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Abstract

Graph coarsening is a method for reducing the size of an original graph while preserving its
structural and feature-related properties. In graph machine learning, it is often employed
as a preprocessing step to improve efficiency and scalability when handling large graph
datasets. In this study, we address the challenge of coarsening an original graph into a
coarsened graph that retains these characteristics. We propose a Cooperative-Based Graph
Coarsening (CGC) algorithm, which leverages cooperative game theory as a framework
for combinatorial optimization, aiming to minimize the total Dirichlet energy of the graph
through localized optimizations. We prove that the proposed coarsening game is a potential
game that guarantees convergence to a stable coarsened graph. Tests on real-world datasets
demonstrate that CGC algorithm surpasses prior state-of-the-art techniques in terms of
coarsened graph accuracy and achieves reduced time complexity. These results highlight the
potential of game-theoretic approaches in the advancement of graph coarsening techniques.

1 INTRODUCTION

Graphs are powerful data structures used to represent complex relationships and interactions among entities.
Graphs offer a natural and flexible way to model real-world systems, which are widely employed across varied
domains such as social networks, biological systems, transportation infrastructures, and communication
networks (Fan et al., 2019; Li et al., 2021; Rahmani et al., 2023; Wu et al., 2022; Shi & Weninger, 2017). In
these representations, entities are modeled as nodes, while the relationships or interactions among them are
captured through edges. This framework enables systematic analysis of both local and global connectivity
patterns, as well as the structural characteristics of complex systems (Neville & Jensen, 2007; Angles &
Gutierrez, 2008).

With the growing need to extract knowledge from graph-structured data, Graph Neural Networks (GNNs)
have emerged as a class of deep learning models specifically designed for learning on graphs. By leveraging
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both the feature information of nodes and the structure of their neighborhoods, GNNs propagate informa-
tion through the graph via message passing and aggregation mechanisms. This allows GNNs to capture
rich relational patterns and contextual dependencies, making them highly effective for tasks such as node
classification, link prediction, and graph classification (Corso et al., 2024).

However, as real-world data becomes increasingly voluminous and interconnected, large-scale graphs have
become more common, driven by advances in scientific research, online platforms, and the proliferation of
connected devices in the Internet of Things. The application of GNNs to such massive graphs introduces sig-
nificant computational and memory bottlenecks. The recursive neighborhood expansion in message passing
leads to rapidly growing computation, while deep GNN architectures suffer from over-smoothing, wherein
node representations become indistinct. Additionally, training GNNs often requires extensive hyperparam-
eter tuning, further increasing time and resource demands. These challenges highlight the need for efficient
preprocessing strategies to reduce graph size without compromising structural and semantic integrity. There
are various techniques for graph reduction, including graph sparsification (Fung et al., 2011; Bravo Herms-
dorff & Gunderson, 2019; Li et al., 2022), graph coarsening (Dickens et al., 2024; Kumar et al., 2023; Loukas,
2019; Huang et al., 2021; Loukas & Vandergheynst, 2018; Wang et al., 2019), and graph condensation (Jin
et al., 2021; Xiao et al., 2024; Gao et al., 2025).

Graph sparsification reduces the number of edges while preserving key structural properties such as cuts,
pairwise distances, or spectral signatures. However, it retains the full set of nodes, limiting its potential
for computational speedup in node-centric operations. Moreover, many sparsification algorithms depend on
costly spectral computations (e.g., effective resistance or eigenvalue approximations) and do not always align
with downstream task objectives, such as those in GNN-based learning (Li et al., 2022).

Graph condensation, in contrast, synthesizes a small, learnable graph from scratch such that a GNN trained
on this synthetic graph approximates the performance of one trained on the original graph. While effective at
reducing memory usage during GNN training, condensation methods rely on nested or bi-level optimization
(e.g., gradient or distribution matching), which incurs substantial preprocessing cost and memory over-
head. Furthermore, they often require label information and offer limited interpretability, which hampers
generalization across models and datasets.

Graph coarsening offers a balanced alternative by reducing both nodes and edges through the aggregation of
structurally or feature-similar nodes into supernodes, while maintaining the overall topology and semantics
of the graph (Chen et al., 2022). This approach retains a clear mapping between the original and reduced
graph, allowing interpretability and compatibility with a variety of downstream GNN tasks. As a result,
coarsening enables more scalable and efficient graph learning without sacrificing representational fidelity.

Recent graph coarsening approaches fall into three main categories: heuristic-based, optimization-based,
and deep learning-based. Heuristic coarsening methods (Loukas, 2019; Huang et al., 2021; Loukas & Van-
dergheynst, 2018) typically rely only on structural information such as adjacency patterns or spectral ap-
proximations, and ignore node features. As a result, coarsened graphs can be less informative and degrade
downstream performance (e.g., node classification). Deep learning-based methods (Ying et al., 2018; Jin
et al., 2021; Zhao et al., 2020; Zheng et al., 2023; Dickens et al., 2024) leverage graph neural networks
(GNNs) to learn coarsening operations as part of graph representation learning. These methods are com-
putationally intensive and do not suit generalized GNNs, as a GNN trained on a particular model does
not perform well on other models. Optimization-based coarsening methods (Kumar et al., 2023; 2024) do
incorporate structure and features but introduce many hyperparameters and require repeated tuning across
datasets and coarsening ratios. This leads to significant computational overhead and undermines the basic
purpose of coarsening, i.e., to reduce cost rather than add complexity. In these approaches, the search
space becomes increasingly large and multidimensional as the graph size grows. Therefore, these approaches
generally fail to produce the desired results when the problem size is large and suffer from scalability issues.
Additionally, game-theoretic formulations have been explored mainly for graph clustering (Mandala et al.,
2014; Bu et al., 2018; Zhao et al., 2024; Kumar & Gupta, 2021; Li et al., 2024). These game-theoretic
clustering methods often rely solely on structural connectivity and ignore node attributes, or they depend
on nontrivial hyperparameters that require clustering-specific expertise to tune.
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These limitations demonstrate the need for a coarsening technique that is both computationally efficient and
feature-aware, while preserving the structural properties of the original graph. Our work aims to develop a
fast method without hyperparameter tuning that uses both graph topology and node attributes to produce
high-quality coarsened graphs for the improvement of downstream task performance and hence, we introduce
a cooperative game-theoretic framework for coarsening.

We utilize cooperative game theory for four key reasons. First, cooperative games allow us to incorporate
both structural connectivity and feature similarity in a unified manner. The marginal contribution based
cost reflects how much a node benefits the coalition in terms of both graph structure and feature smoothness.
Second, the game theory allows us the construction of exact potential game, which guarantees that every
time a node updates its coalition choice, the global Dirichlet energy decreases. This alignment ensures
that local best responses naturally guide the system toward a stable coarsened representation without the
need for tuning. Third, the potential game formulation ensures convergence to a pure Nash equilibrium,
which corresponds to a stable coalition structure. Fourth, the existence of at least one Nash equilibrium
ensures a stable and high-quality solution. This property makes the method more scalable than heuristic or
conventional optimization techniques.

In our game-theoretic formulation, each node acts as a player that strategically forms coalitions with other
nodes in the graph. This insight motivates our distributed formulation of the graph coarsening problem,
where each player minimizes its cost. In our formulation, coalitions correspond to supernodes, and the cost
of each player is defined through its marginal contribution to the Dirichlet energy, which measures feature-
signal smoothness on the graph, so minimizing it preserves both connectivity and attribute consistency under
coarsening. This creates a direct connection between local node-level decisions and the global objective of
minimizing energy distortion in the coarsened graph. This gives a theoretical guarantee of stability and
explains the robust, tuning-free performance of CGC across diverse datasets and coarsening ratios. This
gives a theoretical guarantee of stability and explains the robust, tuning-free performance of CGC across
diverse datasets and coarsening ratios.

The main contributions of this paper are summarized as follows:

• Introduces a novel graph coarsening framework using game theory.
• Introduces a cost function that utilizes marginal contributions to Dirichlet energy, ensuring structural

preservation.
• Empirically validates the approach on real-world datasets, demonstrating its effectiveness in node

classification tasks.
• Presentes a theoretical proof demonstrating that the proposed game satisfies the conditions of a

potential game.

The remaining paper is structured as follows. Section 2 presents the necessary background on graphs and
graph coarsening, followed by the proposed problem formulation and the game-theoretic framework. Section
3 introduces the algorithm along with its convergence guarantee. Section 4 provides experimental results on
real-world datasets for node classification, structural property preservation, and comparisons to state-of-the-
art methods.

2 BACKGROUND
This section presents the fundamental concepts of graphs and graph coarsening, including a toy example,
followed by the formulation of the proposed problem and its game-theoretic formulation.

2.1 Graph
A simple undirected graph with features and labels, denoted as G = (V, E, W, X, Y ), is defined by a node set
V = {V1, V2, . . . , Vp} and an edge set E ⊆ [V ]2. The topology of the graph is represented using a weighted
adjacency matrix W ∈ Rp×p, where each entry wij ≥ 0 indicates the strength of the connection between
the nodes Vi and Vj , and p = |V | indicates the total count of nodes. The matrix X ∈ Rp×n encodes node
features, with each row xi representing an n-dimensional attribute vector corresponding to Vi node, and
the label is denoted as Y ∈ Rp×l, assigns each node a one-hot encoded categorical label, representing its
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membership in a predefined set of l classes. To analyze structural properties such as connectivity or spectral
characteristics of the graph, we employ the combinatorial Laplacian matrix Θ = D −W , where D is the
degree matrix. The Laplacian is symmetric, positive semidefinite, and has zero row sums, making it useful
for computational tasks such as graph compression, embedding, manifold learning and spectral preservation.
It satisfies Θij = −Wij for i ̸= j, while diagonal elements represent node degrees. The set of all feasible
combinatorial graph Laplacians L is defined as:

L = {Θ ∈ Rp×p | Θ = ΘT , Θij ≤ 0 for i ̸= j, Θii = −
∑
j ̸=i

Θij} (1)

However, directly analyzing large-scale graphs is computationally expensive, which requires reducing their
size while retaining structural properties. In the next subsection, we discuss graph coarsening in detail.

2.2 Graph Coarsening

Graph coarsening aims to construct a smaller and tractable graph Gc = (Vc, Ec, Wc, Xc, Yc) with k nodes
from a larger graph G = (V, E, W, X, Y ) with p nodes, while preserving structural and featural properties
of the original graph, where k ≪ p. Each node in Gc, referred to as a supernode, represents a merging of
nodes from G grouped based on shared attributes or structural similarities. The coarsening process aims
to construct a mapping matrix C ∈ Rp×k, where Cij > 0 signifies that the i-th node of the original graph
G is mapped to the j-th supernode of the coarsened graph Gc. This mapping adheres to a many-to-one
relationship, as each node in G is assigned to exactly one supernode in Gc, while preserving an orthogonal
structure among the supernodes. The matrix C lies in the following set Sc:

Sc =
{

C ∈ Rp×k
+

∣∣∣ ⟨Cj , Cj′⟩ = 0 ∀j ̸= j′; ⟨Cj , Cj⟩ = dj , ∥Cj∥0 ≥ 1, Cj ∈ Rp; ∥[C⊤]i∥0 = 1, [C⊤]i ∈ Rk
}
(2)

Here, ⟨Cj , Cj′⟩ denotes the standard inner product of the vectors Cj and Cj′ , ∥Cj∥0 denotes the number
of non-zero entries of a vector (the ℓ0-norm), Cj and Cj′ denote the j-th and j′-th columns, and [C⊤]j
represents the j-th row of C of the loading matrix C. The orthogonality condition ⟨Cj , Cj′⟩ = 0 ensures
that the columns of C are mutually orthogonal. This condition leads to two constraints: first, the identity
⟨Cj , Cj⟩ = dj captures the aggregated contribution of the nodes assigned to the j-th supernode; second, the
constraint ∥[C⊤]i∥0 = 1 enforces that each row of C contains exactly one non-zero entry, meaning that each
node in the original graph is associated with a single supernode in the coarsened graph, thereby implementing
a hard assignment.

Let P ∈ Rk×p denote the coarsening matrix, which serves as the (pseudo-)inverse of the loading matrix
C. That is, we define P = C†, where C† is the Moore-Penrose pseudoinverse of C. This matrix enables
the reconstruction (or projection) of coarse-level representations back to the original graph domain. The
Laplacian matrix of the original graph Θ, the Laplacian matrix of the coarsened graph Θc, the feature matrix
of the original graph X and the feature matrix of the coarsened graph Xc, together satisfy the following
relations such as:

Θc = C⊤ΘC, Xc = PX, C = P †, Yc = arg max(PY ) (3)
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Figure 1: Illustration of the graph coarsening process on a small example.

4



Published in Transactions on Machine Learning Research (02/2026)

We demonstrates how node grouping of a simple graph G with six nodes V = {V1, V2, V3, V4, V5, V6} through
the assignment matrix Θ ∈ R3×6 leads to reduced-dimensional graph Gc with nodes Vc = {Ṽ1, Ṽ2, Ṽ3} and
where each node is assigned a two-dimensional feature vector. The coarsening matrix P is defined below
and its pseudoinverse is calculated using C = P †. The feature matrix X ∈ R6×2 and its coarsened feature
matrix Xc ∈ R3×2 is calculated using Xc = PX, as shown in equation (1). Now the original and coarsened
Laplacian matrices Θ ∈ R6×6 and Θc ∈ R3×3, computed as Θc = C⊤ΘC:

P =

 1
3

1
3

1
3 0 0 0

0 0 0 0 1
2

1
2

0 0 0 1 0 0

 , Θ =


9 −1 −3 −5 0 0
−1 3 −2 0 0 0
−3 −2 9 0 −4 0
−5 0 0 15 −4 −6
0 0 −4 −4 15 −7
0 0 0 −6 −7 13

 and Θc = C⊤ΘC =

 9 −4 −5
−4 14 −10
−5 −10 15

 (4)

To ensure meaningful coarsening, modern methods optimize the mapping matrix C under constraints such
as sparsity, orthogonality, and balance among supernodes. These techniques incorporate the characteristic
matrix X, and in some cases, both X and the label information Y , together with the adjacency matrix, to
generate coarser graphs more informative. The resulting graph facilitates downstream tasks while maintain-
ing the structural and spectral fidelity of the original graph.

2.3 Proposed Problem Formulation
Given a weighted adjacency matrix W ∈ Rp×p and a feature matrix X ∈ Rp×n corresponding to the node
set V = {V1, V2, . . . , Vp} of the original graph, we model the graph coarsening problem as a cooperative
game. In this formulation, graph nodes are treated as players, and the edges associated with each node
define the possible actions available to that player. The game aims to study how groups of players (nodes)
form coalitions (supernodes) to achieve a common goal and fairly distribute outcomes among the players.
Throughout this paper, we use the terms player and node interchangeably. The goal of each coalition in this
cooperative game is to minimize the cost of each player. The objective is to determine a set of coalitions
S = {S1, S2, . . . , Sk}, where each coalition Si ⊆ V , that collectively minimizes the overall Dirichlet energy
of the coarsened graph and is formulated as

min
S∈ST

∑
Si,Sj∈S

i<j

w̃ij∥x̃i − x̃j∥2 s.t. ST =
{
S |

k⋃
i=1

Si = V, Si ∩ Sj = ∅ ∀i ̸= j

}
(5a)

w̃ij =
∑

u∈Si,v∈Sj

wuv, x̃i = 1
|Si|

∑
v∈Si

xv, ∀i ̸= j, ∀i, ∀u, v ∈ Si, path(u, v) ≤ 2 (5b)

where each Si ∈ S denotes a subset of nodes mapped to a corresponding supernode Ṽi and here i represents
the ith supernode. The term wij refers to the (i, j)-th entry of the original graph weight matrix W , while
w̃ij denotes the (i, j)-th entry of the coarsened weight matrix Wc, representing the weight of the edge
between supernodes Ṽi and Ṽj . Similarly, xi denotes the i-th row of the original feature matrix X, and x̃i

denotes the i-th row of the coarsened feature matrix Xc, representing the feature vector of the supernode
Ṽi. The term ∥x̃i − x̃j∥2 quantifies the local variation in the feature signal between the supernodes, and
the summation aggregates this variation between all pairs of connected supernodes. Here, the summation
over i < j ensures that each coarsened edge is counted exactly once in the global dirichlet energy. The
constraint ST defines the coalition structure, ensuring a complete and disjoint partition of the node set V
into k subsets. |Si| is the cardinality (size) of the nodes in set Si. The path(u, v) defines the length of
the shortest path between two nodes u and v within the same subset Si and constraint by most two in
the original graph. This constraint ensures that each coalition forms a connected subgraph with mutual
reachability. By minimizing the objective function defined in equation (5a), the resulting supernodes exhibit
smooth variations and preserve the structure of the original graph while ensuring energy-efficient coarsening.
Minimizing this problem is NP-hard, as it generalizes diameter-constrained graph partitioning as described
in (Zhang et al.). We formulate the graph coarsening task as a cooperative game such that a set of coalitions
S = {S1, S2, . . . , Sk} by incorporating structural constraints. This new interpretation enables game-theoretic
reasoning over graph structures. The formal definition of this game is presented in the next subsection.
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2.4 Game setup
In this work, we apply cooperative game theory to address the problem of graph coarsening. Cooperative
game theory, as defined by (v Neumann & Morgenstern, 1953), is a mathematical framework in which a group
of players interacts to achieve a common goal by forming coalitions based on binding agreements. We adopt
this framework to model graph coarsening as a game, defined as CGame = (N, v), where N = {1, 2, . . . , p}
denotes the set of players (graph nodes), and v is the characteristic function that assigns a transferable total
cost value to each feasible coalition. Each player i ∈ N has a feature vector xi and a neighborhood set Ai,
consisting of all nodes connected to i. The members of the set Ai will be the potential collaborators of player i
for coalition formation, from which a feasible subset can be selected based on cost and structural constraints.
To model coalition dynamics and cost distribution in the CGame framework, we define the mapping profile,
characteristic function, and player cost. The mapping profile is defined as a tuple m = (m1, m2, . . . , mp),
where each mi indicates the coalition Sj ∈ S to which node i is assigned based on the merging decision.
This mapping induces a set of supernodes Vc = {Ṽ1, Ṽ2, . . . , Ṽk}, where k is the number of distinct coalitions
formed. The profile m thus specifies the complete node-to-supernode assignment. For a particular node
i, the mapping can be expressed as (mi, m−i), where m−i represents the mapping decisions of all nodes
except i. The set of nodes assigned to coalition Si under mapping m is denoted by Rm

Si
, and the coalition

Si excluding node j under mapping m is represented by Rm
Si
\ {j}. The characteristic function v of Rm

Si
is

defined as:

v(Rm
Si

) =
{

DE(Rm
Si

), if |Rm
Si
| = 1∑

j∈Rm
Si

cm
Si

(j), if |Rm
Si
| > 1 (6)

where, DE(Rm
Si

) = 1
2

∑
(u,v)∈ESi

w̃uv∥x̃u − x̃v∥2, cm
Si

(j) = DE(Rm
Si

)−DE(Rm
Si
\ {j}) (7)

Where, DE(Rm
Si

) represents the contribution of Dirichlet energy of the i th supernode or coalition Si, formed
under the mapping profile m and cm

Si
(j) denotes the cost of node j ∈ Rm

Si
, defined as the marginal increase

in Dirichlet energy due to its presence in coaliton Si. ESi denotes the set of edges connected to the ith
supernode corresponding to coalition Si on the coarsened graph. Since each edge is incident to exactly two
supernodes, the factor 1

2 guarantees that each edge contributes exactly once to the global energy.

Given the characteristic function v and the individual player cost c(j) in terms of cost, we now analyze the
strategic behavior of players to reach the convergence state of the game, or a stable coalition structure. A
coalition structure is considered stable if it satisfies two conditions: internal stability and external stability.

Figure 2: The figure illustrates the step-by-step process of cooperative game-based graph coarsening. It
depicts coalition formation based on degree (as leaders), followed by refinement using the cost of each node
within a coalition to achieve stability. The input to the CGC algorithm is the original graph G(V, E, X, Y ),
where some nodes may not have label information.
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A coalition is internally stable if no subset of its members can decrease their total allocated cost by deviating
to form a new coalition, as expressed in equation (8).∑

i∈T

ci ≤ v(T ), ∀T ⊆ S (8)

A coalition is externally stable if no player has an incentive to deviate from their current coalition to join
another feasible coalition. Let Γi represent the set of feasible coalitions available to the player i, that is,
coalitions for which the player’s inclusion does not increase their cost or violate coalition constraints. Then,
the optimal strategy for the player i, denoted by m∗

i , is defined as the best response that minimizes their
individual cost, as shown in equation (9).

m∗
i = arg min

mi∈Γi

ci(mi, m−i) (9)

where ci denotes the cost allocated to player i, which can be expressed as a function ci(mi, m−i) representing
the cost when player i selects the mapping mi while others choose a fixed profile m−i. Here, v(T ) is the
value of subset T given by the characteristic function. In the next subsection, we present the CGC algorithm
that ensures convergence to this equilibrium state.

3 ALGORITHM DEVELOPMENT
In CGame, each player joins a coalition to minimize individual cost with respect to the current coalition
structure. The contribution of each player within a coalition is then computed. Players follow best-response
decisions, leading the system to converge toward a stable coalition structure where no player has an incentive
to deviate. To implement this process, we introduce the cooperative game-based graph coarsening (CGC)
algorithm.

Given a graph G = (V, E, X) with a weighted ad-
jacency matrix W ∈ R|V |×|V | and node features
X ∈ R|V |×n, CGC algorithm employs an iterative
procedure to minimize the cost of each player and
converge to a stable coalition structure S (i.e., a par-
tition of the node set V into disjoint coalitions) as
described in algorithm 1. The algorithm begins by
initializing each node as a singleton coalition, where
its Dirichlet-energy cost DE is computed according
to equation (7) (line 2). The set S_coalition is ini-
tialized as empty to track nodes already assigned to
multi-node coalitions, preventing them from being
reconsidered as leaders. The set leaderSet stores
the nodes selected as coalition leaders during the
first iteration and is subsequently reused in later it-
erations. The array c_cost stores the initial DE
values for each singleton node, while c_update holds
the updated player costs during the evaluation of
candidate coalitions Si.
In the coalition formation step, we begin by form-
ing a local coalition with a node and its neighbors.
To check the stability of this coalition, we evalu-
ate whether any individual node or group of nodes
within the coalition has an incentive to deviate and
form a separate coalition that would reduce their
cost as defined in equation (7).

Algorithm 1 Cooperative game-based graph coars-
ening (CGC) using one-hop neighbor exploration
1: Input: Graph G(V, E, X)
2: Initialize: ccost ← { i : DE[i], ∀i ∈ V }, cupdate ←

ccost, S ← {{i}, ∀i ∈ V }, Scoalition ← ∅, leaderSet← ∅
3: Sort V by degree in descending order
4: repeat
5: Sprev ← S
6: if leaderSet ̸= ∅ then V ← leaderSet
7: for each node i ∈ V do
8: if i /∈ Scoalition and i has edges then
9: Si ← {i} ∪ neighbors(i)

10: Compute each node cost cSi
(j) for all j ∈ Si

(equation (7)) and
11: set coalition cost v(Si) =

∑
j∈Si

cSi
(j) (equa-

tion (6)).
12: if v(Si) <

∑
j∈Si

ccost(j) then
13: for each node j ∈ Si do
14: if cSi

(j) > cupdate(j) then Remove j from
Si

15: end for
16: else Si ← ∅
17: end if
18: if |Si| > 1 then leaderSet ← leaderSet ∪ {i},

Scoalition ← Scoalition ∪ Si, update S, cupdate
19: end if
20: end for
21: until S = Sprev
22: Output: Loading matrix C (constructed based on S)

This requires checking whether any subset of the current coalition can deviate as a best response to obtain
a lower cost. However, exhaustively evaluating all subsets is computationally expensive for large coalitions.
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Figure 3: Comparison of possible internal deviations in coalitions formed using leaderless and leader-based
methods. Circles indicate all possible subgroups that can break the coalition, while dotted circles highlight
nodes that may deviate into alternate coalitions.

To improve convergence speed and emphasize structurally important nodes, we incorporate a leader-based
coalition formation strategy. In this strategy, a coalition is only valid if it includes a designated leader;
otherwise, it is discarded. The nodes with the highest degree of centrality are prioritized as leaders, ensuring
that highly connected nodes initiate the formation of coalitions.

The formation process commences by sorting the nodes in descending order of degree (line 3), since high-
degree nodes are more influential in the network, and their early consideration ensures that major connectivity
hubs are prioritized during coalition formation. Then each node is sequentially evaluated as a potential leader.
A potential leader attempts to form a preliminary coalition by selecting its immediate one-hop neighbors as
Si. The feasibility of a potential coalition Si is evaluated by checking whether v(Si) ≤

∑
i∈Si

v({i}), i.e.,
its total cost is less than or equal to the sum of the costs of its members when acting individually. If Si

is not feasible, the potential leader is retained as a singleton coalition, and the algorithm proceeds to the
next leader. Otherwise, if Si is feasible, the tentative coalition undergoes a refinement phase (lines 17–21),
where each node’s individual cost is compared against its previous configuration, whether as a singleton or
as part of another coalition. Only nodes whose cost is reduced by joining the coalition are retained. If the
refined coalition contains more than one member, it is accepted, and the initiating node is confirmed as the
coalition leader (lines 17). The next leader is selected from the remaining nodes in the sorted list, skipping
those already assigned to an existing multinode coalition (line 8).

In non-leader-based coalition refinement, the problem involves exploring all possible subsets of a coalition
to check for deviations. We consider the Stable Coalition problem, which asks whether there exists a
coalition satisfying the internal stability condition, as defined in equation (8). We prove in Theorem 1 that
this problem is NP-complete. To illustrate the efficiency of our approach, consider the example shown in
Figure 3a. In the leader-based coalition refinement, we adopt a heuristic approach to assess the Stable
Coalition condition. Checking the stability of a single coalition requires O(∆) comparisons (one for each
neighboring node). Checking all k coalitions requires O(k ∆) total comparisons, where ∆ is the average
degree and k is the number of coalitions. This improvement is illustrated in Figure 3b, with further details
provided in Appendix A.2. The performance in leader-based coalition formation will not be affected. Once
the coalition cost is distributed among players, each player can unilaterally deviate under best-response
dynamics whenever it is beneficial. Moreover, each such deviation decreases the overall system cost, as
demonstrated in the next subsection, where we prove that this game is a potential game.
Theorem 1. The Stable Coalition problem is NP-complete.
Proof. The proof of Theorem 1 has been given in Appendix A.1

The cost allocated to an individual node j within a candidate coalition Si, denoted by cSi
(j), is computed

using the Dirichlet energy based marginal contribution defined in equation (7), which measures the incremen-
tal impact of node j on the total value of the coalition (line 10). After computing the costs, each node finds
its best mapping decision according to equation (8). If its cost within the coalition exceeds the cost from
its previous configuration, it is removed from the coalition. This ensures that participation is beneficial and
rational for all members of the final coalition structure. Finally, during the update of the coalition structure
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S, all nodes in Si are removed from the existing coalition set S, and the refined coalition Si is inserted back
into S as a new coalition and c_update stores the updated player costs inside the candidate coalition Si. As
per algorithm 1, the entire process is repeated iteratively until the coalition structure S reaches equilibrium,
where no further beneficial changes in the mapping decision are possible, with Sprev denoting the coalition
structure from the previous iteration used to check convergence. At this point, the configuration is considered
stable as no node has an incentive to switch coalitions, leave, or form new coalitions.

The proposed method dynamically determines the final size of the coarsened graph based on the number
of coalitions formed at the stable state. To enable deeper reductions while preserving structural locality,
we extend our approach via a recursive multi-level strategy. In this setting, the coarsened graph from one
iteration of the CGC algorithm 1 becomes the input for the next. In this setting, the coarsened graph
from one iteration of the CGC algorithm 1 becomes the input for the next. The features of the coarsened
graph at each level is calculated using Xc = PX. Although each level performs only one-hop neighborhood
exploration, the overall effect of k such iterations achieves an effective k-hop coarsening of the original graph.
The algorithm for multi-level coarsening is provided in Appendix A.4.

4 ANALYSIS OF THE
ALGORITHM

4.1 Theoretical Analysis
This section analyzes the convergence of
the CGC algorithm to an equilibrium state
(where no coalition can reduce the cost by
unilateral deviation) within CGame. To as-
sess the existence of an equilibrium, it is es-
sential to examine the convergence behav-
ior of the CGC algorithm. This can be
achieved by demonstrating that the CGC
algorithm of CGame constitutes a potential
game. Before presenting the proof, we first
introduce the concept of a potential game
and define the potential function used in
our analysis.

Table 1: Performance comparison across different GNN mod-
els (GCN, GAT, APPNP) on datasets including Cora, DBLP,
CoCS, Pubmed, Co-Physics, Genius, and OGBN-Arxiv, un-
der various coarsening ratios using the proposed CGC algo-
rithm. Each value represents the mean accuracy ± standard
deviation over 10 runs.

Dataset r=k/p GCN GAT APPNP

Cora 0.21 87.96 ± 0.05 86.74 ± 0.02 89.07 ± 0.03
0.05 80.57 ± 0.07 80.95 ± 0.04 82.00 ± 0.02

DBLP
0.23 84.75 ± 0.12 84.00 ± 0.06 84.97 ± 0.08
0.05 80.74 ± 0.06 83.29 ± 0.05 83.43 ± 0.04
0.01 76.77 ± 0.08 78.45 ± 0.06 80.24 ± 0.05

CoCS
0.14 92.53 ± 0.09 89.36 ± 0.07 93.47 ± 0.05
0.03 91.13 ± 0.03 88.34 ± 0.04 91.15 ± 0.02
0.01 85.66 ± 0.05 83.82 ± 0.06 88.27 ± 0.03

Pubmed
0.235 86.84 ± 0.04 78.63 ± 0.05 85.22 ± 0.06
0.07 86.02 ± 0.10 76.20 ± 0.08 85.74 ± 0.07
0.02 83.41 ± 0.09 78.31 ± 0.07 83.99 ± 0.05

Co-Physics
0.09 94.79 ± 0.11 92.11 ± 0.10 95.85 ± 0.08
0.01 94.15 ± 0.02 93.51 ± 0.03 95.14 ± 0.01

0.005 92.43 ± 0.07 92.03 ± 0.05 93.94 ± 0.04

Genius
0.06 80.00 ± 0.03 79.84 ± 0.34 79.78 ± 0.51
0.02 79.97 ± 0.08 79.98 ± 0.04 79.96 ± 0.09

0.009 79.91 ± 0.14 80.00 ± 0.00 79.15 ± 1.34
0.007 78.63 ± 0.03 80.00 ± 0.00 79.60 ± 0.73

OGBN-Arxiv

0.15 53.83 ± 0.23 51.14 ± 0.13 51.07 ± 0.20
0.04 52.81 ± 0.33 49.87 ± 0.25 49.92 ± 0.28
0.01 50.91 ± 0.42 48.06 ± 0.28 47.93 ± 0.58

0.004 46.86 ± 0.50 45.21 ± 0.28 45.13 ± 0.58
0.001 42.01 ± 0.56 40.44 ± 0.58 39.25 ± 1.29

Definition 1. Potential Game A cooperative game can be regarded as a potential game if there exists a
global scalar function Φ, called the potential function, that captures the alignment of individual cost changes
with a collective objective. Formally, for any player i ∈ N , and any two mapping decisions mi, m′

i ∈ Ai,
with a fixed mapping configuration of other players m−i ∈

∏
j ̸=i Aj, the following implication holds:

ci(m′
i, m−i)− ci(mi, m−i) ≤ 0 ⇒ Φ(m′

i, m−i)− Φ(mi, m−i) ≤ 0 (10)

where, ci represents the cost incurred by node i. This condition ensures that a reduction in an individ-
ual node’s cost corresponds to a non-increasing global potential, thereby aligning local choices with a global
optimization goal.

The total potential of the CGame can be evaluated by aggregating the individual potentials of each coalition.
When a node is mapped to a coalition, it incurs a cost c, which contributes to the coalition’s potential.
Accordingly, we compute the potential of each coalition. The potential of coalition Si under mapping profile
m, denoted by ϕ(Rm

Si
) , is defined as follows:
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(a) Cora (b) DBLP (c) Pubmed

(d) CoCS (e) Co-Physics (f) ϵ-similarity

Figure 4: This figure plots the top 40 eigenvalues of the Laplacian matrix for both the original and coarsened
graphs across various datasets: (a) Cora, (b) DBLP, (c) PubMed, (d) CoCS, and (e) Co-Physics, under
different coarsening ratios. Figure (f) shows the corresponding ϵ-similarity values for the same datasets. The
values of ϵ, which range from 0 to 1, shows the similarity between the original graph G and the coarse graph
Gc generated by the proposed CGC algorithm, with lower values implying a higher structural similarity.

Calculation of Coalition-Level Potential: Given a coalition Si under a specific mapping profile m, its
potential contribution ϕ(Rm

Si
) is defined as:

ϕ(Rm
Si

) = DE(Rm
Si

) = 1
2

∑
(u,v)∈ESi

w̃uv∥x̃u − x̃v∥2, (11)

where ESi denotes the set of edges connected to the ith supernode (coalition Si) on the coarsened graph,
w̃uv is the weight on edge (u, v), and x̃u, x̃v are feature vector of supernodes u and v under m.

Global Potential Φ(m): Let S = {S1, S2, . . . , Sk} represent the set of all coalitions. This global potential
aggregates the contributions of all coalitions, providing a holistic measure of the graph reduction configu-
ration. It coincides with the Dirichlet energy objective given in equation (5). Since each coarsened edge
is incident to exactly two supernodes, the factor 1

2 ensures correct edge accounting when coalition-level
potentials are aggregated. The total potential of CGame under a mapping profile m is given by:

Φ(m) =
∑

Si∈S
ϕ(Rm

Si
) =

∑
Si∈S

1
2

∑
(u,v)∈ESi

w̃uv ∥x̃u − x̃v∥2

 =
∑

Si,Sj∈S
i<j

w̃ij ∥x̃i − x̃j∥2. (12)

where, ϕ(Rm
Si

) is the Coalition-Level Potential as defined in equation (11)
Theorem 2. The function Φ(m) satisfies the conditions of a potential function. Therefore, CGame con-
stitutes a potential game.

Proof. The proof of Theorem 2 has been given in Appendix A.7

Theorem 3. At least one Pure Nash Equilibrium (PNE) is ensured in the proposed CGame framework
when operating under the CGC algorithm.

Proof. The proof of Theorem 3 has been given in Appendix A.7
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Table 2: Node classification accuracy on various real-world datasets using the proposed CGC algorithm,
compared against state-of-the-art methods SCAL, FGC, and LAGC. Experiments are conducted under
different coarsening ratios (r = k/p). Each value represents the mean accuracy ± standard deviation
computed over 10 runs. The results demonstrate that CGC consistently achieves superior performance across
a wide range of datasets and coarsening levels. OOM indicates cases where execution exceeded memory.

Dataset r = k/p SCAL FGC LAGC CGC Whole Data

CORA 0.21 80.08 ± 1.02 83.33 ± 0.02 84.01 ± 0.13 87.96 ± 0.32 89.50 ± 1.200.05 54.07 ± 0.94 67.98 ± 1.77 71.73 ± 0.13 80.57 ± 0.21

DBLP
0.23 75.09 ± 1.59 81.47 ± 0.13 81.31 ± 0.75 84.75 ± 0.54

85.35 ± 0.860.05 76.38 ± 1.83 74.75 ± 0.10 75.53 ± 0.65 80.74 ± 0.43
0.01 68.70 ± 4.50 69.28 ± 0.06 69.90 ± 0.69 76.77 ± 0.12

CO-CS
0.14 81.41 ± 3.15 91.37 ± 0.00 90.01 ± 0.82 92.53 ± 0.67

93.32 ± 0.620.03 50.46 ± 5.43 78.74 ± 0.04 84.71 ± 0.25 91.13 ± 0.31
0.01 25.20 ± 7.32 83.13 ± 0.01 77.29 ± 0.13 85.66 ± 0.45

PUBMED
0.235 78.02 ± 0.48 81.71 ± 0.09 83.21 ± 0.71 86.84 ± 0.11

88.89 ± 0.570.07 73.73 ± 0.90 69.37 ± 0.06 77.24 ± 0.81 86.02 ± 0.28
0.02 64.71 ± 4.68 71.10 ± 1.93 76.37 ± 0.05 83.41 ± 0.72

CO-PHYSICS
0.09 90.68 ± 1.03 87.25 ± 0.40 87.11 ± 0.03 94.79 ± 0.19

96.22 ± 0.740.01 31.08 ± 10.02 91.38 ± 0.12 91.11 ± 0.19 94.15 ± 0.37
0.005 24.92 ± 2.97 88.01 ± 0.29 89.26 ± 0.03 92.43 ± 0.58

Genius
0.06 79.99 ± 0.11 OOM OOM 80.00 ± 0.03

86.71 ± 0.120.02 80.01 ± 0.09 OOM OOM 79.97 ± 0.08
0.009 79.98 ± 0.09 OOM OOM 79.91 ± 0.14
0.007 79.99 ± 0.11 OOM OOM 78.63 ± 0.03

OGBN-Arxiv

0.15 27.50 ± 1.41 OOM OOM 53.83 ± 0.23

56.24 ± 0.22
0.04 7.55 ± 0.25 16.05 ± 0.06 29.79 ± 0.09 52.81 ± 0.33
0.01 5.86 ± 0.00 31.00 ± 0.20 32.37 ± 0.22 50.91 ± 0.42

0.004 5.86 ± 0.00 22.19 ± 0.29 30.45 ± 0.88 46.86 ± 0.50
0.001 5.86 ± 0.00 19.34 ± 0.01 25.71 ± 0.68 42.01 ± 0.56

4.2 Numerical Analysis
In this section, we first describe the experimental setup, a detailed overview of the datasets, followed by ana-
lyzing the proposed algorithm’s experimental results on real graph data sets which evaluate its performance
across various graph neural network models, and then compare it with state-of-the-art methods to showcase
the effectiveness of the CGC algorithm.
Experimental Setup: Experiments were conducted on a system running Ubuntu 18.04.6 LTS (x86_64)
with dual Intel Xeon E5-2630 v4 CPUs (40 logical cores, 2.20 GHz) and 247 GB RAM.
Dataset: We have evaluated our method on real-world datasets, including Cora, DBLP, CoCS, PubMed,
Co-Physics, OGBN-Arxiv, and Genius. Detailed data set statistics are provided in Table A.5 in the appendix.

Baseline models: We evaluate the performance of the CGC algorithm (proposed) by its output as a
coarsened graph as the input for the GNN model for node classification task. To ensure consistency, we
adopt GNN architectures similar to those in the baseline study, including GCN (Kipf & Welling, 2016), GAT
(Veličković et al., 2017), and APPNP (Gasteiger et al., 2018). We compare the performance of the proposed
CGC algorithm with state-of-the-art methods, including SCAL (Huang et al., 2021), FGC (Kumar et al.,
2023), and LAGC (Kumar et al., 2024), in terms of node classification accuracy. Experiments conducted
on real-world datasets demonstrate that our model surpasses existing state-of-the-art methods in both node
classification accuracy and computational efficiency.

Node Classification: For the node classification task, we first apply the proposed CGC algorithm to
the original graph G(Θ, X) to obtain a coarsened graph Gc(Θc, Xc) without using any node labels. After
obtaining Gc, we split the node labels on the original graph into 80% training labels(Ytrain) and 20% testing
labels(Ytest). The test labels Ytest are completely masked and excluded during label projection. Concretely,
we construct Ytrain by zeroing out the one-hot label rows of all test nodes, so Ytrain contains labels only for
training nodes. We infer coarse labels via Yc = arg max(PYtrain) (Huang et al., 2021; Kumar et al., 2024;
2023), where P = C+, ensuring that Yc depends exclusively on training labels with zero contribution from
Ytest. We then train the Graph Neural Network (GNN) on Gc(Θc, Xc, Yc) and evaluate performance on the
20% test nodes in the original graph, whose labels Ytest were completely excluded during coarsening and
are used only for final evaluation. Furthermore, we perform node classification on the original graph and
compare the results with those obtained from the coarsened graph. To ensure an equitable comparison, we
use the same data split, allocating 80% of the node labels for training and the remaining 20% for testing.
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It is evident from Table 1 that the node classification performance remains consistent across different GNN
models (GCN, GAT, APPNP) on datasets including Cora, DBLP, CoCS, PubMed, Co-Physics, Genius, and
OGBN-Arxiv under various coarsening ratios, demonstrating the robustness and effectiveness of the proposed
CGC algorithm. Furthermore, we compare the node classification performance of the GCN model using our
proposed CGC method against state-of-the-art approaches including SCAL, FGC, and LAGC. The results,
summarized in Table 2, demonstrate that CGC consistently outperforms these baseline methods across
various datasets and coarsening ratios. We present robustness studies that complement the results reported
in the main paper. These include additional baseline comparison, sensitivity analysis to leader selection,
evaluation on heterophilous graphs, comparison with a random node-masking baseline, experiments under
reduced label supervision, ablation studies on leader variants, and results on the ogbn-arxiv dataset using the
official OGB splits. Overall, CGC shows stable performance across all settings with comprehensive results
are in Appendix A.6.

Structural Properties: To assess the struc-
tural preservation of the coarsened graph, we
evaluate spectral and smoothness properties
using the Relative Eigenvalue Error (REE)
and ϵ-similarity metrics. REE is defined
as 1

q

∑q
i=1

|λ̃i−λi|
λi

, measures the spectral de-
viation between the original and coarsened
Laplacian matrices Θ and Θc over the small-
est q eigenvalues, where λi and λ̃i denote
the i-th eigenvalues of Θ and Θc, respec-
tively. Lower REE indicates better spec-
tral preservation. It is evident from Fig-
ure 4 that the plots of the top 40 eigen-
values of the Laplacian matrix for both
the original and coarsened graphs across
various datasets (a) Cora, (b) DBLP, (c)
PubMed, (d) CoCS, and (e) Co-Physics un-
der different coarsening ratios, closely ap-
proximate the original spectra and demon-
strate improved alignment compared to state-
of-the-art algorithms. For smoothness, we
adopt a feature-dependent ϵ-similarity no-
tion: given the node-feature matrix X, we
require (1 − ϵ) tr(X⊤ΘX) ≤ tr(X̃⊤ΘcX̃) ≤
(1 + ϵ) tr(X⊤ΘX), where tr(X⊤ΘX) and
tr(X̃⊤ΘcX̃) denote the Dirichlet energy of

Table 3: Runtime comparison of the proposed CGC algo-
rithm with baseline algorithms SCAL, FGC, and LAGC
across various real-world datasets and coarsening ratios
(r = k/p). Time(in seconds) includes only the graph coars-
ening step. The results demonstrate that CGC is compu-
tationally efficient and scales well across different datasets.

Dataset r SCAL FGC LAGC CGC

Cora 0.21 2.28 18.90 9 0.35
0.05 6.58 7.50 9 0.35

DBLP
0.23 85.02 2818.14 1980 14
0.05 65.96 581.31 309 15
0.01 64.27 169.28 84 15

CoCS
0.14 23.13 3398.42 1758 13
0.03 27.38 704.16 357 15
0.01 45.33 261.51 126 15

Pubmed
0.235 53.37 2609.87 4380 23
0.07 59.75 640.52 569 24
0.02 61.34 167.48 202 24

Co-Physics
0.09 58.98 6647.98 10078 58
0.01 110.38 914.43 585 67
0.005 155.63 634.21 422 67

Genius

0.06 17707 - - 7019
0.02 22732 - - 9011
0.009 24251 - - 9613
0.007 24521 - - 9720

OGBN-Arxiv

0.15 3792 - - 1503
0.04 6506 84388 61262 2579
0.01 7258 49139 58341 2877
0.004 7946 15284 14172 2912
0.001 7376 9677 8957 2924

this specific feature signal on the original and coarsened graphs, respectively. This definition measures
how well the coarsened graph preserves the energy of the task-relevant feature matrix X, consistent with
feature-dependent smoothness evaluation used in recent graph coarsening research Kumar et al. (2023). A
smaller ϵ therefore indicates better preservation of the smoothness of X under coarsening. It is evident
from Figure 4(f) that the ϵ-similarity values for the DBLP, CoCS, PubMed, and Co-Physics datasets across
different coarsening ratios r remain within the valid range [0, 1], indicating reliable smoothness preservation.

Time complexity: Given a graph with p nodes and an average degree ∆, the time complexity of the
proposed coarsening algorithm is O(p ·∆ · k), where k denotes the number of nodes of the coarsened graph.
The per-iteration cost and the convergence bound are provided in Appendix A.3. This computational
efficiency arises from the fact that each node interacts only with its neighbors and that the coarsening
process significantly reduces the size of the problem. As demonstrated in Table 3, the proposed CGC
algorithm achieves faster execution times (in seconds) compared to the baseline methods such as SCAL,
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FGC, and LAGC in most coarsening ratios. Entries marked “–” indicate baseline runs that failed due to
out-of-memory (OOM).

5 CONCLUSION
This paper introduced the CGC algorithm, a cooperative game-theoretic approach to graph coarsening that
utilizes node features and the weighted adjacency matrix. We defined the coalition cost using the Dirichlet
energy. We measured each player’s cost as its marginal contribution, which is the change in energy that
results from including or excluding the player from the coalition. We formally proved that the CGC algorithm
operates within the CGame framework as a potential game, guaranteeing convergence to a stable solution.
Since the potential function is defined as the sum of Dirichlet energies of all coalitions, the final stable state
corresponds to a minimum total energy configuration. Empirical results on node classification tasks show
that our method achieves superior accuracy and significantly lower coarsening time than state-of-the-art
baselines. Overall, the CGC algorithm provides a computationally efficient and effective solution for graph
coarsening, demonstrating both theoretical soundness and practical advantages.
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A Appendix

A.1 NP-Completeness of Coalition Instability Detection in Non-Leader-Based Refinement

Recall that internal stability (Eq. equation 8) requires that for a given coalition S∑
i∈T

ci ≤ v(T ), ∀T ⊆ S, (13)

where ci denotes the cost allocated to player i in the current coalition S, and v(T ) is the cost that subset T
would incur if it deviates and forms a standalone coalition.

If there exists some non-empty subset T ⊆ S such that∑
i∈T

ci > v(T ),

then the members of T are collectively overpaying relative to their stand-alone worth and have an incentive
to deviate; in this case, the coalition S is internally unstable.
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Coalition Instability Detection (decision version). Given a finite set of players S with allocated
costs {ci}i∈S and a characteristic function v(·), does there exist a non-empty subset T ⊆ S such that the
internal-stability inequality equation 13 is violated, i.e.,∑

i∈T

ci > v(T ) ?

If such a subset exists, the members of T have incentive to deviate and form their own coalition, making the
original coalition S unstable.

We now show that this decision problem is NP-complete.

Proof of Theorem 1. To prove that the Coalition Instability Detection decision problem Q′ is NP-
complete, we must show two things: (1) Q′ ∈ NP and (2) a known NP-complete problem Q can be reduced
to Q′ in polynomial time.

Step 1: Coalition Instability Detection is in NP. A decision problem is in NP if, for every instance of
the problem, a proposed solution (certificate) can be verified in polynomial time. For the Coalition Instability
Detection decision problem, a certificate is a non-empty subset T ⊆ S that is claimed to violate internal
stability. To verify this certificate, we need to compute (i) the total cost

∑
i∈T ci and (ii) the sub-coalition

cost v(T ), and then check whether the inequality∑
i∈T

ci > v(T )

holds.

In our CGC formulation, the per-player costs and the characteristic function are defined via the Dirichlet
energy DE() of a coalition on the coarsened graph ( equation 6 and equation 7). Let G = (V, E) be the
underlying fine graph with node features {xu}u∈V and edge weights {wuv}(u,v)∈E . Each coalition S ⊆ V
induces a supernode on the coarsened graph, and we denote by Ex(S) the set of edges incident to this
supernode x on the coarsened graph.

The Dirichlet energy contribution associated with coalition S is then

DE(S) = 1
2

∑
(u,v)∈Ex(S)

w̃uv ∥x̃u − x̃v∥2.

Each term ∥x̃u − x̃v∥2 can be computed in O(n) time, where n is the feature dimension, and each edge in
Ex(S) is processed once. Hence, DE(S) can be computed in O(|Ex(S)| · n) time.

The cost allocated to player j in a coalition S is given by

cS(j) = DE(S) − DE
(
S \ {j}

)
,

where DE(S) and DE(S \ {j}) are both defined using the corresponding incident-edge sets Ex(S) and
Ex(S \ {j}) on the coarsened graph. Thus, computing cS(j) requires two Dirichlet-energy evaluations and is
therefore O(|Ex(S)| · n) for each player’s cost. Given a fixed coalition S, the total cost of any subset T ⊆ S
is ∑

i∈T

cS(i),

which can be obtained in O(|T |) time once the costs {cS(i)}i∈S are available.

The characteristic function v(·) used in our CGC game is defined in Eqs. equation 6 and equation 7; spe-
cializing those definitions to an arbitrary subset T (corresponding to some coalition / supernode), we have

v(T ) =

DE(T ), if |T | = 1,∑
j∈T

cT (j), if |T | > 1,
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where
cT (j) = DE(T ) − DE

(
T \ {j}

)
,

and each DE(·) is evaluated using the corresponding incident-edge set Ex(T ) on the coarsened graph. As
above, each Dirichlet energy term can be computed in O(|Ex(T )| · n) time, so all cT (j) for j ∈ T can be
obtained in O(|T | · |Ex(T )| · n) time, and hence v(T ) is computable in polynomial time.

Therefore, for any proposed subset T ⊆ S, both
∑

i∈T ci (with ci = cS(i)) and v(T ) (as defined above) can
be evaluated in time polynomial in the size of the input. The final comparison

∑
i∈T ci > v(T ) is constant

time. Hence, the Coalition Instability Detection decision problem Q′ admits a polynomial-time verification
procedure and belongs to the class NP.

Step 2: NP-hardness via reduction from a known NP-complete problem. Let Q denote the Max-
Cut decision problem and let Q′ denote the Coalition Instability Detection decision problem defined
above. We reduce from Q, which is NP-complete (Ben-Ameur et al., 2014), and give a polynomial-time
many-one reduction Q ≤p Q′.

Max-Cut (decision version). Given an undirected graph G = (V, E) with nonnegative integer edge
weights {wuv}(u,v)∈E and a threshold K ∈ N, the Max-Cut decision problem asks whether there exists a
subset U ⊆ V such that

cutG(U, V \ U) :=
∑

(u,v)∈E
u∈U, v /∈U

wuv ≥ K.

Reduction (Q ≤p Q′). Given an instance (G, K) of Q, we construct an instance of Q′ as follows. Let
W =

∑
(u,v)∈E wuv denote the total edge weight.

1. Player set. Define S = V ∪ {p}, where p is a dummy player.

2. Characteristic function. For any coalition T ⊆ S, let U = T ∩ V and define

v(T ) := W − cutG(U, V \ U).

Since the Dirichlet energy of the indicator function fU satisfies E(fU ) = cutG(U, V \U), this can be
written as v(T ) = W − E(fU ), i.e., an affine transformation of the cut-based Dirichlet energy.

3. Costs. For all i ∈ V , set ci = 0, and for the dummy player set

cp = W −K + 1
2 .

This construction is clearly computable in polynomial time in |V |+ |E|.

Equivalence. We now show that the Max-Cut instance (G, K) is a “yes” instance if and only if the
constructed Coalition Instability Detection instance admits a violating coalition.

(⇒) Suppose there exists U∗ ⊆ V with cutG(U∗, V \ U∗) ≥ K. Consider the coalition T = U∗ ∪ {p}. Then∑
i∈T

ci = cp = W −K + 1
2 ,

v(T ) = W − cutG(U∗, V \ U∗) ≤ W −K.

Hence
∑

i∈T ci = W −K + 1
2 > W −K ≥ v(T ), so T violates internal stability.
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(⇐) Suppose there exists a coalition T ⊆ S such that
∑

i∈T ci > v(T ). If p /∈ T , then
∑

i∈T ci = 0, while
v(T ) = W −cutG(T, V \T ) ≥ 0, so the inequality

∑
i∈T ci > v(T ) cannot hold. Thus any violating coalition

must contain p.

Let T = U ∪{p} for some U ⊆ V . Then
∑

i∈T ci = cp = W −K + 1
2 , v(T ) = W −cutG(U, V \U). The

violation condition becomes W −K + 1
2 > W −cutG(U, V \U), which simplifies to cutG(U, V \U) > K− 1

2 .
Since cut values are integers, this is equivalent to cutG(U, V \ U) ≥ K, so U is a feasible solution to the
original Max-Cut instance.

Conclusion. Since the Coalition Instability Detection problem Q′ is in NP (Step 1), and known
NP-complete problem Max-Cut Q reduces to it in polynomial time (Step 2), it follows that Q′ is NP-
complete.

A.2 Illustrative Example of Coalition Stability

As illustrated in Figure 3, consider a graph in which three coalitions C1, C2, C3 are formed based on the 1-hop
neighborhoods of nodes 1, 5, and 6, respectively. Specifically, for node 1, its local neighborhood includes
nodes 2, 3, and 4, resulting in the coalition C1 = {1, 2, 3, 4}. To analyze the stability of these coalitions, we
consider two approaches: first, the case without leader-based refinement, and then the case with leader-based
refinement.

In Non-Leader-Based Coalition Refinement, the stability of a coalition is evaluated by checking whether any
individual node or group of nodes has an incentive to deviate. Evaluating stability in this way requires
examining all possible non-empty subsets of the coalition. For C1, which contains four nodes, the maximum
number of non-empty subsets to consider is 24 − 1 = 15. However, as shown in Figure 3a, only 11 subsets
are observed to deviate since C1 is not a fully connected clique. When the nodes in a coalition are fully con-
nected, the deviation-checking process corresponds to the Stable Coalition problem, which is NP-complete,
as established in Theorem 1.

In the leader-based coalition refinement, nodes 1, 5, 6 are selected as leaders, as shown in Figure 3b, and
form coalitions with all their neighbors. In the refinement step, each neighbor ai is individually checked
to decide whether it should (i) remain in the leader’s coalition, (ii) leave to join another coalition led by a
different leader, or (iii) remain unassigned if no better option is available. This requires only 6 checks, one
per neighbor, resulting in linear time complexity. This localized refinement procedure generalizes efficiently
across the entire graph. Let k denote the number of leaders (at most k), and di the number of neighbors of
leader i. The total number of comparisons to check stability across all leader-based coalitions is O(

∑m
i=1 di).

Since
∑m

i=1 di ≤ k ·∆, where ∆ is the average degree of the graph, the overall comparison cost is O(k ·∆).

A.3 Complexity and Convergence Analysis

Per-iteration complexity. One iteration corresponds to a full sweep over all leaders, that is, at most k
leader updates. Each leader considers at most ∆ one-hop neighbors. Evaluating all marginal costs inside a
candidate coalition requires O(∆2) computation, and checking membership or updating assignments adds
O(p ∆). The per-iteration cost is therefore O

(
k(∆2 + p ∆)

)
. Since p > ∆, the dominant term is O(k p ∆).

Convergence bound. CGC induces a finite exact potential game: every accepted coalition update pro-
duces the same decrease in the global potential as in the individual player’s cost, and the potential is a
non-negative Dirichlet-energy quantity. Hence the potential cannot decrease indefinitely, and only finitely
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many improving deviations are possible, so the repeat–until loop converges to a pure Nash equilibrium (PNE)
in finitely many steps.

More concretely, after the first full sweep over the p nodes, the leader set stabilizes and contains exactly k
leaders. In the subsequent dynamics, only the remaining p − k follower nodes may change their coalition,
and each such move strictly decreases the Dirichlet-energy potential. Since each follower can choose among
at most k leaders, a follower can switch coalitions at most (k−1) times. Hence, the total number of accepted
coalition updates is bounded by (p−k)(k−1) = O(pk). Under our update schedule, each iteration processes
at most k leaders, so the number of iterations until convergence is at most O(pk/k) = O(p), while the total
number of node-level updates is O(pk), which in the worst case (k ≤ p) is at most quadratic, O(p2), in the
number of nodes.

A.4 Multi-Level CGC Algorithm

Algorithm 2 Multi-Level CGC Algortihm based Graph Coarsening
Require: Original graph G = (V, E, X), number of coarsening levels k
Ensure: Coarsened graph G(k)

1: G(0) ← G
2: for i = 1 to k do
3: Apply CGC algorithm 1 on G(i−1)

4: Obtain coarsened graph G(i)

5: end for
6: return G(k)

A.5 Additional Dataset Details

Dataset number of nodes features levels
Cora 2,704 1,433 7
DBLP 17,716 1,639 4
CoCS 18,333 2,000 5
Pubmed 19,717 500 3
Co-Physics 34,493 8,415 6
OGBN-Arxiv 169343 128 40
Genius 421961 12 2

Table 4: Details of the real datasets, including the number of nodes p, features n , and levels l.

A.6 Experiments

This section presents supplementary robustness studies that complement the results reported in the main
paper. These include additional baseline comparison, sensitivity analysis to leader selection, evaluation on
heterophilous graphs, comparison with a random node-masking baseline, experiments under reduced label
supervision, ablation studies on leader variants, and results on the ogbn-arxiv dataset using the official OGB
splits.

A.6.1 Additional Baseline Comparison

To ensure fairness and completeness in our empirical evaluation, we additionally compare CGC against several
recent and widely used graph coarsening baselines. Specifically, we include the recently proposed structure-
guided SGBGC method (Xia et al., 2025), along with the scalable non-learning approaches HEM (Karypis &
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Table 5: Node classification accuracy of CGC compared with the recent supervised coarsening method
SGBGC and scalable non-learning baselines HEM, Graclus, and METIS across multiple real-world datasets
and coarsening ratios (r = k/p). Each value reports the mean accuracy ± standard deviation over 10 runs.

Dataset r = k/p SGBGC HEM Graclus METIS CGC

Cora 0.21 84.62 ± 0.34 79.88 ± 1.42 81.32 ± 0.31 83.31 ± 0.30 87.96 ± 0.32
0.05 82.67 ± 0.44 30.21 ± 0.00 63.32 ± 2.21 30.21 ± 0.00 80.57 ± 0.21

DBLP
0.23 84.21 ± 0.50 75.29 ± 2.10 82.30 ± 0.16 83.31 ± 0.24 84.75 ± 0.54
0.05 78.72 ± 0.26 66.77 ± 2.57 64.65 ± 0.41 53.18 ± 4.75 80.74 ± 0.43
0.01 73.86 ± 0.25 44.71 ± 0.00 44.71 ± 0.00 44.71 ± 0.00 76.77 ± 0.12

CoCS
0.14 92.11 ± 0.44 85.76 ± 0.90 90.52 ± 0.64 90.94 ± 0.48 92.53 ± 0.67
0.03 91.38 ± 0.28 22.56 ± 0.00 60.75 ± 2.61 23.77 ± 3.30 91.13 ± 0.31
0.01 91.25 ± 0.17 22.56 ± 0.00 22.56 ± 0.00 22.56 ± 0.00 85.66 ± 0.45

PubMed
0.235 85.46 ± 0.20 82.04 ± 0.46 84.37 ± 0.42 82.97 ± 0.27 86.84 ± 0.11
0.07 83.15 ± 0.15 57.50 ± 0.13 81.29 ± 0.22 57.30 ± 0.38 86.02 ± 0.28
0.02 82.45 ± 0.31 39.27 ± 0.01 39.27 ± 0.01 39.17 ± 0.05 83.41 ± 0.72

Co-Physics
0.09 94.78 ± 0.43 81.57 ± 1.37 16.67 ± 0.00 16.67 ± 0.00 94.79 ± 0.19
0.01 92.56 ± 0.14 50.52 ± 0.00 50.52 ± 0.00 50.52 ± 0.00 94.15 ± 0.37

0.005 89.54 ± 0.22 50.52 ± 0.00 50.52 ± 0.00 50.52 ± 0.00 92.43 ± 0.58

Kumar, 1998a), Graclus (Dhillon et al., 2007), and METIS (Karypis & Kumar, 1998b). All baseline models
are executed using their publicly available implementations with recommended hyperparameter configura-
tions. Table 5 reports node-classification accuracy under varying coarsening ratios across multiple benchmark
datasets. As shown in Table 5, CGC consistently outperforms all compared methods across datasets and
coarsening levels, with particularly notable gains under stronger compression (smaller r = k/p).

A.6.2 Sensitivity Analysis of CGC to Leader Selection

We evaluate the sensitivity of CGC to random leader selection on four benchmark datasets (Cora, DBLP,
CoCS, and Pubmed) by running CGC multiple times with independently sampled leader sets, while keeping
all other settings fixed. For each dataset, we perform multiple independent runs (150 for Cora, 50 for CoCS,
and 35 for DBLP and Pubmed) and record the resulting node-classification accuracies. As summarized by the
histograms in Figure 5a, 5b, 5c, and 5d, CGC exhibits strong stability under random leader selection across
all four datasets. On Cora, 150 runs yield accuracies ranging from 85.19% to 87.53%, with a narrow spread of
2.34 percentage points. On DBLP, 35 runs fall within an even tighter band of 84.36%–85.05% (range: 0.69%).
CoCS shows similar robustness, with 50 runs distributed between 91.80% and 92.77% (range: 0.97%), while
Pubmed displays the highest stability, with 35 runs concentrated in the interval 87.13%–87.50% (range:
0.37%). The empirical distributions in Figure 5 reveal that the vast majority of runs cluster tightly around
the mean accuracy, with very few outliers. This narrow concentration indicates that CGC’s performance
is highly robust and not strongly dependent on the specific random choice of initial leaders. Although
the theoretical convergence guarantees apply only to local equilibria, these empirical results demonstrate
that different leader selections consistently lead to similar high-quality solutions, suggesting that the local
equilibria reached by CGC are of comparable quality across different starting configurations.

A.6.3 Evaluation on Heterophilous Graphs

CGC is primarily designed for homophilic graph settings where neighboring nodes tend to share similar
features and labels, consistent with the Dirichlet-energy objective that encourages merging structurally
and semantically aligned nodes. Since the datasets used in our main experiments (e.g., Cora, Citeseer,
PubMed, DBLP, Co-CS, Co-Physics, OGBN-Arxiv, Genius) are predominantly homophilic, we additionally
evaluate CGC on two heterophilous benchmarks (Cornell and Texas) to assess robustness beyond this regime.
We compare CGC against the classical coarsening baselines HEM, Graclus, and METIS under multiple
coarsening ratios (r = k/p), reporting mean accuracy± standard deviation over 10 runs. As shown in Table 6,
CGC substantially outperforms all baselines across all coarsening levels, with the performance gap widening
under stronger compression (smaller r), where traditional methods degrade to near-random accuracy (≈
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Figure 5: Distributions of node-classification accuracy across multiple runs of CGC under random leader
selection, based on 150 runs for Cora, 50 for CoCS, and 35 for DBLP and Pubmed. Each histogram reports
the sample mean (µ) and standard deviation (σ), highlighting the tight concentration of accuracy values and
the robustness of CGC to leader selection.

44–56%) while CGC maintains significantly higher accuracy (71–84%). These results demonstrate that
CGC remains effective in heterophilous settings and preserves discriminative structural information even
under aggressive graph reduction.

Table 6: Node classification accuracy on heterophilous graph datasets (Cornell and Texas), comparing the
proposed CGC algorithm against classical graph coarsening baselines HEM, Graclus, and METIS under
different coarsening ratios (r = k/p). Each value reports the mean accuracy ± standard deviation over 10
runs.

Dataset r = k/p HEM Graclus METIS CGC Original

Cornell
0.23 54.10 ± 4.25 52.46 ± 3.67 53.88 ± 2.38 84.53 ± 0.91

86.90 ± 0.560.06 44.81 ± 0.00 43.61 ± 4.25 44.81 ± 0.00 79.21 ± 1.20
0.02 44.81 ± 0.00 44.81 ± 0.00 44.81 ± 0.00 71.25 ± 2.07

Texas
0.23 56.39 ± 5.32 61.31 ± 2.96 57.05 ± 1.27 84.53 ± 0.91

87.31 ± 1.380.06 55.19 ± 0.00 40.11 ± 12.08 55.19 ± 0.00 79.21 ± 1.20
0.02 55.19 ± 0.00 47.76 ± 14.86 55.19 ± 0.00 71.25 ± 2.07
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A.6.4 Random Node-Masking Baseline

To determine whether the performance gains of CGC arise solely from graph size reduction or from the
quality of the coarsening mechanism, we implement a random node-masking baseline that removes nodes
uniformly at random to match the coarsened graph size produced by CGC. We run this process 10 times
with different random seeds and report mean accuracy ± standard deviation. As shown in Table 7, CGC
consistently outperforms random masking across all coarsening ratios, confirming the value of the coalition-
based merging strategy over naive downsampling.

Table 7: Node classification comparison of CGC with a random node-masking baseline under different
coarsening ratios (r = k/p). Each value reports the mean accuracy ± standard deviation over 10 runs.

Dataset r = k/p Node Masking Baseline Accuracy CGC

Cora 0.21 44.63 ± 6.10 87.96 ± 0.32
0.05 22.84 ± 9.67 80.57 ± 0.21

DBLP
0.23 77.92 ± 1.33 84.75 ± 0.54
0.05 70.16 ± 3.61 80.74 ± 0.43
0.01 55.10 ± 16.99 76.77 ± 0.12

Co-CS
0.14 89.08 ± 1.65 92.53 ± 0.67
0.03 83.84 ± 3.05 91.13 ± 0.31
0.01 81.42 ± 9.92 85.66 ± 0.45

Pubmed
0.235 56.01 ± 7.60 86.84 ± 0.11
0.07 36.92 ± 14.14 86.02 ± 0.28
0.02 31.12 ± 17.03 83.41 ± 0.72

Co-Physics
0.09 92.01 ± 1.72 94.79 ± 0.19
0.01 90.36 ± 3.44 94.15 ± 0.37
0.005 79.13 ± 7.25 92.43 ± 0.58

A.6.5 Robustness to Limited Labeled Data

To study the robustness of CGC under reduced label availability, we perform additional experiments using
smaller training subsets (30%, 40%, 60%, and 70% of labeled nodes), following the same settings as the main
evaluation. The results, presented in Table 8, show that CGC maintains strong performance across reduced
supervision levels, demonstrating that CGC remains effective even with significantly fewer labeled nodes.

A.6.6 Ablation Studies on Leader Variants

To assess the impact of key design choices in CGC, we perform ablation studies on two variants: (i) Random-
leader initialization and (ii) Random-neighbor merge under restricted hop sizes. In the Random-leader
variant, coalition leaders are selected uniformly at random across 10 independent runs, and we report the
mean node-classification accuracy with the corresponding standard deviation. The value in parentheses
indicates the average coarsening ratio r = k/p achieved across the 10 runs. In the Random-neighbor merge
ablation, each node selects a random neighbor within a limited hop neighborhood for merging, instead of using
Dirichlet-energy–based marginal contribution, thereby isolating the effect of informed coalition formation.

As shown in Table 9, both variants result in substantial accuracy degradation and increased variance relative
to the proposed CGC method, demonstrating the critical role of energy-guided coalition formation and
structured leader selection.

A.6.7 Official OGB Splits

We additionally report the performance of CGC on the ogbn-arxiv benchmark using the official data splits
provided by the Open Graph Benchmark (OGB). Table 10 summarizes the node-classification accuracy
of CGC across a range of coarsening ratios r = k/p. The results indicate that CGC retains competitive
performance even under aggressive coarsening, with accuracy decreasing gracefully as the ratio r is reduced.
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Table 8: Node classification accuracy of CGC under different training label ratios (70%, 60%, 40%, and
30%). Each value represents the mean accuracy ± standard deviation over 10 runs.

Dataset r = k/p 70% labels 60% labels 40% labels 30% labels

Cora
1 85.16 ± 0.51 85.59 ± 0.48 86.53 ± 0.58 86.99 ± 0.64

0.2338 82.15 ± 0.90 78.67 ± 1.50 67.25 ± 3.12 56.76 ± 3.17
0.0406 77.49 ± 1.48 75.76 ± 2.58 73.70 ± 2.49 65.65 ± 3.03

DBLP

1 85.73 ± 0.34 85.31 ± 0.28 84.91 ± 0.13 84.39 ± 0.19
0.23 82.49 ± 0.29 80.06 ± 0.40 72.98 ± 0.53 66.47 ± 0.93
0.05 79.54 ± 0.50 78.39 ± 0.74 76.65 ± 0.81 72.97 ± 0.98
0.01 76.44 ± 0.89 76.13 ± 1.64 74.90 ± 1.46 72.60 ± 2.29

CoCS

1 93.97 ± 0.09 93.73 ± 0.24 91.56 ± 0.20 88.32 ± 0.20
0.14 90.46 ± 0.47 89.26 ± 0.68 82.07 ± 2.83 76.87 ± 2.88
0.03 89.77 ± 0.42 89.46 ± 0.70 87.29 ± 0.65 85.63 ± 1.74
0.01 84.63 ± 0.98 84.20 ± 1.90 83.78 ± 1.60 83.06 ± 1.60

PubMed

1 87.87 ± 0.39 87.76 ± 0.27 86.48 ± 0.10 85.34 ± 0.16
0.235 83.20 ± 0.62 77.16 ± 1.44 57.09 ± 1.84 30.27 ± 0.97
0.07 81.47 ± 0.96 78.09 ± 1.43 62.50 ± 2.32 49.08 ± 2.62
0.02 79.53 ± 1.41 77.17 ± 1.85 70.15 ± 1.94 65.48 ± 2.38

Co-Physics

1 96.56 ± 0.05 96.44 ± 0.08 96.30 ± 0.08 96.11 ± 0.07
0.09 93.47 ± 0.40 92.21 ± 0.60 87.01 ± 2.32 82.01 ± 2.41
0.01 93.50 ± 0.37 92.88 ± 0.62 90.32 ± 1.74 88.00 ± 2.46
0.005 91.24 ± 1.84 91.36 ± 1.55 90.80 ± 1.98 90.48 ± 1.78

Genius
1 79.97 ± 1.05 80.00 ± 0.01 78.97 ± 3.05 72.74 ± 4.20

0.06 78.82 ± 12.26 78.29 ± 4.81 77.26 ± 5.12 67.15 ± 23.16
0.02 59.39 ± 21.09 48.73 ± 26.56 48.73 ± 26.56 45.86 ± 26.97

OGBN-Arxiv 1 55.30 ± 0.70 53.30 ± 0.17 53.03 ± 1.17 45.31 ± 0.42
0.15 51.31 ± 0.41 48.43 ± 0.56 40.89 ± 0.73 22.66 ± 1.31

Cornell

1 86.99 ± 0.64 86.53 ± 0.58 85.59 ± 0.48 85.16 ± 0.51
0.23 82.76 ± 1.27 82.76 ± 1.27 67.35 ± 2.20 57.49 ± 2.96
0.06 78.99 ± 1.21 78.55 ± 1.54 74.75 ± 2.33 68.46 ± 2.05
0.02 71.31 ± 1.96 70.32 ± 2.82 69.28 ± 3.60 67.11 ± 2.60

Texas

1 86.91 ± 0.90 86.72 ± 0.71 85.75 ± 0.59 85.22 ± 0.57
0.23 82.76 ± 1.27 79.21 ± 1.26 67.35 ± 2.20 57.49 ± 2.96
0.06 78.99 ± 1.21 78.55 ± 1.54 74.75 ± 2.33 68.46 ± 2.05
0.02 71.31 ± 1.96 70.32 ± 2.82 69.28 ± 3.60 67.11 ± 2.60

Squirrel

1 40.25 ± 3.51 31.18 ± 2.50 23.95 ± 0.83 21.35 ± 0.44
0.16 29.33 ± 0.71 28.42 ± 0.92 27.71 ± 0.90 26.03 ± 0.85
0.01 30.17 ± 1.72 28.81 ± 2.13 28.24 ± 1.63 29.33 ± 1.39
0.004 22.95 ± 2.13 22.07 ± 1.42 22.34 ± 1.32 23.08 ± 2.35

Table 9: Ablation study of random-leader and random-neighbor variants. Values show mean accuracy and
± standard deviation over 10 runs; parentheses denote the average coarsening ratio r = k/p.

Dataset r = k/p Random-leader (r) Random-neighbor merge CGC (Desc) Whole Data

Cora 0.21 86.90 ± 0.92 (0.27) 83.03 ± 0.12 87.96 ± 0.32 89.50 ± 1.200.05 79.09 ± 1.33 (0.09) 62.35 ± 3.23 80.57 ± 0.21

DBLP
0.23 83.45 ± 0.33 (0.26) 82.45 ± 0.16 84.75 ± 0.54

85.35 ± 0.860.05 80.24 ± 0.16 (0.06) 78.44 ± 2.71 80.74 ± 0.43
0.01 78.87 ± 0.75 (0.02) 68.65 ± 0.36 76.77 ± 0.12

CoCS
0.14 92.11 ± 0.73 (0.14) 89.68 ± 0.38 92.53 ± 0.67

93.32 ± 0.620.03 90.94 ± 0.44 (0.03) 63.49 ± 3.57 91.13 ± 0.31
0.01 88.25 ± 0.83 (0.01) 35.37 ± 1.56 85.66 ± 0.45

PubMed
0.235 86.53 ± 0.18 (0.16) 82.40 ± 0.32 86.84 ± 0.11

88.89 ± 0.570.07 85.77 ± 0.39 (0.04) 41.11 ± 0.31 86.02 ± 0.28
0.02 82.93 ± 0.67 (0.01) 81.13 ± 0.22 83.41 ± 0.72

Co-Physics
0.09 94.42 ± 0.24 (0.09) 88.98 ± 0.23 94.79 ± 0.19

96.22 ± 0.740.01 93.88 ± 0.49 (0.02) 67.79 ± 1.37 94.15 ± 0.37
0.005 92.12 ± 0.63 (0.008) 67.20 ± 0.30 92.43 ± 0.58
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Table 10: Node-classification accuracy on ogbn-arxiv using official OGB splits

Dataset r = k/p CGC Accuracy
ogbn-arxiv 1.0 53.44± 0.34
ogbn-arxiv 0.15 47.23± 0.35
ogbn-arxiv 0.04 46.28± 0.36
ogbn-arxiv 0.01 44.17± 0.46
ogbn-arxiv 0.004 41.85± 0.59
ogbn-arxiv 0.001 38.75± 0.59

A.7 Theoretical Convergence Guarantee

Proof of Theorem 2. Recall that for each coalition Si, the coalition-level potential ϕ(Rm
Si

) is defined in
equation (11). The global potential is then given by Φ(m) =

∑
Si∈S ϕ(Rm

Si
).

If the potential function Φ meets the cost-alignment condition defined in equation 10, then CGame confirms
the properties of a potential game, where local cost improvements support the minimization of global po-
tential. Under CGC algorithm, node i updates its mapping decision from a coalition Si to S′

i at a mapping
profile m = (mi, m−i), only if its cost decreases. Suppose Rm

Si
and Rm

S′
i

are the nodes in coalitions Si and S′
i,

respectively, before changing the mapping decision. The change in node i’s cost due to the transition from
coalition Si to S′

i is calculated as:

∆ci = ci(m′
i, m−i)− ci(mi, m−i) = DE(Rm

S′
i
∪ {i})−DE(Rm

S′
i
)−

(
DE(Rm

Si
)−DE(Rm

Si
\ {i})

)
(14)

where ∆ci < 0. This inequality holds because a node deviates to S′
i only when such a move strictly reduces

its cost. Formally,

ci(m′
i, m−i) < ci(mi, m−i) ⇒ ∆ci = ci(m′

i, m−i)− ci(mi, m−i) < 0. (15)

Therefore, the update rule ensures that a node’s cost always decreases after deviation.

Now, when a node updates its mapping, the value of the potential function changes as follows:

∆ϕ = ϕinc − ϕdec, (16)

where ϕinc represents the increase in ϕ, and ϕdec represents the decrease in ϕ.

Specifically, when node i is remapped from coalition Si to S′
i, the potential value ϕ of coalition S′

i increases,
while the potential value ϕ of coalition Si decreases. These changes in ϕ are calculated as follows:

The increase in ϕ for the new coalition S′
i is:

ϕinc = ϕ(Rm
S′

i
∪ {i})− ϕ(Rm

S′
i
)

= DE(Rm
S′

i
∪ {i})−DE(Rm

S′
i
) (by equation (11))

= ci(m′
i, m−i) (by equation (7)). (17)

The decrease in ϕ for the original coalition Si is:

ϕdec = ϕ(Rm
Si

)− ϕ(Rm
Si
\ {i})

= DE(Rm
Si

)−DE(Rm
Si
\ {i}) (by equation (11))

= ci(mi, m−i) (by equation (7)). (18)
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If the condition ∆ci < 0 is satisfied, then from equations (17) and (18), the change in the global potential
∆ϕ is equal to the change in the individual cost ∆ci. Consequently, ∆ϕ < 0, which shows that every locally
improving move strictly decreases the global potential. This proves that CGame is an exact potential game.
Moreover, this equality holds because a unilateral move of node i affects only the coalition it leaves and the
coalition it joins, and the global potential is defined as the sum of the corresponding coalition-level Dirichlet
energies. As a result, the value of ∆ϕ decreases monotonically as nodes update their mapping decisions
according to the CGC algorithm.

Proof of Theorem 3. The presence of a PNE1 is justified using the arguments outlined below.

1. In the proposed CGame, the potential function ϕ(m) is defined over the set of all possible mapping
profiles, where each node selects a coalition from its neighbors. Since both the number of nodes and
their neighbor sets are finite, the number of mapping profiles and thus the range of ϕ(m) is finite.

2. The game progresses through updates to these profiles, with nodes updating their choices based on
the CGC algorithm. As shown in Theorem 2 and above point that this game is a finite-potential
game where each update results in a strictly decreasing value of ϕ(m), preventing the game from
revisiting previous states and ensuring convergence. Once the potential function reaches its minimum
value, any unilateral deviation by a player would increase their own cost and thus increase ϕ(m).
Therefore, a player will not unilaterally deviate, confirming that the converged state corresponds to
a Pure Nash Equilibrium.2

1In CGame, a PNE represents a mapping profile where no player can further reduce its cost by unilaterally changing its
mapping choice.

2Every finite potential game admits a pure-strategy equilibrium, as proved by (Monderer & Shapley, 1996).
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