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ABSTRACT

Neural operators extend data-driven models to map between infinite-dimensional
functional spaces. These models have successfully solved continuous dynami-
cal systems represented by differential equations, viz weather forecasting, fluid
flow, or solid mechanics. However, the existing operators still rely on real space,
thereby losing rich representations potentially captured in the complex space by
functional transforms. In this paper, we introduce a Complex Neural Operator
(CONO), that parameterizes the integral kernel in the complex fractional Fourier
domain. Additionally, the model employing a complex-valued neural network
along with aliasing-free activation functions preserves the complex values and
complex algebraic properties, thereby enabling improved representation, robust-
ness to noise, and generalization. We show that the model effectively captures the
underlying partial differential equation with a single complex fractional Fourier
transform. We perform an extensive empirical evaluation of CONO on several
datasets and additional tasks such as zero-shot super-resolution, evaluation of out-
of-distribution data, data efficiency, and robustness to noise. CONO exhibits com-
parable or superior performance to all the state-of-the-art models in these tasks.
Altogether, CONO presents a robust and superior model for modeling continuous
dynamical systems, providing a fillip to scientific machine learning. Our code im-
plementation is available at https://anonymous.4open.science/r/anonymous-cono.

1 INTRODUCTION

Continuous dynamical systems span various scientific and engineering fields, such as physical sim-
ulations, molecular biology, climatic modeling, and fluid dynamics, among others Debnath & Deb-
nath (2005). These systems are mathematically represented using PDEs, which are numerically
solved to obtain the system’s time evolution. The resolution of PDEs necessitates the identification
of an optimal solution operator, which maps from functional spaces encompassing initial conditions
and coefficients. Achieving this mapping entails discretization procedures for the data capture. Tra-
ditionally, numerical methods, such as finite element and spectral methods, have been employed to
approximate the solution operator for PDEs. However, these approaches often incur high computa-
tional costs and exhibit limited adaptability to arbitrary resolutions and geometries (Sewell, 2012;
Ŝolı́n, 2005).

Recently, neural operators have shown promise in solving these PDEs in a data-driven fashion (Ko-
vachki et al., 2021). Neural operators extend the neural network to map between infinite dimensional
functional space and are a universal approximation of the operator (Kovachki et al., 2021). Operator
learning was first proposed by Lu et al. (2021), namely, DeepOnet, which theoretically established
the universal approximation of operators. DeepONet consists of a branch net and trunk net, where
the branch learns the input function operator, and the trunk learns the function space onto which
it is projected. Another widely used architecture, Fourier Neural Operator (FNO), a frequency do-
main method (FDM), was proposed by (Li et al., 2020), which consists of uplifting Fourier kernel-
based integral using fast Fourier transform and projection blocks. Following this, several frequency
transformation-based kernel integral neural operators have been proposed. For instance, Fanaskov &
Oseledets (2022) introduced spectral methods such as Chebyshev and Fourier series to avoid alias-
ing error and opaque output in FNO, Tripura & Chakraborty (2022) blends integral kernels with
wavelet transformation, which uses time-frequency wavelet localization.
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Despite several successes of operator learning for solving PDEs, Bartolucci et al. (2023) showed
that several problems persist and must be addressed. These include aliasing errors, generalization,
robustness to noise, and structure-preserving equivalent operator (Bartolucci et al., 2023; Fanaskov
& Oseledets, 2022). Operators must respect the continuous-discrete equivalence while learning the
underlying operation, not just a discretized version. This is challenging since the data used for
training the operator is provided as a discretized version of the continuous field. As at any finite
resolution, the possible mismatch between the continuous-discrete version should not introduce any
lead-in error, i.e., this should not lead to any aliasing error (Michaeli et al., 2023). Several opera-
tors, such as FNO, suffer from continuous-discrete equivalence, i.e., aliasing error, introduced by
pointwise activation.

In the realm of data-driven methods, introducing a learnable order for the fractional discrete Fourier
transform (Candan et al., 2000), which facilitates the seamless integration of features between the
time and frequency domains, has been an open research problem. However, this concept becomes
less clear when applied to the study of continuous systems, representing a broader, more general-
ized form of the Fourier transform. Recent research by Raonić et al. (2023) has significantly ad-
dressed the challenge of aliasing errors within the operator framework. Their approach involves the
utilization of convolution operators explicitly parameterized in the physical space, diverging from
traditional frequency domain methods. Moreover, they have harnessed UNET-based architectures
(Ronneberger et al., 2015) to enhance the architecture’s efficiency and memory utilization. It is
also worth noting that the study conducted by Shafiq & Gu (2022) emphasizes the critical role of
overparametrization in achieving superior generalization and optimization performance.

Another aspect that has received less attention is the complex representation of FDMs. The tra-
ditional FDMs in operator learning, including FNO, do not perform non-linear transformations on
the complex representations of the Fourier transform. Thus, these models do not exploit the rich
representations of complex numbers. The allure of complex number representations has grown con-
siderably due to their ability to capture richer information through phase information (Nitta, 2009)
in complex neural networks (Hirose, 2012). They exhibit advantages such as faster convergence
(Danihelka et al., 2016; Arjovsky et al., 2016) and improved generalization (Hirose & Yoshida,
2012). While Trabelsi et al. (2017) highlighted the benefits of combining complex neural networks
with their real representation counterparts, their application in the Operator learning framework re-
mains largely unexplored.

Our Contributions. To address these challenges, we present an operator that utilizes Complex neu-
ral networks based on frequency domain representations in this work. Specifically, we introduce the
Complex Neural Operator (CONO), a novel deep learning operator designed to establish mappings
between infinite-dimensional functional spaces. Table 1 compares several features of CONO with
other existing operators. Our contributions are outlined as follows:

1. Complex Neural Operator: CONO represents the first instance of a Complex Neural
Operator that performs operator learning employing a complex neural network.

2. Fractional Kernel Integral: CONO parameterizes the integral kernel within the com-
plex fractional Fourier transform using a single transformation operation with learnable
fractional parameters, thereby reducing the number of transformations in comparison to
previous operators.

3. Data efficiency and Robustness to noise: CONO demonstrates high generalization even
with minimal samples, data instances, and training epochs. Specifically, CONO gives the
same performance as FNO with 1/4 size of the training data. Further, CONO exhibits
improved robustness to noise in the training or testing dataset compared to SOTA operators.

2 PRELIMINARIES

2.1 OPERATOR LEARNING FRAMEWORK

Problem Setting: We have followed and adopted the notations in Li et al. (2020). Let us denote
a bounded open set as D ⊂ Rd, with A = A(D;Rda) and U = U(D;Rdu) as separable Banach
spaces of functions, representing elements in Rda and Rdu , respectively. Consider G† : A → U to be
a nonlinear mapping, arising from the solution operator for a parametric partial differential equation
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Operators FDM Alias Free Learnable Order Downscaling Complex Rep

DeepONet % % % % %

FNO ! % % % %

WNO ! % % % %

SNO ! ! % % %

CoNO (Ours) ! ! ! ! !

Table 1: Comparison of the features of different neural operators with CONO.

(PDE). It is assumed that there is access to independent and identically distributed observations
(aj , uj)

N
j=1, where aj ∼ µ, drawn from the underlying probability measure µ supported on A, and

uj = G†(aj).

The objective of operator learning is to construct an approximation for G† via a parametric mapping
G : A×Θ → U , or equivalently, Gθ : A → U, θ ∈ Θ, within a finite-dimensional parameter space
Θ. The aim is to select θ† ∈ Θ such that G(·, θ†) = G†

θ ≈ G†. This framework facilitates learning
in infinite dimensional spaces as the solution to the optimization problem in Equation 1 constructed
using a with a loss function L : U × U → R.

min
θ∈Θ

Ea∼µ

[
L(G(a, θ), G†(a))

]
, (1)

In neural operator learning frameworks, the above optimization problem is solved using a data-
driven empirical approximation of the loss function akin to the regular supervised learning approach
using train-test observations. Usually, Gθ is parameterized using deep neural networks.

2.2 COMPLEX NEURAL NETWORKS

In our proposal, we use complex neural networks for approximating Gθ. Here, each neuron will sep-
arately output a real and an imaginary part. As demonstrated by Nitta (2002) Nitta (2009), complex
neural networks often outperform their real-valued counterparts on function approximation tasks.
Notably, since they have both real and imaginary parts, they can facilitate learning of mutually or-
thogonal decision boundaries in the real and imaginary domains, thereby enhancing generalization
capabilities. Furthermore, it was observed that critical points in complex neural networks predomi-
nantly manifest as saddle points rather than local minima, in contrast to real-valued neural networks
Nitta (2002; 2009). It is noted that stochastic gradient-based optimization algorithms such as SGD
can largely avoid saddle points but not local minima (Lee et al., 2016; Jin et al., 2017). Addi-
tionally, complex neural networks exhibit improved training efficiency and enhanced generalization
compared to standard CNNs Ko et al. (2022).

Note that the activation functions employed in complex neural networks should also respect the
complex operations. In our method, we incorporate Complex GeLU (CGeLU) activation functions,
which apply independent GeLU (Hendrycks & Gimpel, 2016) (Lee, 2023) functions to a neuron’s
real and imaginary components, respectively. Formally, this can be expressed as:

CGeLU(z) = GeLU(Re(z)) + iGeLU(Im(z)). (2)

The CGeLU activation function satisfies the Cauchy-Riemann equations when the real and imagi-
nary parts are strictly positive or negative.

2.3 FRACTIONAL FOURIER TRANSFORM

In the Operator Learning framework, Operators are defined via architectures comprising functional
compositions of integral transforms and nonlinear activation functions in the operator learning
framework. For instance, while in DeepONet Lu et al. (2021), integral transforms happen in the
physical domain, FNO Li et al. (2020) incorporates integral transforms in the frequency domain. In
our architecture, we propose to use the Discrete Fractional Fourier Transform (FrFT) with learnable
order as the integral transform. This enables learning anywhere ‘in between’ the physical and the
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frequency domains. This transform can be of great interest in deep learning due to its ability to
capture different types of frequency content and directional features present in data.

Fractional Fourier Transform (FrFT) is a mathematical operation that generalizes the classical
Fourier transform by introducing a parameter that controls the transform’s degree of rotation (Oza-
ktas et al., 1996). Formally, the FrFT of a function f(x) with respect to the fractional order α is
defined as:

Fα[f ](u) =
√
1− i cot(α)eiπ cot(α)u2

∫
e−2πi(csc(α)ut− cot(α)

2 x2)f(t)dt . (3)

In the above Equation 3, α is the fractional order, u is the transformed variable, and sgn(t) is the
signum function applied to the variable t.

2.4 MITIGATION OF ALIASING

The operator learning framework necessitates approximation through non-linear operations, includ-
ing non-linear pointwise activations, which may introduce arbitrarily high-frequency components
into the output signal. The emergence of nonlinearity-induced aliasing can precipitate the symmetry
distortion inherent in the physical signal, consequently leading to adverse effects. Moreover, trans-
lational invariance, desired in a neural operator, is susceptible to degradation due to aliasing (Karras
et al., 2021; Bartolucci et al., 2023).

We employ a two-step process to mitigate aliasing errors within the operator learning paradigm for
continuous equivariance. First, before applying any activation function, we upsample the input func-
tion at a rate exceeding its frequency bandwidth. Subsequently, we apply a non-linear operation to
the upsampled signal, then apply a sinc-based filter (Yaroslavsky, 2002) followed by downsampling.
The sinc-based low-pass filter effectively attenuates higher frequency components in the output sig-
nal, thus averting aliasing artifacts and preserving the complex domain information. This approach
minimizes aliasing in the operator learning framework, as demonstrated empirically later (Sec. 4.6),
maintaining the fidelity and integrity of the physical signal.

3 COMPLEX NEURAL OPERATOR (CONO)

Complex Fractional
Layer

U

U

a(x) P R

Inversion

Q Q'

Inversion

R' P' u(x)

FrFT FrFT-1

V2(x)

W

+ σ

Complex Domain

Figure 1: The full architecture of CONO. (1) Input function a(x) is projected into higher dimen-
sion through P operation. (2) P is passed through the R operation, which converts the embedding
from a real to a complex domain. (3) Lift operation is applied to Q in the complex domain to obtain
v2(x) (4) v2(x) is passed through a complex fractional integral operator with learnable order param-
eters where U denotes complex UNET. (5) Then, projection operation Q′ is applied to the output.
(6) Then it is passed through operation R′, which converts the output from the complex to the real
domain. (7) Lastly, the operation P ′ maps to output function u. Inversion denotes the discretization
inversion operation on which the complex integral transform is trained during super-resolution.
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In this subsection, we introduce our proposed architecture, Complex Neural Operator CONO. Our
goal is to construct the operator in a structure-preserving manner where we band-limit a function
over a given spectrum (Vetterli et al.), thus preserving complex continuous-discrete equivalence such
that Shannon-Whittaker-Kotel’nikov theorem is obeyed for all continuous operations (Unser, 2000).

Let a : DA → RdA denote the input function. We initiate the procedure by applying a point-wise
operator P to a and obtaining v0 : DA → Rd0 . The point-wise operator P is parameterized as
Pθ : RdA → Rd0 , which operates as v0(x) = Pθ(a(x)) for x ∈ D0, where D0 = DA. Typically,
Pθ is realized as a deep neural network. In this paper, we set d0 ≫ dA, designating P as a lifting
operator.

Subsequently, we apply the operator Q to v0(x). This operator is realized as a Complex Convolu-
tional Neural Network (CCNN) with a residual connection, as depicted in Figure 1. This facilitates
discretized inversion, thereby maintaining continuous-discrete equivalence through functional in-
terpolation in the complex domain. We compute v1 : Dv0 → Rd1 using v1(x) = Qθ(v0(x)) for
x ∈ Dv0

, where Qθ : Rdv0 → Rdv1 .

Subsequent to this, we employ a complex point-wise operator R on v1 to obatain v2 : D1 → Rd2 .
The point-wise operator R is parameterized as Rθ : Rd1 → Rd2 , operating as v2(x) = Rθ(v1(x))
for x ∈ D1, implemented as a complex deep neural network. In this work, we set d2 = d1.

Following this, we employ a complex fractional nonlinear operator on v2(x), to obtain v3(x), which
involves a complex UNET-shaped operator with a 3 × 3 kernel size. During upsampling, zero
padding is applied to the signal and convolved with a sinc-based low-pass filter. Downsampling,
on the other hand, involves removing the signal components outside the spectrum. This process
is implemented using filter-based convolution, accompanied by removing the signal samples at the
indices corresponding to padding done during upsampling.

Specifically, v3 : Dv2 → Rd3 is calculated as v3(x) = Wv2(x) + K(α;ϕ)v2(x) + K ′(ϕ)v2(x),
where K(α;ϕ) and K ′(ϕ) are kernel integral transformation and convolutional operators, respec-
tively, parameterized by complex neural networks. Here, α represents the fractional complex Fourier
transform with a learnable order parameter, and W denotes pointwise complex convolution. In the
complex UNET encoding stage, the input function is mapped to vector-valued functions character-
ized by increasingly contracted domains and higher-dimensional co-domains. Specifically, for each
i, we have µ(Di) ≥ µ(Di+1) and dvi+1

≥ dvi . For this to be feasible, in this study, without loss of
generality, we adopt the Lebesgue measure µ for µi’s.

Further, we apply the R′ operation to v3, leading to the computation of v4 : D3 → Rd4 . The point-
wise operator R′ is parameterized as R′

θ : Rd3 → Rd4 , acting as v4(x) = Rθ(v3(x)) for x ∈ D3.
Typically, R′

θ is realized as a complex deep neural network. In this paper, we set d3 = d4.

Lastly, we employ a Complex CNN with a residual connection to transition from the complex do-
main to the real domain. This results in the computation of v5 : Dv4 → Rd5 , where v5(x) =
Q′

θ(v4(x)) for x ∈ Dv4 , and Q′
θ : Rdv4 → Rdv5 . Finally, we utilize the P ′ projection operator to

map back to the solution domain u(x), resulting in u : Dv5 → Rdu with u(x) = P ′
θ(v5(x)) for

x ∈ Dv5
. The entire architectural details of CONO are depicted in Fig. 1.

4 NUMERICAL EXPERIMENTS AND RESULTS

This section presents a comprehensive empirical analysis of CONO compared to various neural op-
erator baselines, mainly including FDMs, DeepONet(Lu et al., 2021), FNO(Li et al., 2020), Wavelet
NO (WNO) (Tripura & Chakraborty, 2022), and Spectral NO (SNO)(Fanaskov & Oseledets, 2022),
on standard datasets. We ensure a diverse selection of partial differential equations (PDEs) taken
from Takamoto et al. (2022), encompassing both time-dependent and time-independent problems,
to account for the intrinsic computational complexity of the tasks. Further, we evaluate CONO on
several tasks, such as performance on out-of-distribution datasets, data efficiency, and robustness
to noise. Finally, we perform ablation studies to understand the contribution of several architec-
tural features in CONO, such as complex neural network, fractional Fourier transform, aliasing-free
activation function, and bias towards its final performance. All the experiments are conducted on
a Linux machine running Ubuntu 20.04.3 LTS on an Intel(R) Core(TM) i9-10900X processor and
NVIDIA RTX A6000 GPUs with 48 GB RAM. All the datasets and codes used in this work are
available at CONO.
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4.1 DATASETS DESCRIPTION AND BASELINE EXPERIMENTS

Setting: In our experiment, we have leveraged a diverse set of partial differential equations (PDEs),
encompassing time-independent models, including Burgers and Darcy Flow, and time-dependent
models, such as Navier-Stokes, shallow water, and diffusion equations from Takamoto et al. (2022).
This wide-ranging assortment of PDEs has been carefully chosen to facilitate a comprehensive eval-
uation of the efficacy of our proposed methods. The relative L2 error is presented in Section 4.1.1.
The descriptions of datasets used in the present work are as follows.
Burger’s Dataset: The flow of a viscous fluid in one dimension is modeled by a nonlinear PDE as

∂u

∂t
(x, t) +

∂

∂x

(
u2(x, t)

2

)
= ν

∂2u

∂x2
(x, t), x ∈ (0, 1), , t ∈ (0, 1] (4)

This equation, referred to as the 1D Burger’s equation, is numerically solved to generate the dataset.
This dataset presents the time evolution for one timestep of the equation for a given initial condition.
Thus, we aim to learn an operator that maps the initial condition to the next time step. The dataset
consists of 2048 training and testing data.
Darcy Flow Dataset: Another widely used dataset, Darcy’s equation, represents the flow through
porous media. 2D Darcy flow over a unit square is given by

∇ · (a(x)∇u(x)) = f(x), x ∈ (0, 1)2, (5)

u(x) = 0, x ∈ ∂(0, 1)2. (6)
where a(x) is the viscosity, f(x) is the forcing term, and u(x) is the solution. This dataset employs
a constant value of forcing term F (x) = β. Further, Equation 5 is modified in the form of a temporal
evolution as

∂tu(x, t)−∇ · (a(x)∇u(x, t)) = f(x), x ∈ (0, 1)2, (7)
Thus, the goal on this dataset is to learn the operator that maps the diffusion coefficient to the
solution. The dataset consists of 10,000 training and testing data.
Navier Stokes Dataset: 2D Navier-Stokes equation describes the flow of a viscous, incompressible
fluid in vorticity form on the unit torus as

∂tw(x, t) + u(x, t) · ∇w(x, t) = ν∆w(x, t) + f(x), x ∈ (0, 1)2, t ∈ (0, T ] (8)

∇ · u(x, t) = 0, x ∈ (0, 1)2, t ∈ [0, T ] (9)

w(x, 0) = w0(x), x ∈ (0, 1)2 (10)

where, u represents the velocity field, w = ∇× u is the vorticity, w0 is the initial vorticity, ν is the
viscosity coefficient, and f is the forcing function. The goal on this dataset is to learn the operator
G†, mapping the vorticity up to time 10 to the vorticity up to some later time T > 10. The training
and test data in this dataset comprises 5,000 samples with 50 timestamps.
Shallow Water Dataset: Compressible Navier-Stokes equations, that model free-surface flow in
the form of hyperbolic PDEs, can be used to model shallow water in 2D as

∂th+∇ · (hu) = 0, (11)

∂thu+∇ ·
(
u2h+

1

2
grh2

)
= −grh∇b, (12)

where, u and v denote velocities in the horizontal and vertical directions, h represents water depth,
and b characterizes spatially varying bathymetry. The quantity hu corresponds to directional mo-
mentum, and g denotes gravitational acceleration. Similar to the previous dataset, the goal on this
dataset is to learn the operator G†, which maps velocity up to time 10 to the vorticity up to some
later time T > 10. The training and test data comprises 1,000 samples with 101 timestamps.
Diffusion Reaction Equation Dataset: Consider a 2D domain characterized by two non-linearly
coupled variables, namely, the activator u = u(t, x, y) and the inhibitor v = v(t, x, y). Assuming
that their dynamics are governed by the equations given below

∂tu = Du∂xxu+Du∂yyu+Ru, (13)
∂tv = Dv∂xxv +Dv∂yyv +Rv, (14)

the goal is to learn the operator responsible for mapping the activator’s and inhibitor’s initial condi-
tions to their respective states later T > 0. The training and test data comprises 1,000 samples with
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101 timestamps.
Metric: The metric used for experimentation is the mean relative L2 error

L =
1

n

n∑
j=1

∥û(j)− u(j)∥22
∥u(j)∥22

(15)

where n is the size of the training data, u(j) represents the j-th ground truth sample of the training
data, û(j) represents the j-th sample prediction.
Training Details and Baselines: We adhere to standard experimental practices by splitting the
dataset into training, testing, and validation sets in ratios of 0.8, 0.1, and 0.1. We employ an ensem-
ble training approach to maintain a level playing field for each operator. This involves specifying
a hyperparameter range and randomly selecting a subset of hyperparameters. For the experiments,
we use Adam optimizer (Kingma & Ba, 2014). We conduct model training for each optimal hyper-
parameter configuration using random seeds and data splits. And the weight of the best-performing
model on the evaluation. Each experiment is repeated three times, and the mean of relative L2 loss
is reported.

4.1.1 COMPARISON WITH BASELINES

First, we evaluate the performance CONO in comparison to baselines on the five PDE datasets
considered. Table 2 shows that CONO outperforms the baselines on all the datasets except Burgers.
We observe among the baselines, FNO outperforms all other models consistently. In Burgers, the
performance of FNO and CONO are comparable with FNO being slightly better. However, it is
worth noting that the Burgers dataset corresponds to a 1D equation, which is lower dimensional
than all other datasets. These results suggest that CONO outperforms FNO in more complex and
higher dimensional PDEs, while FNO and CONO may have similar performance in simpler, low
dimensional PDEs.

Datasets DeepONet FNO WNO SNO CONO(Ours)
Burgers 0.027±0.002 0.021±0.003 0.032±0.001 0.23±0.01 0.022±0.002

Darcy 0.028±0.001 0.024±0.003 0.054±0.004 0.61±0.02 0.021±0.003

Navier Stokes 0.65±0.02 0.41±0.02 0.73±0.01 8.4±0.2 0.36±0.01

Shallow Water 0.0064±0.0003 0.00049±0.00004 0.0074±0.0005 0.032±0.001 0.00047±0.00003

Diffusion 0.92±0.01 0.91±0.02 0.95±0.02 7.3±0.1 0.89±0.01

Table 2: Relative L2 error of CONO and other baselines for different PDE datasets. The best result
is highlighted in blue and the second best in orange.

4.2 ZERO SHOT SUPERRESOLUTION

The neural operator exhibits mesh invariance, allowing it to undergo training on lower-resolution
data and subsequently be applied to higher-resolution data, thereby achieving zero-shot superres-
olution. CONO has the capability for zero-shot superresolution, while among the baselines only
FNO can perform zero-shot superresolution. To this extent, the neural operators were trained on a
128× 128 resolution and tested on higher and lower resolutions for the Darcy flow dataset. Table 3,
presents the relative L2 error of CONO and FNO on superresolution. We note that CONO outper-
forms FNO significantly on all the resolutions. This analysis concludes that the L2 error of CONO
does not grow significantly compared to FNO across varying resolutions.

4.3 OUT-OF-DISTRIBUTION GENERALIZATION

In this study, we conducted experiments on the Darcy flow dataset, where during training, we set
the force term f to a constant value of β = 1.0. Subsequently, we evaluated the trained model on
various values of β to assess its out-of-distribution generalization capabilities, as illustrated in Table
4. Remarkably, our results consistently demonstrate that CONO exhibits superior generalization
performance compared to other operators.
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Resolution DeepONet FNO WNO SNO CONO(Ours)
85x85 - 0.052±0.002 - - 0.044±0.001

128x128 0.028±0.002 0.024±0.002 0.054±0.002 0.61±0.02 0.021±0.002

256x256 - 0.039±0.002 - - 0.029±0.002

512x512 - 0.058±0.002 - - 0.043±0.002

Table 3: Relative L2 error for zero-shot superresolution by CONO and FNO. Note that all the
models are trained on 85×85 resolution and tested on other resolutions.The best result is highlighted
in blue and the second best in orange.

Beta Coeff DeepONet FNO WNO SNO CONO (Ours)
0.01 0.80±0.01 0.79±0.03 0.80±0.03 10.80±0.2 0.76±0.01

1.0 0.028±0.001 0.024±0.002 0.054±0.003 0.61±0.02 0.021±0.001

10.0 0.068±0.001 0.068±0.002 0.084±0.003 0.54±0.02 0.067±0.001

100.0 0.075±0.001 0.074±0.002 0.089±0.003 0.53±0.02 0.072±0.001

Table 4: Zero shot out of distribution generalization where we trained on beta coeff 1.0 for Darcy
Flow and tested for other beta coeff for different Neural Operators. The best result is highlighted in
blue and the second best in orange.

4.4 DATA EFFICIENCY

Now, we evaluate the data efficiency of CONO in comparison to other baselines. Specifically, we
conducted experiments with various training splitting ratios, ranging from 0.8 to 0.2, to investigate
data efficiency. All the experiments are performed on the Darcy flow dataset with a forcing term
β = 1.0. Our findings reveal that CONO consistently outperforms alternatives across all splitting
ratios. Notably, with just 20% of the training data, CONO performs equivalent to FNO (see Tab. 5).

Ratio DeepONet FNO WNO SNO CONO(Ours)
0.8 0.028±0.001 0.024±0.002 0.054±0.003 0.61±0.02 0.021±0.001

0.6 0.029±0.01 0.025±0.001 0.054±0.003 0.64±0.02 0.021±0.001

0.4 0.031±0.001 0.025±0.002 0.057±0.003 0.65±0.02 0.022±0.001

0.2 0.034±0.001 0.028±0.002 0.061±0.003 0.67±0.02 0.024±0.001

Table 5: Data Efficiency for the different ratio of dataset which is used for training for different
Neural Operators. The best result is highlighted in blue and the second best in orange.

4.5 ROBUSTNESS TO NOISE

In this study, we performed experiments introducing different noise levels into the training and
testing datasets using Gaussian noise. The noise addition process can be explained as follows: For
each input sample denoted as x(n) within the dataset D, we modified it by adding Gaussian noise
with parameters γN(0, σ2

D). Here, σ2
D represents the variance of the entire dataset, and γ indicates

the specified noise intensity level.

Further, the models were trained on pristine and noisy data with 1% and 5% noise. These models
were then cross-evaluated again on pristine data, and noisy data with 1% and 5% noise, covering
all combinations. Our investigation yielded notable results, particularly when evaluating the perfor-
mance of CONO in the presence of noise within both the training and testing datasets (see Tab. 6).
Remarkably, CONO exhibits consistent performance irrespective of the presence of noise. Specif-
ically, the noisy training + testing yielded the same result as the pristine dataset confirming the
robustness of CONO to noisy dataset.
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Setting γ % DeepONet FNO WNO SNO CONO (Ours)
- 0.028±0.001 0.024±0.003 0.054±0.004 0.61±0.02 0.021±0.003

Noisy Training 1% 0.029±0.003 0.025±0.003 0.054±0.004 0.61±0.02 0.022±0.003

5% 0.030±0.003 0.026±0.003 0.055±0.004 0.62±0.02 0.023±0.003

Noisy Testing 1% 0.032±0.003 0.028±0.003 0.054±0.003 0.64±0.03 0.022±0.003

5% 0.033±0.003 0.028±0.003 0.054±0.003 0.65±0.03 0.022±0.003

Noisy Training + Testing 1% 0.030±0.003 0.025±0.003 0.055±0.004 0.62±0.02 0.021±0.003

5% 0.032±0.003 0.025±0.003 0.055±0.004 0.62±0.02 0.021±0.003

Table 6: Robustness to Gaussian noise during training and testing for different settings for different
Neural Operator. The best result is highlighted in blue and the second best in orange.

4.6 ABLATION AND COMPARISON

In order to gain insight into the CONO architecture and how different components impact the per-
formance, we perform ablation studies. All ablation experiments were conducted for the Darcy flow
dataset with beta coeff 1.0. Vanilla CONO Architecture: First, we started with the FNO archi-
tecture, where Fourier layers are fused into one layer, and a complex neural network is used in a
complex domain. Our findings demonstrate that this configuration consistently performs at a level
equivalent to FNO as evident from Table 7. Fractional Fourier Transform Experiment: In an
alternative experiment, we replaced the CONO transformation layer with a Fourier transform. This
modification resulted in a slightly diminished performance compared to the CONO architecture as
evident from Table 7. Also, in CONO with the Fractional Fourier transform layer, we found that
order along different dimensions after training was 0.98 and 0.97, respectively.

Analysis of Alias-Free Activation: We con-
ducted experiments to assess the impact of alias-
free activation within our proposed architecture.
The results indicate that the absence of alias-
free activation leads to degradation in perfor-
mance of the CONO as depicted in Table 7. Ef-
fect of Bias Removal: In a separate investi-
gation, we removed the W and U components
from the CONO model. This adjustment de-
creased the model’s performance, strongly indi-
cating that bias also plays an important role in
the learning dynamics of the system.

Relative L2 error
Vanilla CoNO 0.024±0.002

CoNO - FrFT 0.024±0.001

CoNO - Alias Free 0.022±0.003

CoNO - Bias 0.026±0.001

CoNO 0.021±0.001

Table 7: Ablation results to study the impact of
different components on CONO.

5 CONCLUDING INSIGHTS

Altogether, we present a novel operator learning paradigm, namely Complex Neural Operator
(CONO), that leverages complex neural networks and the complex fractional Fourier transform as
an integral operator, thereby ensuring continuous equivalence. This work demonstrates that the rich
representation of complex neural networks can be exploited in the operator learning paradigm to
develop robust, data-efficient, and superior neural operators that can learn the function-to-function
maps in an improved fashion. CONO outperforms existing operators in terms of performance, zero-
shot superresolution, out-of-distribution generalization, and robustness to noise. CONO, thus, paves
the way for creating efficient operators for inferring real-time partial differential equations (PDEs).

Limitations and future work. Although not demonstrated empirically, the architecture of CONO
is capable of effectively downscaling and upscaling the output. Thus, CONO can also be trained
with differing input and output resolutions. However, the performance of CONO upon upscal-
ing/downscaling requires further investigation. To further advance our understanding of CONO, it
is crucial to delve into the underlying mathematical and algorithmic principles. Specifically, we need
to unravel the learning mechanisms within the latent space and provide the theoretical foundation
of complex operators. Furthermore, our research presents novel challenges that warrant investiga-
tion. These include tackling the initialization procedures for fractional orders, devising streamlined
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architectures for complex neural operators, delving into the creation of equivariant complex opera-
tors, and elucidating the crucial role played by the fractional Fourier transform in the acquisition of
insights into the continuous dynamics of complex systems. These can be pursued as part of future
studies.
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A APPENDIX

A.1 HYPERPARAMETERS FOR TRAINING MODELS

Model Optimizer Scheduler Learning Rate Number of Parameters

FNO Adam StepLR 0.001 1188353
WNO Adam StepLR 0.001 5337985
SNO AdamW StepLR 0.001 147321
DeepONet AdamW StepLR 0.0001 36465408
CoNO AdamW StepLR 0.0001 3451201

Table 7: Hyperparameters Used for Training the Models
.

A.2 TRAINING TIME, INFERENCE TIME AND MEMORY USUAGE

Model Training Time Inference Time Memory Usage (%)

FNO 18.76 0.003 95.5
WNO 116.2 0.04 94.36
SNO 10.98 0.001 90.45
DeepONet 25.5 0.05 92.43
CoNO 219.6 0.07 96.45

Table 8: Training, Inference Time of Model in sec and memory usage of the model while training in
percentage.

A.3 ILLUSTRATION OF TRAINING TASKS

Figure 2: Illustration of Input and Output dataset of Darcy flow for beta coefficient 1.0

12



Under review as a conference paper at ICLR 2024

A.4 CONO PREDICTIONS

Figure 3: Illustration of Output of the CoNO. (Top) shows the Ground truth. (Middle) shows the
models prediction and (Below) shows the error heatmap respectively for Darcy flow dataset.
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A.5 ANALYSIS OF LEARNT FRACTIONAL ORDER

Figure 4: Illustration of Fractional Fourier Transform for different order (left) shows the absolute
value of the fractional transform and (right) shows the phase value of the fractional transform for
different order for darcy flow dataset.
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