probability of recovery if we had given the treatment to
the patients of this group. Using the formalism of Layer 3, we can express this as a counterfactual
query: P([X=1]Y=1|X=0,Y=0) = P([X=1](Y=1)A(X=0,Y=0))/P(X=0,Y=0). Note that
the event [X=1](Y'=1) A (X=0, Y =0) incorporates simultaneously two counterfactual mechanisms:
Fx—1 and F. This is the key difference to Layer 2, where we can only have one. We define the
probability in this situation as follows:

P([X=z|(Z=2Y=y) N (Z=2X=2'Y=V')) = >, 0rv_ou(z,¥) - Oru(,2,y) - P(u).

X=0,Y=0 is satisfied only for (Uy,Us,Us) € {(0,0,0),(0,1,0),(1,0,0)} (first table), and of
them only {(0,0,0), (0,1,0)} satisfies [X=1]Y =1 (third table). Thus, by marginalizing Z, we get
P([X=1]Y=1|X=0,Y=0) = 0.15/0.24 = 0.625 which may be interpreted that more than 62%
of patients who did not receive treatment and died would have survived with treatment. Finally,
we would like to note that, in general, the events of Layer 3 can be quite involved and incorporate
simultaneously many counterfactual worlds.

Graph Structure of an SCM Below we remind, how an SCM can be represented in the form of a
Directed Acyclic Graph (DAG) and show such a DAG for the model discussed above.

Let M= (F ={Fy,...,F,},P,U X ={Xy,...,X,}) be an SCM. We assume that the model
is Markovian, i.e. that the exogenous arguments U;, U; of I}, resp. F}; are independent whenever
i # j. These exogenous arguments are not shown in the DAG. We note that a general model as
discussed above, called semi-Markovian, which allows for the sharing of exogenous arguments and
allows for arbitrary dependencies among the exogenous variables, can be reduced in a standard way
to the Markovian model by introducing auxiliary “unobserved” variables. Thus, in our example,
to get a Markovian model, we can assume, X = {X,Y, Z U}, where X,Y, Z remain observed
variables but U; is of unobserved nature.

We define that a DAG G = (X, E) represents the graph structure of 9t if, for every X; appearing
as an argument of F;, X; — X; is an edge in E. DAG G is called the causal diagram of the
model 2t Pearl| (2009); Bareinboim et al.|(2022). The DAG for the discussed SCM therefore has the
following form (here, as is usually done in Markovian models, variables U, and Us that only affect
X, respectively Y, are omitted):

Z4+—U;

| |

X—Y

Moreover, the DAG of the intervention model discussed in subsection Layer 2, with functional
mechanism Fx—; has the following form, meaning that all ingoing edges to X are removed from the
pre-interventional model:

Z—U;

X—Y
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C SYNTAX AND SEMANTICS OF THE LANGUAGES OF PCH: FORMAL
DEFINITIONS

We always consider discrete distributions in the probabilistic and causal languages studied in this
paper. We represent the values of the random variables as Val = {0, 1,...,¢ — 1} and denote by X
the set of random variables used in a system. By capital letters X7, Xo,..., we denote the individual
variables and assume, w.l.0.g., that they all share the same domain Val. A value of X; is often
denoted by x; or a natural number. In this section, we describe syntax and semantics of the languages
starting with probabilistic ones and then we provide extensions to the causal systems.

By an atomic event, we mean an event of the form X = z, where X is a random variable and x
is a value in the domain of X. The language &,,,, of propositional formulas over atomic events is
defined as the closure of such events under the Boolean operators A and —. To specify the syntax of
interventional and counterfactual events we define the intervention and extend the syntax of &, to
Epost-int AN Ecounterfact, TESPEctively, using the following grammars:

Eprop isdefinedby p = X=z|-p|pAp
Emrisdefinedby i == T|X=z|iAl
Epost-ing 18 defined by  p; == [i]p
Ecounterfact 18 definedby ¢ = p;|-c|cAc.

Note that since T means that no intervention has been applied, we can assume that £,,,, C Epogroint-

The PCH consists of three languages £, L2, L3, each of which is based on terms of the form
IP(8). For the (observational or associational) language £, we have ¢ € &,,,, for the (interventional)
language Lo, we have § € &Eyp5.in and for the (counterfactual) language L3, 0 € Ecounterfuer- The
expressive power and computational complexity properties of the languages depend largely on the
operations that we are allowed to apply to the basic terms. Allowing gradually more complex
operators, we describe the languages which are the subject of our studies below. We start with the
description of the languages 7.* of terms, with ¢ = 1, 2, 3, using the following grammar

fﬁbase t:::]P’((Si) ,Ebase(Z) tZI:P((Si)‘Zwt
T ta=P(5) [+t T b= P@) [t X,
TP tu=P@) [t ] —t]t-t TP b a=PE) [ttt et ]2,

where ¢; are formulas in &,,p, 62 € Eposteints 03 € Ecounterfact-

The probabilities of the form P(¢;) are called primitives or basic terms. In the summation operator
> .» we have a dummy variable « which ranges over all values 0,1,...,c — 1. The summation
>, t is a purely syntactical concept which represents the sum t[0/z] + t[1/z] + ... + t[c —1/z],
where by t[?/z], we mean the expression in which all occurrences of x are replaced with value
v. For example, for Val = {0,1}, the expression)  P(Y=1, X=x) semantically represents
P(Y=1,X=0) + P(Y=1, X=1). We note that the dummy variable z is not a (random) variable in
the usual sense and that its scope is defined in the standard way.

In the table above, the terms in 7,”*¢ are just basic probabilities with the events given by the
corresponding languages &Epop, Epost-ints OF Ecounterfact- Next, we extend terms by being able to compute
sums of probabilities and by adding the same term several times, we also allow for weighted sums
with weights given in unary. Note that this is enough to state all our hardness results. All matching
upper bounds also work when we allow for explicit weights given in binary. In the case of 7} N we
are allowed to build polynomial terms in the primitives. On the right-hand side of the table, we have
the same three kinds of terms, but to each of them, we add a marginalization operator as a building
block.

The polynomial calculus 77" was originally introduced by Fagin, Halpern, and Megiddo (Fagin
et al., [1990) (for 7 = 1) to be able to express conditional probabilities by clearing denominators.

While this works for 77 Y this does not work in the case of 77 D) gince clearing denominators
with exponential sums creates expressions that are too large. But we could introduce basic terms
of the form P(6;|0) with § € &,,,, explicitly. All our hardness proofs work without conditional
probabilities but all our matching upper bounds are still true with explicit conditional probabilities.

’In the given grammars we omit the brackets for readability, but we assume that they can be used in a standard
way.
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Expression as P(X=1) + P(Y=2) - P(Y'=3) is a valid term in 77°” and 3", P([X=0](Y =1, Z=2))
and 3. P(([X=0]Y'=1), Z=z) are valid terms in the language 77", for example.
Now, let Lab = {base, base(X), lin, lin(X), poly, poly(X) } denote the labels of all variants of lan-

guages. Then for each * € Lab and i = 1, 2, 3 we define the languages £ of Boolean combinations
of inequalities in a standard way:

L:isdefinedby fu=t<t'|-f|fAf, wheret,taretermsin 7.

Although the language and its operations can appear rather restricted, all the usual elements of
probabilistic and causal formulas can be encoded. Namely, equality is encoded as greater-or-
equal in both directions, e.g. P(x) = P(y) means P(z) > P(y) A P(y) > P(x). The number 0
can be encoded as an inconsistent probability, i.e., P(X=1 A X=2). In a language allowing
addition and multiplication, any positive integer can be easily encoded from the fact P(T) = 1, e.g.
4=14+1)(14+1)=(P(T)+P(T))(P(T)+P(T)). If a language does not allow multiplication,
one can show that the encoding is still possible. Note that these encodings barely change the size of
the expressions, so allowing or disallowing these additional operators does not affect any complexity
results involving these expressions.

To define the semantics of the languages, we use a structural causal model (SCM) as in (Pearl,
2009, Sec. 3.2). An SCM is a tuple M = (F, P, U, X), such that V = U U X is a set of variables
partitioned into exogenous (unobserved) variables U = {Uj, Us,...} and endogenous variables
X. The tuple F = {F1,..., F},} consists of functions such that function F} calculates the value of
variable X; from the values (x,u) of other variables in V as F;(pa;, u;) El, where Pa; C X and
U; C U. P specifies a probability distribution of all exogenous variables U. Since variables X
depend deterministically on the exogenous variables via functions F;, 7 and P obviously define the
joint probability distribution of X. Throughout this paper, we assume that domains of endogenous
variables X are discrete and finite. In this setting, exogenous variables U could take values in any
domains, including infinite and continuous ones. A recent paper (Zhang et al.l 2022) shows, however,
that any SCM over discrete endogenous variables is equivalent for evaluating post-interventional
probabilities to an SCM where all exogenous variables are discrete with finite domains. As a
consequence, throughout this paper, we assume that domains of exogenous variables U are discrete
and finite, too.

For any basic &;,~-formula X;=x, (which, in our notation, means do(X,;=x;)), we denote by
Fx,—z, the function obtained from F by replacing F; with the constant function F;(v) := x;. We
generalize this definition for any interventions specified by a € &, in a natural way and denote
as F, the resulting functions. For any ¢ € &,,,,, we write F,u = ¢ if ¢ is satisfied for values
of X calculated from the values u. For o € &, we write F,u = [ofp if Fo,u = ¢. And
for all ¥, Y1, V2 € Ecounterfact» We write (1) F,u = =) if F,u = ¢ and (14) F,u = ¢ Ao
if F,u = 91 and F,u |= 9. Finally, for ¢ € Epunerfacr, let Sop = {u | F,u = ¢}. We
define [[e]on, for some expression e, recursively in a natural way, starting with basic terms as
follows [P(¢))]on = Zuesgﬂ(zp) P(u) and, for 6 € Eypp, [P(¥]0)]on = [P(¥ A §)]Jon/[P()]om,
assuming that the expression is undefined if [P(d)]on = 0. For two expressions e; and e,, we define
M = e < ey, if and only if, [e1]on < [e2]on. The semantics for negation and conjunction are
defined in the usual way, giving the semantics for 91 = ¢ for any formula ¢ in £5.

3We consider recursive models, that is, we assume the endogenous variables are ordered such that variable
X (i.e. function F3) is not affected by any X; with j > <.
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