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Abstract

Even though deep neural networks (DNNs) achieve state-of-the-art results for
a number of problems involving genomic data, getting DNNs to explain their
decision-making process has been a major challenge due to their black-box nature.
One way to get DNNs to explain their reasoning for prediction is via attribution
methods which are assumed to highlight the parts of the input that contribute to
the prediction the most. Given the existence of numerous attribution methods
and a lack of quantitative results on the fidelity of those methods, selection of an
attribution method for sequence-based tasks has been mostly done qualitatively. In
this work, we take a step towards identifying the most faithful attribution method
by proposing a computational approach that utilizes point mutations. Providing
quantitative results on seven popular attribution methods, we find Layerwise Rele-
vance Propagation (LRP) to be the most appropriate one for translation initiation,
with LRP identifying two important biological features for translation: the integrity
of Kozak sequence as well as the detrimental effects of premature stop codons.

1 Introduction

Advancements in machine learning, and deep learning in particular, have contributed to many
discoveries in computational biology in recent years, perhaps the most famous research effort being
AlphaFold for protein structure prediction [1]. Nevertheless, using DNNs to uncover highly sought-
after biologically relevant features remains a non-trivial task [2]. To accomplish this task and to
get DNNs to explain their complex reasoning, numerous attribution (also called explainability and
interpretability) methods have been employed, with most of these attribution methods originating
from the field of computer vision [3]. Unfortunately, even on image data these methods often disagree
with each other (see Figure 1). Furthermore, recent research efforts show that the usage of attribution
methods may lead to misleading results due to attribution methods not generalizing well or making
unjustified causal interpretations [4, 5, 6].

Given the evidence on the instability of attribution methods as well as the availability of a number of
unique attribution methods, how can one go about picking the most appropriate attribution method
for interpreting DNNs trained with genomic data? A popular method to evaluate the fidelity of
attributions for genomic data has been via the usage of synthetic data [7, 8, 9]. Synthetic data in
the context of genomics refers to the creation of sequences that contain certain (known) features,
such as motifs. Then, the evaluation of attribution methods is performed via observing whether they
detect these implanted features or not [9]. In most cases, synthetic data is preferred over genuine data
because it can be modified at will, so that specific, quantitative evaluations can be made. On the other
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(a) Images

ACTGGGCTATGGCATATC...GTATGCCCATGACGATACGAT

(a) Genomic data

Figure 1: An illustration of conflicting attribution maps for (left) breast cancer detection using
images [20] and (right) motif detection using genomic data [9].

hand, measuring the generalization of observations from synthetic to real data is not straightforward
and, in many cases, an open question. Unlike previous research efforts that employ synthetic data,
we will demonstrate in this work the usefulness of point mutations in genuine data to evaluate the
interpretability of DNN methods.

Point mutations, in which a single nucleotide is mutated into another one, have a long history in
molecular biology in identifying the genetic basis of inherited disases. Although in this context such
mutations have been explored mostly in vitro in the past, CRISPR-Cas9 based genome editing enabled
an easier and swifter approach [10]. Likewise, these mutations are also employed for computational
methods to decipher gene function and regulation [11, 12]. Taking inspiration from these efforts, we
employ point mutations to understand the predictions of DNNs.

Employing the relatively well-documented genomics problem of translation initiation site (TIS)
detection, we attempt to make a quantitative evaluation of seven popular attribution methods
(DeepLift [13, 14], Integrated Gradients [15], LRP [16], Gradient Shap [17], Guided
Backpropagation [18], Kernel Shap [17], and Deconvolution [19]). With large-scale exper-
iments, we not only reveal large discrepancies between attribution outcomes, we also show how
certain attributions can correctly identify well-known biological features.

2 Experimental Settings

Translation initiation site detection – A cornerstone of the central dogma of molecular biology
is translation, which denotes the synthesis of appropriate proteins from mRNA molecules [21, 22].
Protein synthesis is principally regulated at the initiation stage, with initiation referring to the
assembly of the 80S ribosome in eukaryotes at the start codon with the help of a number of eukaryote
initiation factors [23, 24]. As such, precise identification of the translation initiation site on mRNAs
is crucial for accurate protein synthesis [22]. TIS detection is a complex problem which found a
number of well-recognized solutions that leverage DNNs in recent years [25, 26, 27]. Moreover,
the availability of public datasets also makes it an attractive problem for model benchmarking. And
finally, the biological processes regulating this process on genome-level are relatively well understood
compared to a number of other sequencing problems [23]. Thanks to the properties above, we select
TIS-detection to evaluate the faithfulness of attribution methods.

Data – We make use of the Human-TIS, CCDS, and Chromosome-21 TIS detection datasets published
by [28, 29] where the sequences in these datasets are gathered from human DNA sequences (see the
supplementary material for details). TIS-detection is a 2-class classification problem with inputs
composed of various permutations of four base pairs (bp) (A,C, T, G). The datasets contain sequences
consisting of 203 bp with 60 bp in the 5’ untranslated region (UTR) and 140 bp downstream of the
canonical translation initiation site (ATG). A unique property of these data is the codon starting at
position 61, which denotes the start of translation. We assign an index of +1 to A in ATG at position
61 and we label upstream (UTR) and downstream (coding region) nucleotides with decreasing and
increasing numbers, respectively.
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Figure 2: (top) Histogram of mutations per position that, when performed, change the prediction
made by the model from TIS-positive to TIS-negative and (bottom) distribution of mutations when
separated into non-sense and others.

Model – We use the TISRover architecture described in the work of Zuallaert et al. [27] which
achieves state-of-the-art results on this data. Detailed results on the model performance as well as the
training routine are provided in the supplementary material.

Attribution methods – As mentioned in Section 1, we evaluate seven commonly used attribution
methods given in Section 1. For the implementation of these methods we use the PyTorch Captum
library [30]. More details for these attribution methods can be found in their respective paper as well
as the comprehensive works of [3, 31].

3 Experimental Results
3.1 Mutations

Given a TIS-positive sequence consisting of 203 bp, we create 600 newly mutated sequences by
transforming bp at each position, one at a time, with the other three bases for 200 positions (not
mutating the ATG at position 61). Our goal in performing this task is to analyze TIS-positive sequences
that have their predictions changed to TIS-negative with the introduction of a single point mutation.
Biologically, this means that, due to the introduced mutation, translation either fails or does not begin
and the protein is not properly synthesized.

With the above process, we create 717, 000 mutated sequences originating from 1, 195 initially
correctly classified TIS-positive sequences. Of those mutated sequences, we observe that 18, 682
have their predictions changed from TIS-positive to TIS-negative, with mutations causing this change.

In Figure 2, we provide the histogram of mutations where the mutation of base pairs to other bases in
the graph cause a TIS-positive sequence to be classified as a TIS-negative. Based on results presented
in Figure 2, we can align certain patterns with well-known biological features.

Importance of Kozak sequence – For humans as well as other higher eukaryotes, the sequence
nearby the start codon is determined to play a significant role in translation initiation, with this
(Kozak) sequence defined as 5’- GCCRCCATGG -3’ with R representing a purine (i.e., A or G) and
ATG representing the start codon [32]. It was discovered that the most influential base pairs in this
sequence are the ones in position -3 (R) and +4 (G) relative to the start codon. Our experiments
indicate that mutations made in these positions are also the ones that impact the prediction the most,
with mutations on position -3 and +4 (often to T, which is the least occurring base pair in Kozak
sequence) having the largest influence over prediction.

Premature stop codons – The final stage of translation is termination, which signifies the end of the
elongation of the peptide-chain, with this process requiring an in-frame stop codon (TAA, TGA, TAG).
Premature termination of translation due to the introduction of a non-sense mutation often leads to
specialized processes which prevent the creation of faulty proteins [33]. Our experiments indicate
that most of the mutations that lead to TIS-negative prediction are the ones that create a stop codon
and thus lead to a non-sense mutation. We provide the proportion of non-sense mutations to others in
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Match Region DeepLift Integrated LRP Gradient Guided Deconvolution Kernel
Gradients Shap Backprop Shap

E
xa

ct

Anywhere 41.9% 44.3% 45.1% 36.4% 42.0% 27.8% 7.0%
· Kozak 32.8% 46.0% 46.7% 43.1% 37.4% 27.2% 13.3%
· Upstream 20.1% 28.0% 29.6% 25.0% 22.7% 18.7% 7.3%
· Downstream 49.1% 49.6% 50.2% 40.2% 48.3% 30.8% 6.9%
· · Stop codons 96.7% 96.5% 97.9% 78.1% 96.6% 60.2% 11.4%
· · · TAA 96.5% 96.4% 97.9% 77.1% 96.5% 63.6% 10.3%
· · · TAG 97.4% 97.2% 98.3% 79.5% 96.9% 59.4% 12.1%
· · · TGA 95.3% 95.2% 97.0% 76.2% 96.0% 58.4% 10.8%
· · Other 2.3% 3.6% 3.3% 3.0% 1.0% 1.9% 2.5%

Table 1: Percentage of attribution maps created with methods in the first row that identify mutations
which occur in various regions of the sequence using the methodology described in Section 3.2.

Figure 2 where it is clear that these mutations mostly cause strong TIS-negative signals downstream
of the start codon, as opposed to upstream.

3.2 Attributions

The purpose of attribution methods is to identify important regions of the input data under considera-
tion, where the information contained in these regions leads the examined DNN to make the type
of prediction it makes [18]. Outputs of attribution methods are often called attribution maps, and
contain a measure of relative importance for each input location (e.g., pixel positions for images or
nucleotide positions in genomic data).

By employing the seven attribution methods given in Section 1 and by utilizing the 18, 682 mutated
sequences that result in a TIS-negative prediction, we create 130, 774 attribution maps. Based on
these attribution maps we identify the most important bp position as the location of largest attribution.

Mutation identification by attribution methods – Given the nature of the experimental routine
discussed in Section 3.1, we were able to identify the position that contributes the most to a TIS-
negative prediction made by the model. Now, we investigate whether or not attribution methods can
identify the positions of those mutations. Note that, although mutations occur at the DNA level, their
effects may become apparent at the amino-acid level, which is the reason for stop codons having
particular effects as discussed above. As a result of this, we evaluate the match for attribution on
the level of codons, meaning that, if the attribution map highlights any of the three base pair of the
mutated codon, we consider it a correct match. Furthermore, for mutations occurring in the Kozak
sequence, we also consider an attribution to be a correct one if it highlights any region of the Kozak
sequence.

Based on the evaluation routine described above, we provide Table 1 which contains the percentage
of attribution maps that are able to identify mutated codons for different regions of the sequence.
Surprisingly, we observe that attribution methods have large discrepancies among each other when
identifying appropriate regions, with LRP being the most accurate attribution method in identifying
mutated codons. Furthermore, we also observe that stop codons that cause a premature termination
of translation can be identified with a surprising accuracy (+97%) even though these mutations
are spread all over the downstream area (see Figure 2). Yet, for other mutations that occur in the
downstream region, the accuracy of attribution shows a dramatic drop.

4 Conclusions
Utilizing the point mutations which see common use both in vivo and in vitro experiments, in this work,
we performed a quantitative evaluation of attribution methods for DNN interpretability. We identified
LRP to be the most accurate attribution method, with this method identifying biologically relevant
features with surprising accuracy, yet still failing for half of the mutation scenarios, which raises the
following question: why can attribution methods identify non-sense mutations in downstream regions
extremely accurately, yet fail to identify other types of mutations? Supporting the observations
of [7] we also believe the answer lies in the evaluation of multiple models with varying degrees
of performance in order to measure the correlation between the performance of the model and its
ability to identify mutations. Nevertheless, we demonstrated that attribution methods, while being
imperfect, can highlight regions relevant to the prediction for translation initiation and urge future
research efforts to employ biologically significant experimentations for other datasets as well as for
other models in order to discover faithfulness of proposed methods.
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Appendix
Data – An overview of the datasets used in this study is given in Table 2 which details the positive to
negative ratio of the labels as well as total number of sequences that fall into each category.

Pre-processing – We use the standard one-hot-encoding routine for genomic data as described in the
work of [27, 34] which converts the genomic representation from strings to vectors as follows:

x = [ N−60 N−59 . . . N−2 N−1︸ ︷︷ ︸
Upstream

ATG N+4 N+5 . . . N+142 N+143︸ ︷︷ ︸
Downstream

] . (1)

with Nk ∈ {[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]} for A, C, T, and G, respectively. We also em-
ploy with masking as an augmentation technique in order to improve the accuracy of the model where
we replace one-hot representations of bp with empty representations. This operation corresponds to
replacing the above vector depictions with a zero vector (i.e., [0, 0, 0, 0]).

Model performance – [28] argues that commonly used metrics such as accuracy, true positive
rate, and false positive rate can be misleading for datasets with an extreme skew in labels such as
Chromosome-21 and proposed the usage of false-positive rate at fixed sensitivity of 0.8 (FPR.80) for
benchmarking in TIS-detection. For easy comparability to the previous research efforts, we also use
FPR.80 as an error measurement and provide the results of the best-performing models in Table 3.

Dataset Total TIS-positive sequences TIS-negative sequences Positive/Negatie ratio Source

CCDS 364,495 13,917 350,578 0.0396 [28]
Chromosome-21 1,267,701 258 1,267,443 0.0002 [28]
Human-TIS 2,718 1,359 1,359 1 [29]

Table 2: Details of TIS-detection datasets used in this study.

Model FPR.80

Saeys et al. [28] 0.125
TIS-Rover (reported in [34]) 0.031
TIS-Rover (reproduced) 0.032
TIS-Rover (trained with SGD) 0.030
TIS-Rover (SGD + bp masking) 0.029

Table 3: FPR.80 performance of models on Chromosome-21 dataset.

Distance between attributions and mutations – In the main text, in order to measure the correctness
of attribution maps, we measured the whether or not the largest attribution location lies within one of
the three bp of the codon that is mutated. In Table 4, we provide experimental results for showing
mean and median codon distance between the attributions and mutations for the same regions. With
the results displayed in Table 4, we show that, for mutations that do not occur in the Kozak sequence
or the ones that do not create a stop codon in downstream region, attribution methods highlight
regions that are, on average, far away from the mutations.
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Match Region DeepLift Integrated LRP Gradient Guided Deconvolution Kernel
Gradients Shap Backprop Shap

D
is
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e
to
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io

n

Anywhere 9.3 (3) 8.7 (2) 8.9 (2) 9.9 (5) 10.8 (3) 17.3 (13) 17.2 (15)
· Kozak 10.3 (7) 6.9 (0) 8.4 (4) 6.8 (0) 10.6 (7) 13.0 (16) 14.3 (11)
· Upstream 14.2 (11) 10.5 (8) 11.1 (7) 10.4 (8) 13.1 (9) 10.2 (9) 16.6 (12)
· Downstream 7.6 (1) 8.1 (1) 8.1 (0) 9.8 (3) 10.0 (1) 19.6 (19) 17.4 (16)
· · Stop codons 1.0 (0) 1.2 (0) 0.8 (0) 3.9 (0) 1.5 (0) 12.1 (0) 16.1 (14)
· · · TAA 1.2 (0) 1.3 (0) 0.9 (0) 4.0 (0) 1.6 (0) 11.9 (0) 16.5 (14)
· · · TAG 0.7 (0) 0.9 (0) 0.7 (0) 3.6 (0) 1.4 (0) 11.4 (0) 15.9 (14)
· · · TGA 1.4 (0) 1.8 (0) 1.2 (0) 4.6 (0) 1.7 (0) 13.5 (0) 16.1 (14)
· · Other 14.7 (13) 15.4 (13) 15.9 (14) 16.0 (14) 19.0 (17) 27.6 (28) 18.7 (17)

Table 4: Mean (median) distance between the codon highlighted by attribution maps created with
methods in the first row and codons that are mutated. The results are provided separately for a number
of regions in the second column.
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