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Abstract

Many NLP tasks require processing long con-001
texts beyond the length limit of existing pre-002
trained models. To scale these models to003
longer text sequences, many efficient long-004
range attention variants have been recently pro-005
posed. Despite the abundance of research006
along this direction, it is difficult to gauge the007
relative effectiveness of these models in prac-008
tical use cases, e.g., if we apply these models009
following the pretrain-and-finetune paradigm.010
In this work, we aim to conduct a thorough011
analysis of these emerging models with large-012
scale and controlled experiments. For each at-013
tention variant, we pretrain large-size models014
using the same long-doc corpus and then fine-015
tune these models for real-world long-context016
tasks. Our findings reveal pitfalls of a widely-017
used long-range benchmark and show that the018
other efficient attentions fails to outperforms019
the simple local-window attention after stan-020
dard pretraining. Further analysis on local-021
attention variants suggests that even the com-022
monly used attention-window overlap is not023
necessary to achieve good downstream results024
— using disjoint local attentions, we are able025
to build a simpler and more efficient long-doc026
QA model that matches the performance of027
Longformer (Beltagy et al., 2020) with half of028
its pretraining compute.029

1 Introduction030

The quadratic complexity of Transformer architec-031

tures make it prohibitive to apply large state-of-the-032

art pretrained models to full-length documents. To033

efficiently handle longer text while still maintain-034

ing the capacity of attention-based models, a long035

list of efficient attention variants have been pro-036

posed and many claim to effectively capture long-037

range dependencies. Typical paradigms of these038

architecture innovations involve learnable sparse039

attention patterns (Kitaev et al., 2020; Tay et al.,040

2020a; Roy et al., 2021), fixed local patterns (Belt-041

agy et al., 2020; Ainslie et al., 2020; Zaheer et al.,042

2020) and attention matrix approximation meth- 043

ods (Wang et al., 2020; Choromanski et al., 2021; 044

Xiong et al., 2021). While most of these studies 045

have reported numbers on long sequence inputs, 046

they tend to adopt quite different benchmarks. For 047

instance, Reformer (Kitaev et al., 2020) is tested 048

on the 64k-chunk enwik8 dataset for unidirectional 049

language modeling; Performer (Choromanski et al., 050

2021) reports masked language modeling (MLM) 051

perplexity on the PG-19 book corpus and protein 052

sequences; Linformer (Wang et al., 2020) reports 053

MLP perplexity with various input length, while 054

most of documents in their pretrain corpus are short 055

documents.1 The divergence of evaluation proto- 056

cols make it hard to compare the relative perfor- 057

mance of each attention variant and it is also un- 058

known how they perform well in more practical use 059

cases, which typically involve large-scale pretrain- 060

ing and downstream finetuning. 061

Another line of work such as Longformer (Belt- 062

agy et al., 2020) and ETC (Ainslie et al., 2020) 063

conduct experiments on real-world long-context 064

tasks such as long document QA and summariza- 065

tion. These methods only test fixed local atten- 066

tion patterns, i.e., each token can only attend a 067

small set of nearby tokens. To reduce the pretrain- 068

ing cost, these models are all initialized from the 069

RoBERTa (Liu et al., 2019) checkpoint2 before fur- 070

ther long-doc pretraining. While this paradigm is 071

useful to achieve strong downstream performance, 072

it is not ideal for a fair comparison of all available 073

attention mechanisms, due to the fact that some 074

of the models use different parametrization that is 075

incompatible with the vanilla transformer attention. 076

A recently proposed benchmark (Tay et al., 077

2021), named long-range arena (LRA), aims to 078

address the devoid of unified evaluation with a 079

1Short documents are concatenated to form long se-
quences.

2By extending the position embeddings and reusing all
other parameters.
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bundle of long-sequence tasks. However, the text-080

related tasks in this benchmark are either automat-081

ically generated or artificially lengthened by en-082

forcing byte-level inputs, making them rather syn-083

thetic. With a fixed byte-level vocabulary and pre-084

specified model size, all models are trained from085

scratch with the same epoch limit on each dataset.086

While the evaluation protocol is consistent across087

architectures, this setup still deviates from the com-088

mon paradigm of applying Transformer models,089

i.e., standard tokenization like BPE or wordpiece,090

large-scale pretraining followed and task-specific091

finetuning (Devlin et al., 2019). Thus, an impor-092

tant question yet to be addressed is whether the093

results on these artificially datasets are indicative094

for real-world long-context tasks.095

In this work, our goal is to better under-096

stand the effectiveness of various attention mech-097

anisms through a systematic study on practical098

long-context tasks. Instead of only relying on099

language modeling or synthetic tasks, we test100

each model under the standard pretraining-and-101

finetuning paradigm. For a fair comparison, we102

implement these attentions under a unified frame-103

work and test them using the same Transformer104

architecture3 used by RoBERTa-large. We pre-105

train all models using a large corpus that contains106

mostly long documents and then finetune them on107

tasks like long-document question answering, full108

document retrieval and classification. Our exper-109

iments show the discrepancies between the com-110

monly used LRA benchmark and downstream re-111

sults (after pretraining). Additionally, our analysis112

on the best local attention models allows us to fur-113

ther simplify these models and results in a more114

efficient long-context encoder. More specifically,115

the key findings of this paper include:116

• With proper tuning, we find that all the tested117

models can achieve similar level of perfor-118

mance on the LRA benchmark while their per-119

formance diverges significantly on large-scale120

pretraining and downstream tasks;121

• In our experiments, the other attention122

paradigms barely outperform the class of sim-123

ple local attentions on downstream tasks when124

using similar pretraining compute;125

• As a result of our further analysis on the best126

performing attention variants, we are able to127

3We only modify the attention calculation within the multi-
head attention blocks

a) Local window b) Blockwise LW 

Figure 1: Attention pattern visualization of two types
of local attentions: Left: Local window attention as
in Longformer, with window size 2; Right: Blockwise
local window attention with block size 2. The rows
represent the tokens in the sequence and the columns
represent the tokens being attended to.

build a long-doc QA model that is on-par with 128

Longformer while being 2x more efficient. 129

2 Preliminaries of Tested Attention 130

Variants 131

We study three classes of efficient attentions: 132

Fixed local patterns. These methods restrict 133

each token to only attend a local window of to- 134

kens. The long-range interactions are achieved by 135

the depth of the model. We consider two variants 136

of these models, the token-wise local window at- 137

tention (Local Window) proposed in Beltagy et al. 138

(2020) where each token attends to the same num- 139

ber of tokens on each side, and a simplified and 140

easy-to-implement blockwise version (Blockwise 141

LW) (Zaheer et al., 2020) where each token attends 142

to tokens in the same block and half of the tokens 143

in the left/right blocks. A visualization comparing 144

these two models is shown in Figure 1. 145

Learnable sparse attention patterns. Instead of 146

relying on the inductive bias of locality, methods 147

like Reformer (Kitaev et al., 2020) and Sinkhorn 148

Attention (Tay et al., 2020a) allows the model to 149

adaptively select tokens to attend to. Briefly, Re- 150

former uses a learnable hashing function to bucket 151

the sequence and each token only attends to to- 152

kens in the same bucket; Sinkhorn uses a learnable 153

sorting function to learn a permutation of the seg- 154

ments and each token will attend to tokens in its 155

own segment and the corresponding segment after 156

permutation. 157

Kernel-based/Low-rank methods. This class of 158

methods use matrix approximation methods to ap- 159

proximate the full attention function. For sequence 160

length L and the hidden dimension d, Linformer 161
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(Wang et al., 2020) simply uses a projection ma-162

trix (L× k) to reduce the length of key and value163

feature matrix, i.e., from L× d to k × d (k � L).164

Nyström (Xiong et al., 2021) attention adopts a165

classic matrix approximation method which recon-166

structs the full attention matrix using a sampled167

sub-matrix. Performer (Choromanski et al., 2021)168

eliminates the need of explicitly calculating the169

L× L attention matrix by using a random feature170

method that can approximate the softmax kernel171

with only dot-product operations.172

Hybrid attention. In additional to these represen-173

tative methods in each class, our study also includes174

the more recent Long-Short attention (Zhu et al.,175

2021) which has a similar compression compo-176

nent as in Linformer and combines it with local177

attentions. Unlike Linformer’s compression com-178

ponent that is simply implemented as a standalone179

projection matrix, Long-Short proposes an input-180

dependent compression layer, which can adaptively181

reduce the sequence length.182

Due to space limit, we refer the readers to the cor-183

responding papers and a recent survey (Tay et al.,184

2020b) for more thorough model descriptions.185

A note on global tokens. For many practical186

NLP tasks, e.g., classification or entailment, the187

final layer of the models usually requires a single188

sequence-level representation as input. For local189

attention models, it is common practice (Beltagy190

et al., 2020; Zaheer et al., 2020) to mark a single191

or a small number of tokens as global tokens and192

allow these tokens to attend to and be attended193

by all other tokens. Without incurring much com-194

putational cost, these global tokens are important195

to get better sequence representations and achieve196

good downstream results. While the mechanism197

of global tokens has not been used in models with198

learnable attention patterns, it is straightforward199

to augment Reformer and Sinkhorn with global200

tokens using gather operations in standard neu-201

ral network packages, as their attention scores are202

still calculated by dot product and softmax oper-203

ations. Thus, in our experiments, except for the204

kernel-based/low-rank methods, we augment all205

other models with global tokens to offset the poten-206

tial performance gap resulting from this trick.207

3 Experiment Setup208

We restrict our studies to encoder-only models and209

leave the analysis of generative models to future210

work. We begin by implementing a collection of ef- 211

ficient attentions with a unified framework4, which 212

allow us to plug these models into our pretraining- 213

and-finetuning pipeline in a consistent fashion. 214

3.1 LRA Experiments 215

Following recent work on efficient long-range at- 216

tentions, we take the LRA benchmark as our first 217

set of experiments. As our focus here is on NLP 218

tasks, we consider a subset of LRA tasks with text 219

inputs, i.e., the ListOps, IMDB sentiment analysis 220

and text matching tasks. All tasks are formulated as 221

classification problems: ListOps requires the model 222

to predict the correct output of an expression (10- 223

way classification), sentiment analysis is to predict 224

the positive/negative labels of IMDB reviews and 225

text matching aims to predict citation link between 226

papers. We follow the hyperparameter settings of 227

recent work (Xiong et al., 2021; Zhu et al., 2021). 228

Two-layer Transformer encoders are used across all 229

tasks and enough training updates is allowed to en- 230

sure convergence5. Note that this is different from 231

the setup proposed in the original LRA benchmark, 232

where different tasks adopt different model sizes. It 233

is observed from recent work that two-layer models 234

with smaller dimensions are sufficient to achieve 235

similar or better results than previously reported 236

results. The final classification layer is added on 237

top of the representations of [CLS] tokens which 238

are prepended to each sequence. 239

3.2 Pretraining and Downstream Tasks 240

For practical NLP application, large-scale self- 241

supervised training has become an indispensable 242

ingredient to fully unlock the power of Transformer 243

models. In terms of the experiment scale and test- 244

ing settings, there is a clear gap between LRA’s 245

setup and how we apply state-of-the-art Trans- 246

former models in practice. For the second set of 247

experiments, we aims to test these models at scale 248

and investigate whether the results on the LRA 249

benchmark are accurate indicators for real-world 250

long-context tasks after standard large-scal pretrain- 251

ing and finetuning. 252

Pretraining Resource. Following Beltagy et al. 253

(2020), we compile a corpus that contains mostly 254

long documents, including Stories (Trinh and Le, 255

4The code and resources to replicate our study will be
released after the review period.

5The limit of training updates is arbitrarily set in LRA and
various work have reported hugely improved results on the
text matching task, simply by running more training steps.
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2018), RealNews (Zellers et al., 2019), Books cor-256

pus (Zhu et al., 2015) and English Wikipedia. To257

make the experiments manageable and relevant for258

standard GPU hardware, we restrict each model’s259

memory usage close to the 16GB threshold when260

taking 4,096 tokens in each training batch. We261

control the batch size and training update across262

all models: we use a batch size of 256 sequences263

(220 tokens) and pretrain each model using the264

standard masked language modeling objective for265

100k updates. We find that all models’ training266

curves almost stabilize after this amount of training267

steps. We use 32 A100 GPUs for pretraining and268

all model runs are finished within around 2 days.269

Pretraining Architecture In contrast to Long-270

former (Beltagy et al., 2020) and Bigbird (Zaheer271

et al., 2020) where the models are initialized from272

RoBERTa before pretraining on long documents,273

we pretrain these models from scratch, as our goal274

here is to ensure fair comparison and not all archi-275

tectures can reuse weights from a standard trans-276

former model. In particular, Nyström and Per-277

former do not use the standard dot-product and278

softmax to compute attention probabilities, mak-279

ing their parameters not compatible with common280

models like RoBERTa or BERT. Furthermore, other281

models like Linformer or LongShort introduce ad-282

ditional parameters inside the attention module.283

In our initial experiments, we observe initializ-284

ing from the RoBERTa put these models at sig-285

nificant disadvantage compared to other models286

(e.g., local window attention) that are more com-287

patible with vanilla transformers. Apart from the288

expanded position embedding matrix and the at-289

tention blocks, the architecture hyperparameters290

are consistent with RoBERTa-large. For both LRA291

and the large-scale experiments, we adopt the pre292

layer-normalization trick (Xiong et al., 2020) for293

feedforward and attention blocks. This usually re-294

sults in better performance in LRA and turns out295

to be essential for several models in the pretraining296

experiments.6 Additional model-specifc architec-297

ture settings and models’ average memory usage298

can be found in the Appendix.299

Downstream Datasets and Metrics. We con-300

sider practical tasks that naturally involve long301

documents. We test on extractive QA over long302

documents, long document classification and doc-303

6Linformer and Performer cannot reach reasonable per-
plexity without pre-layer normalization.

ument retrieval. For the first two tasks, we use 304

TriviaQA and Hyperpartisan classification respec- 305

tively, both of which have been used in existing 306

long Transformer work (Beltagy et al., 2020). For 307

full document retrieval, we construct the dataset 308

based on recent open-domain QA work (Lee et al., 309

2019) that uses passage-level retrievers. We take 310

an existing passage corpus from Karpukhin et al. 311

(2020) and reconstruct the document-level corpus. 312

We consider a document to be positive if it includes 313

the answer passage. We reported token-level an- 314

swer exact match and F1 for extractive QA and 315

the classification accuracy for Hyperpartisan. For 316

the retrieval task, for the ease of experiments, we 317

reported the mean reciprocal rank on the dev set7, 318

which has been shown to correlate well with fi- 319

nal retrieval metric like answer recall (Oguz et al., 320

2021). We conduct grid search for all tasks and 321

report the best dev results. Given the small size 322

of the Hyperpartisan dataset, we reported averaged 323

results from 4 random seeds. 324

Task-specific Architectures for Finetuning. 325

We use standard architectures for the finetuning 326

tasks: for extractive QA, a single-layer MLP 327

span predictor is added on top the output token 328

representations; the classification task uses a 329

binary MLP classifier that takes the [CLS] vector 330

as input. For retrieval, we share the query and 331

document encoder using our pretrained models 332

and use dot product of the [CLS] vectors as the 333

similarity score. For models that are compatible 334

with global tokens, we use all the question tokens 335

as global tokens in the QA task and use a single 336

global token at the start of the sequences for 337

both classification and retrieval. Except for the 338

Hyperpartisan dataset, the document lengths of the 339

other two datasets usually exceed 4,096 tokens 340

after tokenization. In these cases, we drop the 341

tokens outside the models’ position range. We 342

put further implementation details and each task’s 343

length statistics in the Appendix. 344

4 Results and Analysis 345

4.1 Models Perform Similarly in LRA 346

We report our reimplemented LRA results in Ta- 347

ble 1. While previous work (Tay et al., 2021) have 348

shown clear performance gap between different 349

models, we find that with proper tuning, the results 350

7For each question, the ground-truth document will be
ranked with all documents (both positive and negative) corre-
sponding to the dev-set questions.
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Model ListOps Text Matching Avg Acc GFlops

Learnable attention pattern
Sinkhorn 37.6 63.8 80.4 60.6 0.289
LSH 37.9 62.5 80.5 60.3 0.273

Low-rank/kernel-based approximation
Linformer 37.7 61.9 78.4 59.3 0.271
Nystrom 37.9 66.1 81.0 61.7 0.256
Performer 37.1 66.1 79.8 61.0 0.205

Hybrid attention
Long-Short 37.7 65.7 81.6 61.7 0.199

Fixed attention pattern
Local Window 37.4 65.7 81.6 61.6 0.153
Blockwise LW 37.4 65.6 81.3 61.4 0.146

Table 1: LRA results with our reimplementation.

Model MLM Train Perplexity

Linformer 4.31
Performer 6.36
Blockwise LW 4.04

Table 2: Training perplexity of our best fixed local at-
tention and other faster attention variants. Each model
uses similar GPU memory and training time.

of several models could be significantly improved,351

(e.g., Sinkhorn, Linformer, Reformer, Performer)352

and there is no significant performance gap be-353

tween any of the models when using similar level354

of compute (measure by FLOPS). It is worth not-355

ing that these improved results are not obtained356

by increasing the complexity of models (e.g., by357

using larger bucket size in Sinkhorn), as our imple-358

mentation either use similar or smaller size models359

compared to existing work. Also note that while the360

single global token we added to Sinkhorn and LSH361

might be essential for some performance gains, it362

only brings trivial computation overhead.363

4.2 Pretraining and Downstream Tasks364

We now evaluate these models on practical bench-365

marks that involve real-world long documents. As366

shown in Table 3, after we scale up the experi-367

ments and control the memory consumption of368

each models, we see more clear differences be-369

tween these models than what we observe in LRA.370

Clearly, fixed local attentions remain to be strong371

baselines. However, in contrast to LRA, we ob-372

serve local attentions are significantly better than373

the other attention variants, for both pretraining 374

perplexity and downstream task results. The only 375

exception in terms of the pretraining perplexity is 376

the hybrid Long-Short attention, which already in- 377

tegrates a local attention component: it achieves 378

better perplexity than fixed local attentions, but the 379

downstream results are at most on par with much 380

simpler models like Blockwise LW. It is worth not- 381

ing that while we only control the training updates 382

and memory usage in Table 3, the conclusion still 383

holds if we control the training time of each model: 384

We compare the training perplexity of Blockwise 385

LW attention and other faster models with fixed 386

training time in Table 2. 387

Even though our LRA experiments also study 388

tasks with text inputs, we see clear discrepancies 389

between the two sets of experiments. Apart from 390

models with fixed local attention patterns, improve- 391

ments on these text LRA tasks often do not trans- 392

fer to the standard scaled pretraining-finetuning 393

experiments. For instance, while Performer can 394

outperform most of the non-local attention meth- 395

ods on LRA, it performs poorly on both large-scale 396

MLM and downstream long-context tasks. Simi- 397

larly, while Nyström is significant better than LSH 398

in LRA on average, we observe the opposite trend 399

in Table 3. Among the three tasks, only ListOps 400

is loosely aligned with the MLM perplexity. How- 401

ever, the gaps between each models on this task are 402

still too narrow to be indicative. 403

Given that large-scale pretraining has become 404

the gold-standard paradigm to build state-of-the- 405

art NLP models. Our findings here call for more 406
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careful and reliable evaluation of lots of existing407

and emerging long-range attentions. On the other408

hand, our results also reveal that the local context409

might still be highly essential even in long context410

tasks. In the following section, we conduct further411

analysis on local attention models and attempt to412

identify the key ingredients of building strong NLP413

models for downstream long-context tasks.414

4.3 Analysis on Local Attentions415

As we have seen in §4.2, models that compute ex-416

act attention for local contexts around each token417

achieve better results. Moreover, the Blockwise418

LW variant performs the best even it does not guar-419

antee a balanced left and right context window for420

each token. Given these intriguing findings, we421

aim to investigate the follow questions: How effec-422

tive are the long-range mechanism in local atten-423

tion models? and Whether the studied long-context424

tasks still mostly rely on locality bias?425

Ablation Study. In the Blockwise LW model,426

there are two mechanisms that enable long-range427

connections: the global tokens and the attention428

window overlap, i.e., each token will additionally429

attend to half the tokens in the neighboring blocks430

and the receptive field increases with model depth.431

While both are adopted as common practice in ex-432

isting work (Zaheer et al., 2020; Beltagy et al.,433

2020), we study the isolated effect of each compo-434

nent in both pretraining and finetuning experiments.435

For the non-overlap variant, we increase the block436

size by a factor of 2 such that the amount of to-437

kens each token attends to remains the same. We438

show the results in Table 4. Surprisingly, we see439

different stories in terms of MLM pretraining and440

downstream tasks. While both mechanisms are441

useful for achieving lower MLM perplexity, only442

the global-token mechanism seems important for443

downstream tasks. Note that in the document re-444

trieval tasks, removing both mechanisms results445

in slightly better performance. Now the model is446

only able to use the first block of whole document447

for retrieval. While this seems to suggest that this448

task is highly local and involves strong positional449

bias8, the gap might be too trivial to be conclusive.450

Additionally, we only use a single global token451

for this task, it is likely that assigning more global452

tokens, e.g., at passage boundaries, could bring ad-453

ditional improvements. Investigating the particular454

8The answer context appears in the beginning of the
Wikipedia page.

task further is beyond scope of this work. In terms 455

of the effect of attention-window overlap, it is ex- 456

pected that this scheme is crucial for lower perplex- 457

ity: it not only enables more distant dependencies 458

but also reduces the number of "boundary tokens" 459

which can only attend to one side of the context. 460

However, it is counter-intuitive that the overlap- 461

ping attention links between neighboring blocks, 462

which adds more long-range information, results 463

in worse downstream performance. Also note that 464

this observation is consistent for all the task we 465

studied. There are two possible implications of this 466

finding: 1) the tested tasks still highly depend on 467

locality bias, i.e., most of important information 468

can be captured solely from the local bias or 2) the 469

overlapping scheme is not effective at capturing 470

the long-range dependency in downstream tasks. 471

To confirm either hypothesis, we conduct another 472

set of experiments with models that have access to 473

different sizes of context. 474

On Locality Bias. We take the non-overlapping 475

variant and experiment with various block sizes to 476

see whether longer context is actually important to 477

studied tasks. We show the results in Table 5 and 478

the pretraining curves in Figure 2. While the long- 479

range connections brought by the attention overlaps 480

is not helpful for downstream results, we see that 481

increasing the local block sizes does consistently 482

improve both pretraining and downstream perfor- 483

mance although the improvement becomes modest 484

beyond block size 256. It is also interesting that 485

the models with smaller blocksizes converge faster 486

at the early stage of pretraining. This suggests a 487

staged pretraining process might be more efficient 488

than directly training from long sequences, which 489

aligns with Press et al. (2021)’s finding on unidi- 490

rectional LMs. Overall, this set of experiments 491

suggest that increasing model’s capabilities to cap- 492

ture longer context is generally helpful for both 493

pretraining and downstream tasks. However, using 494

overlapping attention windows is not an effective 495

way to make use of more context. Thus, we hypoth- 496

esize the MLM perplexity improvements of over- 497

lapping local attentions might mainly come from 498

the reduction of the “boundary" tokens instead of 499

the abilities to capture long-range dependencies. 500

For downstream tasks, the issue of “boundary" to- 501

kens is not that essential and the introduction of 502

the overlapping attention windows might disrupt 503

the effective modeling of local context, as the atten- 504

tion module needs to extract both local and distant 505
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Models
MLM Pretraining Downstream Tasks

PPL ↓ k word/sec ↑ TriviaQA Doc Retrieval Hyperpartisan

Learnable attention pattern
Sinkhorn 4.03 11.8 63.3/68.5 80.9 95.0
LSH 3.63 10.0 62.9/67.5 83.6 92.2

Low-rank/kernel-based approximation
Linformer 4.14 24.6 59.8/65.2 80.3 88.7
Nystrom 3.79 9.5 51.5/57.3 83.1 89.5
Performer 5.58 17.2 24.5/31.9 66.8 94.9

Hybrid attention
Long-Short 3.36 8.4 66.5/71.4 84.5 91.5

Fixed local attention pattern
Sliding Window 3.47 9.2 65.6/70.7 83.2 95.3
Blockwise LW 3.39 13.5 68.1/72.9 85.0 95.0

Table 3: MLM pretraining and downstream task results.

Model MLM PPL TriviaQA NQ Doc Retrieval Hyperpartisan

Blockwise LW 3.39 68.1/72.9 85.0 95.0
- w/o overlap 3.52 68.4/73.2 86.3 96.5
- w/o overlap & global tokens 3.54 56.5/61.0 85.4 94.6

Table 4: Ablation of the Blockwise LW Model.

Blocksize Val PPL TriviaQA Ans F1

64 4.16 68.9
128 3.74 70.7
256 3.52 73.2
512 3.39 73.5

Table 5: Pretraining and long-doc QA results of the
non-overlapping blockwise attention.

Blocksize Speed ↑ Ans EM/F1

Longformer (64k) 6.6k 73.1/77.8

Blockwise LW w/o overlap (64k) 14.8k 73.2/77.9

Table 6: Comparing with Longformer with TriviaQA
when initializing the models from RoBERTa. Speed is
measure by thousand word per second at pretraining.

information from the same set of tokens.9506

Initializing from Existing Short Models.507

While we train all models from scratch for the sake508

of fair comparison, existing state-of-the-art long509

context models like Longformer (Beltagy et al.,510

2020) or BigBird (Zaheer et al., 2020) usually511

initialize their longer models from an extensively512

9As the depth of the model increase, the tokens’ represen-
tation will be added information of more distant tokens.
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Figure 2: Pretraining curves of the non-overlapping
block attentions with various context windows.

pretrained short model like RoBERTa (Liu et al., 513

2019). With simple techniques like positional 514

embedding copying, a strong long-context encoder 515

can be initialized without the need of pretraining 516

from scratch. To test our findings from the above 517

analysis in this setting, we follow the same scheme 518

but use the non-overlapping block attention 519

as discussed in §4.3. We compare this model 520

with Longformer (based on Sliding Window 521

attention) as it uses the same long-doc corpus and 522

pretrain-and-finetune pipeline (e.g., packages and 523

7



downstream data processing) as our experiments.10524

Same as our setting in §4.2, here we control the525

batch size and number of training updates: we526

use a batch size of 64 and train the model for527

64k steps. Note that as we drop the attention528

window overlaps, the model is 2x more efficient529

than Longformer: Given the same window/block530

size B and sequence length L, the complexity531

of the non-overlapping block attention is L × B532

compared to Longformer’s 2L×B. We show the533

TriviaQA results in Table 6, where the speed is534

measured by words per second during pretraining.535

With only half of the pretraining compute, our536

model with disjoint attention blocks achieves537

slightly better performance than Longformer. This538

confirms that our findings about the attention539

overlap from above section is still valid when the540

models are not trained from scratch.541

5 Related Work542

Long-Range Context in Language Models.543

Various studies have investigated the effective us-544

age of distant context in unidirectional language545

models. Khandelwal et al. (2018) look into the546

context usage of LSTM LMs and find that these547

models are only capable to make full use of the548

nearby 50 tokens and the longer range context is549

only roughly captured, i.e., excluding detailed infor-550

mation such as word orders. Similarly, O’Connor551

and Andreas (2021) study the mid- and long-range552

context usage in transformer LMs, by manipulat-553

ing the ordering and lexical information in the text.554

Their experiments show that while long-range con-555

text is usually helpful, most of the usable infor-556

mation is carried by local ordering statistics and557

non-function words instead of detailed content like558

sentence orders. These observations provide a pos-559

sible explanation of our ablation experiments in560

§4.3 that adding overlaps to attention windows561

does not yield better downstream results, despite al-562

lowing the capture of more long-range interaction.563

Press et al. (2021) observe diminishing returns as564

they increase the context length when using sliding565

windows at inference time. They propose a staged566

training paradigm which train LMs from smaller567

context to longer ones. This paradigm can more568

efficiently use the training compute and achieves569

lower perplexity compared to directly training with570

10Note that while BigBird has a similar overlapping local
attention and outperforms Longformer, it uses a larger corpus,
more pretraining compute and different finetune pipelines,
making a direct comparison difficult.

long sequences. Given that models with smaller 571

attention windows converge faster at early train- 572

ing steps (Figure 2), the staged training might also 573

benefit MLM pretraining but further investigation 574

is required to validate whether it can also bring 575

downstream improvements. 576

Other Long-Range Architectures. Instead of 577

modifying the attention calculation, other work 578

propose to augment transformers with parametric 579

long-term memories. Transformer-XL (Dai et al., 580

2019) maintains frozen activations of previous to- 581

kens in memory and uses them as additional inputs. 582

To handle the shift of positional information of 583

these activations, it also requires a relative position 584

encoding mechanism which brings additional com- 585

putation cost. The Compressive Transformer (Rae 586

et al., 2020) takes a similar scheme but propose 587

to use compression modules to account for even 588

further memories. Both methods cannot be directly 589

applied to long-context understanding tasks. Under 590

the scheme of kernel-based methods, Katharopou- 591

los et al. (2020); Peng et al. (2021); Schlag et al. 592

(2021) also attempt to linearize the softmax with 593

kernel methods. The core ideas of these methods 594

are similar to Performer and they only differ in the 595

choice of kernel functions. Outside of the trans- 596

former families, a recent work (Lei, 2021) proposes 597

to augment recurrent LMs with minimal attention 598

blocks. It is more efficient while achieving stronger 599

LM perplexity compared to Transformer-XL. How- 600

ever, it is still unknown whether this model scales 601

as well as transformer architectures. 602

6 Conclusion 603

We present a systematic study of recent proposed ef- 604

ficient attention variants on real-world long-context 605

NLP tasks. In contrast to existing work, we are 606

the first to test these models with a set of unified 607

and large-scale experiments. Our results reveal 608

the gap between a widely used benchmark and 609

practical downstream tasks after conducting large- 610

scale pretraining. Among all the studied attention 611

methods, we find that the simplest local attentions 612

outperform other complex attention paradigms on 613

downstream tasks. We also show that existing local- 614

attention models can be further simplified by re- 615

moving the attention-window overlap, resulting 616

in faster model that achieves similar or better re- 617

sults. Importantly, our work calls for more careful 618

and practical evaluation protocols while developing 619

long-context NLP models. 620
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A Appendix792

Downstream Task Hyperparameter Grid

TriviaQA learning rate: 1e-5, 3e-5, 5e-6;
warmup ratio: 0%, 10% of total steps;
random seed: 42, 3, 4321;
batch size: 32;
max epochs: 10

NQ Doc Retrieval learning rate: 1e-5, 5e-6, 3e-5;
random seed: 42, 3;
batch size: 8;
max epochs: 10

Hyperpartisan learning rate: 1e-5, 3e-5;
random seed: 42, 3, 5, 1992;
batch size: 8;
max epochs: 40

Table 7: Hyperparamters of downstream finetuning.

TriviaQA Hyperpartisan NQ doc Retrieval
Average|P95% Average|P95% Average|P95%

769.8|2,067.0 3,333.9|11,444.3 6,732.9|17,493.4

Table 8: Document length statistics in the tested down-
stream datasets.

Downstream Task Details. On TriviaQA, there793

are usually multiple matched spans in the docu-794

ment, we train the model to maximize the marginal-795

ized probability of all matched spans. The predic-796

tion head in the classification task is defined as a797

2-layer MLP with tanh activations. For the retrieval798

task, we follow existing passage retrieval methods799

and use in-batch documents as negative retrieval800

targets. The loss is simply a cross-entropy loss de-801

fined over the scores of all documents in the batch.802

All the models are finetuned using the Adam opti-803

mizer with linear decays. We conduct grid search804

for all the tested models. The hyperparameters for805

all the three tasks are shown in Table 7. In Table 8,806

we show the average and the 95% percentile of the807

document lengths in each dataset. As mentioned in808

the main text, we drop the tokens exceeding 4,096809

tokens.810

Pretraining Details. Our pretraining pipeline is811

implemented with fairseq11. We control the mem-812

ory usage of each model by adjusting model-813

specifc hyperparameters. The details in shown in814

Table 9. Due to different model designs, we are not815

able to exactly control the memory consumption.816

11https://fairseq.readthedocs.io/en/
latest/

However, the tested local attentions typical requires 817

less GPU memory than all the other models. 818

11

https://fairseq.readthedocs.io/en/latest/
https://fairseq.readthedocs.io/en/latest/


Model Avg Memory Usage (GB) Architecture Setting

Sinkhorn 14.2 block size: 128
LSH 18.2 num of hash functions: 4; chunk size: 16
Linformer 17.2 compression ratio: 8
Nystrom 16.3 num of landmarks: 256; convolution kernel size: 35;
Performer 14.2 random feature dimension: 256; kernel function: relu
Long-Short 16.3 block size: 128; num of landmarks: 32
Sliding Window 15.3 attention window size: 256
Blockwise LW 15.1 block size: 128; overlap: 64

Blockwise LW w/o global toks 14.7 block size: 128
Blockwise LW w/o overlap 13.4 block size: 256
Blockwise LW w/o overlap & global 13.2 block size: 256

Table 9: Model-specific architecture settings and each model’s GPU memory usage when feeding in a single
sequence of 4,096 tokens.
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